
Automating Value-Oriented Forecast
Model Selection by Meta-learning:

Application on a Dispatchable Feeder

Dorina Werling(B), Maximilian Beichter, Benedikt Heidrich, Kaleb Phipps,
Ralf Mikut, and Veit Hagenmeyer

Karlsruhe Institute of Technology, Karlsruhe, Germany

dorina.werling@kit.edu

Abstract. To successfully increase the share of renewable energy
sources in the power system and for counteract their fluctuating nature
in view of system stability, forecasts are required that suit downstream
applications, such as demand side management or management of energy
storage systems. However, whilst many forecast models to create these
forecasts exist, the selection of the forecast model best suited to the
respective downstream application can be challenging. The selection is
commonly based on quality measures (such as mean absolute error),
but these quality measures do not consider the value of the forecast in
the downstream application. Thus, we introduce a meta-learning frame-
work for forecast model selection, which automatically selects the forecast
model leading to the forecast with the highest value in the downstream
application. More precisely, we use a meta-learning approach that con-
siders the selection task as a classification problem. Furthermore, we
empirically evaluate the proposed framework on the downstream appli-
cation of a smart building’s photovoltaic-battery management problem
known as dispatchable feeder on building-level with a data set containing
time series from 300 buildings. The results of our evaluation demonstrate
that the proposed framework reduces the cost and improves the accuracy
compared to existing forecast model selection heuristics. Furthermore,
compared to a manual forecast model selection, it requires noticeably
less computational effort and leads to comparable results.

Keywords: meta-learning · forecast value · forecast model selection

1 Introduction

The increasing share of decentralised, renewable energy sources challenges sys-
tem operators since they must maintain system stability despite the uncertain

This project is funded by the Helmholtz Association’s Initiative and Networking Fund through
Helmholtz AI, the Helmholtz Association under the Program “Energy System Design”, and the
German Research Foundation (DFG) as part of the Research Training Group 2153 “Energy Status
Data: Informatics Methods for its Collection, Analysis and Exploitation”.

c© The Author(s) 2024
B. N. Jørgensen et al. (Eds.): EI.A 2023, LNCS 14467, pp. 95–116, 2024.
https://doi.org/10.1007/978-3-031-48649-4 6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48649-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-48649-4_6

96 D. Werling et al.

and fluctuating behaviour of these energy sources. To maintain the system sta-
bility and to make optimal use of decentralised sources, smart grids make use
of intelligent downstream applications. Such downstream applications include
the intelligent management of smart buildings via demand side management
[7,16], or dispatchable feeders [4,30,38]. These applications can be connected in
a smart grid internet of things (IoT) environment, swiftly communicating with
one another via information and communication technology (ICT) to ensure sta-
ble system operation. However, despite real-time data via smart meters, these
downstream applications often rely on load and renewable energy generation
forecasts.

In order to create these forecasts, a number of choices must be made regard-
ing the forecast model, including the selection of the forecast method (e.g. auto-
regressive integrated moving average (ARIMA), support vector regression, or
neural networks). Furthermore, several further decisions must be taken, such as
the choice of the method’s hyperparameters and the loss function used for train-
ing. Whilst many scientific papers promote certain forecast model choices that
they claim will lead to good forecasts [2,18,23], it is important to consider and
define what constitutes a “good” forecast. Thereby, the “goodness” of a fore-
cast can be measured by its quality and/or its value [25]. The forecast quality
evaluates the forecast solely from the forecaster’s point of view and is typically
measured by metrics such as mean absolute error (MAE) or mean squared error
(MSE). On the other hand, the forecast value considers the downstream applica-
tion’s point of view by evaluating the performance of the downstream application
based on the forecast. For the smart building optimisation examples described
above, the performance of these downstream applications can be evaluated by
calculating the economic costs based on the optimisation problem’s result to
assess the forecast value.

Several studies investigate the quality and the value of forecast methods
[11,13,28] and hyperparameters [6,37] for solar, wind, and load forecasting.
These studies show that the relation between forecast quality and value does
not have to be linear or monotonic [25] and thus, improving the forecast qual-
ity may not always lead to a higher value in the downstream application in
case of a forecast with remaining uncertainties. Additionally, [37] shows that the
downstream application’s setting and the considered data influence the forecast
value. The authors show for a domestic photovoltaic-battery management prob-
lem that the battery capacity, as well as the prosumption profile, can also impact
the forecast value.

These findings highlight the complexity of selecting forecast models to
improve the value in the downstream application and indicate that the compu-
tational effort of a manual, optimal forecast model selection can be tremendous.
To reduce the manual forecast model selection’s computational burden while
achieving comparable results, we propose a solution for automatically select-
ing forecast models based on the resulting forecast’s value in the downstream
application using meta-learning. Specifically, we propose a framework for fore-
cast model selection that treats the selection task as a classification problem.

Automated Value-Oriented Forecast Model Selection by Meta-learning 97

Forecast
value

Meta-
data

Forecaster

Optimiser

Forecaster

Optimiser

Forecaster

Optimiser

Forecaster

Optimiser

Forecaster

Optimiser
Classifier

−+
−+

−+ −+

(1)
(1)

(1) (2)

Meta-
data

(2)

(1)

(1)

Fig. 1. The schematic representation of the proposed framework for a smart building
optimisation as downstream application with the novelty marked in blue. In step (1),
a classifier is trained using the buildings’ metadata and the buildings’ label of the
forecast model leading to the forecast with the highest value. In step (2), the trained
classifier can be operated to predict the forecast model leading to the highest value
forecast for a new building utilising its metadata (marked in green). Then, the smart
building optimisation can be executed. (Color figure online)

To achieve this, we train a classifier to select the forecast model leading to the
forecast with the highest value in the downstream application, using metadata
as input. In the smart building optimisation context, Fig. 1 displays the pro-
posed framework. In step (1), the classifier is trained. For this training, we first
execute the building optimisation with varying forecasts from different forecast
models and then calculate the value of each forecast. Then, the forecast model
leading to the forecast with the highest value is determined and together with
metadata of the building used to train a classifier. In step (2), the trained classi-
fier can then predict the forecast model leading to the forecast with the highest
forecast value for a new building by utilising the new building’s metadata. For
evaluation, we apply our framework on the downstream application of a smart
building’s photovoltaic-battery-management problem - a dispatchable feeder -
using real-world time series of 300 buildings.

The remainder of the paper is structured as follows. Section 2 gives a brief
overview of the related work. Section 3 introduces the meta-learning framework
for forecast model selection, while Sect. 4 presents the considered downstream
application of a dispatchable feeder. Section 5 describes the experimental setup
for evaluation and presents the corresponding results. Section 6 discusses the
results and Sect. 7 wraps up the paper.

2 Related Work

In this section, we position our research compared to existing literature by
addressing two aspects. First, we summarize prior work focusing on forecast
models designed for the downstream application. Second, we present existing
meta-learning approaches for quality-oriented forecast model selection.

98 D. Werling et al.

One approach to designing forecast models based on the downstream appli-
cation is to incorporate information from this downstream application into the
forecast model. While [41] feeds back such information to the forecasting, [14,15]
utilise the mathematical description of the downstream application, in this case
an optimisation problem, during forecasting. However, these approaches can be
computationally expensive and may not take into account all the relevant infor-
mation influencing the forecast value. A simpler approach is to assume that the
forecast value is solely dependent on the forecast error. Then, one can use the
so-called cost-oriented loss function [19,22,24,36,40]. Thereby, the cost-oriented
loss function is a piecewise function that assigns different weights to forecast
errors, resulting in biased forecasts. While the form of the cost-oriented loss
function needs to be known in [22,24,36,40] approximate the form in a com-
putationally expensive manner. However, the cost-oriented loss function is not
suitable for complex downstream applications with constraints, such as battery
management problems. The approach of customising the loss function to fit
the downstream application is also pursued in [1,20]. However, this approach is
specifically designed for a single downstream application and cannot necessarily
be generalised to create high-value forecasts for other applications.

Approaching the forecast model selection, several works aim to find the best-
suited forecast method based on forecast quality measures using meta-learning
[31,34,35]. Additionally, [9] directly predicts the RMSE of a forecast using meta-
learning. However, these approaches do not consider the value of the forecast in
the downstream application.

Summarizing, several existing works present approaches to either design fore-
casts based on their downstream applications or use meta-learning for forecast
model selection with respect to forecast quality. In contrast, our meta-learning
framework selects the forecast model with respect to the forecast value while not
requiring knowledge of the downstream application during forecasting making it
easily usable for various applications.

3 Meta-learning Framework for Forecast Model Selection

The idea of the underlying meta-learning framework for forecast model selection
is to find the forecast model leading to the forecast with the highest value in the
downstream application for a specific instance, e.g. a specific building. Thereby,
the forecast value is a forecast evaluation metric that measures the performance
of the downstream application based on the forecast and depends on the quantity
of interest e.g. a building’s electricity cost or self-sufficiency. Mathematically, the
forecast value can be described by a function of the downstream application, its
required data, and the information needed to generate the forecasts, namely
the forecast model and the specific instance’s data. The aim of the proposed
framework is then to find the forecast model for each instance that maximises the
forecast value, which we will refer to as the best forecast model in the following.
Thus, we search for the best forecast model for instance i ∈ I

Automated Value-Oriented Forecast Model Selection by Meta-learning 99

f�
i = argmax

f∈F
Value

(
a, Di, f

)
(1)

from a set of forecast models F given a downstream application a and the
instance’s data Di. Thereby, Di includes the input data of forecast models in F
as well as additional data required by the downstream application a. Although
this best forecast model may be found through a manual search, such a manual
selection is cost-intensive and time-consuming. Therefore, we propose a meta-
learning framework to identify the best forecast model automatically. In the
following, we introduce this meta-learning framework for forecast model selection
which interprets the selection task as a classification problem. First, we present
the components of the proposed framework. Afterwards, we explain the usage of
the framework including the training process and the operation.

3.1 Components of the Proposed Framework

The meta-learning framework for forecast model selection consists of four com-
ponents. These are the set of forecasts models F , the downstream application a,
the metadata extraction component, and the classifier c.

The set of forecast models F comprises all considered forecast models. To
handle the influence of the data Di of different instances i ∈ I on what is the
best forecast model, we require that the set of forecast models F is diverse. Thus,
this diversity has to be ensured when F is created. The second component is
the considered downstream application a. This downstream application requires
a forecast provided by a forecast model f ∈ F as input for execution. The
execution’s performance determines the forecast value. The third component
is the metadata extraction component. This component extracts the metadata
mi from Di that is used by the classifier to determine the best forecast model.
The last component is the classifier c. The task of the classifier is to select the
forecast model leading to the forecast with the highest value in the downstream
application a. Thus, we need to interpret the selection problem in Eq. (1) as a
classification problem by considering each f ∈ F as a class. Consequently, the
target of the classification problem is the class of f�

i . Given the metadata mi,
the output of the classifier is then

f̂�
i = c(mi).

3.2 Usage of the Proposed Framework

To use the proposed framework, we first need to train the framework in order
to operate it afterwards.

Step 1: Training Fig. 2a provides an overview of the proposed framework’s train-
ing. This training requires the creation of the input features and the target vari-
ables. In the following, we present the creation of the input features and target
variables as well as the training of the classifier in more detail.

100 D. Werling et al.

First, to create the input features, we extract the metadata mi of the data
Di for each instance i ∈ I. Additionally, to create the target variables, we create
a set of forecast models F and train the forecast models on the data Di of
each instance i ∈ I. These forecast models provide forecasts to the downstream
application a for execution. The execution’s performance determines the forecast
value for each f ∈ F and i ∈ I from which we derive the target variable f�

i .
Second, using these target variables and the corresponding metadata mi, we
train the classifier c.

Train
forecast model

Apply
forecast model

Extract
metadata

Data Di

Execute downstream
application

Select best forecast
model

Best forecast
model f�

i

Metadata
mi

Train classifier c

for each
f ∈ F

for each
i ∈ I

(a) To train the proposed framework, training data needs to be created. Therefore,
for the data Di of each instance i ∈ I and each forecast model f ∈ F the forecast
value in the downstream application is calculated. Based on this, the best forecast
model f�

i for this instance is determined. Afterwards, f�
i is used as target variable

together with the metadata mi as input data to train the classifier c.

Data Dinew
Extract
metadata

Apply
classifier

Best forecast model f̂�
inew

(b) To operate the proposed framework, the metadata minew of the data Dinew of
a new instance inew is extracted. Based on this, the classifier determines the best
forecast model f̂�

inew . This forecast model can be trained and it’s forecast provided
to the downstream application a.

Fig. 2. The usage of the meta-learning framework for forecast model selection. (a) In
the first step, the framework needs to be trained. (b) Afterwards, the framework can
be operated.

Automated Value-Oriented Forecast Model Selection by Meta-learning 101

Step 2: Operation. The operation of the proposed framework is displayed in
Fig. 2b. First, for the new instance inew and the corresponding data Dinew , we
extract the metadata minew . Using this metadata as input, the classifier’s output
is the best forecast model f̂�

inew
. Based on this output, the corresponding forecast

model can be trained, and the resulting forecast provided to the downstream
application a.

4 Applying the Proposed Framework: Application
on a Dispatchable Feeder

In this section, we apply our framework to the downstream application of a
dispatchable feeder as in [37]. We, therefore, first describe the dispatchable feeder
before highlighting how we apply our framework to this downstream application.

4.1 Application Dispatchable Feeder

In this section, we introduce the exemplary downstream application on which
we apply and evaluate our meta-learning framework for forecast model selection.
The exemplary downstream application is a dispatchable feeder, which consists,
from the system side, of an inflexible, volatile component and a flexible, but
energy-constrained component [4,30]. The overall aim of the dispatchable feeder
is to intelligently manage the flexible component so that the inflexibility inher-
ent in the system is balanced out. Thereby, the management of the flexible
component is described via a two-level non-linear optimisation problem. In the
following, we first specify the considered system components, before we explain
the management.

System Components of the Dispatchable Feeder. We apply a dispatchable feeder
in a domestic building setting and consider the prosumption of the building with
a rooftop photovoltaic (PV) panel as the inflexible and the domestic battery
as the flexible component. To model these components, we consider a discrete
system operation with time intervals indexed with k ∈ N and duration of Δt ∈ R.
Additionally, we consider only active power. To model the battery, we use its
power output Ps(k) ∈ R and state of energy Es(k) ∈ R. Both variables are
restricted by lower and upper bounds P s, P s ∈ R and Es, Es ∈ R≥0. Further,
we model the dynamic evolution of the battery’s state of energy via

Es(k + 1) = Es(k) + Δt · (
Ps(k) − μP+

s (k) + μP −
s (k)

)
(2)

with loss coefficient 0 ≤ μ ≤ 1 and P+
s (k) ∈ R≥0 and P−

s (k) ∈ R≤0 being
the positive and negative parts of the battery’s power output. The building’s
prosumption is defined as domestic load minus PV power generation. The power
exchange between the grid and the dispatchable feeder is then the sum of the
battery’s power output and the building’s prosumption.

102 D. Werling et al.

Battery Management of the Dispatchable Feeder. In the following, we briefly
introduce the battery management of the dispatchable feeder via a hierarchical
optimisation problem with two levels. A detailed mathematical description of
the optimisation problems can be found in Appendix A.1.

In the first level, we calculate a cost-minimal dispatch schedule P̃g(k) ∈ R

for the next day using deterministic forecasts of the prosumption P̂l(k) ∈ R. As
a cost function, we take peak shaving and self-consumption into account:

CDS

(
P̃+

g (k), P̃ −
g (k)

)
= c+q · (P̃+

g (k))2 + c+l · P̃+
g (k)

+ c−
q · (P̃ −

g (k))2 + c−
l · P̃ −

g (k),
(3)

with P̃+
g (k) ∈ R≥0 and P̃−

g (k) ∈ R≤0 being the positive and negative parts of
the dispatch schedule and c+q , c+l , c−

q , c−
l ∈ R≥0 being weighting parameters.

In the second level, we minimize the deviation of the dispatch schedule
ΔPg(k) ∈ R with consideration of the realised prosumption Pl(k) ∈ R, while
respecting the battery’s technical constraints.

4.2 Applying the Proposed Framework

As described in Sect. 3, the proposed framework interprets the selection of the
best forecast model as a classification task. In the downstream application of
the dispatchable feeder, we are interested in identifying for each building the
prosumption forecast model which provides the forecast with the highest value.
As forecast value we consider the average daily total cost, with lower costs corre-
sponding to a higher value [37]. Therefore, we briefly describe these costs below.

The total cost is comprised of two components: the cost associated with
the dispatch schedule, as described in Eq. (3), and the cost resulting from the
difference between the actual dispatch and the dispatch schedule, referred to as
imbalance cost [4]. More precisely, we define the imbalance cost as

Cimb

(
ΔPg(k)

)
= cΔ

q · | ΔPg(k) · Δt |2 + cΔ
l · | ΔPg(k) · Δt |

with ΔPg(k) being the difference between the actual dispatch and the dispatch
schedule and the weighting parameters cΔ

q and cΔ
l

1.
The total cost can then be expressed as

Ctotal

(
P̃+

g (k), P̃ −
g (k), ΔPg(k)

)
= CDS

(
P̃+

g (k), P̃ −
g (k)

)
+ α · Cimb

(
ΔPg(k)

)

with imbalance cost factor2 α. Further, we sum the total cost over 24 h and
average this daily total cost over the considered days to obtain the average daily
total cost3.

5 Evaluation

We evaluate the meta-learning framework for forecast model selection on the
previously described downstream application of a dispatchable feeder.
1 In this paper, we select cΔ

q = 0.05 e
kWh2 and cΔ

l = 0.3 e
kWh

as in [5].
2 In this paper, we select as imbalance cost factor either 2 or 10 as in [5].
3 In the following, we use the average daily total cost without its unit (e).

Automated Value-Oriented Forecast Model Selection by Meta-learning 103

5.1 Experimental Setup

This section presents the experimental setup4 for the evaluation of the proposed
framework.

Forecast Models. Driven by the results of [37], we consider neural networks
using varying loss functions as forecast models. More precisely, we use three-
layered fully connected neural networks. As input, the neural networks receive
the historical prosumption of the past 24 h. The hidden layer has 16 neurons and
a ReLU [17] activation function. The output layer provides the prediction of the
prosumption for the next 42 h using 42 output neurons and a linear activation
function. Furthermore, we use 20% of the training data for validation to apply
early stopping, a batch size of 512, and the RMSProb optimiser.

To achieve a diverse set of forecast models, we consider four different loss
functions. This set of forecast models is guaranteed to be diverse because the used
loss functions are responsible for the resulting forecast’s properties. Thereby,
a loss function quantifies how well the neural network models the true values
yt, t ∈ [1 . . . N], and is minimised in training. The first loss function is the mean
absolute error (MAE). It is the mean over the absolute errors and defined as

MAE =
1

N

N∑
t=1

|yt − ŷt| .

The MAE treats large and small errors equally. Second, the mean squared
error (MSE) is the mean over the sum of the squared errors and defined as

MSE =
1

N

N∑
t=1

(yt − ŷt)
2.

Due to the squared error term, the loss function is more sensitive to outliers.
Third, the Huber loss function combines properties of the MSE and the MAE
and is defined as

Huber =
1

N

N∑
t=1

{
1
2
(yt − ŷt)

2, for |yt − ŷt| ≤ 1

(|yt − ŷt| − 1
2
), otherwise

.

Therefore, if the absolute of the error is less than one, the squared error loss
is used, and if not, an absolute error based loss is used. This error function is
therefore less influenced by outliers than the MSE. The pinball loss, which is
often utilised for generating τ ∈ (0, 1) quantile forecasts, has the propensity to
produce biased estimates. Specifically, the true values are underestimated with
a probability of τ and overestimated with a probability of τ − 1. It is defined as

pinball(τ) =
1

N

N∑
t=1

max(τ · (yt − ŷt), (τ − 1) · (yt − ŷt)).

In the present paper, we choose τ values of 0.1, 0.25, 0.75, and 0.9.
4 See Appendix A.2 for a detailed description of the implementation.

104 D. Werling et al.

Classifier Setup. The classifier within our proposed framework requires meta-
data that captures relevant time series information as input. Thus, we consider
a set of statistical features as input features including the mean, standard devi-
ation, minimum, 25th percentile, median, 75th percentile, maximum, skewness,
and kurtosis of the prosumption time series. Furthermore, we also include the
average daily prosumption profile, i.e. the mean over all considered days for each
hour. For further analysis with different input features, the reader is referred to
Appendix A.4. To reduce the dimensionality of the input data, we use SKLearn’s
principal component analysis with 70% of explained variance [26]. Therefore, we
scale the input data with SKLearn’s standard scaler.

Given the selected metadata, we evaluate our framework with six different
classifiers to cover a broad range of classification approaches including tree-,
distance-, support vector-, and neural network-based classifiers, which we briefly
describe in the following. The first classifier is the XGBoost classifier [10].
XGBoost boosts multiple decision trees iteratively to improve the prediction.
The second classifier is the k-nearest neighbour (kNN) [12]. It determines the k
nearest neighbours for a given test sample. The final classification is then per-
formed by a majority vote of the k nearest neighbours. The third classifier is
the support vector classifier (SVC) [27]. The SVC aims to find a hyperplane
between two classes [32]. To apply the SVC in the multi-class scenario of the
considered downstream application, the one-vs-one strategy is used. The fourth
classifier is the multi-layer perceptron (MLP). The MLP consists of one or more
hidden layers of fully connected neurons with a non-linear activation function
to approximate arbitrary functions. The fifth classifier is a decision tree (DT)
[8]. DTs extract rules from the training data. Based on these rules, DTs predict
the class of the given sample. The sixth classifier is the naive Bayes (NB) [39].
NB assumes the conditional independence of the input features and uses them
for the prediction of a conditional probability given the prior probability of the
output variable.

Data. For our evaluation, we use the “Ausgrid - Solar home electricity data” set
[29]. The data set contains load and PV power generation time series from 300
residential buildings in Australia spanning three years from 1st July 2010 to 30th
June 2013 in a 30 min resolution. We resample the data to hourly resolution and
calculate the prosumption data by subtracting the PV power generation from
the load. To compare different ratios of load with regards to the installed PV
power generation, we scale the PV power generation with the factors 1, 5, and
10, and the load with factors 1/5, 1/2, 1, 2, and 5.

Further, we use training and test splitting, see Appendix A.3. Thereby, for
training the neural networks, we use the first two years of data as training data
set. For evaluating the neural networks, we utilise the last year as test data set.
Further, for training the classifiers, we use the first 200 buildings. For evaluating
the classifiers, we employ the last 100 buildings. Additionally, for all buildings,
we extract the metadata based on the first two years and consider the output
labels based on the last year.

Automated Value-Oriented Forecast Model Selection by Meta-learning 105

Benchmarks. To evaluate the performance of our proposed framework, we
compare it to two benchmarks. The first benchmark is the one loss function
benchmark. As suggested by the name, this benchmark applies one forecast
model to all buildings. More precisely, we train one neural network with the same
loss function for each building on the first two years. As the second benchmark,
we consider a manually selected loss function for each building. In this
benchmark, we calculate which loss function is cost-minimal for each building
based on the first two years of data. Then, each building applies this cost-minimal
loss function for the last year.

Metrics. For evaluation, we use three metrics. The first metric is the F1 score
as an accuracy measure for the considered classifier. The F1 score is defined as

F1 =
2 · TP

2 · TP+ FP + FN
,

with TP being the true positives, FP being the false positives and FN being the
false negatives. For the one loss function benchmark, the F1 score corresponds to
the percentage of buildings for which the loss function is cost-minimal. Second,
to measure the forecast value in our downstream application we use the average
daily total cost in Sect. 4.2, which take the imbalance and the dispatch schedule
cost into account. Thereby, we calculate the mean of the building’s average daily
total cost over the considered buildings for imbalance cost factors 2 and 10.
Third, we measure computational effort by recording the average computation
time of each component in seconds and calculate based on this the average
forecast model selection time in seconds. Thereby, the latter consists of the time
required to select the forecast model and to generate the forecast.

5.2 Results

In this section, we evaluate the performance of the meta-learning framework
for forecast model selection. First, we compare the cost and accuracy of our
framework with the two selected benchmarks. Second, we evaluate the impact
of different classifiers on the forecast model selection performance and, finally,
address the computational effort.

Benchmarking. We compare the cost and accuracy of our framework to the
two benchmarks with respect to imbalance cost factors 2 and 10 in Table 1.

Starting with imbalance cost factor 2, we observe for the one loss function
benchmark that the selected loss function has a noticeable impact on the cost
and accuracy. This benchmark achieves the lowest cost (6.09) with MAE as loss
function. However, similar costs are obtained when using Huber (6.11) and MSE
(6.27). The corresponding accuracies with MSE, MAE, and Huber is 0.25, 0.22,
and 0.17 respectively. In contrast, pinball 0.75 results in cost of 8.83 despite
being the cost-minimal loss function for the most buildings (namely 34%). In
comparison, the proposed framework with SVC as classifier reduces the one loss

106 D. Werling et al.

Table 1. The average daily total costs and the F1 scores of the proposed framework
and the considered benchmarks for the imbalance cost factors 2 and 10. The metrics
are calculated for the test data set with the last year of data and the last 100 buildings.
Note, for the average daily total costs lower values are better and for the F1 scores
higher values.

Approaches Imbalance cost factor 2 Imbalance cost factor 10

Average daily F1 scores Average daily F1 scores

total costs (e) total costs (e)

One loss function with

MAE 6.09 0.22 20.05 0.16

MSE 6.27 0.25 18.95 0.20

Huber 6.11 0.17 19.05 0.11

Pinball 0.10 9.62 0.00 43.78 0.00

Pinball 0.25 7.41 0.02 30.47 0.01

Pinball 0.75 8.83 0.34 27.04 0.37

Pinball 0.90 18.13 0.00 60.08 0.16

Manually selected loss function 5.92 0.69 17.67 0.73

Proposed framework (SVC) 5.93 0.68 17.80 0.67

function benchmark cost by at least 2.6% to 5.93 and improves the accuracy to
0.68. However, the proposed framework has slightly higher cost (5.92) and lower
accuracy (0.69) compared to the manually selected loss function benchmark.

For imbalance cost factor 10, the one loss function benchmark reaches its
lowest cost (18.95) using MSE as loss function, with similar costs using Huber
(19.05) and MAE (20.05). The corresponding accuracy is 0.20 with MSE, 0.16
with MAE, and 0.11 with Huber. The highest accuracy of 0.37 is reached with
pinball 0.75. In comparison, the proposed framework with SVC as classifier,
again, reduces the one loss function benchmark cost by at least 6% to 17.80
and improves the accuracy to 0.67. Further, similar to imbalance cost factor 2,
the difference in cost and accuracy between the proposed framework and the
manually selected loss function benchmark is less than 1% and 10% respectively.

Impact of Classifier. To investigate the impact of the classifier, we compare
the performance of the proposed framework with six classifiers. Based on the
results for the imbalance cost factors 2 and 10 in Table 2, we present three
observations.

First, for with imbalance cost factor 2, we observe that the proposed frame-
work achieves the lowest cost of 5.93 when using SVC and MLP. The classifiers
kNN, XGBoost, and decision tree lead to costs of 6.00, 6.03 and 6.07 respectively.
With respect to the accuracy, the order of the classifier is similar with SVC/MLP
(0.68), XGBoost (0.64), kNN (0.63), and decision tree (0.58). In contrast, naive
Bayes leads to the highest cost of 6.21 as well as to the lowest accuracy of 0.6.

Second, for imbalance cost factor 10, SVC and MLP lead to the lowest costs
of 17.80 and 17.81 and to accuracy of 0.67. Further, the classifier kNN, XGBoost,
and naive Bayes lead to costs of 17.98, 18.13, and 18.21 and accuracies of 0.63,

Automated Value-Oriented Forecast Model Selection by Meta-learning 107

Table 2. The average daily total costs and the F1 scores of the proposed framework
using different classifiers for the imbalance cost factors 2 and 10. The metrics are
calculated for the test data set with the last year of data and the last 100 buildings.
Thereby, we calculate the mean over five runs with the values in the brackets being
the minimum and maximum. Note, for the average daily total costs lower values are
better and for the F1 scores higher values.

Approaches Imbalance cost factor 2 Imbalance cost factor 10

Average daily F1 scores Average daily F1 scores

total costs (e) total costs (e)

XGBoost 6.03 0.64 18.13 0.61

kNN 6.00 0.63 17.98 0.63

SVC 5.93 0.68 (0.67,0.68) 17.80 0.67

MLP 5.93 (5.92,5.95) 0.68 (0.67, 0.68) 17.81 (17.76, 18.39) 0.67

Decision tree 6.07 (6.06,6.09) 0.58 (0.57,0.59) 18.35 (18.32, 18.39) 0.56 (0.55,0.57)

Naive Bayes 6.21 0.6 18.21 0.58

0.61, and 0.58 respectively. In contrast to the results for the imbalance cost factor
2, decision tree performs worst with cost of 18.35 and accuracy of 0.56.

Our final observation regarding the classifiers’ impact is that each classifier
reaches a higher accuracy for imbalance cost factor 2 compared to imbalance
cost factor 10.

Computational Effort. We first measure each component’s computation time.
Afterwards, we calculate the time of the proposed framework and the bench-
marks to select the forecast model for a new building.

For each component, Table 3a provides the average computation time in sec-
onds per building. The most time-intensive component is the optimisation prob-
lem’s run time on the first two years, followed by the neural network’s training
time. The other components require a negligible amount of time.

Based on the measured components’ times, we can estimate the forecast
model selection time for a new building. For the one loss function benchmark,
the neural network with the considered loss function must be trained on the first
two years of the new building’s data. For the manually selected loss function
benchmark, we need to train neural networks for each loss function, generate
forecasts with the trained neural networks and solve the optimisation problem
with the resulting forecasts for the first two years. For the proposed framework,
we must first extract the metadata based on the first two years, then run the
classifier, and, finally, train the neural network with the selected loss function
once. Table 3a shows the resulting forecast model selection times. In this table,
we make two observations. First, the manually selected loss function benchmark
has, noticeably, the highest forecast model selection time with 287.14 s. The
one loss function benchmark and the proposed framework require noticeably
less time. Second, we observe that despite using a meta-learning approach the
forecast model selection time of the proposed framework is only slightly higher
than that of the one loss function benchmark.

108 D. Werling et al.

Table 3. The average computation time of each component and the average forecast
model selection time of the proposed framework and the considered benchmarks in
seconds for a new building. Note, the times do not depend on the considered imbalance
cost factor.

(a) Computation time of the components

Components Computation time (s)

Classifier inference time

XGBoost 0.02

kNN 0.08

SVC 0.10

MLP 0.01

Decision tree 0.00

Naive Bayes 0.01

Metadata generation time 0.19

Forecasting NN training time 9.38

Forecasting NN inference time 0.07

Optimisation problem run time 31.57

(b) Forecast model selection time of the proposed framework and the considered
benchmarks for a new building.

Approaches Forecast model selection time (s)

One loss function 9.38

Manually selected loss function 287.14

Proposed framework (SVC) 9.67

6 Discussion

This section discusses the previously reported results in Sect. 5.2, the benefits,
and the limitations of the meta-learning framework for forecast model selection.

With regard to the results of the evaluation, we discuss three aspects. First,
the results indicate that the proposed framework reduces the cost and improves
the accuracy compared to the one loss function benchmark. Thereby, the choice
between the classifiers SVC and MLP does not affect the proposed framework’s
performance. In contrast, for this application, using the naive Bayes and deci-
sion tree classifier is not recommended. Furthermore, the performance of the
proposed framework with respect to cost and accuracy is comparable to the per-
formance of the manually selected loss function benchmark. However, there is
still potential for further improvement, e.g. more advanced classifier as well as
hyperparameter optimisation. Second, we observe a non-monotonic, non-linear
relation between cost and accuracy. More precisely, improving the accuracy does
not necessarily lead to lower cost. For the one loss function benchmark, this
means that the cost-minimal loss function for most buildings is not necessarily
the cost-minimal loss function for the whole data set. This observation can be
explained by extensive costs for the remaining buildings and highlights the com-
plexity of selecting the loss function with respect to the forecast value in the
downstream application. Finally, the results show that the proposed framework

Automated Value-Oriented Forecast Model Selection by Meta-learning 109

reduces the computational effort compared to the manually selected loss function
benchmark by 97%. That makes the proposed framework particularly interesting
for downstream applications for which scalability is essential. For example, in
the considered application of the dispatchable feeder, scalability and low com-
putational effort could become important for the joint optimisation of multiple
buildings. Additionally, in contrast to the manually selected loss function bench-
mark, the computational effort of the proposed framework increases negligibly
when the set of forecasting models is expanded. Besides the benefit with respect
to scalability, we want to highlight a further advantage that comes from the
design of the proposed framework. This is, due to its simplicity, it can be easily
applied to various applications without extensive knowledge of the optimisation
problem.

With regard to the proposed framework’s limitations, we discuss three
aspects. First, it should be noted that the proposed framework has been eval-
uated on one application. Second, the proposed framework currently uses two
years of historical data for the initial training process. Therefore, further evalua-
tion is required to determine how a reduced training set affects the performance.
Third, the proposed framework selects the forecast model for each building once.
Further research could extend the framework to an online setting that contin-
ually re-classifies each building based on recent information. This extension is
especially motivated by the results of the manually selected loss function bench-
mark that indicates that the forecast value of a forecast model might change
over time.

7 Conclusion

The present paper addresses the complexity of selecting a forecast model based
on the resulting forecast’s value in the downstream application. To automate
this selection and avoid a computational expensive manual selection, we pro-
pose a meta-learning framework for forecast model selection. More precisely,
we consider the selection task as a classification problem and train a classifier
based on labels referring to the forecast model which provides the forecast with
highest value in the downstream application. We evaluate this meta-learning
framework for forecast model selection on the exemplary downstream applica-
tion of a smart building’s domestic photovoltaic-battery management problem
known as dispatchable feeder. Therefore, we consider neural networks with dif-
ferent loss functions as forecast models. Thus, the selection task is to select
the neural network’s loss function providing forecasts with the highest value
for the dispatchable feeder. The results show that our framework reduces the
cost and improves the accuracy compared to selecting the same loss function for
each building. In comparison with selecting the loss function for each building
manually, the proposed framework leads to similar cost and accuracy requiring
noticeably less computational effort.

In future work, we plan to expand our framework by incorporating the
dynamically selection of the forecast model based on recent input data and by
increasing the considered set of forecast models.

110 D. Werling et al.

A Appendix

A.1 Optimisation Problems

In the following, the first and second level optimisation problems of the dis-
patchable feeder in Sect. 4.1 are described. In the first level, the cost function
in Eq. (3) is minimised under consideration of the system constraints. The first
level optimisation problem can be described by

min
{X}K

∑
k∈K

CDS

(
P̃+

g (k), P̃ −
g (k)

)

s.t. for all k ∈ K
(2)

Es(k0) = E0
s

P̃g(k) = Ps(k) + P̂l(k)

P̃g(k) = P̃+
g (k) + P̃ −

g (k)

P̃ −
g (k) ≤ 0

Ps(k) = P+
s (k) + P −

s (k)

P+
s (k) ≥ 0

P −
s (k) ≤ 0

0 = P+
s (k) · P −

s (k)

P s ≤Ps(k) ≤ P s

Es ≤Es(k) ≤ Es

(4)

with a discrete scheduling horizon K, decision vector X(k) =
(
P̃g(k), P̃+

g (k),

P̃−
g (k), Es(k + 1), Ps(k), P+

s (k), P−
s (k)

)T , and parameters P̂l(k), E0
s , P s, P s,

Es, Es. Thereby, the state of energy at the start of scheduling k0 ∈ N has to be
known or estimated.

In the second level, the deviation of the dispatch schedule ΔPg(k) ∈ R is min-
imised while considering the realised prosumption Pl(k) ∈ R and the battery’s
technical constraints. It can be described by

min
X(k)

(
ΔPg(k)

)2

(2)

Es(k) = Ek
s

Pg(k) = Ps(k) + Pl(k)

Pg(k) = P̃g(k) + ΔPg(k)

Ps(k) = P+
s (k) + P −

s (k) (5)

P+
s (k) ≥ 0

P −
s (k) ≤ 0

Automated Value-Oriented Forecast Model Selection by Meta-learning 111

0 = P+
s (k) · P −

s (k)

P s ≤Ps(k) ≤ P s

Es ≤Es(k) ≤ Es

with actual dispatch Pg(k) ∈ R, decision vector X(k) =
(
ΔPg(k), Pg(k),

Es(k + 1), Ps(k), P+
s (k), P−

s (k)
)T and parameters P̃g(k), Pl(k), Ek

s , P s, P s,

Es, Es. Thereby, the state of energy in k ∈ N is known.

A.2 Implementation

In the following, we briefly describe the hard- and software and the optimisation
problems’ parameter specification used for our evaluation.5

All of our experiments are performed on a small server with 32 cores
(2.1GHz), 64GB RAM, and a Nvidia Titan RTX. To ensure reproducibility
and reusability, we implement the experiments using the pyWATTS library
[21]. To solve the optimisation problem in our downstream application, we use
the Python version of CasADi [3] with IPOPT [33]. We set the parameters of
the optimisation problem in Eq. (4) and Eq. (5) as in [5], see Table 4. Further,
we implement all classifiers except XGBoost with implementation provided by
SKLearn [26]. For XGBoost, we use the XGBoost library [10]. Furthermore, we
use the default hyperparameters for all classifiers apart from the MLP classifier,
where we raise the maximum number of epochs to 1000.

Table 4. Parameter specification of the optimisation problems in Eq. (4) and Eq. (5).

Parameter Value

Δt 1 (hour)

K {ks, ..., ks + 29}a

c+q 0.05 (€/kWh2)

c+l 0.3 (€/kWh)

c−q 0.05 (€/kWh2)

c−l 0.15 (€/kWh)

P s −5 (kW)

P s 5 (kW)

Es 0 (kWh)

Es 13.5 (kWh)

μ 0.05

E0
s day 1: 6 (kWh)

days 2 - 7: estimatedb

a ks ∈ N is the index of the time
interval starting at midnight
b The initial state of energy E0

s for
days two to seven is estimated via
an optimisation problem, see [4].

5 The Code is publicly available at https://github.com/KIT-IAI/Automating-Value-
Oriented-Forecast-Model-Selection-by-Meta-Learning.

https://github.com/KIT-IAI/Automating-Value-Oriented-Forecast-Model-Selection-by-Meta-Learning
https://github.com/KIT-IAI/Automating-Value-Oriented-Forecast-Model-Selection-by-Meta-Learning

112 D. Werling et al.

A.3 Training and Test Data Sets

Fig. 3 displays the training and test data set splitting for the forecast models
and the classifiers.

B
u
il
d
in
g

T
est

classifi
ers

T
rain

classifi
ers

30
0

20
0

1
Test

forecast models
Train

forecast models

2010 2012 2013

Fig. 3. The training and test data sets for the forecast models and the classifiers. Note,
for the classifiers, we extract the metadata from the first two years and consider the
output labels based on the last year.

A.4 Input Features

Table 5 shows the costs and accuracies of the proposed framework for different
input features.

Automated Value-Oriented Forecast Model Selection by Meta-learning 113

T
a
b
le

5
.

T
h
e

av
er

a
g
e

d
a
il
y

to
ta

l
co

st
s

(l
ef

t)
a
n
d

th
e

F
1

sc
o
re

s
(r

ig
h
t)

o
f

th
e

p
ro

p
o
se

d
m

et
a
-l
ea

rn
in

g
fr

a
m

ew
o
rk

fo
r

fo
re

ca
st

m
o
d
el

se
le

ct
io

n
u
si

n
g

d
iff

er
en

t
cl

a
ss

ifi
er

s
a
n
d

d
iff

er
en

t
in

p
u
t

fe
a
tu

re
s

fo
r

im
b
a
la

n
ce

co
st

fa
ct

o
r

2
.
T

h
er

eb
y,

th
e

m
et

a
d
a
ta

is
ca

lc
u
la

te
d

fo
r

th
e

p
ro

su
m

p
ti

o
n

ti
m

e
se

ri
es

a
n
d

co
n
si

st
s
o
f
th

e
fo

ll
ow

in
g

st
a
ti

st
ic

a
l
fe

a
tu

re
s:

[B
]
m

ea
n
,
st

a
n
d
a
rd

d
ev

ia
ti

o
n
,
m

in
im

u
m

,
2
5
th

p
er

ce
n
ti

le
,
m

ed
ia

n
,

7
5
th

p
er

ce
n
ti

le
,
a
n
d

m
a
x
im

u
m

;
[F

1
]
m

ea
n

ov
er

a
ll

d
ay

s
fo

r
ea

ch
h
o
u
r;

[F
2
]
m

ea
n
,
m

in
im

u
m

,
a
n
d

m
a
x
im

u
m

o
f
ea

ch
d
ay

;
[F

3
]
m

ea
n

ov
er

a
ll

d
ay

s
o
f
m

in
im

u
m

a
n
d

m
a
x
im

u
m

fo
r

ea
ch

d
ay

;
[F

4
]
se

a
so

n
a
li
ty

a
n
d

tr
en

d
;
[F

5
]
sk

ew
n
es

s
a
n
d

k
u
rt

o
si

s;
[F

6
]
a
u
to

co
rr

el
a
ti

o
n
.
T

h
e

m
et

ri
cs

a
re

ca
lc

u
la

te
d

fo
r

th
e

te
st

d
a
ta

se
t

w
it

h
th

e
la

st
y
ea

r
o
f
d
a
ta

a
n
d

th
e

la
st

1
0
0

b
u
il
d
in

g
s.

T
h
er

eb
y,

w
e

ca
lc

u
la

te
th

e
m

ea
n

ov
er

fi
v
e

ru
n
s

w
it

h
th

e
va

lu
es

in
th

e
b
ra

ck
et

s
b
ei

n
g

th
e

m
in

im
u
m

a
n
d

m
a
x
im

u
m

.
N

o
te

,
fo

r
th

e
av

er
a
g
e

d
a
il
y

to
ta

l
co

st
s

lo
w

er
va

lu
es

a
re

b
et

te
r

a
n
d

fo
r

th
e

F
1

sc
o
re

s
h
ig

h
er

va
lu

es
.

In
p
u
t

fe
a
tu

re
s

C
la

ss
if
ie

r

X
G

B
o
o
st

k
N
N

S
V
C

M
L
P

D
e
c
is
io

n
T
re

e
N
a
iv

e
B
a
y
e
s

(e
)

F
1

sc
o
re

s
(e

)
F
1

sc
o
re

s
(e

)
F
1

sc
o
re

s
(e

)
F
1

sc
o
re

s
(e

)
F
1

sc
o
re

s
(e

)
F
1

sc
o
re

s

B
+

F
1

6
.0

2
0
.6

5
.9

9
0
.6

2
5
.9

3
0
.6

8
5
.9

3
(5

.9
3
,
5
.9

4
)

0
.6

8
6
.0

4
(6

.0
3
,
6
.0

5
)

0
.5

5
(0

.5
5
,
0
.5

6
)

6
.2

2
0
.6

B
+

F
1
+

F
2

6
.0

0
.6

5
.9

8
0
.6

2
5
.9

3
0
.6

8
5
.9

6
(5

.9
4
,
5
.9

9
)

0
.6

6
(0

.6
6
,
0
.6

7
)

6
.1

(6
.0

8
,
6
.1

1
)

0
.5

6
(0

.5
6
,
0
.5

7
)

6
.2

7
0
.5

7

B
+

F
1
+

F
3

6
.0

4
0
.6

1
5
.9

9
0
.6

3
5
.9

3
0
.6

8
5
.9

3
(5

.9
2
,
5
.9

4
)

0
.6

8
(0

.6
8
,
0
.6

9
)

6
.0

9
(6

.0
7
,
6
.1

)
0
.5

5
(0

.5
4
,
0
.5

6
)

6
.1

5
0
.6

B
+

F
1
+

F
4

6
.0

2
0
.6

1
5
.9

9
0
.6

1
5
.9

3
0
.6

8
5
.9

3
(5

.9
2
,
5
.9

4
)

0
.6

8
(0

.6
8
,
0
.6

9
)

6
.0

7
(6

.0
6
,
6
.0

7
)

0
.5

5
(0

.5
5
,
0
.5

6
)

6
.2

2
0
.6

B
+

F
1
+

F
5

6
.0

3
0
.6

4
6
.0

0
0
.6

3
5
.9

3
0
.6

8
5
.9

3
(5

.9
2
,
5
.9

5
)

0
.6

8
(0

.6
7
,
0
.6

8
)

6
.0

7
(6

.0
6
,6

.0
9
)

0
.5

8
(0

.5
7
,
0
.5

9
)

6
.2

1
0
.6

B
+

F
1
+

F
6

6
.0

3
0
.6

3
5
.9

8
0
.6

3
5
.9

3
0
.6

8
5
.9

3
(5

.9
2
,
5
.9

3
)

0
.6

9
(0

.6
8
,
0
.6

9
)

6
.0

5
(6

.0
4
,
6
.0

7
)

0
.5

6
(0

.5
5
,
0
.5

7
)

6
.2

1
0
.6

B
+

F
1
+

F
2
+

F
5

5
.9

9
0
.6

2
5
.9

8
0
.6

1
5
.9

3
0
.6

8
5
.9

5
(5

.9
4
,
5
.9

8
)

0
.6

7
(0

.6
6
,
0
.6

8
)

6
.0

9
(6

.0
8
,
6
.1

1
)

0
.5

6
(0

.5
5
,
0
.5

7
)

6
.2

7
0
.5

7

B
+

F
1
+

F
3
+

F
5

6
.0

1
0
.6

4
5
.9

8
0
.6

4
5
.9

3
0
.6

8
5
.9

4
(5

.9
2
,
5
.9

7
)

0
.6

8
(0

.6
7
,
0
.7

)
6
.0

6
(6

.0
5
,
6
.0

6
)

0
.5

8
(0

.5
8
,
0
.5

9
)

6
.2

1
0
.6

1

B
+

F
1
+

F
2
+

F
3
+

F
5

5
.9

9
0
.6

2
5
.9

8
0
.6

1
5
.9

3
0
.6

8
5
.9

6
(5

.9
4
,
5
.9

7
)

0
.6

7
(0

.6
6
,
0
.6

7
)

6
.0

9
(6

.0
9
,
6
.1

1
)

0
.5

6
(0

.5
5
,
0
.5

8
)

6
.2

7
0
.5

7

B
+

F
1
+

F
2
+

F
3
+

F
4
+

F
5
+

F
6

5
.9

9
0
.6

1
5
.9

8
0
.6

1
5
.9

3
0
.6

8
5
.9

6
(5

.9
5
,
5
.9

7
)

0
.6

6
(0

.6
6
,
0
.6

7
)

6
.1

0
.5

6
6
.2

7
0
.5

7

114 D. Werling et al.

References

1. Abdulla, K., Steer, K., Wirth, A., Halgamuge, S.: Improving the on-line control of
energy storage via forecast error metric customization. J. Energy Storage 8, 51–59
(2016)

2. Ahmad, T., Zhang, H., Yan, B.: A review on renewable energy and electricity
requirement forecasting models for smart grid and buildings. Sustain. Urban Areas
55, 102052–102082 (2020)

3. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi - a soft-
ware framework for nonlinear optimization and optimal control. Math. Program.
Comput. 11, 1–36 (2019)

4. Appino, R.R., González Ordiano, J.Á., Mikut, R., Faulwasser, T., Hagenmeyer,
V.: On the use of probabilistic forecasts in scheduling of renewable energy sources
coupled to storages. Appl. Energy 210, 1207–1218 (2018)

5. Appino, R.R., González Ordiano, J.Á., Mikut, R., Hagenmeyer, V., Faulwasser, T.:
Storage scheduling with stochastic uncertainties: feasibility and cost of imbalances.
In: 2018 Power Systems Computation Conference (PSCC), pp. 1–7 (2018)

6. Bessa, R.J., Miranda, V., Botterud, A., Wang, J.: ‘Good’ or ‘bad’ wind power
forecasts: a relative concept. Wind Energy 14(5), 625–636 (2011)

7. Biyik, E., Kahraman, A.: A predictive control strategy for optimal management of
peak load, thermal comfort, energy storage and renewables in multi-zone buildings.
J. Build. Eng. 25, 100826–100836 (2019)

8. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth International Group, Belmont, CA (1984)

9. Carneiro, D., Guimarães, M., Carvalho, M., Novais, P.: Using meta-learning to
predict performance metrics in machine learning problems. Expert Syst. 40(1),
e12900 (2023)

10. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. Association for Computing Machinery, New York, NY,
USA (2016)

11. Coignard, J., Janvier, M., Debusschere, V., Moreau, G., Chollet, S., Caire, R.:
Evaluating forecasting methods in the context of local energy communities. Int. J.
Electr. Power Energy Syst. 131, 106956 (2021)

12. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

13. David, M., Boland, J., Cirocco, L., Lauret, P., Voyant, C.: Value of deterministic
day-ahead forecasts of PV generation in PV + storage operation for the Australian
electricity market. Sol. Energy 224, 672–684 (2021)

14. Donti, P.L., Amos, B., Kolter, Z.: Task-based end-to-end model learning in stochas-
tic optimization. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp 5490–5500. Curran Associates Inc., Red Hook,
NY, USA (2017)

15. Elmachtoub, A.N., Grigas, P.: Smart “predict, then optimize.” Manage. Sci. 68(1),
9–26 (2022)

16. Frahm, M., et al.: Occupant-oriented economic model predictive control for demand
response in buildings, pp. 354–360. e-Energy ’22, Association for Computing
Machinery, New York, NY, USA (2022)

17. Fukushima, K.: Cognitron: a self-organizing multilayered neural network. Biol.
Cybern. 20(3–4), 121–136 (1975). https://doi.org/10.1007/BF00342633

https://doi.org/10.1007/BF00342633

Automated Value-Oriented Forecast Model Selection by Meta-learning 115

18. Ghofrani, M., Alolayan, M.: Time series and renewable energy forecasting, pp.
77–92 (2017)

19. Granger, C.W.J.: Prediction with a generalized cost of error function. OR 20(2),
199–207 (1969)

20. Haben, S., Ward, J., Vukadinovic Greetham, D., Singleton, C., Grindrod, P.: A
new error measure for forecasts of household-level, high resolution electrical energy
consumption. Int. J. Forecast. 30(2), 246–256 (2014)

21. Heidrich, B., et al.: pyWATTS: python workflow automation tool for time series
(2021). arXiv:2106.10157

22. Khabibrakhmanov, I., Lu, S., Hamann, H.F., Warren, K.: On the usefulness of
solar energy forecasting in the presence of asymmetric costs of errors. IBM J. Res.
Dev. 60(1), 7:1–7:6 (2016)

23. Kuster, C., Rezgui, Y., Mourshed, M.: Electrical load forecasting models: a critical
systematic review. Sustain. Urban Areas 35, 257–270 (2017)

24. Li, G., Chiang, H.D.: Toward cost-oriented forecasting of wind power generation.
IEEE Trans. Smart Grid 9(4), 2508–2517 (2018)

25. Murphy, A.H.: What is a good forecast? an essay on the nature of goodness in
weather forecasting. Weather Forecast. 8(2), 281–293 (1993)

26. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

27. Platt, J.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

28. Putz, D., Gumhalter, M., Auer, H.: The true value of a forecast: assessing the
impact of accuracy on local energy communities. Sustain. Energy Grids Networks
33, 100983 (2023)

29. Ratnam, E.L., Weller, S.R., Kellett, C.M., Murray, A.T.: Residential load and
rooftop PV generation: an Australian distribution network dataset. Int. J. Sustain.
Energ. 36(8), 787–806 (2017)

30. Sossan, F., Namor, E., Cherkaoui, R., Paolone, M.: Achieving the dispatchabil-
ity of distribution feeders through prosumers data driven forecasting and model
predictive control of electrochemical storage. IEEE Trans. Sustain. Energy 7(4),
1762–1777 (2016)

31. Talagala, T.S., Hyndman, R.J., Athanasopoulos, G.: Meta-learning how to forecast
time series. Monash Econometrics and Business Statistics Working Papers 6/18,
Monash University, Department of Econometrics and Business Statistics (2018)

32. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New
York (2000). https://doi.org/10.1007/978-1-4757-3264-1

33. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–
57 (2006)

34. Wang, C., Bäck, T., Hoos, H.H., Baratchi, M., Limmer, S., Olhofer, M.: Automated
machine learning for short-term electric load forecasting. In: 2019 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pp. 314–321. IEEE, Xiamen,
China (2019)

35. Wang, X., Smith-Miles, K., Hyndman, R.: Rule induction for forecasting method
selection: meta-learning the characteristics of univariate time series. Neurocomput-
ing 72(10), 2581–2594 (2009)

36. Wang, Y., Wu, L.: Improving economic values of day-ahead load forecasts to
real-time power system operations. IET Gener. Trans. Distrib. 11(17), 4238–4247
(2017)

http://arxiv.org/abs/2106.10157
https://doi.org/10.1007/978-1-4757-3264-1

116 D. Werling et al.

37. Werling, D., Beichter, M., Heidrich, B., Phipps, K., Mikut, R., Hagenmeyer, V.:
The impact of forecast characteristics on the forecast value for the dispatchable
feeder. In: Companion Proceedings of the 14th ACM International Conference
on Future Energy Systems, pp. 59–71. e-Energy ’23 Companion, Association for
Computing Machinery, New York, NY, USA (2023)

38. Werling, D., Heidrich, B., Çakmak, H.K., Hagenmeyer, V.: Towards line-restricted
dispatchable feeders using probabilistic forecasts for PV-dominated low-voltage
distribution grids. In: Proceedings of the Thirteenth ACM International Conference
on Future Energy Systems, pp. 395–400. e-Energy ’22, Association for Computing
Machinery, New York, NY, USA (2022)

39. Zhang, H.: The optimality of naive Bayes. In: Proceedings of the Seventeenth
International Florida Artificial Intelligence Research Society Conference (FLAIRS
2004). AAAI Press, Miami Beach, Florida, USA (2004)

40. Zhang, J., Wang, Y., Hug, G.: Cost-oriented load forecasting. Electric Power Syst.
Res. 205, 107723 (2022)

41. Zhao, C., Wan, C., Song, Y.: Cost-oriented prediction intervals: on bridging the
gap between forecasting and decision. IEEE Trans. Power Syst. 37(4), 3048–3062
(2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Automating Value-Oriented Forecast Model Selection by Meta-learning: Application on a Dispatchable Feeder
	1 Introduction
	2 Related Work
	3 Meta-learning Framework for Forecast Model Selection
	3.1 Components of the Proposed Framework
	3.2 Usage of the Proposed Framework

	4 Applying the Proposed Framework: Application on a Dispatchable Feeder
	4.1 Application Dispatchable Feeder
	4.2 Applying the Proposed Framework

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Discussion
	7 Conclusion
	A Appendix
	A.1 Optimisation Problems
	A.2 Implementation
	A.3 Training and Test Data Sets
	A.4 Input Features

	References

