SKIT

Karlsruhe Institute of Technology

Software Design and Quality

Preventing Automatic Code Plagiarism
Generation Through Token String
Normalization

Bachelor’s Thesis of

Moritz Brodel

at the Department of Informatics
KASTEL - Institute of Information Security and Dependability

Reviewer: Prof. Dr. Ralf Reussner
Second reviewer: Prof. Dr.-Ing. Anne Koziolek
Adyvisor: M.Sc. Timur Saglam

Second advisor: M.Sc. Sebastian Hahner

24. November 2022 — 21. April 2023

Abstract

Code plagiarism is a significant problem in computer science education. Token-based pla-
giarism detectors, which represent the state-of-the-art in code plagiarism detection, excel at
identifying manually plagiarized submissions. Unfortunately, they are vulnerable to automatic
plagiarism generation, particularly when statements are inserted or reordered. Therefore,
this thesis introduces token string normalization, which makes the results of token-based
plagiarism detectors invariant to statement insertion and reordering. It inherits token-based
plagiarism detectors’ high language independence and utilizes a program graph. We integrate
token string normalization into the state-of-the-art token-based plagiarism detector JPlag.
We show that this prevents automatic plagiarism generation using statement insertion and
reordering. Additionally, we confirm that JPlag’s existing capabilities are retained.

Contents

Abstract

1. Introduction

2. Foundations

2.1.
2.2.
2.3.

Code Plagiarism
Token-based Plagiarism Detection
Program Dependence Graph

3. Related Work

3.1.
3.2.
3.3.

Plagiarism Detection
Clone Detection o e
Normalization

4. Automatic Plagiarism Generation

4.1.
4.2.

Dead CodeInsertion
Independent Statement Reordering

5. Token String Normalization

5.1.
5.2.

5.3.

Required Semantic Information
Normalization Graph
5.2.1. Definition
522, Usage e
Example

6. Implementation

6.1.

6.2.
6.3.

Generic Interface for Semantic Information
6.1.1. Code Semantics
6.1.2. VariableRegistry
Adding Semantic Information to Java Tokens
Token String Normalization
6.3.1. Normalization Graph Construction
6.3.2. Normalization Graph Usage

ii

g W W W

O 00 3 ~N

10
11
14

16
16
18
18
19
20

Contents

7. Evaluation

7.1. Methodology
7.1.1. Goals, Questions & Metrics,
7.1.2. Dataset
7.2. JPlag-Gen.
7.2.1. UsingInsertion
7.22. UsingReordering
7.3. Effect on Automatic Plagiarism Generation
73.1. UsinglInsertion
7.3.2. UsingReordering
7.3.3. Using a Combination
7.4. Effect on Existing Capabilities
7.4.1. FalsePositives. L
7.4.2. Runtime
7.5. Discussion

7.6. Threats to Validity
8. Future Work
9. Conclusion
Bibliography

A. Appendix

iii

31
31
31
32
32
33
35
35
36
36
36
40
40
43
44
45

46

47

48

52

List of Figures

2.1. Example Program Dependence Graph 6
4.1. Insertionexample L 12
4.2. Reorderingexample L 15
5.1. Example Normalization Graph after construction 22
5.2. Example Normalization Graph after dead code removal 23
7.1. Insertionattempts L 34
7.2. Individual insertion scores for task 56 oL L. 37
7.3. Average insertion scores fortask 56 37
7.4. Individual reordering scores fortask 56 Lo L. 38
7.5. Average reordering scores fortask 56 Lo L. 38
7.6. Individual combined scores for task 56 0oL 39
7.7. Average combined scores fortask56 oL 39
7.8. Non-plagiarized scores for task56 41
7.9. Score distribution for task 56, insertion 41
7.10. Score distribution for task 56, reordering L. 42
7.11. Score distribution for task 56, combined Lo 42
7.12. Runtime for task 56 L L 43
A.1. Individual insertion scores fortask 19 53
A.2. Average insertion scores fortask 19 Lo oL 53
A.3. Individual reordering scores fortask 19 0oL 54
A.4. Average reordering scores fortask 19o oo oL 54
A.5. Individual combined scores fortask 19 55
A.6. Average combined scores fortask19. Lo oL 55
A.7. Non-plagiarized scores fortask 19 56
A.8. Score distribution for task 19, insertion 56
A.9. Score distribution for task 19, reordering L. 57
A.10. Score distribution for task 19, combined 57
A1l.Runtime fortask 19 58

iv

List of Tables

2.1.

5.1
5.2.

6.1.
6.2.

Tokenization example 4
Normalization example token string 20
Normalization example token string after normalization 21
Code fragment categories definitions, 25
Code fragment categories examples 25

1. Introduction

In computer science education, students commonly receive take-home programming assign-
ments to complete. These make for a more practical test of their skills than classical exams.
However, there is no way to check who wrote the submitted programming code. As a result,
plagiarizing someone else’s work! is a trivial task, and many students do so [2, 9]. Since there
are more and more computer science students [5], class sizes are often huge [30], which makes
comparing every pair of submissions by hand infeasible for instructors [3]. For example, in a
class of 500, there are more than 100.000 submission pairs. In this scenario, even a spot check
of thousands of pairs is unlikely to deter students from plagiarizing, as the chance of getting
caught is still relatively small.

Plagiarism detectors present a countermeasure to plagiarism. Despite their name, they do
not directly detect plagiarism cases but merely assist instructors in finding them. They do this
by computing a similarity score between every pair of submissions. As plagiarism is strongly
associated with a high similarity score, instructors can catch most cases of plagiarism by
only inspecting the relatively few pairs with high scores. Token-based plagiarism detectors
present the current state-of-the-art in plagiarism detection [24, 33]. Before comparison,
token-based plagiarism detectors convert source code into an intermediate representation
through a process called tokenization. This representation is called the token string; it is
language-independent and more abstract than the source code.

Students routinely modify plagiarized submissions to hide their plagiarism. They typically
alter the code’s representation but leave its structure intact [13, 12]. Examples include
changing whitespace and variable names. Through tokenization, token-based plagiarism
detectors only consider the code’s structure and are unaffected by such shallow modifications.
Students can also alter the code’s structure. Examples include changing control structures
and inlining methods. Token-based plagiarism detectors are vulnerable to these kinds of
attacks. However, employing them proficiently enough to a plagiarized submission to reach a
low Similarity Score to the Original (SSO) requires effort and knowledge of programming on
the student’s part [26]. A widespread assumption is that creating an undetected plagiarized
submission is harder than simply solving the assignment [15]. Students would then have no
incentive to commit this type of plagiarism.

This assumption relies on the implicit premise that students must create plagiarized submis-
sions by hand. However, this is not the case, as proven by the development of Mossap [11], a
tool that automatically creates plagiarized submissions undetected by token-based plagiarism
detectors using dead code insertion. Students can use automatic plagiarism generators such as

We regard forbidden collaboration as a form of plagiarism.

1. Introduction

MossaAD to create plagiarized submissions without any effort or knowledge of programming.
Therefore, they pose a significant threat to academic integrity. We will seek to devise a defense
mechanism. We will focus on the two modifications most suitable for automatic plagiarism
generation. Their abstract nature allows them to be employed universally with little regard for
a submission’s language or features. The first is inserting dead code, which is what MossAD
does; we will refer to this as simply insertion. The second is reordering subsequent statements
which do not affect each other; we will refer to this as simply reordering.

Our approach is a form of normalization that makes token-based plagiarism detectors
invariant to these two modifications. To retain token-based plagiarism detectors’ high lan-
guage independence, we normalize the token string rather than the code directly. First, we
construct a program graph from the token string. We then use this graph to remove dead
code. Finally, we turn the graph back into a token string; in the process, we impose a fixed
order on the statements. The resulting token string is unaffected by insertion and reordering
of the original code. We integrate token string normalization into the state-of-the-art [33]
token-based plagiarism detector JPlag [27]. We construct an automatic plagiarism generator
using insertion and reordering ourselves and show that while the original version of JPlag is
vulnerable, ours is not. Additionally, we confirm that we retain JPlag’s existing capabilities
regarding runtime and (lack of) false positives.

2. Foundations

2.1. Code Plagiarism

We already mentioned that some students attempt to hide their plagiarism by modifying
plagiarized submissions. If they explicitly intend to deceive a plagiarism detector, we refer
to such an action as an obfuscation attack on the detector. Students can alter either the
code’s representation or its structure. We call the first type of modification lexical and the
second structural [15]. Lexical modifications are largely language-independent, requiring little
semantic knowledge about the program. Structural modifications, in contrast, are language-
specific and usually require much more semantic knowledge about the program. Generally,
lexical modifications are comparatively straightforward, making students more likely to use
them. Relatedly, development tools like IDEs typically have mature support for automating
lexical modifications, such as renaming all occurrences of a variable. On the other hand,
automation of structural modifications is usually much more limited.

Now, we will look at a typical lifecycle for a plagiarized submission. First, submissions are
automatically tested as soon as they are handed in. If we assume the original submission’s
correctness, the plagiarized submission fails this step if its functionality differs. Therefore,
a plagiarized submission must have the same functionality as the original. No modification
may change it. After, as soon as all submissions have been handed in, an automatic plagia-
rism detector is run. The instructors manually inspect each pair with a high score. If the
plagiarized submission has a high SSO, the instructors manually inspect the pair and discover
that the student plagiarized. The plagiarized submission must have a low SSO to prevent
this. Submissions plagiarized by hand usually fail this way. Finally, a reviewer looks at the
submission in isolation to grade it. If they consider it suspicious, they may check its similarity
to other submissions by hand, eventually discovering that the student plagiarized. Therefore,
a plagiarized submission must look unsuspicious on its own. In conclusion, an obfuscation
attack must result in plagiarized submissions with unchanged functionality, a low SSO, and
high readability to be successful.

2.2. Token-based Plagiarism Detection

Since students often apply lexical modifications to plagiarized submissions to obfuscate
their plagiarism, a good plagiarism detector should not be affected by them. Token-based
plagiarism detectors work by this principle: Through tokenization, they strip the code of its
representation, only extracting its structure. All submissions with the same structure result

2. Foundations

Source Code Token String
void printSquares() { METHOD_BEGIN
int i = 1; VAR_DEF
while (i <= 10) { WHILE_BEGIN
int square = i * i; VAR_DEF
System.out.println(square); APPLY
i++; ASSIGN
} WHILE_END
} MeTHOD_END

Table 2.1.: An example of JPlag’s tokenization. We will use the method on the left as our
running example throughout the thesis.

in the same token string, regardless of representation. We can see this as a sort of "bucket
principle", as all submissions with the same structure are put in the same metaphorical bucket.
Lexical modifications do not change the bucket a submission lands in and are thus ineffective.
The two plagiarism detectors most cited in the literature, JPlag and Moss, use tokenization
[24]. They differ in how they compare the resulting token strings, however. JPlag uses string
tiling [27], while Moss uses fingerprinting [29].

Since we will be working with JPlag, we will describe it in more detail in the following. JPlag
starts by turning the input submissions into token strings through tokenization. Depending
on the language, tokenization is done by either a parser or a scanner. It is the only part
of JPlag that is language dependent. See Table 2.1 for an example. Note that generally, a
statement may result in more than one token. After tokenization, JPlag compares all pairs
of token strings using Running Karp-Rabin Greedy String Tiling [36]. This efficient string
comparison algorithm essentially tries to cover as much as possible of one string with the
other. JPlag then outputs the coverage, meaning how much was covered as a percentage. A
parameter called the minimum match length influences this calculation: JPlag only considers
covered sequences longer than the minimum match length when calculating the coverage.
The coverage is interpreted as the similarity score between two submissions. The results can
be viewed in a GUIL There, pairs of submissions are shown in a side-by-side viewer. Matches
are highlighted. [27]

Given that the original submission’s functionality needs to be preserved, the primary
mechanism by which obfuscation attacks succeed against token-based plagiarism detectors is
by breaking up longer matches into multiple shorter ones. All resulting matches shorter than
the minimum match length are then ignored. The SSO of the plagiarized submission is thus
lowered. If this is done often enough, the SSO will eventually be relatively low, and the pair
will likely evade manual inspection and remain undetected.

2. Foundations

2.3. Program Dependence Graph

The program dependence graph (PDG) [14] is a standard program representation. It can be
used for optimization and program slicing [34]. In this graph, the statements of a program
constitute the nodes. The edges represent dependencies between statements. They are split
into data and control dependencies.

A statement T is data dependent on a statement S iff S can directly control the value of a
variable T uses. More precisely, all the following conditions have to be met:

« T may be executed after S.
« There exists some variable which S writes and T reads.
« There is no statement S’ always executed between S and T with the above properties.

A statement T is control dependent on a statement S iff S directly controls whether T is
executed. More precisely, all the following conditions have to be met:

« T may be executed after S.
« T is not always executed after S.
« There is no statement S’ always executed between S and T with the above properties.

For an example of a PDG, see Figure 2.1. Note that the PDG does not preserve information
about statement order.

2. Foundations

- -

i++; v

1

|

! ’
y V3

System.out.println(square);

data dependency control dependency

Figure 2.1.: A PDG of the example program from Table 2.1.

\ 4

3. Related Work

3.1. Plagiarism Detection

In his bachelor’s thesis, Krieg [19] sets out to make token-based plagiarism detectors resilient
to attacks by Mossap. To this end, he introduces three mechanisms to prevent insertion from
lowering the SSO. The first is generic token filtering, which checks whether two token strings
that are not similar could become similar by removing some tokens from one string. The
second mechanism is deleting unused variables, which he accomplishes using a compiler. The
final mechanism is deleting unreachable code using a state machine that works on the token
string. Token string normalization promises to be a more general and language-independent
method to remove dead code than the latter two mechanisms. It can also guard against
obfuscation attacks using reordering.

In a prescient 2006 paper, Liu et al. [20] point out the problems with existing plagiarism
detectors, stating that "disguises like statement reordering, replacing a while loop with a
for loop, and code insertion can effectively confuse these tools". They even go so far as
to provide a "Plagiarism Recipe", noting that it may be possible to automate the process.
This can be seen as a precursor to Mossap. They set out to develop a more robust tool.
Their approach involves constructing PDGs from the source code and comparing them using
subgraph isomorphy. As determining subgraph isomorphy is NP-complete, it seems plausible
that GPlag’s runtime is too high for practical use despite the search space pruning described
in the paper. Unfortunately, GPlag is not publicly available, so no independent assessments
exist. Our approach differs in two crucial ways. For one, we do not construct the PDG directly
from the source code as in GPlag, providing much greater language independence. Secondly,
we do not compare the graphs directly, leading to a (presumably) much faster runtime. Token
string normalization using graphs can be seen as a "best of both worlds" approach combining
the robustness of graph-based approaches with the fast runtime and language independence
of token-based approaches.

Program behavior may be the aspect most robust to obfuscation attacks. Several papers
attempt to use this to their advantage. In the most recent one, Cheers et al. [8] present
the plagiarism detector BPlag. It uses symbolic execution to extract behavior from source
code. BPlag calculates a similarity score by comparing graphs representing the extracted
behavior. Symbolic execution and graph comparisons are both computationally expensive. As
a result, BPlag’s runtime is too high for practical use, much like GPlag’s. Along with BPlag’s
implementation, the authors distribute a notice acknowledging this: "BPlag is computationally
complex, requires lots of RAM and disk space, and does not scale to large data set sizes. It

3. Related Work

should not be used on conventional computers - HPC workstations only." [7] Again, as with
GPlag, our approach differs as we do not compare graphs directly. We also do not consider
program behavior nor work with bytecode.

A program’s bytecode may better reflect its behavior than the source code. For this reason,
Karnalim [18] uses bytecode to identify code plagiarism in an academic context. He uses
techniques that could be seen as normalization forms, such as linearizing method contents.
However, he does not use graphs as we do and works with bytecode, which we do not. In a
business context, program source code is often unavailable, and plagiarism detectors have no
choice but to work on bytecode. Chae et al. [6] attempt to tackle this problem by comparing
the sequence and frequency of API calls in bytecode. They do so with a novel graph which they
turn into a vector by randomly walking the graph. Token string normalization is somewhat
reminiscent of this approach; we also construct a program graph and reduce it for efficient
comparison. However, the similarities end there, as we neither work with bytecode nor
consider API calls. Our program graph is also entirely different. Zhang et al. [37] consider
the same problem. Their approach to solving it, which they call LoPD, defies the prevailing
plagiarism detection paradigm. Instead of checking for similarities between programs, they
check for dissimilarities. If none can be found, one of the programs is likely plagiarized.
They check for dissimilarities by comparing the computation paths for specific inputs. While
paths are related to graphs, LoPD differs entirely from token string normalization. Again,
token string normalization does not consider bytecode; more importantly, we do not consider
program input or runtime behavior.

3.2. Clone Detection

Similar code sections, or clones, are common in large coding bases. Programmers create
them by accident or through copy-pasting. Juergens et al. [16] confirm that such code clones
significantly impede modern software development. They do so by finding inconsistent clones.
Code clone detection is a related but distinct field to plagiarism detection [22]. While in both,
the aim is to identify similar code sections, there are fundamental differences. In plagiarism
detection, the aim is to quantify how likely a code base is to have been plagiarized from
another to protect academic integrity. An adversary may intentionally use obfuscation attacks
to create the plagiarized version. In contrast, code clone detection aims to point out similar
code sections within a code base created unintentionally to ease development.

Wang et al. [31] seek to specifically detect what they call large-gap clones, meaning clones
with big differences. The tool they present, CCAligner, does this by tokenizing source code and
finding fuzzy matches through a novel e-mismatch index. CCAligner works similarly to JPlag,
though JPlag only considers exact matches. Of course, the main difference is that CCAligner
aims to detect clones, whereas JPlag aims to detect plagiarism cases. The same applies to
token string normalization. Additionally, our procedure is entirely unlike CCAligner’s. White
et al. [35] present a machine-learning approach to clone detection. They use a neural network
to turn source code into vectors; similar vectors correspond to code clones. Our approach

3. Related Work

differs because we do not use machine learning or aim to detect clones. In his master’s thesis,
Ly [21] aims to improve clone detectors by normalizing source code using PDGs. Procedurally,
token string normalization works the same. However, there are crucial distinctions. For one,
again, the objective is entirely different. Furthermore, we normalize the token string rather
than the source code. Token string normalization is much more language-independent than
his approach as a result.

3.3. Normalization

While Ly’s normalization comes closest to our approach, normalization is a standard pattern
in code comparison. In general, we can differentiate two types of normalization.

The first type, called lexical normalization, makes code comparisons invariant to lexical
modifications. It is relatively straightforward, as program semantics need not be considered.
Roy and Cordy [28] use lexical normalization to detect code clones. They "ignore editing
differences" so that lines of code can be compared textually; they rename all identifiers to
id, for example. Allyson et al. [1] seek to improve a text-based plagiarism detector for code
plagiarism detection using lexical normalization. They do this with several preprocessing
techniques, removing whitespace, for example. JPlag’s tokenization step is a form of lexical
normalization. For this reason, token string normalization does not need to consider lexical
modifications, markedly differentiating it from the works above.

Instead, token string normalization is a form of what we call structural normalization. This
type of normalization makes code comparisons invariant to structural modifications. Program
semantics must be considered here, so structural normalization is generally more complex
than lexical normalization. It may be more accurate to view structural normalization as a type
of program rather than code normalization, as code is not directly considered. Wang et al.
[32] use structural normalization with the aim to simplify program analysis by bringing code
into a consistent form. They use the system dependence graph, a generalization of the PDG.
They consider this graph the result of the normalization and do not turn it back into source
code. This presents the first difference to token string normalization. Another difference
is, once again, that we do not construct our graph directly from the source code. We also
have the explicit goal of detecting plagiarism cases. Besides detecting plagiarism and clones,
program comparison is also used to detect malware. Like plagiarism detection in a business
context, malware detection must work with bytecode, as source code is usually unavailable.
Bruschi et al. [4] use structural normalization for malware detection. They consider their
normalization a form of optimization. They apply several normalizing transformations to
programs, such as dead code removal. From the resulting normalized programs, they construct
graphs. Like previously mentioned approaches, they compare graphs directly, which serves
to differentiate token string normalization. Once more, token string normalization is also
different because we do not work with bytecode.

4. Automatic Plagiarism Generation

In a 2020 paper, Devore-McDonald and Berger [11] outline MossAD, an automatic plagiarism
generator inspired by genetic programming using dead code insertion. As its inputs, MOSSAD
takes a submission, an entropy file containing statements to insert, the plagiarism detector
that should be tricked, and a target SSO for the plagiarism detector. First, the tool randomly
chooses a statement from either the entropy file or the submission itself. MossaD then inserts
this statement in a random position in the submission. Next, the tool compiles the submission
to bytecode with optimizations to check whether the inserted statement is dead. Because the
compiler removes dead code when optimizing, this is the case if the resulting bytecode has
not changed. If it is different, or the submission does not compile, the statement insertion is
unsuccessful, the submission containing it is discarded, and MossAD tries again. Otherwise,
the tool considers the statement insertion successful. MossAD proceeds by calculating the
plagiarism detector’s SSO. If it is below the target SSO, MossAD outputs the plagiarized
submission. In this case, it saves all the successfully inserted statements to the entropy
file. Otherwise, the tool repeats the process. There is a timeout period after which Mossap
terminates even if the target SSO has not been reached. In this case, it has failed to produce a
plagiarized submission.

MossaAbD takes advantage of the fact that many plagiarism detectors are publicly available. It
can thus ensure a low SSO for the plagiarized submissions it produces. Additionally, MossAD
never changes a submission’s functionality. As a result, MossAD can fail only in one of the
three ways described in section 2.1: If the reviewer is suspicious of the plagiarized submission
when looking at it in isolation. For MossAD, we can imagine a simple heuristic for when this
might be the case. If the plagiarized submission is more than twice as long as the original,
over half the statements are inserted dead code. As these statements are strewn randomly
throughout the submission, there is no reasonable explanation. Any reviewer would be
suspicious. It can also occur that MossaD does not manage to produce any plagiarized
submission. This presents a distinct fourth type of failure. A student may fail this way by
giving up on plagiarizing.

In section 2.2, we noted that obfuscation attacks on token-based plagiarism detectors aim
to break up matching code segments. This can only be done with structural modifications, as
token-based plagiarism detectors’ results are invariant to lexical modifications. Most structural
modifications work only narrowly and are dependent on the language. One example of this is
changing a for loop to a while loop. This modification confuses JPlag but is constrained to
languages with for and while loops. More importantly, employing this attack alone is unlikely
to break up many code blocks. Instead, it must be part of an expansive, language-dependent
repertoire of structural modifications that would be applied together to break up most of a

10

4. Automatic Plagiarism Generation

submission’s code blocks. Devising such a repertoire would require considerable effort and
would likely be an unattractive option for anyone creating an automatic obfuscation tool. It
is also outside the scope of this thesis. Instead, we will constrain ourselves to more abstract
modifications, which restructure submissions on a high level, leaving them unchanged for the
most part. There are two such modifications. One is to insert statements that do not affect
program functionality. We will refer to such statements as dead code. The other is to reorder
subsequent program statements. In order to preserve program functionality, these statements
must not affect each other. We will refer to them as independent (of each other).

4.1. Dead Code Insertion

Here, blocks are broken up by inserting small blocks of dead code. See Figure 4.1 for an
example of how insertion works. MossaD works by using insertion. Ideally, the blocks consist
of a single statement since that is enough to break up code segments, and more statements
are more suspicious. Unfortunately, MossaD does not abide by this principle and often inserts
statements subsequently. We will refer to this behavior as bloating, as it does not meaningfully
reduce the similarity but merely increases the program’s size. MossaD could be improved in
this regard.

Any statements MossAD inserts come from the current submission, a previously plagiarized
submission, or a small pool of typical statements. Especially with its memory regarding past
runs, this approach does well in inserting diverse statements into the submission. However,
all three statement sources have their downside.

« Statements from the current submission have a high chance of appearing relevant in
the spot they are inserted. However, they are prone to changing the submission’s
functionality, making them relatively difficult to insert successfully. They are also
relatively small in number, which makes it hard to insert enough of them.

« Statements from previously plagiarized submission are less prone to changing the submis-
sion’s functionality and are much more numerous. However, they are far less likely to ap-
pear relevant, making them generally more suspicious. For example, a previously plagia-
rized submission using a graph might contain the statement int ingoingEdgeCount = 0.
This statement might be inserted into the current submission, which has nothing to do
with graphs. It would appear suspicious to a reviewer and might cause them to raise
the alarm when a more relevant-seeming statement would not.

« Statements from a small pool of typical statements are both unlikely to change the
submission’s functionality and likely to appear relevant. It is relatively easy to devise a
countermeasure against their insertion, however. If a plagiarism detector were to get a
hold of the pool, it could simply count their occurrences when analyzing a submission
and raise the alarm if there are too many.

11

4. Automatic Plagiarism Generation

Source Code after Insertion

void printSquares() {
int i = 1;
while (i <= 10) {
boolean done = false; // inserted
int square = i * i;
System.out.println(square);

i++;

}
}
Token String after Insertion Original Token String
METHOD_BEGIN METHOD_BEGIN
VAR_DEF VAR_DEF
WHILE_BEGIN WHILE_BEGIN
VAR_DEF VAR_DEF
VAR_DEF

Figure 4.1.: An example of how insertion breaks up blocks. The highlighted matches are now
much shorter than before.

12

4. Automatic Plagiarism Generation

An inserted statement would ideally be unlikely to change the submission’s functionality,
appear relevant, and not be taken from a pre-determined pool. An advanced plagiarism
generator could generate such statements by analyzing the current submission and mutating
its statements. Exploring this approach is best left for future work, however, as our focus is
not on how suspicious a submission might appear to a reviewer. For now, combining these
three sources of statements looks like the best option. As they all have different weaknesses,
they complement each other.

Reviewer suspiciousness aside, insertion works very reliably. Even if we accept the re-
striction that there may be no two subsequent inserted statements, statement insertions
are all but unlimited. If we randomly choose two subsequent statements from a program,
there likely exists some statement whose insertion between the two does not change the
program’s functionality. For Java, there are some notable exceptions, however. Firstly, the
compiler forbids unreachable code. For example, nothing may come directly after a return.
However, this is of little consequence since inserting a statement before a return has almost
the same effect as inserting one after. The same cannot be said for the second exception,
control statements without braces. When omitting the braces on a control statement, only
the following statement is affected by it. This case is more important than the first since it
can lead to long sections where no statements may be inserted. It can occur with nested for
loops:

for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < matrix[@].length; col++)
System.out.println(matrix[row][col]);

It can also occur when if/else is used:

if (cond)
foo()

else if (otherCond)
bar()

else
qux()

For plagiarism generators, such sections present a problem. They cannot be broken up using
statement insertion, so plagiarism detectors will consider them the same between the original
and the plagiarized submission. As a result, the pair will have a suspiciously high similarity
score if there are enough such sections, leading to manual inspection and discovery. A possible
workaround is to force braces on control statements in a pre-processing step, as some linters
can do.

An upside of using insertion is that little semantic knowledge of the program is needed.
Plagiarism generators only need to remove dead code from the plagiarized submission and
check if the functionality has changed. Of course, the more sophisticated the dead code
detection is, the less noticeable the insertions will be. However, in principle, it works even if
a tool can only detect dead code rudimentarily. In practice, plagiarism generators outsource

13

4. Automatic Plagiarism Generation

the dead code detection to a compiler. Dead code removal is a common optimization feature.
For example, MossaD uses the GNU Compiler Collection (GCC) with optimizations enabled
to detect dead code.

4.2. Independent Statement Reordering

Here, blocks are broken up by reordering subsequent statements that do not affect each
other, or independent statements for short. See Figure 4.2 for an example of how reordering
works. We can limit ourselves to only considering swaps of two subsequent statements.
Through concatenation, any reordering of an arbitrary number of subsequent statements
may be produced this way. To the author’s knowledge, this method has not been investigated
before in the context of automatic plagiarism generation. Its notable upside is that it is all
but unsuspicious to the plagiarized submission’s reviewer. Statement order is often a stylistic
choice, and no permutation may be more suspicious than any other. The price to pay for this
quality is that generating plagiarized submissions through reordering is relatively tricky. For
one, the number of possible swaps is quite limited. Swapping two randomly chosen subsequent
statements of a program will usually change the program’s functionality. In addition, deciding
if two statements are independent of each other requires a great deal of semantic knowledge
about the program. Like dead code detection, this can be done rudimentarily, and the method
still works in principle. However, doing so further limits the number of possible swaps,
which was relatively small in the first place. There are also no known existing tools that
can accomplish this task, further complicating matters. Compilers will typically leave the
statements of a program in their original order and will only reorder lower-level instructions
for the sake of optimization.

14

4. Automatic Plagiarism Generation

Source Code after Reordering

void printSquares() {
int i = 1;
while (i <= 10) {
int square = i * i;
i++; // reordered

System.out.println(square); // reordered

}
}
Token String after Reordering Original Token String
METHOD_BEGIN METHOD_BEGIN
VAR_DEF VAR_DEF
WHILE_BEGIN WHILE_BEGIN
VAR_DEF VAR_DEF
ASSIGN AprpPLY
ApPPLY AsSSIGN

WHiLe_END WhiLe_END
MeTHOD_END MeTHOD_END.
Figure 4.2.: An example of how reordering breaks up blocks. The highlighted matches are
now much shorter than before.

15

5. Token String Normalization

The results of token-based plagiarism detectors are invariant to lexical modifications of the
input submissions. This is due to tokenization, as all variants produced through lexical
modifications result in the same token string. In section 2.2, we called this the "bucket
principle": The submissions are put into (metaphorical) buckets; all submissions with the
same structure land in the same bucket. We will expand upon this concept to defend against
automatic plagiarism generation using insertion and reordering. In particular, we will make a
submission’s token string invariant to insertion and reordering by removing dead code and
putting subsequent independent statements in a fixed order. As a result, automatic plagiarism
generators using insertion and reordering can no longer generate plagiarized submissions
with a low SSO. We call this process token string normalization.

We normalize the token string in an additional step between tokenization and comparison.
As the input, we receive a submission’s token string representation and some additional
semantic information about it. We generate this semantic information during tokenization
along with the tokens. We use it to construct a program graph. Each node in this graph
represents one of the submission’s statements. Note that throughout the rest of the thesis, we
will use "statement" to refer to the smallest unit of a program. Certain structural elements
qualify as statements in our usage, such as a brace that closes a block. After construction, we
remove nodes representing dead code from the program graph. We then turn the it back into
a token string. During this process, we sort all subsequent independent statements by their
tokens to put them in a fixed order. Generating the additional semantic information required
to construct the program graph is the only part dependent on the language. In the following,
we will first detail this information. After, we will specify the program graph and describe
precisely how it is used. Finally, we will normalize an example token string to illustrate the
process.

5.1. Required Semantic Information

A submission’s token string carries relatively little semantic information about the program.
It only tells us what types of tokens were produced from the submission as well as their order.
This information is insufficient to construct a meaningful program graph. For this purpose,
more semantic information about the program is required. We extract this information along
with the tokens during tokenization. This way, we can utilize the existing parser backend
that generates the tokens.

16

5. Token String Normalization

We need six pieces of semantic information about the program to normalize the corre-
sponding token string:

Token-Statement Grouping We need to know which tokens belong to the same statement.
The statements are the smallest unit we will be working with during normalization. The
tokens within each statement never change. The statements constitute our program
graph’s nodes.

Statement Sequence We need to know which order the statements had in the original pro-
gram. This information is required to generate the graph’s edges.

Statement Cruciality We need to know which statements are crucial to the program’s func-
tionality, or just crucial for short. We define the cruciality of a statement S as follows:
Imagine we replace S with another statement that writes! variables the same but other-
wise does nothing. If this changes the program’s functionality, S is crucial; otherwise, it
is not. Colloquially, we might say that crucial statements do "more" than only write vari-
ables. They directly affect the program’s functionality. Examples of crucial statements
are (most) class declarations, method calls, and control structures such as if conditions
and while loops. Some of these may not be crucial, an empty while loop, for example,
but such exceptions are relatively rare. Examples of statements that are not crucial are
declarations of local variables and constant assignments to them. We use statement
cruciality to remove dead code.

Statement Position Significance We need to know in which way the position of each state-
ment relative to other statements is significant. Two statements’ relative position is
significant if changing it alters the program’s functionality. Again, as with statement
cruciality, we do not consider variables. For each statement, there are three options for
its position significance:

None The statement’s position relative to other statements is not significant. Examples
of statements with position significance "None" are attribute declarations.

Partial The statement’s position relative to other statements with partial position sig-
nificance is significant. Examples of statements with position significance "Partial"
are method calls that never result in an exception.

Full The statement’s position to all other statements is significant. Examples of state-
ments with position significance "Full" are method signatures and return state-
ments.

We use statement position significance to construct the graph’s position significance
edges. They allow us to turn the graph back into a token string.

Statement Variable Accesses We need to know which variables each statement accesses and
what the access types are. There are two access types, read and write!. Each variable

!We regard declaring a variable as writing it.

17

5. Token String Normalization

needs a unique identifier so we can trace it throughout the program. This identifier
needs to be generated during tokenization. The variable’s name is insufficient as there
may be different variables with the same name in a program. Statements that write
variables are most commonly assignments. However, method calls may also write
variables. In contrast, variable reads can occur in almost any context. One example is an
if condition comparing a variable with a constant. We use statement variable accesses
to construct the graph’s variable edges. They allow us to remove dead code and turn
the program graph back into a token string.

Bidirectional Blocks We need to know which statements belong to the same bidirectional
block. A bidirectional block is a block of statements within which the execution order of
statements can differ from their order in the statement sequence. In contrast, statements
not in bidirectional blocks are always executed in sequence. Bidirectional blocks are
typically loops. We use information about bidirectional blocks to remove dead code.

We can infer some of this information from the token string, most notably the statement
sequences. Additionally, we could use the token types to infer information. We cannot infer
everything, however, especially statement variable accesses. Therefore, we must explictly
pass some semantic information along with the token string to the normalization.

One of our priorities with token string normalization is retaining token-based plagiarism
detectors’ existing capabilities. For this reason, we want to ensure that each submission’s
functionality is unchanged by normalization. In particular, we only remove code that we
are certain is dead and only put subsequent statements in a fixed order that we are certain
are independent. We generate the semantic information about the program in a way that
enables this behavior. Specifically, we interpret the above conditions through the lens of
possibility. For example, any statements that could be crucial we mark as crucial. Similarly, if a
statement could have full position significance, we mark it as having full position significance.
These expected inaccuracies allow us to generate the required semantic information about
the program relatively seamlessly during tokenization. Indeed, this is one of the strengths of
our approach.

5.2. Normalization Graph

We use a novel program graph called the Normalization Graph (NG) to normalize the token
string. It extends the program dependence graph, which already supports dead code removal.
The NG introduces additional edges, allowing us to turn it back into a token string.

5.2.1. Definition

A program’s statements constitute the NG’s nodes. The NG’s edges are directed. They are
divided into variable edges and position significance edges. In the following, S and T are

18

5. Token String Normalization

different random statements. Variable edges are related to the variable accesses in statements.
They are either variable flow edges or variable order edges.

« Variable flow edges are similar to the data dependencies in the PDG. We use them to
remove dead code. There is a variable flow edge from S to T iff S sets the value of a
variable T uses. To be more precise, there must be some variable S writes and T reads.
Additionally, S must either come after T in the sequence of statements, or S and T must
be in the same bidirectional block.

« Variable order edges do not have an equivalent in the PDG. We use them to turn the
NG back into a token string. There is a variable order edge from S to T iff changing the
order of S and T would change the program’s functionality because of a variable. To be
more precise, a variable must be accessed in S and T, and at least one of these accesses
must be a write. Additionally, T must come after S in the sequence of statements.

Position significance edges are related to statements’ position significance. They can be
seen as a generalization of the PDG’s control edges. Like variable order edges, we use them
to turn the NG back into a token string. Position significance edges are either full position
significance edges or partial position significance edges.

« There is a full position significance edge from S to T iff the relative position of S and T
must stay the same because of full position significance. To be more precise, either S or
T must have full position significance. Additionally, T must come after S in the sequence
of statements. There must also be no statement between S and T in the sequence of
statements with full position significance.

« There is a partial position significance edge from S to T iff the relative position of S and
T must stay the same because of partial position significance. To be more precise, both
S and T must have partial position significance. Additionally, T must come after S in
the sequence of statements. There must also be no statement between S and T in the
sequence of statements with partial position significance.

Note that if S comes after T in the sequence of statements, any edges from S to T are variable
flow edges.

5.2.2. Usage

First, we remove dead code using statement cruciality and variable flow edges. Specifically,
we remove all statements from which no crucial statement can be reached using only variable
flow edges. Such statements are neither crucial nor write a variable used in a crucial statement.
They do not contribute to the program’s functionality, neither directly nor indirectly (through
a variable). After, we remove all variable flow edges from the NG, as they have served their
purpose. The graph is now acyclical, as any edge from S to T implies that T came after S in
the statement sequence. Recall that only variable flow edges did not abide by this principle.

19

5. Token String Normalization

Token String Statements

METHOD_BEGIN 1 void printSquares() {

VAR_DEF 2 int i = 1;

VAR_DEF 3 boolean debug = false; // inserted
WHILE_BEGIN 4 while (i <= 10) {

VAR_DEF 5 int square = i * i;

ASSIGN 6 i++; // reordered

APPLY 7 System.out.println(square); // reordered
WHILE _END 3 }

MEeTHOD END 9 1}

Table 5.1.: The example token string and the statements the tokens represent. For the original
submission see Table 2.1.

We now use topological sorting [17] to turn the NG back into a token string. Specifically, we
put the nodes in the order of their distance from a root. A root is a node without ingoing
edges. As the NG is now acyclical, at least one such root exists. Nodes with the same distance
represent subsequent independent statements. We sort them by the tokens they contain. It
does not matter how exactly, only that the sorting is deterministic. We can now assemble the
normalized token string by going through the nodes in order and concatenating the tokens
from each. Note that if two subsequent independent statements contain the same tokens,
their order does not affect the normalized token string; therefore, we can consider them equal
in order.

5.3. Example

To illustrate the normalization process, we will normalize the example token string shown in
Table 5.1. It represents a plagiarized submission created by an automatic plagiarism generator.
One statement has been inserted and two reordered. Note that token string normalization
cannot directly access program statements; we only show them for a better understanding.

We will first specify the semantic information for this example submission. Statement-token
grouping and statement sequence are apparent from Table 5.1. Statement 7 is crucial because
a method is called in it. Statements 1, 4, 8, and 9 are crucial and have full ordering because
they begin or end a code block. Statements 2 and 6 write the variable i and statements 4, 5,
and 6 read it. Statement 5 writes the variable square and statement 7 reads it. Statements 4
through 8 are in the same bidirectional block.

Using this information, we construct the Normalization Graph; see Figure 5.1. We remove
the node representing statement 3 as no crucial statement can be reached from it using only
variable flow edges. After, we remove all variable flow edges to make the graph acyclical;
see Figure 5.2. Each node’s height represents its distance from a root. In this case, the only

20

5. Token String Normalization

Statements in Order Normalized Token String
void printSquares() { METHOD_BEGIN
int 1 = 1; VAR_DEF
while (i <= 10) { WHILE_BEGIN
int square = i * i; VAR_DEF
System.out.println(square); APPLY
i++; ASSIGN
} WHILE_END
} MEeTHOD_END

Table 5.2.: The statements in the order the nodes representing them have in the normalization
graph after dead code removal and the normalized token string assembled from
them.

root is the node representing statement 1. The only two nodes with the same distance from
it are those representing statement 6 and 7, respectively. We sort them alphabetically by
their token types, so the node representing statement 6 comes after the one representing
statement 7. Finally, we go through the nodes in order and get the tokens from each to receive
the normalized token string; see Table 5.2. Note that the normalized token string from the
plagiarized submission is the same as the token string from the original submission (compare
with Table 2.1).

21

5. Token String Normalization

void printSquares() {

IS

int 1 = 1; boolean debug = false;

A A

i 5| while (1 <= 10) {

. 4
. ’ K
e -

N e
A &
¢ A A

int square

i
i++; System.out.println(square);
/
}
;
full position significance edge ‘ variable order edge

variable flow edge
crucial statement

Figure 5.1.: The Normalization Graph created from the token string in Table 5.1 after con-

struction. Note that the graph do@2 not directly contain program statements; we
only show them for a better understanding.

5. Token String Normalization

void printSquares() {

System.out.println(square);

S

full position significance edge variable order edge

Y
\

Figure 5.2.: The Normalization Graph created from the token string in Table 5.1 after dead
code removal. Note that the graph does not directly contain program statements;
we only show them for a better understanding.

23

6. Implementation

We will implement the token string normalization into JPlag for the Java programming
language. JPlag represents the current state-of-the-art in code plagiarism detection [33]. Java
is the language JPlag was mainly developed for (as evidenced by its name). Java is also one
of the most common languages for introductory programming courses [23, 10]. The author
chose it for these reasons. Due to the language-independent nature of the normalization,
supporting additional languages would require relatively little additional effort. Doing so
would be outside the scope of the thesis, however. The implementation is split into three
components. The first component is a generic interface to add semantic information to
the tokens during tokenization. The second component uses this interface to add semantic
information to Java tokens. The third and final component uses this information to perform
token string normalization. Note that only the second component is language-dependent.

6.1. Generic Interface for Semantic Information

We add the generic interface to the language-api package as a new subpackage called
semantics.

6.1.1. Code Semantics

We model the semantic information as a class called CodeSemantics. It contains information
about the semantics of a code fragment. Specifically, the class contains a code fragment’s
cruciality and position significance as an enum. It also contains information about bidirectional
block depth. More precisely, it contains how much the code fragment causes the depth of
bidirectional blocks to change as an integer. We can use this information to calculate which
code snippets belong to the same bidirectional block. The variables the code fragment reads
and writes are each contained as sets. We add a CodeSemantics instance to each token as part
of token initialization. We later supplement the variable accesses.

In JPlag, each token already contains a line number. We use it to discern the statement
sequence and to group the tokens into statements. For this to work, each line must consist of
exactly one statement. We achieve this by formatting the code beforehand. First, we remove
comments using the JavaParser library, as a single statement can be broken up into multiple
lines through comments. We then format the code using the Eclipse CLI with a particular
configuration file. Most importantly, the maximum line width is set to 9999 so that statements
are not broken up because of it. We generate a CodeSemantics instance for each statement by

24

6. Implementation

" . .. | Bidirectional
. 1. Position Signif-
Category Cruciality . Block
icance
Depth Change

Default Not Crucial None 0

Keep Crucial None 0

Critical Crucial Partial 0

Control Crucial Full 0

Loop Begin Crucial Full 1

Loop End Crucial Full -1

Table 6.1.: The six categories most code fragments fit into. See Table 6.2 for examples.

Category Example Token Example Statement
Default VAr_DEF (in method) int localCount;

Keep VAR_DEF (in class) static int classCount;
Critical APPLY (no exception) System.out.println("hi");
Control RETURN return false;

Loop Begin For_BEGIN for(;;) {

Loop End WHILE_BEGIN } do while (true);

Table 6.2.: Examples for each of the six code fragment categories defined in Table 6.1.

joining its tokens’ instances. The joining of multiple initial CodeSemantics instances into a
single joined instance is defined as follows:

« The cruciality of the joined instance is the disjunction of each initial instance’s cruciality.
Simply put, the joined instance is crucial iff any of the initial instances are crucial.

« The position significance of the joined instance is the most significant of each initial
instance’s position significance.

« The bidirectional block depth change of the joined instance is the sum of each initial
instance’s bidirectional block depth change.

« The variable reads and writes of the joined instances are the union of each initial
instance’s variable reads and writes.

Most code fragments fit into one six categories regarding their code semantics (ignoring
variable accesses); see Table 6.1 for the categories and Table 6.2 for examples. We implement
each category as a constructor of the CodeSemantics class.

25

6. Implementation

6.1.2. Variable Registry

The interface provides a VariableRegistry class to help track variables during tokenization.
We use this class to add variable reads and writes to token semantics. Variables are unique
instances of the class Variable, which contains the variable’s name, its scope, and whether its
type is mutable. When a variable is declared, we register it with this information. A variable’s
scope may be file, class, or method. How we save variables in the registry depends on their
scope:

« We save variables with a file scope in a simple hash map, which maps each variable’s
name to the corresponding Variable instance. These variables are visible within the
entire file after their declaration. To register such a variable, we create a new Variable
instance and add it to the map as a value with the variable’s name as the key. From then
on, we can recover this variable from the map using its name. We must not track file
scopes, as VariableRegistry instances are unique to files.

« We save variables with a class scope in a stack of hash maps. Again, the variable names
are the keys, while the values are the corresponding Variable instances. These maps
are in a stack since classes can contain other classes, but variables from outer classes
cannot be accessed from inner classes. The hash map containing the variables of the
current class is on top of the stack. We use this map like the one for file variables to
register and recover variables. We add a new hash map to the stack when a class is
entered. When a class is exited, we remove the topmost map. For this behavior to work,
we must call corresponding methods to inform the variable registry whenever a class is
entered or exited.

Variables with a local scope are saved in a hash map which maps each variable’s name to
a stack of corresponding Variable instances. The values are stacks because local scopes
can contain other local scopes, and variables from outer local scopes can be accessed
from inner local scopes. The only condition is that no variable with the same name was
declared after. To register a variable, we create a new Variable instance and put it on
top of the stack associated with the variable’s name. If there is no associated stack, we
associate a new empty one beforehand. To recover a variable, we get the top entry from
the stack associated with its name.

There is another data structure for local variables, which is used to track their visibility.
This data structure is a stack of sets. Each set contains the names of variables initialized
in a specific local scope. When we register a variable, we add its name to the topmost
set in the stack. When a new local scope is entered, we add a new empty set on top of
the stack. When a local scope is exited, we remove the topmost set in the stack. We go
through the variable names in it, and for every name, we remove the topmost variable
in the stack associated with that name. These variables are no longer visible from this
point on. If a stack is empty after we have removed its topmost variable, we remove it
from the map entirely, along with the associated variable name. Due to this, the hash

26

6. Implementation

map has the convenient property that the keys are exactly the names of visible local
variables. As with class scopes, we must call corresponding methods whenever a local
scope is entered or exited.

We can pass a code semantics instance along with a registered variable’s name to add an
access to that variable to the instance. A variable’s scope can be explicitly set to class on access
in many languages. In Java, for example, this is done with the this keyword (this. count, for
example). For this reason, we additionally pass a boolean denoting whether the variable’s
scope is class. If it is set to true, we recover the variable from the data structure for class
variables. Otherwise, we try to recover the variable first from the data structure for local
variables, then from the data structure for class variables, and finally from the data structure
for file variables. If we did not recover a variable, we encountered an access to an untracked
variable. Such a variable has not been declared in the file, so it must be global. If the access to
the variable is a write, we cannot gauge the effects. For this reason, we mark the passed code
semantics as crucial and having full position significance. A code semantics instance can also
be passed to add reads to all non-local variables to it. We can set the type of the next variable
access. By default, we assume accesses to be reads. The next variable access can be ignored
through another method. The variable registry tracks where accesses to mutable variables
are (potentially) writes. One such location is the parameter list of a method invocation, as the
method may write to mutable variables. Similar to how we track class and local scopes, we
must call corresponding methods whenever such a location was entered or exited.

6.2. Adding Semantic Information to Java Tokens

In JPlag, the Java tokens are generated in a class called TokenGeneratingTreeScanner, which
is contained in the Java language module. This class extends the TreeScanner abstract class.
TreeScanner contains various visit methods for the node types of an abstract syntax tree
generated by parsing Java source code. The visit methods receive the visited node as input.
When a node is visited, the nodes under it are also visited. For this reason, we can visit every
node by visiting the root. To generate the tokens, TokenGeneratingTreeScanner overrides the
TreeScanner visit methods. For example, it overrides visitMethodInvocation to generate
an AppLY token. We expand the visit methods to generate code semantics instances as well.
We add these instances to the tokens upon token creation. In Java, every token fits into one
of five categories listed in subsection 6.1.1: Default, Keep, Control, Loop Begin, and Loop
End. We use the category constructors to initialize the code semantics instances. For example,
when we generate an AppLy token, we initialize a new code semantics instance with the
Control category constructor and add it to that token. We keep a reference to the semantics
instance to add variable accesses later. We pass this reference to visit methods called within
the current visit method.

We track and add the variable accesses using a variable registry instance. We register
attributes as class variables when a class is visited. When a variable declaration is visited, we
register the declared variable as a local variable if we are in a local scope. If we are not, this is

27

6. Implementation

an attribute declaration we have already registered, so we do nothing. Upon class visit, we
register the class as a file variable since it can (mostly) be accessed from anywhere within
the file. Since no variables can be explicitly declared outside of classes, Java has no other
file variables. Of course, we need to track class and local scopes to use the variable registry.
Class scopes are entered and exited when a class is visited. Local scopes are entered and
exited in many visit methods, for example, when a block, a method, or a for loop is visited.
We add variable accesses to semantics instances in two visit methods that that were not
overridden previously. In one method, (unqualified) identifiers are visited. Here, we pass the
code semantics instance, the variable name, and the information that the variable’s scope is
not explicitly class to the variable registry. In the other method, member selects are visited.
Here, we first check whether the qualifier is the this keyword. If it is, a class variable is
accessed. We pass this information to the variable registry, along with (again) the semantics
instance and the variable name.

We set the variable access type when variable writes are visited. In Java, these are as-
signments. Standard assignments only write the variable. Compound (+=) and unary (++)
assignments write and read the variable. We set the next variable access type accordingly
through the variable registry. Recall that by default, we assume variable accesses are reads.
Therefore, only write and read/write access types must be set explicitly. We must also tell
the variable registry when accesses to mutable variables may be writes. In Java, this is the
case when a method of a mutable variable is called (mutable.foo()) or a mutable variable is
a parameter in a method call (foo(mutable)). We tell the variable registry when this starts
and stops being the case when method calls are visited. We pass whether a variable’s type is
mutable to the variable registry upon registering the variable. We gain this information by
checking the variable’s type against a static list of non-mutable types (int, Boolean, String,
).

Finally, we need to deal with a quirk of the identifier and member select visits: They visit
both variable and method references, despite variables and methods occupying separate
namespaces. Since we only track variables, we need some way to ignore method references.
To give some examples, we want to track the foo in foo++, this. foo++, and foo.bar(), but
not in foo() and bar.foo(). We accomplish this by using the variable registry’s functionality
to ignore the next variable access. We ignore the next variable access when a method call is
visited (in order to ignore foo() and similar cases), and then un-ignore it when a member
select is visited (in order not to ignore foo.bar() and similar cases).

6.3. Token String Normalization

We add the token string normalization to the core package as a new subpackage called
normalization. We perform the normalization by first constructing an instance of the class
NormalizationGraph and then turning it back into a token string.

28

6. Implementation

6.3.1. Normalization Graph Construction

Internally, we use the graph library JGraphT. The nodes representing the program statements
are instances of the class Statement. This class contains the tokens in the statement as a list,
the line number of the statement, and the statement’s semantics (as a CodeSemantics instance).
There is a class Edge for the edges as well. To construct the graph, we iterate through the
tokens in the token string we received as input. Each time the line number changes, we create
a new Statement instance from all the tokens with the preceding line number. We gain the
statement semantics instance by joining the semantics instances in the tokens as described in
section 6.1. We then add the statement to the graph as a node along with its ingoing edges.
Each edge type described in subsection 5.2.1 is also found in the implementation. We do not
fully abide by the definitions, however. Specifically, variable edges work slightly differently.
For one, there is only a variable order edge between two statements if there is no variable flow
edge between them. Contrast this to the definition of the graph, where every variable flow
edge between two statements implies a variable order edge between them. This redundancy
allows for an elegant definition but is unnecessary in practice. Secondly, variable flow edges
may no longer go from a statement later in the sequence to an earlier statement. A new type
of edge, the reverse variable flow edge, replaces variable flow edges with this property. These
edges run in the opposite direction as the edges they replace. As a result, all edges run from
earlier to later statements. Due to this construction, the graph is acyclical throughout. For
this reason, we must no longer remove variable flow edges after dead code removal. This is
another efficiency improvement.

When adding statement S to the graph, we process each piece of semantic information
individually. We do this as follows.

« First, we process bidirectional block depth change. We keep count of the current
bidirectional block depth. We also keep a set of statements in the current bidirectional
block. When we add S to the graph, we add its bidirectional block depth change to the
count. If the current bidirectional block depth is positive after, we add S to the set of
statements in the current bidirectional block. Otherwise, we clear the set.

- After, we process position significance. If S has partial position significance, we add a
partial position significance edge from the last statement with partial position signifi-
cance to S. Adding full position significance edges is slightly more complex. To do so,
we keep a set of all the statements since the last statement with full position significance
(including it). If S has full position significance, we add full position significance edges
from all the statements in the set to S. If it does not, we add a full position significance
edge from the last statement with full position significance to S.

« Finally, we process variable accesses. We track variable reads and writes from processed
statements each in a hash map. The keys in these maps are variables. The values are
collections containing the statements that write and read the variables, respectively. For
every variable S reads, we use the variable writes map to get all the previous statements

29

6. Implementation

that wrote this variable. We then add a variable flow edge from every such statement to
S. Similarly, we iterate through the variables S writes. For every such variable, we again
use the variable writes map to get all the previous statements that wrote the variable.
We then add a variable order edge from every such statement to S. We also use the
variable reads map to get all the previous statements that read the variable. We add an
edge from every such statement to S as well. The edge’s type depends on whether the
statement the edge comes from is in the same bidirectional block as S. We can check
this with the set of statements in the current bidirectional block. If the statement is in
the same bidirectional block, the edge is a reverse variable flow edge. If it is not, the
edge is a variable order edge.

6.3.2. Normalization Graph Usage

After constructing the graph, we remove statements that are dead code. We do this slightly
differently as described in subsection 5.2.2. Instead of removing the nodes representing dead
code from the graph, we do not include them in the resulting token string. This is more
efficient and has the same effect. To determine which statements are dead code, we start
a breadth-first search from all crucial statements. We search backward along variable flow
edges and forward along reverse variable flow edges. We mark all statements reached this
way as not being dead code. Correspondingly, we regard all statements not reached this way
as dead code.

Finally, we turn the graph back into a token string using topological sorting as described in
subsection 5.2.2. We use a priority queue of statements for this purpose. The priority queue
requires statements to have an order. It then returns and removes the statement with the
lowest order contained in it when called. We implement the Statement: : compareTo method
to impose an order on the statements. This order must only stem from the statements’ tokens.
We choose the following order for two random statements S and T: S comes before T if it has
more tokens. If S and T have equally many tokens, we compare the token types alphabetically
to determine the order. If all the token types are equal as well, S and T are equal in order.
Initially, we put all the roots, meaning all the statements without ingoing edges, into a priority
queue. We call on the priority queue until it is empty to process all the contained statements
in order. To process a statement S, we first check whether we previously marked it as not
being dead code. We add its tokens to the normalized token string if we did. Then, we go
through the successors of S. For each successor T, we remove all the edges from S to T. If this
causes T to have no more ingoing edges, we add T to a new priority queue. After processing
all the statements in the current priority queue, we check if there are any statements in the
new priority queue. If there are, we process them in order, repeating the process. If there are
not, we have processed all nodes in the graph. The result is the normalized token string.

30

7. Evaluation

Throughout the evaluation, we will compare our version of JPlag using token string normal-
ization with the original version. We will refer to the former as Normalization-jPlag and the
latter as Original-Plag.

7.1. Methodology

7.1.1. Goals, Questions & Metrics

We deem automatic plagiarism generation using statement insertion and reordering a sig-
nificant threat to academic integrity. For this reason, our primary goal is to make JPlag
resistant to such attacks through token string normalization. We consider three variations
of automatic plagiarism generation: One using insertion, one using reordering, and one
using a combination of both. Similarity Score to the Original (SSO) is the central metric here:
Plagiarized submissions should have a high SSO, as this means that JPlag detected them
successfully. Our secondary goal is to retain JPlag’s existing capabilities; they should not
be diminished by adding token string normalization. Two aspects are of particular concern:
false positives and runtime. We compare the performance of Normalization-JPlag with that
of Original-JPlag in those areas. We measure false positives with the similarity score of
non-plagiarized submission pairs, which should generally be low.

Primary Goal Make JPlag resistant to automatic plagiarism generation using insertion and
reordering.

Question How well does automatic plagiarism generation using insertion and reordering
work with Normalization-JPlag?

Metric Normalization-JPlag’s SSO of automatically plagiarized submissions.

Secondary Goal Retain JPlag’s existing capabilities.
First Question Does normalization make false positives more likely?

Metric Similarity score of non-plagiarized submission pairs of Normalization-JPlag
compared with Original-JPlag.

Second Question How high are the runtime costs of normalization?

Metric Runtime of Normalization-JPlag compared with Original-JPlag.

31

7. Evaluation

7.1.2. Dataset

Our dataset is PROGpedia [25], a collection of submissions from introductory programming
courses. Sixteen tasks and student solutions to them are included. Each task may include
multiple submissions per course participant. The students could program in one of four
languages: C, C++, Java, or Python. The submissions are split into four categories: Correct,
Incorrect, Runtime Error, and Compile Error. Submissions in the latter category are not
included in the dataset. The dataset was created for research into guiding students toward
the correct solution. For this purpose, a code property graph of each submission is included.
The code property graph is a generalization of the program dependence graph. We will not
use the included graphs despite this relation to token string normalization. The author chose
this dataset since it consists of the kind of submissions JPlag is mainly used for.

We pre-process the dataset to prepare it for the rest of the evaluation. First, we merge the
submissions from the different categories for each task, as we will not use this information.
Then, we remove all the submissions that use a language other than Java. After, we remove
all but the latest submission from each student per task. The rationale for this step is that
multiple submissions from the same student for the same task are bound to be highly similar.
Therefore, we may consider pairs of such submissions to be plagiarized. However, we want
each pair of submissions in the prepared dataset to be non-plagiarized. This is because we
are only interested in automatically plagiarized submissions. Thus, no manually plagiarized
submissions may be left in the dataset. To remove all of them, we must also check for
plagiarized pairs of submissions from different students for the same task. We do so manually,
with assistance from JPlag, concluding the pre-processing.

The author chose two tasks for the evaluation, partially based on how easy it seemed to
eliminate all plagiarized pairs. Other factors considered were the number of submissions and
their average line length. The first task is task 56, which is about minimum spanning trees.
After removing all plagiarized submissions, there are 28 submissions left, with a mean line
count of 85 and a median of 77. The second task is task 19, which is about graph clustering.
We remove all plagiarized submissions here as well. Afterward, there are 27 submissions left,
with a mean line count of 131 and a median of 106. Since both tasks yield similar results, we
will only look at those for task 56 in the evaluation. The results for task 19 can be found in
the appendix.

7.2. JPlag-Gen

The author is aware of only one currently existing automatic plagiarism generation tool:
MossaDp [11], which we already outlined in chapter 4. Mossap works with C/C++ and
exclusively uses insertion. We implemented the token string normalization only for Java,
however. In addition, we want to consider reordering. For these two reasons, we develop
our own tool for automatic plagiarism generation. It is called JPlag-Gen. It can produce
plagiarized submissions using insertion and reordering. It can also combine these modes

32

7. Evaluation

by doing the following: First, it produces a plagiarized submission using reordering. It then
produces another plagiarized submission from the result using insertion. The rationale for
this order is that reordering is the weaker attack, as already noted in section 4.2.

We will not consider how suspicious a plagiarized submission may be to a human in the
evaluation. For this reason, JPlag-Gen only looks to attack token-based plagiarism detectors
as potently as possible. Specifically, when generating a plagiarized submission, JPlag-Gen tries
to lower JPlag’s SSO as much as possible. It does this by breaking up all code segments it can.
Recall that breaking up code segments is the relevant mechanism by which SSO is lowered.
Once all code segments are broken up, we can safely terminate, knowing that any decrease in
similarity afterward is superficial. This termination criterium does not depend on a plagiarism
detector’s score or an arbitrary timeout period, as MossaAD’s does. As a result, JPlag-Gen
works entirely independently of plagiarism detectors. For this reason, we can generate a
single submission and test multiple plagiarism generators against it. This greatly simplifies
comparing plagiarism detectors, as we do not need to re-generate a plagiarized submission
for every plagiarism detector we want to test. Such a process would be both cumbersome
and introduce noise, as automatic plagiarism generation is usually random. Much like token
string normalization, JPlag-Gen relies on statements and lines being equivalent, so we format
all the submissions we give it as input beforehand.

7.2.1. Using Insertion

To produce plagiarized submissions using insertion with JPlag-Gen, we use the same basic
mechanism as MossAD: We insert a random statement in a random position and then use a
compiler to check whether this has changed the submission’s functionality. More precisely, we
compile the submission with optimizations and check if the resulting bytecode has changed.
If it has, we remove the inserted statement again. As in MossAD, the random statement is
from an entropy file, the current submission, or a previously plagiarized submission. There
are two crucial differences, however.

One difference is the compiler. MossaD uses GCC. However, this compiler only works for
C/C++, so we have to use a different compiler for Java. Javac, the standard Java compiler,
does not do any optimizations. Instead, we use the Eclipse Compiler for Java (ECJ), which can
be configured to remove unused variables. We first compile the submission to class files using
EC]J. Afterward, we use the javap command with the -c and -p flags to extract the bytecode
from the class files. ECJ is less powerful than GCC for our purposes, as GCC can also remove
types of dead code other than unused variables. However, most of MossAD’s functionality can
still be replicated, as MossAD mainly relies on inserting unused variables [19]. Furthermore,
some dead code insertions MossAD uses, but JPlag-Gen does not, can be attributed to the
language used rather than the different compilers. For example, unreachable code is allowed
in C/C++, while in Java, it is not. Another example is using namespace statements in C++,
which can be inserted as dead code but have no equivalent in Java.

The other difference comes from JPlag-Gen’s termination criterium. We implement it
for insertion using a pool of positions where a statement may be inserted. The positions

33

7. Evaluation

4500

4000

3500

3000

2500

positions

2000
1500
1000

500 III
0 2 3

1

-l

attempt of successful statement insertion

Figure 7.1.: This graph shows for every possible attempt how many positions had a state-
ment successfully inserted into them on that attempt throughout our evaluation.
The positions with no statement successfully inserted into them within twenty
attempts are shown with the label "none".

where statements are inserted are chosen randomly from this pool. JPlag-Gen terminates
when the pool is empty. Initially, this pool consists of every position in the submission.
Once a statement has been inserted in a position, we remove it from the pool, as inserting
another statement in this position would not break up any more code segments. There may be
positions where no statement can be inserted without changing the submission’s functionality.
We determine such positions by counting for every position how many times we have tried
to insert a random statement there. After 20 unsuccessful attempts, we assume no statement
can be inserted in the position and remove it from the pool. This assumption is backed up
empirically; see Figure 7.1. This figure visualizes the attempts. It shows that a statement is
successfully inserted in most positions within the first few attempts. In about 35% of positions,
no statement is successfully inserted within twenty attempts. It takes between ten and twenty
attempts for only about 3% of positions. From this, we can extrapolate that a successful
insertion in a position after more than twenty attempts is improbable. It is much more likely
that no statement can be inserted there at all.

34

7. Evaluation

7.2.2. Using Reordering

JPlag can also produce plagiarized submissions using reordering. Unfortunately, ECJ is of
no use to us here, as it does not change the order of statements during compilation. Instead
of relying on a compiler, we use an entirely different approach for reordering. Rather than
making a modification and undoing it if it has changed the submission’s functionality, as
we did for insertion, we only make modifications we know beforehand do not change the
submission’s functionality. In the context of reordering, this means we determine whether
two statements are independent, meaning they do not affect each other. If two subsequent
statements are independent, we can swap them without changing program functionality.
As the author found no existing tools with this capability, we test whether two subsequent
statements are independent ourselves. Statements must fulfill three criteria to pass this test:
First, both statements must not begin or end a code block. We check this using statements’
indentation. For one, the two statements must have the same indentation. Additionally, the
first statement must not have a smaller indent than the statement preceding it; otherwise,
the first statement may end a code block. Similarly, the second statement must not have
a smaller indent than the statement succeeding it. Secondly, neither statement may affect
control flow. To this end, we check whether the statements contain a method call or any of
the keywords return, yield, break, continue, throw, assert. Third, if both statements access
the same variable, neither may write to it. In order to determine method calls and variable
accesses in statements, we re-use the generation of semantic information from token string
normalization.

We again implement the termination criterium using a pool of positions. We choose the
positions randomly from the pool. After choosing a position S, we check the criteria for
the independence of S and the subsequent statement T. If they are met, we swap the two.
Additionally, S must have come before T in the original submission. This condition prevents
infinite loops where two statements are swapped back and forth forever. Regardless of whether
a swap has occurred, we remove the position from the pool, as picking it again would not
result in a swap either way. If a swap has occurred, we add the positions before and after to
the pool, as a swap can now occur there even if it could not before. Note that the pool is a set,
so every position is contained at most once. Again, JPlag-Gen terminates when the pool is

empty.

7.3. Effect on Automatic Plagiarism Generation

We check what effect Normalization-JPlag has on automatic plagiarism generation to eval-
uate our primary goal. We measure this with Normalization-JPlag’s SSO of automatically
plagiarized submissions; it should be as high as possible. We create such submissions with
JPlag-Gen’s three modes (insertion, reordering, both). Rather than just measuring once at the
end, we measure after every modification JPlag-Gen makes during generation. As the effect of
a single modification depends on the submission’s size, we track the number of modifications

35

7. Evaluation

on a submission proportionally to its statement count. To put Normalization-JPlag’s SSO into
context, we also measure Original-JPlag’s SSO.

7.3.1. Using Insertion

First, we check how well Normalization-JPlag fares against JPlag-Gen’s insertion mode. We
start by looking at ten random individual plagiarized submissions; see Figure 7.2. Insertion
effectively reduces Original-JPlag’s SSO. Normalization-JPlag’s SSO, in contrast, is affected
only rarely; most plagiarized submissions still have the maximum SSO of 100% at the end of
the process. As we can see by the relatively tight grouping of the individual submissions, the
effectiveness of insertion against Original-JPlag is fairly independent of the submission. Now,
we look at all plagiarized submissions created using insertion by taking the average SSO; see
Figure 7.3. In the end, Original-JPlag’s average SSO is 19.4%, while Normalization-JPlag’s is
99.5%. From this, we can conclude that Normalization-JPlag is highly resistant to automatic
plagiarism generation using insertion.

7.3.2. Using Reordering

Next, we check how well Normalization-JPlag defends against JPlag-Gen’s reordering mode.
We again first look at ten random individual plagiarized submissions; see Figure 7.4. Re-
ordering is only somewhat effective in reducing Original-JPlag’s SSO. In contrast to insertion,
the effectiveness of reordering against Original-JPlag is highly dependent on the submis-
sion, as we can see by the wide range of outcomes for individual submissions. For some
submissions, reordering does not affect Original-JPlag’s SSO, meaning it remains at 100%. In
these cases, JPlag-Gen swapped only statements corresponding to the same tokens, attribute
declarations being a typical example. For other submissions, reordering accomplishes more,
bringing Original-JPlag’s SSO below 90% or even below 80%. Still, this data confirms the
notion that reordering is overall less effective than reordering. Again, Normalization-JPlag’s
SSO remains unchanged for the most part. Once more, we transition to looking at all pla-
giarized submissions created using reordering by taking the average SSO; see Figure 7.5. In
the end, Original-JPlag’s average SSO is 92.2%, while Normalization-JPlag’s average SSO is
99.6%. Compared to Original-JPlag, this is a relatively weaker result for Normalization-JPlag
than when insertion was used, though its average SSO is still well above the 99% mark. We
can conclude that Normalization-JPlag also has a high resistance to automatic plagiarism
generation using reordering.

7.3.3. Using a Combination

Finally, we check how well Normalization-JPlag fares against JPlag-Gen’s mode combining
reordering and insertion. Recall that this mode works by first creating a plagiarized submission
using reordering and then creating the final plagiarized submission from it using insertion.
As we already looked at submissions automatically plagiarized using reordering, we will

36

7. Evaluation

©
£
o
-
o
o
)
[0}
-
o
O
I}
>
-
f—
£
=
«
— Original-JPlag
0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure 7.2.: The SSO during the process of creating ten random plagiarized submissions from
task 56 using insertion.

average similarity score to original

— Original-JPlag
0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

modifications as proportion of statement count

Figure 7.3.: The average SSO during the process of creating all plagiarized submissions from

task 56 using insertion.
37

7. Evaluation

1 ______
©
£ 095
2
-
o
2 oo
[0}
-
o
@
- 0.85
=
-
o
é 0.8
‘»
— Original-JPlag
075 __ Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure 7.4.: The SSO during the process of creating ten random plagiarized submissions from
task 56 using reordering.

© b

£

S

—

© 0.5

o

-

[0}

|-

S 0.9

0}

>

=

|-

© 0.85

£

«

) 0.8

o

©

|

q>') — Original-JPlag

© 0.75 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure 7.5.: The average SSO during the process of creating all plagiarized submissions from

task 56 using reordering.
38

7. Evaluation

1< s- - - - - - - - - =" =" =" -"—-"-"-"-"-"—"—-—-—“— - - - - - "~ ;s sEsEsEsEsEESEEEEE==ZSE======-
©
£ 0.8
2
j -
)
S os
Q
5 3\
3]
- t‘\ﬂf&
=
-
o \
£ o2 =
)

— Original-JPlag
0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure 7.6.: The SSO during the process of creating ten random plagiarized submissions from
task 56 using reordering followed by insertion. Only the insertion stage is shown,
for the reordering stage, see Figure 7.4.

e ...

£

2

-

o 0.8

o

)

0]

—

S o6

)

>

=

[

& 04

=

‘»

)

o 0.2

©

|

q>" — Original-JPlag

© 0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure 7.7.: The average SSO during the process of creating all plagiarized submissions from
task 56 using reordering followed 34 insertion. Only the insertion stage is shown,
for the reordering stage, see Figure 7.5.

7. Evaluation

now only look at the insertion stage that has them as input. For ten individual plagiarized
submissions, see Figure 7.6; for the average of all plagiarized submissions, see Figure 7.7.
Overall, the results are similar to when only insertion was used, albeit both Original-JPlag’s
and Normalization-JPlag’s scores are slightly lower throughout. In the end, the average SSO
is 15.5% and 98.4%, respectively. Still, we can conclude that Normalization-JPlag is also highly
resistant to automatic plagiarism generation using reordering followed by insertion.

7.4. Effect on Existing Capabilities

We compare false positives and runtime between Normalization-JPlag and Original-JPlag to
evaluate our secondary goal. False positives are a concern because many more submissions
result in the same token string in Normalization-JPlag than in Original-JPlag. Normalization-
JPlag may produce generally higher similarity scores than Original-JPlag for this reason. In the
extreme case, it may even produce a very high similarity score for a plagiarized pair; we would
refer to this as a false positive. Even in less extreme cases, higher scores for non-plagiarized
pairs would be bad, making distinguishing them from plagiarized pairs harder. Therefore, we
will investigate the similarity scores of non-plagiarized pairs.

We will also examine the runtime impact of normalization. This is a concern because graph-
based approaches to plagiarism detection are often very slow. Mostly, this is because they
attempt to solve the NP-complete problem of graph isomorphism, which Normalization-JPlag
does not. Still, we want to empirically confirm that Normalization-JPlag is fast enough to be
usable in practice.

7.4.1. False Positives

Due to our processing, all submissions pairs in both tasks are non-plagiarized. There are
about 750 of them per task. See Figure 7.8 for their similarity scores. The scores are mostly
unchanged between Original-JPlag and Normalization-JPlag, with an upper bound of 8.8%
and 8.6%, respectively. The upper whisker has also decreased slightly, from 20.6% to 20.3%.
Over 95% of scores increase not at all or by less than 1%. The single largest increase is less
than 10%. We can conclude that false positives are not a problem with Normalization-JPlag.

To further illustrate this, we compare the scores of non-plagiarized pairs with those of
plagiarized pairs. For plots of their distribution, see Figure 7.9 for insertion, Figure 7.10 for
reordering, and Figure 7.11 for both. We can see that normalization causes a miniscule change
in the distribution of scores of non-plagiarized pairs. However, there is a massive change in
the distribution of scores of plagiarized pairs with all three obfuscation methods. Additionally,
we can see that insertion causes a significant overlap between Original-JPlag’s scores of
plagiarized and non-plagiarized pairs. This overlap disappears with Normalization-JPlag.
Instead, there is a gigantic gap, spanning almost the entire range of possible scores.

40

7. Evaluation

0.3

0.25

0.2

similarity score

0.1

0.05

Original-JPlag Normalization-JPlag

Figure 7.8.: The similarity scores of the submission pairs in task 56, which are all non-

plagiarized.
50
_é‘ 40 —non-plagiarized, Original-JPlag
8 —non-plagiarized, Normalization-JPlag
-8 30 — plagiarized, Original-JPlag
> — plagiarized, Normalization-JPlag
= 20
©
Q
& ¥ \ﬁQ
a
0
T R0 e
1 1 i I
e e [N A [
0 0.2 0.4 0.6 0.8 1

similarity score

Figure 7.9.: The similarity score distribution of the non-plagiarized and the plagiarized pairs
from task 56. The plagiarized pairs each consist of an original and a plagiarized
from it using insertion.

41

7. Evaluation

50
_4? —non-plagiarized, Original-JPlag
8 40 non-plagiarized, Normalization-JPlag
% 30 — plagiarized, Original-JPlag
> — plagiarized, Normalization-JPlag
S 20
©
Q
[e}
|-
a

"I
0
1 (RO O | et

0 0.2 0.4 0.6 0.8 1
similarity score

Figure 7.10.: The similarity score distribution of the non-plagiarized and the plagiarized pairs
from task 56. The plagiarized pairs each consist of an original and a version
plagiarized from it using reordering.

20
_4? —non-plagiarized, Original-JPlag
8 15 non-plagiarized, Normalization-JPlag
g — plagiarized, Original-JPlag
? 10 — plagiarized, Normalization-JPlag
E
S
o 5
|-
a

0

0 0.2 0.4 0.6 0.8 1
similarity score

Figure 7.11.: The similarity score distribution of the non-plagiarized and the plagiarized pairs
from task 56. The plagiarized p#i#s each consist of an original submission and
one plagiarized from it using reordering followed by insertion.

7. Evaluation

runtime in s
N w N ul

[a—y

Original-JPlag Normalization-JPlag

Figure 7.12.: The runtime for an upsized version of task 56 as measured over 100 runs on an
Apple M1 Pro with clustering disabled.

7.4.2. Runtime

Our tasks are moderate in size, each containing under 30 submissions, with those submissions
containing about 100 statements on average. Runtime only becomes a concern with relatively
large inputs. For this reason, we measure the runtime with upsized versions of our tasks. The
tasks themselves are upsized by a factor of ten, as every submission in the original task is
contained ten times. The submissions are also upsized by a factor of ten, as every source
code file in the original submission is contained ten times. In total, the upsized tasks are 100
times bigger than the original tasks, containing hundreds of thousands of statements. See
Figure 7.12 for a plot of the runtime measurements. Original-JPlag’s runtime is 5.5 seconds,
while Normalization-JPlag’s runtime is 7.8 seconds; this presents a relative increase of about
40%. Nevertheless, Normalization-JPlag is very fast in absolute terms. Moreover, the runtime
of token string normalization scales linearly with both submission count and submission
size, unlike the rest of JPlag, which has worse scaling. For this reason, the difference in
runtime between Original-JPlag and Normalization-JPlag is bound to shrink as the input gets
larger, making the measured increase in runtime even less of a concern. We can conclude
that runtime is not an issue with Normalization-JPlag.

43

7. Evaluation

7.5. Discussion

In section 7.3, we observed that most insertion and reordering modifications do not affect
Normalization-JPlag’s SSO. There are some notable exceptions, however. We will look at
them here. Most of the code examples are authentic in that JPlag-Gen generated them during
the evaluation.

One example leverages an existing weakness of JPlag. If all branches of an if/else result
in a return, we can remove the last else without affecting the submission’s functionality. We
illustrate this with the example method below. The original is on the left, and the manually
plagiarized version is on the right.

public int compareTo(Node n) { public int compareTo(Node n) {
if (dist < n.dist) if (dist < n.dist)
return -1; return -1;
else if (dist > n.dist) else if (dist > n.dist)
return 1; return 1;
else // else
return O; return 0;
} }

These two methods result in different token strings, as the right one is missing an else.
JPlag-Gen can automatically recreate this using two insertions:

public int compareTo(Node n) {
int index = 0; // inserted
if (dist < n.dist)

return -1;
else if (dist > n.dist)
return 1;
else
index++; // inserted
return 0;

Both insertions are necessary, as declaring variables in unbraced control blocks is not
allowed in Java. Normalization-JPlag removes both inserted statements during normalization.
Regardless, the token string is different; return 0 was inside the else block before, but now
it is outside.

44

7. Evaluation

The next example relies on an empty constructor. JPlag-Gen can reorder it with attribute
declarations, changing the token string in the process:

class Node {
Node() {} // reordered
public int index; // reordered
public Node pai; // reordered

The final two examples are related. In both, JPlag-Gen can insert redundant control
statements, again changing the token string:

for (1 =0; 1 <n - 1; i++) { void printResult() {

continue; // inserted return; // inserted

7.6. Threats to Validity

We only showed that Normalization-JPlag prevents automatic plagiarism generation using
our tool, JPlag-Gen. Other, more advanced tools may defeat Normalization-JPlag, possibly
even using insertion and reordering. There are two tangible ways in which JPlag-Gen may be
considered particularly weak. For one, insertion is somewhat limited, as ECJ, our compiler,
only removes unused variables. However, MossaD uses GCC, which features much more
powerful optimization, yet MossAD still mainly relies on unused variables [19]. Secondly,
reordering uses the same information as token string normalization. As a result, for the most
part, JPlag-Gen determining whether it swaps two lines corresponds to Normalization-JPlag
determining whether it swaps them back. Therefore, it is unsurprising that Normalization-
JPlag defends well against JPlag-Gen’s reordering mode. Still, we successfully attacked
Original-JPlag in two distinct ways and showed that Normalization-JPlag prevents these
attacks.

Despite the language-independent nature of token string normalization, we only evaluated
it for Java. It may work worse for other languages, albeit many widely used languages are
similar to Java in structure ("C-like").

45

8. Future Work

There is much room for evaluating token string normalization more thoroughly. Testing it
for languages other than Java is an obvious example. Besides only considering Java, we also
constrained ourselves to plagiarized submissions created by automatic plagiarism generators.
Checking the effect token string normalization has on identifying submissions plagiarized
by hand could be an avenue for further research. One approach might involve comparing
Normalization-JPlag’s score with Original-JPlag’s score. If the former is significantly higher,
this could indicate that a student tried to hide their plagiarism through insertion or reordering.
Unfortunately, there are no standardized datasets for plagiarism detection in the literature.
Creating such a dataset would greatly aid future research in the field.

Due to its high-level view of code, token string normalization is vulnerable to some unusual
cases of insertion and reordering. Mostly, this comes from how we handle control statements.
Unfortunately, we have no conception of the program’s control flow. In order to get around
this limitation, future work could explore the possibility of using graphs that consider the
program’s control flow, such as the system dependence graph. A related issue is that we fix
control statements in place to retain program functionality. As a result, we detect neither
the insertion nor reordering of control blocks. A more advanced version of token string
normalization may seek to prevent such attacks. It would need to track blocks generally,
similar to how we currently track bidirectional blocks. The Normalization Graph would need
to take this information into account.

46

9. Conclusion

Automatic plagiarism generation using statement insertion and reordering is a significant
threat to academic integrity. Unfortunately, state-of-the-art plagiarism detectors using to-
kenization are vulnerable to such attacks. We sought to improve their resistance through
token string normalization, which makes the token string invariant to statement insertion
and reordering. By working with the token string, we achieved a high language independence.
We used a program graph to perform the normalization. We implemented token string nor-
malization into the state-of-the-art token-based plagiarism detector JPlag. For our evaluation,
we created the automatic plagiarism generator JPlag-Gen, which uses statement insertion and
reordering. This tool easily defeated the original version of JPlag. In contrast, our version was
almost entirely unaffected, showing a high resistance against automatic plagiarism generation
using statement insertion and reordering. Furthermore, we sought to confirm that we retained
JPlag’s existing capabilities. To this end, we compared the runtime and the likelihood of false
positives between the original and our version. There was a noticeable increase in runtime;
however, our version is still extremely fast in absolute terms. Regarding false positives, we
could not discern a difference between the two versions. Overall, we concluded that JPlag’s
useability remains intact. In summary, our token string normalization approach significantly
improves token-based plagiarism detectors’ resistance to automatic plagiarism generation
using statement insertion and reordering while preserving their useability.

47

Bibliography

[1]

Franga B. Allyson et al. “Sherlock N-overlap: Invasive Normalization and Overlap
Coefficient for the Similarity Analysis Between Source Code”. In: IEEE Transactions on
Computers 68.5 (2019), pp. 740-751. DOI: 10.1109/TC.2018.2881449.

Jess Bidgood and Jeremy B. Merrill. “As Computer Coding Classes Swell, So Does
Cheating”. In: New York Times (May 29, 2017). URL: https://www.nytimes.com/2017/
05/29/us/computer-science-cheating.html (visited on 04/07/2023).

KW. Bowyer and L.O. Hall. “Experience using "MOSS" to detect cheating on pro-
gramming assignments”. In: FIE’99 Frontiers in Education. 29th Annual Frontiers in
Education Conference. Designing the Future of Science and Engineering Education. Con-
ference Proceedings (IEEE Cat. No.99CH37011. Vol. 3. 1999, 13B3/18-13B3/22 vol.3. por:
10.1109/FIE.1999.840376.

Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. “Code Normalization for Self-
Mutating Malware”. In: IEEE Security & Privacy 5.2 (2007), pp. 46—54. DOI: 10.1109/MSP.
2007.31.

Tracy Camp et al. “Generation CS: The Growth of Computer Science”. In: ACM Inroads
8.2 (May 2017), pp. 44—-50. 1sSN: 2153-2184. DOI: 10.1145/3084362. URL: https://doi.
org/10.1145/3084362.

Dong-Kyu Chae et al. “Software Plagiarism Detection: A Graph-Based Approach”. In:
Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management. CIKM ’13. San Francisco, California, USA: Association for Computing
Machinery, 2013, pp. 1577-1580. IsBN: 9781450322638. DOI: 10.1145/2505515. 2507848,
URL: https://doi.org/10.1145/2505515.2507848.

Hayden Cheers. BPlag. Oct. 2020. URL: https://github.com/hjc851/BPlag (visited on
04/05/2023).

Hayden Cheers, Yuqing Lin, and Shamus P. Smith. “Academic Source Code Plagia-
rism Detection by Measuring Program Behavioral Similarity”. In: IEEE Access 9 (2021),
pp- 50391-50412. por1: 10.1109/ACCESS.2021.3069367.

Georgina Cosma and Mike Joy. “Towards a Definition of Source-Code Plagiarism”.
In: IEEE Transactions on Education 51.2 (May 2008), pp. 195-200. 1SsN: 1557-9638. DOTI:
10.1109/TE.2007.906776.

48

https://doi.org/10.1109/TC.2018.2881449
https://www.nytimes.com/2017/05/29/us/computer-science-cheating.html
https://www.nytimes.com/2017/05/29/us/computer-science-cheating.html
https://doi.org/10.1109/FIE.1999.840376
https://doi.org/10.1109/MSP.2007.31
https://doi.org/10.1109/MSP.2007.31
https://doi.org/10.1145/3084362
https://doi.org/10.1145/3084362
https://doi.org/10.1145/3084362
https://doi.org/10.1145/2505515.2507848
https://doi.org/10.1145/2505515.2507848
https://github.com/hjc851/BPlag
https://doi.org/10.1109/ACCESS.2021.3069367
https://doi.org/10.1109/TE.2007.906776

Bibliography

[14]

[19]

Tom Crick. “An Analysis of Introductory Programming Courses at UK Universities”. In:
The Art, Science, and Engineering of Programming 1.2 (2017). Ed. by James H. Davenport.
URL: http://programming-journal.org/2017/1/18/.

Breanna Devore-McDonald and Emery D. Berger. “Mossad: Defeating Software Plagia-
rism Detection”. In: Proc. ACM Program. Lang. 4.00PSLA (Nov. 2020). po1: 10.1145/
3428206. URL: https://doi.org/10.1145/3428206.

John L. Donaldson, Ann-Marie Lancaster, and Paula H. Sposato. “A Plagiarism Detection
System”. In: Proceedings of the Twelfth SIGCSE Technical Symposium on Computer
Science Education. SIGCSE ’81. St. Louis, Missouri, USA: Association for Computing
Machinery, 1981, pp. 21-25. 1sBN: 0897910362. DOI: 10 . 1145 /800037 . 800955. URL:
https://doi.org/10.1145/800037.800955.

J.AW. Faidhi and S.K. Robinson. “An empirical approach for detecting program similar-
ity and plagiarism within a university programming environment”. In: Computers &
Education 11.1 (1987), pp. 11-19. 1ssN: 0360-1315. poIL: https://doi.org/10.1016/0360-
1315(87) 90042 - X. URL: https://www.sciencedirect.com/science/article/pii/
036013158790042X.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program Dependence
Graph and Its Use in Optimization”. In: ACM Trans. Program. Lang. Syst. 9.3 (July 1987),
pp. 319-349. 1ssN: 0164-0925. DOI: 10.1145/24039.24041. URL: https://doi.org/10.
1145/24039.24041.

M. Joy and M. Luck. “Plagiarism in programming assignments”. In: IEEE Transactions
on Education 42.2 (May 1999), pp. 129-133. 1SsN: 1557-9638. DOI: 10.1109/13.762946.

Elmar Juergens et al. “Do Code Clones Matter?” In: Proceedings of the 31st International
Conference on Software Engineering. ICSE °09. USA: IEEE Computer Society, 2009,
pp. 485-495. 1SBN: 9781424434534. po1: 10 . 1109/ ICSE . 2009 .5070547. URL: https:
//doi.org/10.1109/ICSE.2009.5070547.

A. B. Kahn. “Topological Sorting of Large Networks”. In: Commun. ACM 5.11 (Nov.
1962), pp. 558—562. 1ssN: 0001-0782. DOI: 10.1145/368996.369025. URL: https://doi.
org/10.1145/368996.369025.

Oscar Karnalim. “Detecting source code plagiarism on introductory programming
course assignments using a bytecode approach”. In: 2016 International Conference on
Information & Communication Technology and Systems (ICTS). 2016, pp. 63-68. DOI: 10.
1109/ICTS.2016.7910274. URL: https://ieeexplore.ieee.org/document/7910274.

Pascal Krieg. Preventing Code Insertion Attacks on Token-Based Software Plagiarism
Detectors. Bachelor’s Thesis. Karlsruhe, Germany, Sept. 2022.

49

http://programming-journal.org/2017/1/18/
https://doi.org/10.1145/3428206
https://doi.org/10.1145/3428206
https://doi.org/10.1145/3428206
https://doi.org/10.1145/800037.800955
https://doi.org/10.1145/800037.800955
https://doi.org/https://doi.org/10.1016/0360-1315(87)90042-X
https://doi.org/https://doi.org/10.1016/0360-1315(87)90042-X
https://www.sciencedirect.com/science/article/pii/036013158790042X
https://www.sciencedirect.com/science/article/pii/036013158790042X
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/13.762946
https://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://doi.org/10.1109/ICTS.2016.7910274
https://doi.org/10.1109/ICTS.2016.7910274
https://ieeexplore.ieee.org/document/7910274

Bibliography

[20]

(28]

Chao Liu et al. “GPLAG: Detection of Software Plagiarism by Program Dependence
Graph Analysis”. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’06. Philadelphia, PA, USA: Association
for Computing Machinery, 2006, pp. 872-881. 1SBN: 1595933395. DOI: 10.1145/1150402.
1150522. URL: https://doi.org/10.1145/1150402.1150522.

Kevin Ly. “Normalizer: Augmenting Code Clone Detectors Using Source Code Nor-
malization”. MA thesis. San Luis Obispo: California Polytechnic State University, Mar.
2017.

Leonardo Mariani and Daniela Micucci. “AuDeNTES: Automatic Detection of TeNtative
Plagiarism According to a REference Solution”. In: ACM Trans. Comput. Educ. 12.1
(Mar. 2012). por: 10.1145/2133797.2133799. URL: https://doi.org/10.1145/2133797.
2133799.

Raina Mason and Simon. “Introductory Programming Courses in Australasia in 2016”.
In: Proceedings of the Nineteenth Australasian Computing Education Conference. ACE
’17. Geelong, VIC, Australia: Association for Computing Machinery, 2017, pp. 81-89.
ISBN: 9781450348232. DOI: 10.1145/3013499.3013512. URL: https://doi.org/10.1145/
3013499.3013512.

Matija Novak, Mike Joy, and Dragutin Kermek. “Source-Code Similarity Detection and
Detection Tools Used in Academia: A Systematic Review”. In: ACM Trans. Comput. Educ.
19.3 (May 2019). por: 10.1145/3313290. URL: https://doi.org/10.1145/3313290.

José Carlos Paiva, José Paulo Leal, and Alvaro Figueira. “PROGpedia: Collection of
source-code submitted to introductory programming assignments”. In: Data in Brief 46
(2023), p. 108887. 1SsN: 2352-3409. DOI: https://doi.org/10.1016/j.dib.2023.108887.
URL: https://www.sciencedirect.com/science/article/pii/S2352340923000057.

A. Parker and J.O. Hamblen. “Computer algorithms for plagiarism detection”. In: IEEE
Transactions on Education 32.2 (May 1989), pp. 94-99. 1ssN: 1557-9638. po1: 10.1109/13.
28038.

Lutz Prechelt and Guido Malpohl. “Finding Plagiarisms among a Set of Programs with
JPlag”. In: Journal of Universal Computer Science 8 (Mar. 2003). URL: https: //www .
researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_
Programs_with_JPlag.

Chanchal K. Roy and James R. Cordy. “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normalization”. In: 2008
16th IEEE International Conference on Program Comprehension. 2008, pp. 172-181. por:
10.1109/1ICPC.2008.41.

50

https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/2133797.2133799
https://doi.org/10.1145/2133797.2133799
https://doi.org/10.1145/2133797.2133799
https://doi.org/10.1145/3013499.3013512
https://doi.org/10.1145/3013499.3013512
https://doi.org/10.1145/3013499.3013512
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/https://doi.org/10.1016/j.dib.2023.108887
https://www.sciencedirect.com/science/article/pii/S2352340923000057
https://doi.org/10.1109/13.28038
https://doi.org/10.1109/13.28038
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag
https://doi.org/10.1109/ICPC.2008.41

Bibliography

[29]

[34]

[35]

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. “Winnowing: Local Algorithms
for Document Fingerprinting”. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’03. San Diego, California: Association
for Computing Machinery, 2003, pp. 76—-85. 1sBN: 158113634X. DOI: 10.1145/872757 .
872770. URL: https://doi.org/10.1145/872757.872770.

Shahriar Shamsian et al. “Teaching Large Computer Science Classes”. In: 2016 ASEE
Annual Conference & Exposition. 10.18260/p.26034. https://peer.asee.org/26034. New
Orleans, Louisiana: ASEE Conferences, June 2016.

Pengcheng Wang et al. “CCAligner: A Token Based Large-Gap Clone Detector”. In: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 2018, pp. 1066
1077. po1: 10.1145/3180155.3180179.

Tiantian Wang, Xiaohong Su, and Peijun Ma. “Program Normalization for Removing
Code Variations”. In: 2008 International Conference on Computer Science and Software
Engineering. Vol. 2. 2008, pp. 306—-309. pOI: 10.1109/CSSE.2008.957.

Debora Weber-Wulff, Katrin Kohler, and Christoph Moller. Collusion Detection System
Test Report 2012. Tech. rep. Berlin, Germany: Hochschule fiir Technik und Wirtschaft
Berlin, 2012. URL: https://plagiat.htw-berlin.de/collusion-test-2012/.

Mark Weiser. “Program Slicing”. In: IEEE Transactions on Software Engineering SE-10.4
(1984), pp. 352-357. DOI: 10.1109/TSE.1984.5010248.

Martin White et al. “Deep Learning Code Fragments for Code Clone Detection”. In:
Proceedings of the 31st IEEE/ACM International Conference on Automated Software En-
gineering. ASE 2016. Singapore, Singapore: Association for Computing Machinery,
2016, pp. 87-98. 1sBN: 9781450338455. DOI: 10 .1145/2970276.2970326. URL: https:
//doi.org/10.1145/2970276.2970326.

Michael Wise. “String Similarity via Greedy String Tiling and Running Karp-Rabin
Matching”. In: Unpublished Basser Department of Computer Science Report (Jan. 1993).

Fangfang Zhang et al. “Program Logic Based Software Plagiarism Detection”. In: 2014
IEEE 25th International Symposium on Software Reliability Engineering. Nov. 2014, pp. 66—
77. DOIL: 10.1109/ISSRE.2014.18.

51

https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1109/CSSE.2008.957
https://plagiat.htw-berlin.de/collusion-test-2012/
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1109/ISSRE.2014.18

A. Appendix

The evaluation results for task 19 can be found in the following. They are similar to those for
task 56.

52

A. Appendix

©
£
2
-
)
o
)
o)
-
o
o]
wn
>
=
f—
£
€
)
— Original-JPlag N\
0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure A.1.: The SSO during the process of creating ten random plagiarized submissions from
task 19 using insertion.

average similarity score to original

— Original-JPlag
0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure A.2.: The average SSO during the process of creating all plagiarized submissions from
task 19 using insertion.

53

A. Appendix

©
£ 095
2
-
o
2 oo
[0}
-
o
@
- 0.85
=
-
o
é 0.8
‘»
— Original-JPlag
075 __ Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

modifications as proportion of statement count

Figure A.3.: The SSO during the process of creating ten random plagiarized submissions from
task 19 using reordering.

©

£

S

-

© 0.95

(@]

)

(O]

_

S 0.9

(1))

>

f—

-

© 0.85

=

B

o 0.8

(@)]

©

-

g — Original-JPlag

© 0.75 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

modifications as proportion of statement count

Figure A.4.: The average SSO during the process of creating all plagiarized submissions from
task 19 using reordering.

54

A. Appendix

©
£
2
j -
)
o
)
o)
-
o
o]
a
>
=
-
o
€
)
— Original-JPlag
0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure A.5.: The SSO during the process of creating ten random plagiarized submissions from
task 19 using reordering followed by insertion. Only the insertion stage is shown,
for the reordering stage, see Figure A.3.

I ST

£

2

-

o 0.8

o

)

0]

—

S 0.6

)

>

=

[

& 04

=

‘»

)

o 0.2

©

|

q>" — Original-JPlag

© 0 - - Normalization-JPlag
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

modifications as proportion of statement count

Figure A.6.: The average SSO during the process of creating all plagiarized submissions from
task 19 using reordering followedBy insertion. Only the insertion stage is shown,
for the reordering stage, see Figure A.4.

A. Appendix

0.25 .
¢ .
' ;
0.2 . .
© -
—
o
@
2 015
=
(-
©
€ 01
@
0.05
0

Original-JPlag Normalization-JPlag

Figure A.7.: The similarity scores of the submission pairs in task 19, which are all non-
plagiarized.

180

160
— non-plagiarized, Original-JPlag

140 —non-plagiarized, Normalization-JPlag
120 — plagiarized, Original-JPlag
100 — plagiarized, Normalization-JPlag

80

60

40

20

probability density

0 0.2 0.4 0.6 0.8 1
similarity score

Figure A.8.: The similarity score distribution of the non-plagiarized and the plagiarized pairs
from task 19. The plagiarized pairs each consist of an original and a plagiarized
from it using insertion.

56

A. Appendix

' non-plagiarized, Original-JPlag
non-plagiarized, Normalization-JPlag

' plagiarized, Original-JPlag

' plagiarized, Normalization-JPlag

0 0.2 0.4 0.6 0.8 1

similarity score

Figure A.9.: The similarity score distribution of the non-plagiarized and the plagiarized pairs

70
60
50
40
30
20
10

probability density

from task 19. The plagiarized pairs each consist of an original and a version plagia-
rized from it using reordering. As all Normalization-JPlag scores for plagiarized
pairs are 1 no probability density can be calculated.

—non-plagiarized, Original-JPlag
non-plagiarized, Normalization-JPlag

— plagiarized, Original-JPlag

— plagiarized, Normalization-JPlag

e [J

0 0.2 0.4 0.6 0.8 1
similarity score

Figure A.10.: The similarity score distributionf the non-plagiarized and the plagiarized pairs

from task 19. The plagiarized pairs each consist of an original submission and
one plagiarized from it using reordering followed by insertion.

A. Appendix

12

10

runtime in s
N a 0]

N

Original-JPlag Normalization-JPlag

Figure A.11.: The runtime for an upsized version of task 19 as measured over 100 runs on an
Apple M1 Pro with clustering disabled.

58

	Abstract
	Introduction
	Foundations
	Code Plagiarism
	Token-based Plagiarism Detection
	Program Dependence Graph

	Related Work
	Plagiarism Detection
	Clone Detection
	Normalization

	Automatic Plagiarism Generation
	Dead Code Insertion
	Independent Statement Reordering

	Token String Normalization
	Required Semantic Information
	Normalization Graph
	Definition
	Usage

	Example

	Implementation
	Generic Interface for Semantic Information
	Code Semantics
	Variable Registry

	Adding Semantic Information to Java Tokens
	Token String Normalization
	Normalization Graph Construction
	Normalization Graph Usage

	Evaluation
	Methodology
	Goals, Questions & Metrics
	Dataset

	JPlag-Gen
	Using Insertion
	Using Reordering

	Effect on Automatic Plagiarism Generation
	Using Insertion
	Using Reordering
	Using a Combination

	Effect on Existing Capabilities
	False Positives
	Runtime

	Discussion
	Threats to Validity

	Future Work
	Conclusion
	Bibliography
	Appendix

