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W E N N N I C H T M E H R Z A H L E N U N D F I G U R E N

Wenn nicht mehr Zahlen und Figuren
Sind Schlüssel aller Kreaturen

Wenn die, so singen oder küssen,
Mehr als die Tiefgelehrten wissen,

Wenn sich die Welt ins freye Leben
Und in die Welt wird zurück begeben,

Wenn dann sich wieder Licht und Schatten
Zu ächter Klarheit werden gatten,

Und man in Mährchen und Gedichten
Erkennt die ewgen Weltgeschichten,

Dann fliegt vor Einem geheimen Wort
Das ganze verkehrte Wesen fort.

- Novalis, 1800





A B S T R A C T

Geothermal energy is a sustainable and renewable energy source. It can be used
to generate baseload electricity and to provide heating and cooling. The amount
of energy available in the subsurface is related to the temperature of the reservoir,
its permeability, and the presence of a heat transfer fluid. Reservoir temperature
is therefore a critical parameter in the development of geothermal power plants.
Solute geothermometry is a low-cost prospecting tool for estimating reservoir
temperatures without the need for direct access to the source. To estimate the
reservoir temperature of a hydrothermal fluid, its geochemical composition
must be analysed. Due to temperature-dependent dissolution and precipitation
reactions in the reservoir, the mineral assemblage of the reservoir rock and
the aqueous solution are in equilibrium. This state of chemical equilibrium in
the hydrothermal fluid contains information about the reservoir temperature.
However, the chemical equilibrium cannot be preserved during the ascent to the
surface. Therefore, the reconstruction of undisturbed chemical conditions is an
essential part of solute geothermometry.
In this thesis, two approaches for solute geothermometers are developed, tested,
improved, and validated on a global scale. In Chapter 3 - 5, MulT_predict is
developed (Appendix B). It is an optimised solute multicomponent geothermo-
meter based on the coupling of MATLAB with IPhreeqc. Through the integrated
optimisation process, sensitive parameters can be back-calculated to reconstruct
the undisturbed chemical conditions of the reservoir. This optimisation process
is introduced in Chapter 3, further improved in Chapter 4, and tested on a global
scale in Chapter 5. In addition, a universally valid mineral set and its individual
refinement are introduced in Chapter 5 to further improve the applicability and
accuracy of reservoir temperature predictions. Eventually, MulT_predict is a
fully integrated, comprehensive multicomponent geothermometer.

The second solute geothermometer is based on a machine learning approach
investigated in Chapter 6. Based on the results of a deep learning algorithm for
reservoir temperature estimation, a solute artificial neural network geothermo-
meter called AnnRG is developed (Chapter 7, Appendix C). A unique dataset
is created, based on 208 data pairs of geochemical fluid parameters and in-situ
temperature measurements. The processing of such heterogeneous data trains
AnnRG complex thermodynamic water-rock interactions, resulting in accurate
reservoir temperature estimates. Eventually, AnnRG represents a new generation
of solute geothermometers, opening up a new vein of geochemistry.





Z U S A M M E N FA S S U N G

Geothermie ist eine nachhaltige und erneuerbare Energiequelle. Sie kann zur
Erzeugung von grundlastfähigem Strom sowie zum Heizen und Kühlen genutzt
werden. Die im Untergrund zur Verfügung stehende Energiemenge ist abhängig
von der Reservoirtemperatur, der Durchlässigkeit des Gesteins und dem Vor-
handensein eine Fluids. Die Reservoirtemperatur ist daher ein entscheidender
Faktor bei der Entwicklung von Geothermiekraftwerken.
Die Löslichkeitsgeothermometrie ist eine kostengünstige Methode um Reservoir-
temperaturen abzuschätzen zu können. Dabei ist bei dieser Prospektionmethode,
kein direkter Zugang zum Reservoir erforderlich. Um die Reservoirtemperatur
abschätzen zu können, muss die geochemische Zusammensetzung eines geother-
malen Fluides analysiert werden. Aufgrund von temperaturabhängigen Lösungs-
und Ausfällungsreaktionen in der Lagerstätte, befinden sich die Mineralien
des Gesteins und die heiße, wässrige Lösung im chemischen Gleichgewicht.
Somit enthält das chemischen Gleichgewicht des Fluides, Informationen über
die Temperatur des Untergrunds. Während des Aufstiegs des Wassers an die
Oberflächen, verändert sich das chemische Gleichgewicht des geothermalen
Fluides. Daher spielt die Rekonstruktion des ungestörten Fluidchemismus eine
wesentliche Rolle in der Geothermometrie.
In dieser Arbeit werden zwei Löslichkeitsgeothermometer entwickelt, getes-
tet, verbessert und auf globaler Ebene validiert. In den Kapiteln 3 - 5 wird
die Entwicklung von MulT_predict beschrieben (Anhang B). Dabei handelt es
sich um ein optimiertes Multikomponentengeothermometer, welches auf der
Verknüpfung von MATLAB und IPhreeqc basiert. Mithilfe eines integrierten
Optimierungsprozess können sensitive Parameter zurückgerechnet werden, um
die ungestörten chemischen Bedingungen innerhalb des Reservoirs zu rekon-
struieren. Dieser Optimierungsprozess wird in Kapitel 3 vorgestellt, und im
Laufe des 4. Kapitels verbessert sowie in Kapitel 5 weltweit getestet. Darüber
hinaus wird in Kapitel 5 ein allgemeingültiges Mineralset und eine Methodik
zu dessen individueller Anpassung an unbekannte Reservoire vorgestellt. Diese
Entwicklungen verbessern die Anwendbarkeit und Genauigkeit der Reservoir-
temperaturabschätzungen im weiteren Maße. Zusammenfassend handelt es sich
bei MulT_predict um ein optimiertes Multikomponentengeothermometer.

Das zweite Löslichkeitsgeothermometer basiert auf Maschinellem Lernen, wel-
ches zur Reservoirtemperaturabschätzung genutzt wird. Basierend auf den Ergeb-
nissen eines Deep-Learning-Algorithmus, welcher in Kapitel 6 untersucht wurde,
wird eine neues Löslichkeitsgeothemometer namens AnnRG entwickelt (Kapi-
tel 7, Anhang C). Hierzu wird ein einzigartiger Datensatz erstellt, der auf 208



Datenpaaren, bestehend aus geochemischen Fluidparametern und in-situ Tempe-
raturmessungen, basiert. Durch das Trainieren an diesem heterogenen Datensatz,
werden die komplexen thermodynamische Wasser-Gestein-Wechselwirkungen
von AnnRG erlernt, die zur Reservoirtemperaturabschätzung benötigt werden.
Zusammenfassend stellt AnnRG eine neue Generation von Löslichkeitsgeother-
mometern dar, die einen neues Anwendungsfeld in der Geochemie eröffnen.
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MAPE mean absolute percentage error

MEAN arithmetic mean

ML machine learning

MLP multilayer perceptron

MSE mean square error

NaN not a number

R2 coefficient of determination

ReLu rectified linear unit

RTEst Reservoir Temperature Estimator

RMED median

RMSE root-mean-square error

RMSprop root-mean-square propagation

SDEV standard deviation

SGD stochastic gradient descent

SHAP shapley additive explanation



xx acronyms

SI saturation index

TDS total dissolved solids g L-1

URG Upper Rhine Graben

latin variables

a stoichiometric coefficient of reagent

ai activity of a species i

åi effective hydrated ion size of the ith ion m

A reagent of the reaction

A Debye-Hückel parameter, considering temperature, density of the
solvent, and the dielectric constant of the solvent (L mol-1)0.5

A1−6 analytical parameter to calculated log(K)

Aij matix A consisting of saturation indices over a temperature range i of a
corresponding mineral phase j

b stoichiometric coefficient of reagent

B reagent of the reaction

B Debye-Hückel parameter, considering temperature, density of water,
and the dielectric constant of water (L m-2 mol-1)0.5

Ḃ empirical, ion-specific deviation function in the extended Debye-Hückel
equation

Bij matix B consisting of evaluated saturation indices by signum function
over a temperature range i of a corresponding mineral phase j

c stoichiometric coefficient of product

C product of the reaction

C matix C consisting of the zero crossing of the saturation indices of
corresponding mineral phases

C number of components

∆C◦
P,r standard heat capacity of the reaction J K-1

d stoichiometric coefficient of product

D product of the reaction

D array D consisting of the equilibrium temperatures

E n-dimensional cell array E consisting of the equilibrium temperatures
with corresponding mineral phases

E◦ standard cell potential V

Eh redox potential V
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E(r) electric field V m-1

fi fugacity of pure gas or gas mixtures

f ◦i standard state fugacity of pure gas or gas mixtures

F n-dimensional cell array F consisting of the equilibrium temperatures
with corresponding mineral phases reduced by outliers

F number of degrees of freedom

F Faraday constant C mol-1

G Gibbs free energy J

G◦
i molal Gibbs free energy of a species i J

∆Gr Gibbs free energy of the reaction J

∆G◦
r standard Gibbs free energy of the reaction J

H enthalpy J

∆H◦
r standard enthalpy of the reaction J

I stoichometric ionic strength mol L-1

kB Boltzmann constant J K-1

K equilibrium constant

m parameter of regression

mi molality of the ith component

n sample size

NA Avogadro constant mol-1

p pressure Pa

P number of phases

pe potential of free electrons in solution

q point charge C

r radius m

R molar gas constant J K-1 mol-1

s sphere size

S entropy J K-1

∆S◦
r standard entropy of the reaction J K-1

T thermodynamic temperature K

U internal energy J

V volume m3

∆V◦
r standard volume of the reaction m3

xi molar fraction of the ith component



xxii acronyms

X matrix consisting of geochemical input parameters for the ANN
geothermometer

y measured in-situ reservoir temperature °C

ŷ predicted reservoir temperature °C

Y vector consisting of in-situ reservoir temperature data for the ANN
geothermometer

zi charge number of the ith species C

ze− number of transferred electrons

Z matrix consisting of aggregated geochemical input parameters and
in-situ reservoir temperature data for the ANN geothermometer

greek variables

γi activity coefficient of the ith solute species

ϵ electric permittivity of the electrolyte F m-1

ϵ0 vacuum electric permittivity F m-1

λD Debye length m

λi activity coefficient of the ith solide or liquid species

νi stoichiometric coefficient of the ith component







1
I N T R O D U C T I O N

Geothermal energy is a sustainable and renewable source of energy. Depending
on the temperature of the reservoir and the amount of thermal energy available,
geothermal energy can be used to generate electricity and provide heating and
cooling. Unlike most renewable energy sources, it can provide a reliable supply of
energy independent of fuel supply, meteorological effects, and daily and seasonal
cycles. In addition to its availability, geothermal energy is also adaptable to the
demand for electricity or heat. With the development of geothermal energy,
baseload electricity can be provided, reducing the volatility within the mains.
A decentralised application has a low environmental impact and requires little
surface space. However, there is a potential risk of induced seismicity, depending
on the geology and stress state in the subsurface. In addition, high investment
costs for exploration and construction as well as potential failure of the project
limit the development of geothermal power plants.

1.1 solute geothermometry

Flow rate and reservoir temperature are crucial parameters for the development
of geothermal power plants. Solute geothermometry is a low-cost tool for es-
timating the temperature of a geothermal aquifer. By analysing the chemical
composition of hydrothermal fluid, the temperature-dependent equilibrium reac-
tion between the mineral assemblage of the reservoir and the aqueous solution
gives the reservoir temperature. This relationship was first described by Morey
et al. (1962) for quartz solubility over a temperature range of 25 °C to 300 °C. Ellis
and Mahon (1964) carried out several hot water/rock interaction experiments
and identified the measured silica concentration within the solubility range
of amorphous silica and quartz. Finally, Fournier and Rowe (1966) first estim-
ated subsurface temperatures from the silica content of water from hot springs
and wet steam wells. Similarly, White (1965) discovered that the K/Na ratio
of water served as a crude geothermometer for water temperature. Since then,
new conventional solute geothermometers have been continuously developed.
In 1983, Michard and Roekens (1983) modelled the chemical composition of
the alkaline hot water at Thuès-les-Bains by plotting the saturation indices of
several mineral phases against temperature. Reed and Spycher (1984) took up
this idea and developed the first multicomponent geothermometer, calculating
saturation indices of the reservoir mineral assemblage over a temperature range.
Over the years, this method has been further developed and optimised (Palmer,
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2014; Sonnenthal et al., 2013; Spycher and Finsterle, 2016). The latest develop-
ment in solute geothermometry is introduced by Haklidir and Haklidir (2020).
The authors used a machine learning approach to train an artificial neural net-
work with element concentrations and system parameters to estimate reservoir
temperatures.

1.2 motivation

This thesis pursues an advancement in solute geothermometry as a low-cost
geothermal exploration tool. Conventional geothermometers are based on simple
cation ratios (White, 1965) or element concentrations (Fournier and Rowe, 1966),
which are used to estimate reservoir temperatures. Since the individual con-
ventional geothermometers are established for specific geological and chemical
conditions, the transfer to unknown sites leads to uncertainties and the need for
adjustments (Fournier and Potter, 1979). Combining the predictions of several
conventional geothermometers provides even higher uncertainties (Nitschke
et al., 2018). Multicomponent geothermometry is therefore a statistically more ro-
bust application (Peiffer et al., 2014). These reservoir temperature estimations are
based on multiple mineral phases representing the reservoir mineral assemblage
(Reed and Spycher, 1984). However, the composition of the reservoir rock might
be unknown, increasing the geochemical knowledge required a priori for the
application of multicomponent geothermometers (Palmer, 2014).
Overall, the perturbation of the temperature-dependent equilibrium reaction
between the reservoir mineral assemblage and the aqueous solution leads to
high uncertainties in reservoir temperature estimation (Fournier et al., 1974). In
particular, secondary processes such as phase precipitation, degassing, boiling,
dilution or mixing with shallow and less mineralised waters, as well as reequi-
libration with surrounding rocks, perturb the chemical equilibrium as the fluid
rises to the surface. To overcome this problem, extensive chemical analysis of
element concentrations in the aqueous solution, as well as gas concentration and
composition, and enthalpy measurement must be performed to reconstruct the
geothermal fluid at reservoir conditions (Arnórsson et al., 1982). Such sophistic-
ated sampling methods are costly and time-consuming, but can also introduce
further uncertainties.
The focus of this thesis is to address these issues and to extend, facilitate and
improve the applicability of solute geothermometry. To extend the applicability
of an ideal solute geothermometer, the amount of input data needs to be reduced
to a basic geochemical analysis consisting of only major cations, anions and
system parameters. Any additional trace element and gas analyses should be
avoided. In addition, the ideal geothermometer should be applicable to a wide
range of geothermal settings. It should be easy to use to reduce the barriers
of geochemical and geological preknowledge. In the case of multicomponent
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geothermometry, a variety of aqueous species and mineral phases should be
available to calculate estimations for a wide range of temperatures. Partially
missing or perturbed data should also be suitable for temperature estimation. In
addition, the uncertainties of the predictions should be reduced.

1.3 structure of the thesis

This thesis is structured in two main parts. First, the development of a solute
multicomponent geothermometer MulT_predict (Chapters 3 - 5). This involves
the development, automation, and optimisation of the multicomponent geother-
mometer (Chapter 3). In Chapter 4, the working principle of the optimisation
processes is changed to one multidimensional numerical optimisation. Finally,
the applicability of MulT_predict is tested on a global scale, while the integrated
optimisation process is benchmarked internally (Chapter 5).
Second, the development of a solute artificial neural network geothermometer
AnnRG (Chapters 6 & 7). In Chapter 6, the machine learning approach of deep
learning is used to estimate reservoir temperatures, and the results are compared
with the numerically optimised output of MulT_predict. Eventually, the solute
artificial neural network geothermometer AnnRG is developed (Chapter 7).

1.3.1 Development of a multicomponent geothermometer with integrated optimisation
processes (Chapter 3)

The first study shows the development of a multicomponent geothermometer
based on the coupling of MATLAB (MATLAB, 2019) to IPhreeqc (Charlton and
Parkhurst, 2011; Parkhurst, Appelo et al., 2013). An automated MATLAB script
is implemented to statistically evaluate saturation curves of mineral phases
calculated by IPhreeqc. Multiple sensitivity analyses on system parameters and
element concentrations are performed to identify the most sensitive parameters.
As a result, three individual optimisation processes for pH, aluminium concentra-
tion, and steam loss/dilution are implemented in the MATLAB code. To calculate
temperature predictions above 300 °C, several thermodynamic databases are
evaluated and the Lawrence Livermore National Laboratory database (llnl.dat)
is extrapolated to temperatures up to 350 °C. The new multicomponent geother-
mometer, called MulT_predict, is tested on data from Krafla and Reykjanes to
develop a site-specific basaltic mineral assemblage. The results of MulT_predict
and conventional geothermometers based on the original and back-calculated
fluid composition (via WATCH (Bjarnason, 2010)) are compared with each other
and with the measured in-situ reservoir temperatures of the wells.
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1.3.2 Development of an automated interdependent optimisation process (Chapter 4)

Ensuing from the first study (Chapter 3), the numerical optimisation process for
the multicomponent geothermometer MulT_predict is improved. An automated
interdependent optimisation process is implemented that combines the three
individual optimisation processes for pH, aluminium concentration, and steam
loss/dilution. The temperature dependence of pH is removed by adding organic
acid (HNO3) or base (NH3) to fix the pH without disturbing the inorganic
aqueous chemistry. In addition, a fourth optimisation process is added for an
additional element concentration or system parameter. The MATLAB code is
adapted to the new multidimensional IPhreeqc output for statistical evaluation
of the data. In addition, the results are visualised by a four-panel output file
showing the statistical evaluation of the reservoir temperature estimation. The
interdependent optimisation process further improves the reservoir temperature
predictions of MulT_predict.

1.3.3 Application and internal benchmarking of MulT_predict (Chapter 5)

This study develops a universally valid mineral assemblage for MulT_predict.
This mineral assemblage applies to unknown reservoir compositions on a global
scale. In addition, a three-step procedure for unknown temperature estimation
is established. Outlier removal from the general mineral assemblage is intro-
duced to refine reservoir temperature estimations. The new method is tested
on data from eight different geothermal sites worldwide and validated using
data of in-situ measured temperatures. Furthermore, an internal benchmark
of the optimisation process is performed using a synthetic brine. A stepwise
perturbation of the synthetic brine chemistry (pH, aluminium concentration,
steam loss/dilution, and salinity) is calculated back to the initial reservoir condi-
tions by applying the optimisation process. The performance of three individual
optimisation processes (Chapter 3) and the interdependent optimisation process
(Chapter 4) are calculated and compared.

1.3.4 Numerical optimisation and machine learning in solute geothermometry
(Chapter 6)

The concept of numerical optimisation of multicomponent geothermometry
(Chapter 5) is compared to a newly developed deep learning algorithm for
reservoir temperature estimation. A Python-based (Van Rossum, Drake et al.,
1995) deep learning algorithm is presented, which is trained on geochemical data
and data of measured in-situ reservoir temperatures from Iceland. The results
of the numerically optimised multicomponent geothermometer and the deep
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learning algorithm are visualised and compared to each other and the measured
in-situ reservoir temperatures of the wells.

1.3.5 Development of an adequate solute artificial neural network geothermometer
(Chapter 7)

Based on the results of Chapter 6, the deep learning algorithm is redesigned
to develop an adequate solute artificial neural network geothermometer, called
AnnRG. A supervised feedforward multilayer perceptron is introduced. The
development and testing of the network architecture and the hyperparameter
optimisation of the artificial neural network are described step by step. To build
AnnRG, a total of 208 data pairs of geochemical fluid parameters and in-situ
temperature measurements from around the world are collected and compiled.
Outliers are removed from the database to improve the quality of the input data
for the artificial neural network. In addition, a sensitivity analysis of the required
amount of data is performed to determine the minimum number of training data
(>65 samples). 155 samples are used to build and train the solute artificial neural
network geothermometer. To verify AnnRG, the geothermometer is transferred
to 45 unknown samples to predict the reservoir temperature. AnnRG extends
and refines machine learning applications in solute geothermometry and general
geochemistry.





2
A Q U E O U S G E O C H E M I S T RY

2.1 thermodynamics

In solute geothermometry, the temperature of a geothermal reservoir is estimated
by analysing the aqueous composition of its fluid. The fundamental assumptions
of this method are described by Fournier et al. (1974):

1. "Temperature-dependent reactions occur at depth.

2. All constituents involved in a temperature-dependent reaction are suffi-
ciently abundant (that is, supply is not a limiting factor).

3. Water-rock equilibration occurs at the reservoir temperature.

4. Little or no re-equilibration or change in composition occurs at lower
temperatures as the water flows from the reservoir to the surface.

5. The hot water coming from deep in the system does not mix with cooler
shallow ground water."

Thus, the geothermal fluid is governed by a thermal-chemical equilibrium reac-
tion of the fluid with the mineral assemblage of the reservoir. In addition, the
attained equilibrium state is mostly preserved while ascending to the surface.
These mechanisms are based on the activity of the species (2.1.1), the concentra-
tions of the dissolved elements at equilibrium (2.1.2), and the ionic strength of
the solution (2.2.2). For constant reaction enthalpy and isobaric reaction heat ca-
pacity (fixed temperature and pressure at the reservoir), the Van ’t Hoff-Equation
(2.1.3) describes the temperature-dependency of the thermodynamic equilibrium
constant. These thermodynamic parameters (2.3) can be used to calculate equi-
librium state models for temperature estimation. For the geochemical modelling
of equilibrium reactions the equilibrium state of system parameters (2.2.1) and
the activity coefficients of aqueous species (2.2.2) have to be taken into account.

2.1.1 Standard state

The Gibbs free energy G is described by the enthalpy H, the thermodynamic
temperature T, and the entropy S as the state of the system (Gibbs, 1873) (2.1).

G = H − T · S = U + p · V − T · S (2.1)

Since chemical reactions are generally governed by temperature and pressure,
the Gibbs free energy can be also described by internal energy U, pressure p,



8 aqueous geochemistry

and volume V.
The variation of the state functions (G, H, and S) can be used to model changes
in chemical reactions. Hence, the standard state of a thermodynamic potential is
introduced, which is defined as a reference state at a given temperature, pressure,
and concentration (298.15 K, 0.1 MPa, and 1 M). The standard state of the Gibbs
free energy G◦

i of one mole of a substance i is depending on its activity ai as well
as on the universal gas constant R, and the absolute temperature T (2.2).

Gi = G◦
i + RT ln(ai) (2.2)

2.1.2 Equilibrium constants

The thermodynamics of a generalised geochemical reaction can be described by
Equation 2.3.

a A + b B = c C + d D (2.3)

In this formula A, B represent the reagents and C, D the products of the chemical
reaction, where a, b, c, and d are their stoichiometric coefficients. The stoichiomet-
ric coefficients of reactants are negative, albeit the products are positive.
The equilibrium constant K is described by the activities of the reactants and the
products, which is denoted by the parentheses (2.4).

K =
(C)c(D)d

(A)a(B)b (2.4)

At the most stable state, the equilibrium constant K is defined as equal to 1.
Regarding the activity of species, K is related to the Gibbs free energy in Equation
2.2. The energy differnce between the initial state and final state at any point
in a given reaction is coupled to the equilibrium reaction. For the Gibbs free
energy of the reaction ∆Gr, the equilibrium constant K can be inserted into the
formula, linking it to the standard state Gibbs free energy of the reaction ∆G◦

r ,
the absolute temperature T, and the ideal gas constant R (2.5).

∆Gr = ∆G◦
r + RT ln(K) (2.5)

The Gibbs free energy of the reaction ∆Gr equals the sum of Gibbs free energy of
the reactants and products multiplied by their stoichiometric coefficients (2.6).

∆Gr = ∆Gproducts − ∆Greactants = c × GC + d × GD − a × GA − b × GB (2.6)

In addition, the equation for the standard state molal Gibbs energy ∆G◦
r is

calculated similarly to Equation 2.6.
At equilibrium (K=1), the Gibbs free energy of the reaction ∆Gr is defined as
equal to 0 (2.7).

∆Gr = 0 = ∆G◦
r + RT ln(K)eq (2.7)
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Therefore, the Equation 2.7 can be reorganised to calculate the standard molal
Gibbs energy ∆G◦

r at equilibrium state (2.8).

∆G◦
r = −RT ln(K)eq = −RT ln

(
(C)c(D)d

(A)a(B)b

)
eq

(2.8)

The rearrangement of Equation 2.8 can be used to calculate the equilibrium
constant at arbitrary temperatures (2.9).

ln(K)eq = −∆G◦
r

RT
thus, log(K)eq = − ∆G◦

r
2.3RT

(2.9)

2.1.3 Effects of temperature and pressure

Temperature changes ∆T and pressure changes ∆P affect the reaction between
reactants and products. Similar to the activity coefficients, the variation in the
standard state Gibbs free energy ∆G◦

r depends on the species (solid, gaseous, and
aqueous species). In addition, reference temperature Tre f and reference pressure
Pre f are introduced as starting point of the reaction for the standard Gibbs free
energy ∆G◦

rre f ,Tre f ,Pre f
. For gas and solid species, the variation of the standard state

Gibbs energy of the reaction is given by Equation 2.10.

∆G◦
r,T,P =∆G◦

rre f ,Tre f ,Pre f
+
∫ T

Tre f

∂∆G◦
r

∂T
dT +

∫ P

Pre f

∂∆G◦
r

∂P
dP

=∆G◦
rre f ,Tre f ,Pre f

−
∫ T

Tre f

∆S◦
r dT +

∫ P

Pre f

∆V◦
r dP

(2.10)

The standard entropy of the chemical reaction ∆S◦
r is temperature-driven, while

the standard volume ∆V◦
r is pressure-dependent. The calculation of both para-

meters ∆S◦
r , ∆V◦

r is similar to the calculation of ∆Gr described in Equation 2.6.
For the aqueous species, the standard molal Gibbs free energy of a solute is
given by Equation 2.11.

G◦
P,T = G◦

Pre f ,Tre f
−S◦

Pre f ,Tre f

(
T − Tre f

)
+
∫ T

Tre f

C◦
PdT−

∫ T

Tre f

C◦
P

T
dT+

∫ P

Pre f

V◦dP (2.11)

For solids and gases, the standard entropy of the reaction ∆S◦
r at constant

pressure P is related to the standard heat capacity of the reaction ∆C◦
P,r for the

temperature range Tre f to T (2.12).

∆S◦
r,T − ∆S◦

r,Tre f
=
∫ T

Tre f

∆C◦
P,r

T
dT (2.12)

The standard heat capacity of the reaction ∆C◦
P,r is also calculated like Equation

2.6 summing up the standard molal heat capacities of reactants and products
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multiplied by their stoichiometric coefficients. Similar, the standard molal heat
capacity of a solute is calculated for an aqueous species (2.13).

S◦
P,T = S◦

Pre f ,Tre f
+
∫ T

Tre f

C◦
P

T
dT −

∫ P

Pre f

[(
∂V◦

∂T

)
P

]
T

dP (2.13)

The enthalpy changes ∆H◦
r for a specific reaction at constant pressure are

described by the standard molal heat capacity ∆C◦
P,r (2.14).

∆H◦
r,T − ∆H◦

r,Tre f
=
∫ T

Tre f

∆C◦
P,rdT (2.14)

In addition, the standard molal enthalpy for aqueous species is described by
Equation 2.15.

H◦
P,T = H◦

Pre f ,Tre f
+
∫ T

Tre f

C◦
PdT −

∫ P

Pre f

[
V◦ − T

(
∂V◦

∂T

)
P

]
T

dP (2.15)

Van ’t Hoff (1886) described the temperature dependence of a reaction coupled
to enthalpy changes ∆H◦

r . Thus, the reaction temperature is affecting the equilib-
rium constant K. This relation is expressed by Equation 2.16.

ln

(
KT

KTre f

)
=
∫ T

Tre f

∆H◦
r

RT2 dT = −∆H◦
r

RT
+

∆H◦
r

RTre f
(2.16)

Rearranging Equation 2.16 comparable to 2.9, the variation of enthalpy can be
used to calculate the changes in the equilibrium constant given by the temperat-
ure difference (2.17).

log(KT) = log(KTre f )−
∆H◦

r
2.3R

(
1
T
− 1

Tre f

)
(2.17)

2.2 equilibrium states

Multiple equilibrium states govern the geochemistry in a reservoir. Especially,
properties of the system such as mineral assemblage of the reservoir rock and
dissolved species, pH value (as the activity of hydrogen), reduction–oxidation
potential, and amount of total dissolved solids (TDS), also known as salinity,
characterise the chemical conditions of the reservoir. These properties as well
as the activity coefficients given by thermodynamic parameters influence the
equilibrium reactions in the reservoir fluid.
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2.2.1 System parameters

The phase rule governs the degrees of freedom F, which are given by the number
of components C and the number of phases P in the system. (2.18).

F = C − P + 2 (2.18)

Both, the mineral assemblage of the reservoir rock and the dissolved mineral
phases in the fluid are governed by the phase rule (2.18). Thus, the site-specific
reservoir rock has a major impact on the chemical properties of the geothermal
fluid. Consequently, temperature changes, water-rock interaction, and varying
rock composition affect the number of components in the system.

The pH value is given by the negative decadic logarithm of the activity ai of
the hydrogen ion (2.19).

pH = −log(aH+) (2.19)

The amount of hydrogen ions within the aqueous solution is driven by the
temperature-dependent dissociation of water (2.20).

H2O −−⇀↽−− OH−
(aq) + H+

(aq) (2.20)

At neutral conditions, the pH value equals 7. For alkaline solutions, the pH
increases above 7, whereas acidic fluids decreases below 7. The equilibrium
state of acid–base reaction is given by the pH value, which is mainly controlling
precipitation-dissolution reactions within the reservoir and while the ascendence
of the fluid to the surface. Both, the geochemical equilibrium reaction of pH-
dependant mineral phases and the solubility of CO2(aq) and H2S(aq) are affected
by the pH value in the reservoir. Therefore, the pH value can govern the presence
of species in the fluid, likewise the concentration of sulphide (e.g. pyrite, galenite)
and carbonate species (e.g. calcite, dolomite). In addition, the pH value is buffered
by geochemical reactions in the solution. For example, the carbonate buffer
system is able to regulate the pH value in the following manner (2.21).

CO2(aq) −−⇀↽−− HCO3
− + H+ −−⇀↽−− CO3

2− + 2 H+ (2.21)

Dissolved CO2 reacts with water to carbonic acid (H2CO3), which is not stable
in solution. The carbonic acid dissociates into bicarbonate ion (HCO3

– ) and
hydrogen ion (H+). Further deprotonation dissociates bicarbonate into carbonate
ion (CO3

2 – ) and an additional hydrogen ion. These reversible acid-base reactions
(2.21) govern the buffer capacity of the aqueous system by regulating the number
of hydrogen ions and therefore, their activity (2.19).
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The pe value is given by the negative decadic logarithm of the activity of the
free electron concentration e– in the solution (2.22). It regulates the reduction
and oxidation potential of the system.

pe = −log(ae−) (2.22)

An increase in pe leads generally to a decrease in the pH. Similar to the pH
buffer system (2.21), the reduction and oxidation reactions are reversible. In an
aqueous solution, the redox potential Eh is given by the Nernst-Equation (2.23).

Eh =
RT
F

log pe (2.23)

The equation consists of the potential of free electrons in the solution pe as well
as the thermal voltage

(RT
F

)
comprising the molar gas constant R, the absolute

temperature T, and the Faraday constant F. The potential difference in the fluid
is measured in volts. Positive voltage indicates oxidising conditions, whereas
negative voltage indicates reducing conditions. In aqueous chemistry, the limits
of a natural system are normally given by the activity of transferable oxygen (O2)
and hydrogen ions (H+). Nevertheless in the subsurface, oxygen can be depleted
fast resulting in reducing conditions in the system. The upper limit is governed
by the oxidant, in this example oxygen (2.24).

Eh = E◦ +
RT

ze− F
log
(
[O2][H+]4

[H2O]2

)
(2.24)

In this case, E◦ is the standard half-cell potential of dissolved oxygen and the
dissociation of water (cf. 2.20), where ze− indicates the number of transferred
electrons. Similarly, the lower limit is given by the standard hydrogen electrode
(2.25).

Eh = E◦ +
RT

ze− F
log
(
[H+]2

[H2]

)
(2.25)

Here, Eh indicates the potential difference between the aqueous system and the
standard hydrogen electrode. Due to the hydrogen ion dependency, the redox
potential is also a function of the pH value (2.19).

The salinity is also an influencing factor in the geochemistry of aqueous
systems. It is specified as the amount of total dissolved solids (TDS) in a solution.
The TDS is mostly governed by the alteration and dissolution of mienrals but
also by runoff and soil solution. Thus, the origin of the water (e.g. meteoric water,
seawater) determines the chemical properties of geothermal fluid. Increasing
concentrations of salt, such as sodium chloride, function as electrolytes showing
nonideal properties with increasing ionic strength. This nonideality is connected
to the thermodynamic activity coefficients of aqueous species. Generally, these
coefficients are calculated with models referring to infinitely diluted solutions.
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2.2.2 Activity coefficient

For real substances, the difference between the standard state and the non-ideal
state is given by their activity coefficients. The activity ai depends on the species
i. For solid and liquid phases, it is defined by the activity coefficient λi and the
molar fraction of the component xi (2.26).

ai = λi · xi (2.26)

For aqueous solutions, the activity is given by its activity coefficient γi and the
molality of the components mi (2.27).

ai = γi · mi (2.27)

In addition, for gaseous phases, the activity is related to the fugacities fi of the
gas mixture or single phase related to the standard state fugacity f ◦i (2.28).

ai =
fi

f ◦i
(2.28)

The activity coefficients are coupling the concentration to the thermodynamic
activity function ai. Thus, the activity in Equation 2.2 is linked to the afore-
mentioned activity coefficients. Since geochemical reactions are based on their
thermodynamic potential, only ratios and products of individual activity coeffi-
cients of species can be determined. For solute geothermometry, the equilibrium
state of the aqueous phases is essential for temperature estimation. At equi-
librium, the aqueous phases in the geothermal fluid and the solid phases of
the mineral assemblage in the reservoir have the same chemical potential. The
activity coefficient of an aqueous species γi is coupled to the amount of the
components mi and thus, the molal concentration of the ions in the solvent and
their charge number zi (2.29).

I =
1
2 ∑ miz2

i (2.29)

The ionic strength I describes the electrostatics of the dissolved ions in the
electrolyte, where the electric field E(r) of the ion is given by Coulomb’s law
(2.30).

E(r) =
q

4πϵ0

1
r2 (2.30)

Simplifying the ions as point charges q, the electric field is governed by the
vacuum permittivity ϵ0, and the distance from the source r. The electrostatic
interaction between the ions shifts the solution from the ideal state. The influence
of an ion on the electric field in an electrolyte is given by the Debye length λD

(Debye and Hückel, 1923), where ϵ is the electrolyte permittivity and kB is the
Boltzmann constant (2.31).

λD =

√
ϵϵ0kBT

2z2
i I

(2.31)
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Rearranging and substituting Equation 2.2 with Equation 2.31 and 2.30, we get
the Debye–Hückel limiting law (Debye and Hückel, 1923) (2.32).

ln(γi) = −
z2

i q2λ−1
D

8πϵϵ0kBT
(2.32)

The activity coefficient of an ion in a diluted electrolyte can be calculated via the
charge number zi of the ith ion species and the ionic strength I of the aqueous
solution. To simplify Equation 2.32 all constants are unified in the Debye–Hückel
constant A (2.33).

log(γi) = −Az2
i

√
I (2.33)

Equation 2.33 is the foundation of the empirical calculation of activity coefficients
for very dilute solutions with I < 0.005 mol L-1 (Sparks, 2018). For solutions with
higher I up to 0.1 mol L-1 (Robinson et al., 1960), the extended Debye-Hückel-
Equation (Hückel, 1925) can be used (2.34).

log(γi) = −
Az2

i

√
I

1 + åiB
√

I
(2.34)

The numerator quantifies the long-range Coulomb forces, whereas the denom-
inator defines the short-range interactions between the ions and the solvent
governed by the hydrated ion size åi. In addition, the Debye–Hückel constant
B is introduced (2.35), where the density-dependency is given by the Avogadro
constant NA.

B =

√
2q2NA

ϵϵ0kBT
(2.35)

To further expand the former validity limit in terms of the ionic strength (up to
I = 1.0 mol L-1), Helgeson (1969) modified the extended Debye-Hückel-Equation
(2.34) by a linear term introducing the Ḃ-Equation (2.36).

log(γi) = −
Az2

i

√
I

1 + åiB
√

I
+ ḂI (2.36)

The linear term ḂI includes the short-range ion-ion interaction related to the
charge number zi. For single ion-activity coefficients in Na-Cl solutions, the
model fits data to at least I = 3.0 mol L-1 (Truesdell and Jones, 1974). In addition,
Helgeson and Kirkham (1974) evaluated the effect of temperature and pressure
on the constants A, B, and Ḃ.

2.3 thermodynamic databases

To determine aqueous geochemistry, dissolution reactions of mineral phases have
to be calculated. Thus, thermodynamic databases were established, which are
based on laboratory experiments, measurements, and extrapolations. In regard
to hydrochemical equilibrium calculations, multiple thermodynamic parameters
have to be available in such a database.
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2.3.1 Structure of a thermodynamic database

In general, thermodynamic databases are constructed in an certain pattern.
The elements, their chemical formulas, and their standard atomic weights are
established. The ions of these elements are defined by their charge numbers
at all possible oxidation states. Then, the thermodynamic data of these species
are added. Redox couples of the ions are ascribed and predefined data, such as
atomic weights and charge numbers, are shared and updated. Lastly, phases (e.g.
minerals, gases) are assigned. Similarly, the chemical formula, the reaction species
(ions), and charge numbers as well as thermodynamic data is implemented.
Depending on the TDS of the solution, thermodynamic databases are coupled
to different activity coefficients (2.2.2) to calculate the equilibrium of a reaction
and its species. For example in the geochemical modelling program IPhreeqc
(Charlton and Parkhurst, 2011; Parkhurst, Appelo et al., 2013), usually three
major aqueous activity coefficients models are used.

1. The Davies-Equation (Davies, 1962), based on the Debye–Hückel-Equation
(2.33), adding an empirical parameter 1

1+
√

I
− 0.3I to the equation.

2. The Ḃ-Equation (2.36) for salinity up to 1 mol L-1 (Helgeson, 1969).

3. The Pitzer-Equation (Pitzer, 1973) for salinity up to 6 mol L-1 (Pitzer and
Mayorga, 1973).

Thus, the Debye-Hückel parameter respectively the Pitzer parameter are also
included in the thermodynamic databases.
In case of thermodynamic data, multiple thermodynamic parameters can be
used to calculate chemical reactions. In general, the log(K) is used to compute
equilibrium reactions. Depending on the database, it is most commonly calcu-
lated using the standard molal Gibbs free energy of the reaction ∆G◦

r (2.9) or
the standard enthalpy of the reaction ∆H◦

r given by the Van ’t Hoff-Equation
(2.17). Similarly, at constant pressure, the standard entropy of the reaction ∆S◦

r ,
the standard heat capacity of the reaction ∆C◦

P,r, and the standard volume of the
reaction ∆V◦

r can be used (2.11, 2.13). Moreover, so called ’analytic’ polynomial
expressions are used to determine the log(K) of the reaction (Parkhurst, Appelo
et al., 2013) (2.37).

log(K) = A1 + A2T +
A3

T
+ A4log(T) +

A5

T2 + A6T2 (2.37)

The analytical expression consists of up to six parameters A1−6, which are used
to calculate the log(K) for specific temperatures T. Equation 2.37 is derived
from a formula representing high-temperature thermal heat capacity data on
compounds for constant pressure proposed by Maier and Kelley (1932) (2.38).

∆C◦
P,r = a + bT + cT−2 (2.38)
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The Maier-Kelley-Equation can be applied to Equation 2.14 with a temperature
range from Tre f to T if the pressure dependency is neglectable.

∆H◦
r,T = ∆H◦

r,Tre f
+ ∆aT +

∆b
2

T2 + ∆cT−1 (2.39)

This formula is particularly useful to determine small temperature differences
within the reaction, where ∂∆H◦

r corresponds to ∆C◦
P,r.

2.3.2 Comparison of thermodynamic databases

Since the herein introduced multicomponent geothermometer, called MulT_-
predict, is coupled to IPhreeqc (Charlton and Parkhurst, 2011; Parkhurst, Appelo
et al., 2013) only associated databases can be utilised. The application area
of thermodynamic databases for solute geothermometry is given by a large
temperature range of up to 300 °C, processing high ionic strength, and consisting
of a variety of species and mineral phases. Five PhreeqC databases are coming
within the ambit of usage: the llnl.dat (Daveler and Wolery, 1992) (converted by
Greg Anderson and assisted by David Parkhurst (2017)), the Thermoddem.dat
(Blanc et al., 2012), the core10.dat (Neveu et al., 2017), the carbfix.dat (Voigt et al.,
2018), and the SupPHREEQC database (Zhang et al., 2020). The aqueous activity
coefficient model of all databases is based on the Ḃ-Equation (2.36) (Helgeson,
1969).
To assess the usability of the databases, the solubility of the main mineral phases
corresponding to the main cations is calculated and compared. The monovalent
cation, Na+ is a major cation encountered in crustal rocks and geothermal
water mostly controlled by the equilibrium state of albite (Ellis and Mahon,
1964) (Figure 2.1). In addition, K+ is a major cation corresponding to microcline
respectively to K-feldspar equilibrium state within the aqueous solution (Ellis and
Mahon, 1964) (Figure 2.2). In hydrothermal systems, the Ca2+ concentration is
mostly given by the temperature and salinity-dependent solubility of calcite and
calcium-aluminium-silicates (Ellis, 1963; Giggenbach, 1981) (Figure 2.3). Similarly,
the divalent Mg2+ is controlled by the solubility of K-Mg layer silicates, which
is chlorite-dependent (Giggenbach, 1988). In addition, dolomite equilibrium
is reached, when the origin of the geothermal fluid is seawater (Reed, 1982)
(Figure 2.4). In geothermal fluids, the silica concentration is mostly driven by
reservoir conditions regarding chalcedony or quartz equilibrium (Fournier and
Rowe, 1966) (Figure 2.5). Following, the mineral phases low albite (NaAlSi3O8),
microcline (KAlSi3O8), calcite (CaCO3), dolomite (CaMg(CO3 )2), and quartz
(SiO2) are compared. Therefore, the molality of the solute major element at
equilibrium is plotted against the temperature (Figure 2.1 - 2.5).
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Figure 2.1: The molality of Na+ of low albite against the temperature.

Figure 2.2: The molality of K+ of microcline against the temperature.
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Figure 2.3: The molality of Ca2+ of calcite against the temperature.

Figure 2.4: The molality of Mg2+ of dolomite against the temperature.



2.3 thermodynamic databases 19

Figure 2.5: The molality of SiO2 of quartz against the temperature.

Comparing the databases, the llnl.dat, core10.dat, and carbfix.dat show similar
element solubilities for a temperature range from 25 °C up to 225 °C. Only the
dolomite solubility shifts in its form. Since the activity model of the llnl.dat was
adapted by the core10.dat, the log(K)s were also transferred (Neveu et al., 2017).
In addition, the carbfix.dat is based on the core10.dat, thus, the thermodynamic
properties are mostly similar to the llnl.dat, only for carbonates, the carbfix.dat
is modified to better fit these aqueous species (Voigt et al., 2018). In contrast, the
SupPHRREQC.phr and the Thermoddem.dat have more variety in their curves’
shapes. Especially for calcite, dolomite, and quartz, the solubility courses of the
curves differ from the other databases. The SupPHREEQC.phr has implemented
the thermodynamic data of Sverjensky et al. (1997), while the Thermoddem.dat
is based on the thermodynamic properties implemented from Blanc (2008). How-
ever, the solubility of microcline and albite within the SupPHREEQC database
follows the results of the llnl.dat due to the application of an equal framework
(Zhang et al., 2020).
To test the databases for temperature prediction, the solubility curves of multiple
mineral phases are plotted for a known geothermal sample and its reservoir
temperature. Since the dominant mineral phases are Al-bearing silicate spe-
cies, the influence of carbonates is mitigated. The Thermoddem.dat (2.6) and
SupPHREEQC.phr show more deviation from the geochemical equilibrium tem-
perature than the llnl.dat (2.7). Since llnl.dat, core10.dat, and carbfix.dat evolved
from the ’thermo.com.V8.R6.230.dat’ by Jim Johnson (2000), only the variety of
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species and mineral phases determines, which database one would use. The
llnl.dat comprises the most phases and hence, is used for the multicomponent
geothermometer within this thesis.

Figure 2.6: Thermoddem.dat: Solubility curves of multiple mineral phases (coloured
lines) plotted against temperature.

Figure 2.7: llnl.dat: Solubility curves of multiple mineral phases (coloured lines) plotted
against temperature.
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abstract

For successful geothermal reservoir exploration, accurate temperature estimation
is essential. Since reservoir temperature estimation frequently involves high
uncertainties when using conventional solute geothermometers, a new statistical
approach is proposed. The focus of this study is on the development of a new
multicomponent geothermometer tool, which requires a significantly reduced
data set compared to existing approaches. The method is validated against
reservoir temperature measurements in the Krafla and the Reykjanes geothermal
systems. A site-specific basaltic mineral set was selected as the basis to compute
the equilibrium temperatures. These high-enthalpy geothermal reservoirs are
located in the neo-volcanic zone of Iceland, where the fluid temperatures are
known to reach up to 350 °C at a depth of 2000 m. During ascent, the fluid
composition is prone to changes as well as possible phase segregation due to
depressurization and boiling. Therefore, to reduce the uncertainty of temperature
estimations, reservoir temperature conditions are numerically reconstructed
with sensitivity analyses considering pH, aluminium concentration, and steam
loss. The evaluation of the geochemical data and the sensitivity analyses were
calculated via a numerical in-house tool called MulT_predict. In all cases, the
temperature estimations match with the in-situ temperatures measured at Krafla
and Reykjanes. The development of this method tends to be a promising and
precise tool for reservoir temperature estimation. The developed methodology
is a fast and easy-to-handle exploration tool that can be applied to standard
geochemical data without the need for a sophisticated gas analysis yet obtaining
very accurate results.

3.1 introduction

A reliable temperature estimation for a targeted geothermal reservoir, which lays
the foundation for the prediction of producible energy, is essential for a success-
ful exploration campaign. Conventional solute geothermometers are a commonly
used tool for the deduction of reservoir temperature from geochemical compos-
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ition of geothermal spring samples. These geothermometers were introduced
in the 1960s and have been undergoing further development since then (Can,
2002; Ellis, 1970; Fouillac and Michard, 1981; Fournier, 1979; Fournier and Rowe,
1966; Fournier and Truesdell, 1973; Giggenbach, 1988; Sanjuan et al., 2014; Verma
and Santoyo, 1997). These approaches use the temperature dependence of the
saturation of mineral phases (e.g. silica) or certain cation ratios in the fluids. The
measured concentrations of these fluid constituents are then directly linked to
a reservoir temperature. The fundamental assumption of geothermometry is
the overall chemical equilibrium of the fluid and the reservoir rock. Secondary
processes may change the fluid composition and hence, the equilibrium while
migrating to the earth surface. These variations can result in large uncertain-
ties for the reservoir temperature determination using solute geothermometers
(Nitschke et al., 2018). The more recently developed multicomponent geothermo-
metry evaluates the equilibria of multiple mineral phases (Spycher et al., 2014).
Numerical geochemical speciation codes facilitate this evaluation based on a
large number of minerals, which leads to a statistically more robust method.
Spycher et al. (2014) proposed a pre-selection of minerals representing the site-
specific reservoir rocks to enhance accuracy. Corrections were established to
overcome interferences from secondary processes such as dilution, boiling, and
mixing of fluids affecting the temperature estimation (Cooper et al., 2013; Peiffer
et al., 2014; Spycher et al., 2014). These methods need an additional gas analysis
for precise temperature estimations. Thus, Nitschke et al. (2017) introduced a
method to reconstruct in-situ conditions of the reservoir temperature by varying
sensitive parameters, especially pH and aluminium concentration as well as
steam loss, to further reduce the uncertainty of equilibrium temperatures.
The goals of this study are to refine and to validate the existing specific mul-
ticomponent approach according to Nitschke et al. (2017) and to expand it
towards a highprecision exploration tool. This study devises a basalt-specific
mineral set including secondary mineral phases for global application to basaltic
stratigraphy. For the validation, geochemical data and in-situ temperature meas-
urements from basalt-hosted geothermal systems, Krafla and Reykjanes, are
used. These are high-enthalpy systems with near-boiling reservoir fluids and,
thus, the effect of steam loss between the reservoir and the liquid sampled at the
well-head has to be considered. Krafla hosts dilute meteoric fluids (Arnórsson,
1978), and Reykjanes a more saline reservoir fluid partially originating from
seawater (Arnórsson et al., 1978). To validate the method, the temperature estim-
ations are compared with direct in-situ temperature measurements of the wells
published by Gudmundsson and Arnórsson (2002) for Krafla, and Óskarsson
et al. (2015) for Reykjanes. The advantage of the validated method is the frugality
in terms of input data. High-accuracy temperature estimations can be achieved
based on standard fluid analyses and do not require comprehensive high-end
fluid and gas analyses, which are required for other solute multicomponent
geothermometer approaches.
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3.2 method and data

The basis of the method is a standard fluid analysis comprising major cations
and anions as well as aluminium concentration and pH. The water analysis
is used to calculate equilibrium conditions between the dissolved constituents
in the geothermal fluid and the reservoir rock minerals. For identification of
the reservoir temperature conditions, sensitive parameters have to be evaluated
statistically. The application relies on the following general assumptions: (i) the
reservoir and the geothermal fluid are in equilibrium. Therefore, the ion activity
product of a mineral phase equals its thermodynamic equilibrium constant. (ii)
A temperature-dependent reaction between the host rock and the water leads to
a specific amount of dissolved solids in the fluid phase.
The equilibrium reaction is based on the law of mass action. The state of the
dynamic equilibrium between the reactants is expressed in terms of the saturation
index SI (3.1)

SI(T) = log
(

IAP
K(T)

)
= log

(
∏

i
γνi

i xνi
i

)
− log(K(T)) (3.1)

with IAP being the ion activity product and K being the temperature-dependent
thermodynamic equilibrium constant of one mineral phase.
IAP is the product of the activity coefficients γi and the mole fractions of the
solute mineral phase xi considering their stoichiometric coefficient νi. A positive
saturation index indicates an oversaturation and a potential precipitation of
the mineral. Though, if the ion activity product is smaller than the equilibrium
constant, the saturation index will be negative. In this case, the solution is under-
saturated with the potential to dissolve the mineral phase. Therefore, equilibrium
is given at SI = 0.
Debye and Hückel (1923) established an equation for non-ideal electrolyte solu-
tions taking into account the electrostatic interaction among the ions by using
the activity coefficients γi (3.2). In order to fit the Debye–Hückel equation to
experimental data, Robinson et al. (1960) extended the original equation by
adding a linear concentration term ḂI.

logγi =
Az2

i

√
I

1 + åiB
√

I
+ ḂI (3.2)

where A and B are temperature-dependent constants, zi is the charge number
of the ion, I is the ionic strength, and åi is the hydrated ion size. The numer-
ator quantifies the long-range Coulomb forces acting on the ion, whereas the
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denominator defines the short-range interactions between the ions itself and
with the solvent. The extended Debye–Hückel equation (3.2) expands the former
validity limit in terms of the ionic strength to I = 1.0 mol/L for mixed electro-
lytes. Furthermore, there are application limits given by specific temperatures
and pressures. The latter is negligible at least up to a temperature of 300 °C
(Helgeson, 1969).
In this study, chemical speciation and saturation indices are computed with
IPhreeqc 3.4.0-12927 (Parkhurst, Appelo et al., 2013). Ion activity coefficients
are based on the extended Debye–Hückel equation. The required constants A,
B, and Ḃ are obtained from the commonly used LLNL (Lawrence Livermore
National Laboratory) database. Saturation indices are computed for all specified
minerals for a given solution. Reed and Spycher (1984) plotted these saturation
indices versus temperature to investigate the equilibrium temperature of the
geothermal fluid and the reservoir mineral assemblage. For validation of the
multicomponent geothermometer, the method is applied on wellstudied geo-
thermal sites in Iceland and further developed to obtain an easy-to-handle and
convenient high-precision exploration tool.
Krafla is a high-temperature geothermal field located in the NE of Iceland. The
geothermal system is situated in the neo-volcanic zone Ármannsson et al., 1987.
The in-situ temperature measurements (3.1) and the geochemical data of the
wells (Appendix A.1) were published by Gudmundsson and Arnórsson (2002).
The upper 1000 m of the stratigraphy are built up by alternating layers of basaltic
lavas and hyaloclastite. The latter is subglacial erupted basaltic lava, which forms
hydrated breccia once it is in contact with water. Below 500 m, the hyaloclastite
layers form subhorizontal reservoirs. The following 1000 m are covering basaltic
intrusives, where geothermal fluids of up to 310 °C are evident (Gudmundsson
and Arnórsson, 2002). A more detailed stratigraphy of the field is given by
Ármannsson et al. (1987). The mineralogical content of Icelandic geothermal
systems and the geochemistry of the fluids are described by Arnórsson et al.
(1983). Sampling methods and the geochemical analysis are given in Arnórsson
et al. (2006).

Table 3.1: In-situ measurements of the temperature [°C] in the wells of Krafla (K) at
specific depths [m] for permeable horizons presented in Gudmundsson and
Arnórsson (2002).

K-11 K-24 K-28

1330 m >240 °C 580 m 190 °C 500 m 230 °C

1600 m >240 °C 780 m 195 °C 800 m 240 °C

1700 m >240 °C 920 m 210 °C

2180 m >300 °C 1150 m 225 °C
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3.3 results of the analysis

The application of this multicomponent geothermometer approach requires the
evaluation of the equilibrium of each solute mineral phase and, thus, the cal-
culation of saturation indices of the considered minerals versus temperature.
The saturation indices are calculated from 20 to 300 °C. The calculations of
the saturation indices are processed via MATLAB (MATLAB, 2019). Therefore,
the MulT_predict tool was developed, which determines the intersection of the
saturation index function for each mineral phase with the equilibrium line (3.1).
Thus, the tool calculates all mineral-specific saturation indices functions through-
out the temperature range by interacting with IPhreeqc. Only minerals having
exactly one intersection with the equilibrium line are taken into account for the
temperature determination procedure. The resulting intersection temperatures
are combined in a box plot. This plot represents a first estimate of the reservoir
temperature.

Figure 3.1: Example of the creation of an equilibrium temperature distribution box plot
via the saturation indices over the temperature [°C] of the basalt-specific
mineral phases for sample K-28. The box plot includes the temperature
values of each mineral, where SI = 0 (intersection of the saturation index of
a mineral phase and the equilibrium line)
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Figure 3.2: Various sensitivity analyses of several parameters (pH value, boiling, pe
value, Al, Fe, and Mg concentration)
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Secondary effects perturb the chemical equilibrium of a fluid sample while mi-
grating to the earth surface. The chemistry may change due to boiling, degassing,
precipitation of phases, dilution, or mixture with shallow and low-mineralized
waters as well as reequilibration with the surrounding rocks (Cooper et al., 2013;
Fournier, 1977; Fournier and Truesdell, 1974; Pang and Reed, 1998; Reed and
Spycher, 1984).
To determine the most vulnerable sensitive parameters for later sequential sens-
itivity analysis, a series of variations on system parameters (pH, redox, and
steam loss) have been computed. Similarly, the concentrations of aluminium,
magnesium, and iron, being major components in the minerals but only trace
elements in the fluid, have been examined. The equilibrium temperature distribu-
tions for K-28 were exemplarily plotted against these parameters (Figure 3.2). It is
shown that the most important and vulnerable system parameter is the pH value,
which is in good agreement with what is also assumed by Nitschke et al. (2017),
as well as Reed and Spycher (1984). Changes have a significant impact on the
solubility of mineral phases. The pH value is prone to phase segregation effects
like degassing, boiling, and steam loss. Also, the pH is a temperature-dependent
function, which decreases when temperature rises. In addition, regarding Figure
3.2, steam loss itself is another vulnerable system parameter. Thus, possible
phase segregation due to boiling has to be taken into account. The loss of steam
fraction corresponds to a loss of solvent and results in the concentration of the
ascending fluid. The effect of steam loss needs to be compensated by adding back
the lost water. Equally, the vulnerability of trace elements is shown in Figure
3.2. These constituents are particularly prone to interferences from secondary
processes and measurement errors. Simultaneously, they have a high impact
on the solubility product and hence, on the saturation index of the majority of
reservoir minerals. Clearly, aluminium is the most vulnerable trace element. Its
concentration is a crucial parameter when computing the saturation state of
aluminosilicates, which represent the major mineral phases in most geothermal
reservoirs (e.g. basalts, granitoids, sandstone, greywackes, etc.). Such alumino-
silicate mineral assemblages contain phases like feldspars, zeolites, micas, and
clay minerals. Due to the tendency of complex formation and precipitation pro-
cesses (Brown, 2013), the determination of accurate aluminium concentrations is
prone to large errors. Furthermore, the variations of the redox potential as well
as magnesium and iron concentration were tested. As it is revealed that these
parameters have only marginal effects on the temperature estimations, they are
not further discussed in this study. In view of the above, the in-situ values of the
most vulnerable sensitive parameters, pH, aluminium concentration, and steam
loss, have to be reconstructed. For this optimization, a sequential sensitivity
analysis for each parameter is used. This sensitivity analysis is executed by the
tool. The statistically backed minimization of the temperature spread enables the
back-calculation on the in-situ geochemical equilibrium between the geothermal
fluid and the reservoir mineral assemblage, which is the basic assumption of the
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method. The tool varies these parameters around the initial measured value such
that a minimal temperature spread is found. In an ideal case, the equilibrium
temperatures of each mineral phase of the reservoir assemblage converge to one
discrete reservoir temperature. Also unknown parameters can be estimated in
this manner. Thus, a geochemical foreknowledge of the geothermal system is
needed to make an educated guess for the unknown parameter, which then can
be estimated towards best-fit conditions. To statistically evaluate the resulting
box plots, the mineral set has to remain unchanged throughout all variations.
Minerals that do not equilibrate due to over- or undersaturation or have multiple
intersections with the equilibrium line in any step of the sensitive analyses
were discarded from further statistical processing. Changes within the set of
consistent mineral phases during the sensitivity analysis would lead to false
conclusions because the temperature estimations would then result from differ-
ent basic conditions (i.e. different mineral sets). Concerning this, the spread of
the overlaying boxes and the median differences of each neighbouring plot are
matched to identify the most likely value for the sensitive parameter, indicated
by the least equilibrium temperature spread. This procedure is done sequentially
for the pH value, the aluminium concentration, and the percentage of steam
loss. Afterwards, the best-fit values for all parameters are combined in a final
temperature estimation. Nevertheless, the aim of this study is the reconstruction
of reservoir temperatures, instead of the encompassing reconstruction of geo-
chemical reservoir conditions.

As a generic example, the calculation and optimization will be shown in detail
for well K-28 to give an understanding of the procedure. Therefore, the geochem-
ical data (Appendix A.1) of the sample is used. The result of this first calculation
is shown in Figure 3.6a. For the temperature estimation from the non-specific
mineral set (Appendix A.2) without further optimization, a large temperature
spread of 260 °C is obtained. Hence, in this study, a basalt-specific mineral
set was devised to enhance the accuracy of this method. The basaltic minerals
have been selected according to the mineralogical study of the Krafla reservoir
rocks (Arnórsson et al. 1983). This set is extended for secondary mineral phases,
occurring in geothermal reservoirs due to hydrothermal alteration processes. It
is based on the stability of mineral phases at certain temperature and pressure
levels, which were described by Giggenbach (1981). The resulting basalt-specific
mineral set (Table 3.2) is used to evaluate the in-situ temperatures of the reservoir.
After application of the multicomponent geothermometer based on the selected
mineral set, the reservoir temperature estimation could be improved (Figure
3.6b), yet the temperature spread still exceeds 100 °C.



3.3 results of the analysis 29

Table 3.2: Mineral phases contained in the basalt-specific mineral set devised and used
in this study

mineral group associated mineral phases

feldspar albite (low), microcline, K-feldspar

SiO2 phases quartz, chalcedony

clays smectite, clinochlore, illite

carbonate calcite, aragonite

zeolite analcime, laumontite, wairakite

sulphate anhydrite, gypsum

halide fluorite

soro-/ inosilicate epidote, anthophyllite, tremolite, pargasite

Fe-phases pyrite, marcasite, pyrrhotite, goethite

Figure 3.3: Sensitivity analysis of pH for sample K-28. The value was varied from 6.75

to 8.15 in increments of 0.1. The figure shows an extract of the data, where
the pH value ranges from 7.55 to 8.15 in increments of 0.1. For pH 7.85, the
statistical minimum of the box plot comparison is reached; it is highlighted
in a darker blue colour
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As a second step, the sensitivity analysis is conducted. Firstly, the pH value is
optimized. The initial pH of 9.75 is varied in increments of 0.1 towards higher
acidity and basicity. The result is shown in Figure 5.5, where the minimal spread
of the box is reached at pH 7.85.

Separately, the aluminium concentration is evaluated. The average aluminium
concentration in the Krafla geothermal fluids is about 1.2 ppm (0.04 mmol/L)
(Gudmundsson and Arnórsson, 2002). Therefore, the aluminium concentration
is varied in increments of 0.006 mmol/L. The initial aluminium concentration
of the geothermal fluid composition for K-28 is 0.039 mmol/L. In Figure 5.6, an
optimal concentration is also reached at 0.039 mmol/L.

Figure 3.4: Sensitivity analysis of aluminium concentration for sample K-28. The value
was varied from 0.009 to 0.117 mmol/L in increments of 0.006 mmol/L. The
figure shows an extract of the data, where the aluminium concentration
ranges from 0.021 to 0.057 mmol/L in increments of 0.006 mmol/L. The
statistical minimum of the box plot comparison is reached for a concentration
of 0.039 mmol/L highlighted in a darker blue colour
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Lastly, the sensitivity of fluid composition to the magnitude of steam loss is
considered. The amount of steam loss is unknown, but has to be back-calculated.
Therefore, pure water is virtually added back in increments of 1%. In Figure 3.5,
the optimum in steam loss is reached at 14%

Figure 3.5: Sensitivity analysis of steam loss for sample K-28. The value was varied in
increments of 1%. The figure shows an extract of the data, where the steam
loss ranges from 11 to 17% in increments of 1%. For 14% steam loss, the
statistical minimum of the box plot comparison is reached; it is highlighted
in a darker blue colour
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The final temperature estimation is then computed by combining the best-fit
values for pH, aluminium concentration, and steam loss. Figure 3.6c displays the
reduced spread of the calculated temperature after each optimization step. Sim-
ultaneously to the reduced uncertainty, the median of the temperature estimate
has ascended.

Figure 3.6: Comparison of an unspecific mineral set (a) with the developed basaltic set
(b). The box plot in the third column (c) is the result of the combination
of the pH, aluminium concentration, and steam loss sensitivity analysis.
All analyses are done separately under static conditions for the remaining
parameters, and all best-fit parameters were combined afterwards
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For validation, the concluding reservoir temperature estimations are com-
pared to downhole temperature measurements published by Gudmundsson
and Arnórsson (2002) (Table 3.1). Figure 3.7 displays the temperature box plots
for the wells K-11 a), K-24 b), and for K-28 of two consecutive years c) & d).
The range of the measured in-situ temperatures (Table 3.1) is figured as an
orange box. In each case, the estimated temperatures fit very well the measured
borehole temperatures after the optimization procedure. Note that even very
small temperature ranges are matched by the estimated temperatures (e.g. K-24

and K-28).
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Figure 3.7: Results of wells K-11 a), K-24 b), and K-28 c) & d) for three stages of the
analysis. The first column displays a temperature estimation calculated based
on an unspecific mineral set. The box plot in the second column represents
the specified basaltic mineral set. The last box plot shows the optimized
temperature estimation via the pH, aluminium concentration, and steam loss
sensitivity analysis. These box plots can be compared with the range of the
measured temperatures in the boreholes, given by the orange box

3.4 discussion

The comparison of the optimized temperature estimation and the measured
downhole temperatures confirms the functionality of the application. Only for
K-24, the median temperature shows a minor overestimation of 1 K above the
highest measured inflow temperature, though, the estimations are also located
in the measured temperature range. The overall spread of each final plot after
the sensitivity analyses does not exceed 7% (K-24), but is on average 3.7% of the
absolute median temperature. The uncertainty throughout the validation is at
maximum 2.6% of the original absolute reservoir temperature. Thus, the valid-
ated developed tool shows a significant improvement compared to uncertainties
of conventional solute approaches, following in the discussion.
The calculation of the saturation indices relies on the LLNL database, which
is constrained to temperatures of 300 °C. Therefore, most of the geochemical
modelling tools are also constrained for that p–T range. Icelandic geothermal
systems have the potential to exceed these temperatures. To evaluate the validity
limits, the investigations were extended to the Reykjanes geothermal system,
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which is located in the SW of Iceland. Furthermore, as the system is recharged
by seawater, also the effects of high salinities can be assessed. Reykjanes is also
situated in the neo-volcanic zone and the stratigraphy equals the Krafla struc-
ture with alternating layers of basaltic lavas and hyaloclastite in the upper part,
followed by basaltic intrusives at greater depth. However, since the geothermal
system is located on a peninsula, seawater infiltrates the productive horizons of
the reservoir. At Krafla, the dissolved solids content is generally up to 1500 ppm.
Showing sea water concentrations, the salinities at Reykjanes are up to 58 times
higher (RN-23: 87.160 ppm). Óskarsson et al. (2015) published the geochemical
data (Appendix A.3) of the fluids from two production wells and the associated
temperature logs (Table 3.3). In the following, the applicability of the numerical
scheme will be tested at high-enthalpy geothermal fields with temperatures
above 300 °C and elevated salinities.

Table 3.3: In-situ measurements of the temperture [°C] in the wells of Reykjanes (RN) at
specific depths [m] presented by Óskarsson et al. (2015)

RN-12 RN-23

1000 m 260 °C 900 m 255 °C

1200 m 270 °C 1200 m 280 °C

1300 m 290 °C 1700 m 300 °C

1700 m 310 °C

Thus, the Debye–Hückel coefficients A, B, and Ḃ of Equation 3.2 have to be
extrapolated towards higher temperatures and implemented into the database.
The coefficients A and B were extrapolated by a quadratic fit, whereas Ḃ was
extrapolated by a cubic fit. This extrapolation is similar to the scheme proposed
by Helgeson (1969). Figure 3.8 shows the results of polynomial parameter estim-
ation. The obtained values for the coefficients A and B herein are very close to
the results computed by Helgeson et al. (1981). Estimations towards the critical
temperature of water have to be used with care and, therefore, only exceed up
to 350 °C.
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Figure 3.8: Extrapolation of the three parameters A a), B b), and Ḃ c) of the extended
Debye–Hückel equation for temperatures beyond 300 °C. The values of
the solid squares are acquired from the LLNL database in IPhreeqc. The
hollowed squares are the results of a polynomial fit

These modifications of the Debye–Hückel parameters allow technically for
the computation of saturation indices over an extended temperature range. To
gain an overview, the saturation indices of the well RN-12 at Reykjanes were
plotted to 350 °C (Fig. 3.9). The extrapolated coefficients follow the trend of the
saturation curves. The results for the reservoir temperature estimation and the
comparison against measured values are presented in Figure 3.10. Despite the
high sodium chloride concentrations, the tool operates thoroughly. Analogous to
the methodology presented for the Krafla site, the spread of the temperature box
plots is minimized and eventually matches the measured temperatures (Table
3.3). The spread is about 4.7% of the measured absolute reservoir temperature,
while the overall temperature accuracy is at 0.5%.
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Figure 3.9: Initial saturation indices of the basalt-specific mineral set of RN-12 with a
temperature range of up to 350 °C prior to the sensitivity analyses. Saturation
curves approaching the critical point of water have to be used with care

To demonstrate the gain of accuracy, the MulT_predict temperature estimations
for Krafla and Reykjanes are compared to conventional solute geothermometers.
For the comparison, the original data of Krafla and Reykjanes (Appendices A.1,
A.3) are corrected for steam loss via WATCH 2.4 (Bjarnason, 2010), requiring
additional gas analysis data. Afterwards, the solute geothermometers are applied.
The table in Appendix A.4 comprises quartz geothermometers according to
Fournier, Potter et al. (1982), Arnórsson et al. (1983), and Verma (2000); Na/K
geothermometers according to Truesdell (1976), Fournier (1979), Giggenbach
(1988), Arnórsson (2000c), and Can (2002), as well as Na/K/Ca geothermometers
according to Fournier and Truesdell (1973), Nieva and Nieva (1987), and Kharaka
and Mariner (1989), and K2/Mg geothermometer according to Giggenbach (1988).
All geothermometers were checked for their applicability in these settings. The
results of the conventional geothermometers are visualized in Appendix A.1 for
Krafla and Appendix A.2 for Reykjanes together with the results of MulT_predict.
In all cases, our application targeted the measured temperature more precisely
with a lower overall spread of the temperature estimation without requiring
additional gas analysis data. Compared to MulT_predict (Krafla: 3.7%; Reykjanes:
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Figure 3.10: Results for wells RN-12 and RN-23 for the three stages of the analysis.
The first box plot shows a temperature estimation calculated based on an
unspecific mineral set. The second column displays the developed basaltic
mineral set. The third box plot shows the minimized temperature estimation
after the pH, aluminium concentration, and steam loss sensitivity analysis
of the specified basaltic mineral set. These box plots can be compared with
the range of the measured temperature in the borehole, given by the orange
box

4.7%), the overall temperature spread of conventional solute geothermometers is
10.5% for Krafla and 12.3% for Reykjanes.

3.5 conclusion and outlook

This application of multicomponent geothermometry is a promising tool for
reservoir temperature estimations. This specific approach comprises a devised
basalt-specific mineral set and a subsequent sensitivity analysis based on a
standard chemical analysis of the fluid composition without the need for a
sophisticated gas analysis. The statistically robust temperature estimations of the
reservoir are incorporated in a valuable tool for precise reservoir temperature
estimation. Thus, the methodology enhances the usability, the applicability
during geothermal exploration as an economically efficient tool for reservoir
temperature determination.
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The emphasis of this study was the validation of this optimized approach
of multicomponent geothermometry. A basalt-specific mineral assemblage was
devised to reduce temperature estimation uncertainties. These estimations were
further improved by using a subsequent sensitivity analysis via the herein pro-
posed MulT_predict tool. The optimization of pH, aluminium concentration, and
steam loss reduces the uncertainty of the temperature estimations significantly.
Hence, the back-calculations enable the reconstruction of the in-situ equilibrium
temperature conditions between the geothermal fluid and the reservoir mineral
assemblage. This equilibrium state corresponds with the underlying geochemical
assumptions of geothermometry. The approach presented here would even allow
for constraining unknown input parameters. An educated guess of the parameter
can be varied to reach the best-fit value. For validation, the calculated reservoir
temperatures are compared against measured in-situ reservoir temperatures and
classic solute geothermometry. The maximum uncertainty of the temperature
estimations is only 2.6% with respect to the in-situ reservoir temperature. The
accuracy of the results shows the efficiency and credibility of the method. This
multicomponent approach benefits from its statistical robustness due to the
conjunction of the saturation indices of multiple mineral phases for temperature
estimations. Therefore, it can be applied to diverse geothermal sites with differ-
ent fluid origins. Furthermore, high-temperature systems can be investigated by
extrapolation and modification of the Debye–Hückel parameters in the LLNL
database, yet resulting in reservoir temperature estimations with small variances.
The method is easy to apply because of the simplicity in terms of input data. A
standard water analysis is sufficient for obtaining very accurate results, which
facilitates the usability especially at less explored sites, where good-quality data
is often missing.
Overall, the validation of the procedure was successful and improved temper-
ature estimations via multicomponent geothermometry. In future, a broader
application over different mineral sets is envisaged to expand the usability of
the methodology towards other geological settings.
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abstract

For a successful geothermal reservoir exploration, an in-situ temperature es-
timation is essential. Since geothermometric reservoir temperature estimations
often entail high uncertainties, statistical approaches are used. The focus is on
the application of sensitive analyses on a basalt specific mineral set as mul-
ticomponent geothermometer to estimate the reservoir temperatures in Krafla,
high-temperature geothermal field, Iceland.

In quantitative geothermometry, the element ratios and mineral saturation of
the geothermal fluid serve as single geothermometers. The geochemical equi-
librium between mineral phases and the reservoir rock are used to obtain the
reservoir temperature. The coupling of several minerals serving as a multicom-
ponent geothermometer allows to get statistically robust temperature estimations.
Herein, we set up a specific mineral set for basaltic reservoir rocks, which are
calibrated by in-situ measurements of the reservoir temperature in Krafla. The
developed method uses IPhreeqc to determine the geochemical equilibrium con-
ditions, followed by the statistical evaluation conducted with a MATLAB-based
in-house tool called MulT_predict. The results are presented via box plots. The
evaluation of the dataset from Krafla allows the calibration of a basalt specific
mineral set for the most accurate reservoir temperature estimation. As surface
measurements of pH, aluminium concentration and steam loss do not reflect
reservoir conditions, further sensitivity analyses are combined to back calculate
these parameters in order to improve the temperature estimation. This statist-
ical evaluation reflects the most plausible reservoir conditions. It is shown that,
the variation of the redox potential, iron and magnesium concentration have
only negligible effects and thus can be discarded, the correct determination
of the in-situ pH, aluminium concentration and steam loss are essential for a
robust temperature estimation. The calculated reservoir temperature matches
the measured in-situ reservoir temperature with an overall spread of 1.7% of the
total measured median temperature. In conclusion, the developed method is a
promising tool for the estimation of reservoir temperatures. In addition, it is an
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economical exploration tool that allows a high precision temperature estimation.
Since the developed basalt specific multicomponent geothermometer also uses
secondary mineralization it could be adapted to different geothermal settings,
yet requiring further calibration and validation.

4.1 introduction

Reservoir temperature estimation is a key technique in successful geothermal
reservoir exploration. Quantitative solute geothermometry provides such temper-
ature estimations. The coupling of multiple mineral phases as a multicomponent
geothermometer was introduced by Reed and Spycher (1984). They plotted the
saturation curves of multiple minerals against temperature. For this purpose,
the saturation indices of multiple mineral phases have to be calculated over a
certain temperature range (Equation 4.1).

SI(T) = log
(

IAP
K(T)

)
(4.1)

SI is the temperature-dependent saturation index of a mineral phase, IAP
is the ion activity product and K the temperature-dependent thermodynamic
equilibrium constant of one mineral phase. Only in the case, SI equals zero the
equilibrium state between the reservoir fluid and the mineral phase is reached
and can be evaluated. Thus, temperatures at which mineral phases reach equi-
librium can be used for reservoir temperature estimation. Nevertheless, this
result is prone to uncertainties. Changes in the chemistry of the fluid can lead
to divergences of the initial equilibrium conditions in the reservoir. While the
fluid ascends to the earth surface, it is vulnerable to secondary processes such
as boiling, phase segregation, mixing or dilution and precipitation (Arnórsson
et al., 1990; Cooper et al., 2013; Peiffer et al., 2014; Spycher et al., 2014). Therefore,
additional sensitivity analyses can be performed to reconstruct reservoir condi-
tions. The aim is to vary multiple sensitive parameters around their initial value
to find a minimum in the calculated temperature estimation spread At this point,
the equilibrium state (SI = 0) of the mineral phases have the smallest distances
between each other and thus, the minimum in the sensitivity field is reached.
Phases, which do not reach the equilibrium are excluded from the calculations.

4.2 method and results

With the help of the developed basalt specific mineral set, it is possible to calcu-
late robust temperature estimations. The set contains mineral phases found in the
basaltic geology of Krafla, which is described by Arnórsson et al. (1983). These
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mineral phases are extended by secondary minerals, which generally occur in
geothermal systems (Giggenbach, 1981). The developed basalt specific mineral
set is listed in Appendix A.5. For the sensitivity analyses, the used mineral
phases have to be stable throughout the variation. Hence, the saturations indices
of a mineral phase have to be calculates throughout a temperature range of 20 to
300 °C while each sensitive parameter is variated around its initial value. Static
boundary conditions like the consistency of mineral phases are essential for
the latter statistical evaluation. In the sensitivity analyses, the minimum in the
temperature distribution of each parameter is determined. The variation of the
sensitive parameter has to be chosen large enough to not only find a local min-
imum, but instead to find the global minimum. The integration of the sensitivity
analyses considers the geochemical dependence of these sensitive parameters.
Giggenbach (1981, 1988) proposed that changes in the partial pressure of CO2

and H2S results in pH changes and buffer reactions in the fluid. This degassing
effect occurs due to temperature and pressure changes while ascent of the fluid
and the sampling process. In addition, the pH value is temperature-dependent
which also shifts the value before analysing in the laboratory. Furthermore, steam
loss controls the pH value. This is taken into account by performing a sensitivity
analysis for steam loss as well as pressure relief causes boiling. Furthermore, the
pH value is vulnerable to measuring errors. Nitschke et al. (2017) and Reed and
Spycher (1984) are aware of these problems and suggest to measure the pH value
directly in the field and later on in the laboratory to reconstruct the pH value
at reservoir conditions. Likewise, Giggenbach (1981) used the thermodynamic
stability of aluminosilicates for reservoir temperature estimation. In conclusion,
pH shifts can lead to changes in the aluminium concentration. Aluminosilicates
have a strong tendency to precipitate in several phases. These buffer reactions
in the fluid can form aluminium complexes, which are likely to precipitate.
Therefore, complexes get lost while the ascent of the fluid. Also, the aluminium
concentration is vulnerable to fluid sampling. While sampling, these complexes
are filtered because their size exceeds the usually used 0.2 µm filter membrane.
Likewise, the measured aluminium concentrations in the fluid are close to the de-
tection limit, which leads to additional uncertainties. Hence, minimal changes in
the concentration cause large effects of increasing or decreasing of the solubility
product and thus, to huge uncertainties in temperature estimations. Furthermore,
the redox potential is coupled to the pH value. The lower boundary of the redox
potential in geothermal fluids is defined by the standard potential of hydrogen,
consequently the pH value. The upper limit is given by the strongest naturally
occurring oxidant which is oxygen. The iron-bearing minerals of the basalt spe-
cific mineral set (e.g. hematite, goethite, pyrite) are redox state-dependent. Also,
the measured iron and magnesium concentrations are close to the detection
limit. The variations of these sensitive parameters is visualised in Figure 4.1. The
Figure 4.1 comprises the pH value a), aluminium concentration b), steam loss c),
redox potential d) as well as iron e) and magnesium concentration f).
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Figure 4.1: Visualisation of multiple sensitivity analyses for different sensitive paramet-
ers: pH a), aluminium concentration b), steam loss c), redox potential d), iron
e) and magnesia concentration f) for the well K-28, Krafla (Iceland).
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Especially the pH value, the aluminium concertation and the steam loss are
vulnerable to changes. Whereas variations of the redox potential, the iron and
magnesium concentration have negligible sensitivity on the equilibrium temper-
ature distribution of the mineral set. Due to the marginal effects, the sensitivity
analysis of the redox potential, as well as for the iron and magnesium concentra-
tion can be omitted for future temperature estimation. Therefore, pH, aluminium
concentration and steam loss are the most sensitive parameters, which should
be analysed to obtain the most realistic reservoir conditions. Due to the major
amount of aluminosilicates as multicomponent geothermometer in the basalt
specific mineral set (Appendix A.5), these three sensitivity analyses have to be
combined and variated interdependently. The integrated sensitivity analysis of
pH, aluminium concentration and steam loss is implemented in an in-house tool
called MulT_predict (Ystroem et al., 2020). The MATLAB-based (MATLAB, 2019)
software uses IPhreeqc (Parkhurst, Appelo et al., 2013) to calculate the satura-
tion indices of the mineral phases of the basalt specific mineral set (Appendix
A.5). Each sensitive parameter is variated over all variation steps of the other
parameters. Hence, a three dimensional cell-array is calculated. An entry of the
array contains the equilibrium temperatures of all consistent mineral phases.
These temperature estimations were statistically evaluated to find the minimal
distance within the temperature spread. Figure 4.2 shows the differences of this
temperature spread for a static steam loss amount over the variation of alu-
minium concentration and pH. The morphology of the temperature distribution
reflects one layer of the three dimensional cell-array. At the global minimum
the temperature spread of the mineral phases is smallest. This point resembles
the reservoir conditions for all sensitive parameters. Exemplarily, for the well
K-28 (data by Gudmundsson and Arnórsson (2002)), the minimum is reached
at an aluminium concentration of 0.079 mmol/L and a pH value of 7.95. The
selected layer was calculated for a steam loss of 14%. Compared to the initial
values of the geochemical analysis (Al concentration: 0.033 mmol/L, pH: 9.55)
the parameters markedly shifted.
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Figure 4.2: Sensitivity field for the well K-28, Krafla (Iceland). The field is spanned
between the aluminium concentration and the pH value. The layer was
calculated for a steam loss of 14%. The minimum resembles the reservoir
conditions at pH 7.95 and an aluminuim concentration of 0.079 mmol/L.

4.3 discussion

Consequently, the calculated temperature estimation can be compared to the
measured in-situ temperatures, exemplarily of the well K-28 in Krafla. Gud-
mundsson and Arnórsson (2002) identified two permeable horizons, which feed
the borehole. These aquifers are located at a depth of 500 m and 800 m beneath
ground level. Their measured inflow temperature is 230 °C respectively 240 °C.
Figure 4.3 visualises the improvement of the reservoir temperature estimations
by performing the integrated sensitivity analysis. The first box plot shows the
temperature estimation by only using the basalt specific mineral set (Appendix
A.5). After the application of the integrated sensitivity analysis the temperature
estimations box plot gains a tremendous amount of precision. The overall spread
of the box plot minimizes to 1.7% of the absolute median temperature estima-
tion. The orange bar corresponds the measured in-situ temperature range. The
optimized temperature estimation fits this range precisely.
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Figure 4.3: Reservoir temperature estimations for the well K-28 using the basalt specific
mineral set (Appendix A.5). The first column shows the temperature estim-
ation before applying the integrated sensitivity analysis (pH, aluminium
concentration and steam loss). The second column visualises the temperature
estimation after performing the integrated sensitivity analysis. The orange
bar indicates the measured in-situ temperatures given by Gudmundsson and
Arnórsson (2002).

In conclusion, the combination of multiple sensitivity analyses (pH, aluminium
concentration and steam loss) results in a precise and robust application. By
variating sensitive parameters around their initial value, reservoir conditions
can be reconstructed. For this purpose, the in-house tool MulT_predict (Ystroem
et al., 2020) statistically evaluates the calculated temperature estimations and
finds the global minimum in temperature spread. Thus, the integrated sensitivity
analysis markedly improves the temperature estimations of the basalt specific
mineral set.
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abstract

In this study, we introduce MulT_predict as a fully integrated solute multicom-
ponent geothermometer, combining numerical optimisation processes for sensit-
ive parameters to back-calculate to chemical reservoir conditions. This results in
a state of the art geothermometer, providing an accurate reservoir temperature
estimation validated by geothermal borehole measurements on a worldwide
scale. In addition, a universally valid mineral assemblage for an unknown reser-
voir composition is developed, focusing on worldwide applicability. Using the
evolved methodology, the limits of the optimisation processes are determined by
using a synthetic brine (150 °C, pH 6, aluminium concentration 0.003 mmol/L)
and successively perturbing its geochemical equilibrium state. Individual back-
calculation of reservoir conditions lead to valid temperature estimations of 145 °C,
3.4% lower than the initial temperature while a simultaneous and interdependent
optimisation reconstructs the sensitive parameters even more precisely with a
deviation of 0.056 for the initial pH value, and 0.164 µmol/L for the aluminium
concentration.

5.1 introduction

Evaluating the quantity of energy in a reservoir is essential for an econom-
ical geothermal energy production. Therefore, the accurate determination of
the reservoir temperature is one key factor in geothermal exploration besides
flow rate. Chemical geothermometry is a common technique to predict the
reservoir temperatures from the geochemical composition of geothermal fluids.
Temperature-dependent cation ratios, as well as the saturation state of mineral
phases, can be the basis for temperature estimation, assuming an in-situ chem-
ical equilibrium of the reservoir rock and fluid (Ellis and Mahon, 1964). As a
result, the first conventional solute geothermometers were introduced around 60

years ago by Fournier and Rowe (1966). In an ongoing development, new solute
geothermometers were continuously developed but led to high uncertainties due
to changes in fluid chemistry regarding different geothermal locations (Nitschke



54 mult_predict - an optimised comprehensive multicomponent geothermometer

et al., 2018). Reed and Spycher (1984) plotted saturation indices of mineral phases
calculated from thermodynamic data against temperature. The resulting sat-
uration curves illustrate the temperature-dependent solubility of the reservoir
mineral assemblage in the geothermal fluid. Spycher et al. (2014) took up this
methodology and presented a multicomponent geothermometer, which evaluates
the geochemical equilibria of mineral phases and fluid for reservoir temperat-
ure estimation. Nitschke et al. (2017) analysed temperature predictions from
conventional and multicomponent geothermometers, showing a large reduction
in uncertainties for this modelling approach. Thus, multiple mineral phases
lead to statistically more robust temperature estimations. Therefore, Spycher
et al. (2011) introduced the multicomponent geothermometer GeoT, followed
by RTEst by Palmer (2014). Also, software for the chemical reconstruction of
downhole and reservoir conditions like WATCH (Bjarnason, 2010) improved
the results of solute geothermometry. GeoT uses Newton-Raphson iteration to
calculate the geochemical equilibria of mineral phases from external thermody-
namic databases (Sonnenthal et al., 2013). To compute temperature estimations,
a complete fluid analysis is necessary. The program allows reconstructing the
deep fluid composition (pH value, gas loss, dilution, and mixing) needing addi-
tional gas chemistry as well as end-member solutions. Recently, a python script
was developed to search for the most suitable mineral assemblage for reservoir
temperature estimation (Olguín-Martínez et al., 2022). RTEst uses the weighted
sum of squares of the saturation indices of mineral phases to calculate the reser-
voir temperature estimation optimising the calculation by CO2 fugacity and the
mass of water (Palmer, 2014). Developing MulT_predict, Ystroem et al. (2020)
combined the multicomponent temperature estimation with a numerical recon-
struction of the reservoir conditions. The scope of MulT_predict is to reconstruct
the parameters, which control mineral solubility and are prone to secondary
changes. Hence, sensitive parameters such as the aluminium concentration and
pH value are back-calculated to reconstruct in-situ conditions (Ystroem et al.,
2021). In addition, effects from secondary processes such as dilution and boiling
are corrected. These parameters are prone to geochemical changes of the fluid
during the ascent to the surface or while sampling (Giggenbach, 1981, 1988).
The major advantage of MulT_predict, unlike other solute multicomponent geo-
thermometers, is that a standard fluid analysis is sufficient and a sophisticated
gas analysis is not required. In addition, all optimisation processes (pH value,
aluminium concentration, boiling, and dilution) are calculated simultaneously
and interdependently. Previously, MulT_predict was developed, applied, and val-
idated for the basaltic setting of Krafla and Reykjanes fields in Iceland (Ystroem
et al., 2020). The emphasis of this study is the development of a comprehensive
multicomponent geothermometer for field exploration. At such an early stage,
little reservoir knowledge and no borehole data is available. The reservoir rock
mineralogy as the basis of multicomponent geothermometrical temperature
estimation is typically lacking. To facilitate the application of MulT_predict, as
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an early-stage exploration tool, for a broad range of geothermal sites, geolo-
gical settings, and play types, the focus of the study is the development of a
universally valid mineral set. Based on this, a general procedure of statistical
outlier removal is introduced to acquire more precise temperature estimations
and simplify the practicality of MulT_predict.

First, the applicability of the tool is transferred to a broad range of geothermal
settings around the world including saline crystalline basements, marine, and
continental basin facies as well as volcanic rock. In a first step, individual mineral
sets are evolved for each geothermal setting. Afterwards, mineralogical coher-
ences within the mineral sets are combined in a universally valid mineral set
for general applicability. The subsequent outlier removal increases the precision
of the temperature estimation. The results of the validation are shown for ex-
amples of boreholes. Furthermore, the characteristics of the site-specific brine
are discussed to identify clustering and similarities concerning geochemical key
parameters, providing insights into why a universally valid mineral set provides
precise temperature predictions and where the limits of its application are. In the
last part, MulT_predict’s optimisation processes are benchmarked and discussed.
Therefore, a predefined synthetic brine, initially in full equilibrium, is increas-
ingly perturbed stepwise. This perturbation is then reconstructed using two
different approaches. Firstly, each optimisation process is evaluated individually
regarding the back-calculation of each sensitive parameter (boiling/dilution, pH
value, and aluminium concentration). Secondly, the performance of the inter-
dependent optimisation processes is evaluated by reconstructing all sensitive
parameters together. Furthermore, the results of both reconstructions of reservoir
conditions are discussed.

5.2 methods

In solute multicomponent geothermometry, the base assumption is the geochem-
ical equilibrium between the geothermal fluid and the hosted reservoir rock
(Fournier and Truesdell, 1974). Thus, in the temperature-dependent reaction
mineral phases are dissolved until an equilibrium within the fluid is reached. The
geochemical equilibrium of each mineral phase is attained when the determined
ion activity product IAP of the fluid equals the temperature-dependent thermo-
dynamic constant K(T) (Equation 5.1). As a result, the temperature-dependent
saturation index SI(T) of a mineral phase is zero.

SI(T) = log
(

IAP
K(T)

)
(5.1)
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For reservoir temperature estimation, the saturation indices of several mineral
phases are plotted against the temperature. The resulting equilibrium temperat-
ures (at SI = 0) serve as a part of the geothermometer. Basing the temperature
estimation on the SIs for several minerals has proven to be a robust geothermo-
metric tool. As input parameters for MulT_predict, a standard geochemical fluid
analysis covering the major cations and anions, the pH value, as well as silica
and aluminium concentrations are needed to account for the chemical elements
being the components of the reservoir rock mineral assemblage. Nevertheless,
the geochemical equilibrium is still prone to uncertainties when the chemistry of
the fluid changes. Divergences from the chemical equilibrium state are due to a)
an immature fluid has not yet reached equilibrium or b) secondary processes
while the fluid ascends to the surface or while sampling. Such processes refer
to phase segregation, boiling, mixing, or dilution, as well as complex building
and precipitation of mineral phases (Arnórsson et al., 1990; Cooper et al., 2013;
Nitschke, 2018; Peiffer et al., 2014; Spycher et al., 2014). In a previous study,
numerical optimisation processes are introduced to MulT_predict correcting
sensitive parameters such as pH value, aluminium concentration, as well as
changes in the fluid concentration from these effects (Ystroem et al., 2021). The
goal is to reconstruct the in-situ chemical system as a basis to compute the
equilibrium temperatures. Assuming that the temperature estimations for mul-
tiple mineral phases converge to an equal temperature. For these saturation
index determinations, MulT_predict couples MATLAB (MATLAB, 2021) to an
IPhreeqcCOM server introduced by Charlton and Parkhurst (2011). The current
IPhreeqc version (3.7.0 – 15749) is used to calculate the equilibrium state of a
chosen mineral set to serve as a multicomponent geothermometer. Thermody-
namic data for mineral phases are taken from our updated Lawrence Livermore
National Laboratory (LLNL.dat) database for high-temperature estimations (Ys-
troem et al., 2020). The major cation (Na+, K+, Ca2+, and Mg2+), and major anion
(Cl-, SO4

2-, S2-, and HCO3

-) as well as SiO2, Fe2+/3+, and Al3+ concentrations are
used as input data. In addition, to calculate the saturation indices of the mineral
phases, the physicochemical parameters for the geothermal brine have to be
defined. Therefore, the sampling pressure, temperature, as well as pH value
are essential input data. MulT_predict distributes the input data to IPhreeqc
to calculate the saturation indices SI(T) over a predefined temperature range
i for previously selected mineral phases j (e.g. a universally valid mineral set).
To identify the equilibrium temperatures for the mineral phases (SI = 0), the
SI(T) returned from IPhreeqc are stored in a i x j matrix Aij and evaluated by
the signum function in matrix Bij (Equation 5.2).
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Bij = sign(Aij) := lim
k→∞

1 − 2−kAij

1 + 2−kAij
=


− 1 if Aij < 0

0 if Aij = 0

1 if Aij > 0

(5.2)

Performing differences and approximate derivatives (Equation 5.3) upon the
data returns the zero crossing of the saturation indices (Equation 5.1) of the
chosen mineral set j over their defined temperature range i, which are stored in
a new matrix C.

C = diff (Bij) =


B(1, 0)− B(0, 0) · · · B(1, j)− B(0, j)

...
. . .

...

B(i, 0)− B(i − 1, 0) · · · B(i, j)− B(i − 1, j)

 (5.3)

To find the equilibrium temperature, the data of matrix C are indexed by
Equation 5.4 and transferred into an array D.

D = for diff (C) ̸= 0 (5.4)

The resulting equilibrium temperatures D and their mineral phases are both
stored as cell entries in E. When the optimisation process is enabled, the selected
sensitive parameters (boiling/dilution, pH value, and aluminium concentration)
are iterated interdependently in their predefined range. After each computation,
the result is also stored in the cell array E. Depending on the number of selected
parameters n, the cell array E is stocked up in n-dimensions. To get a consistent,
statistically evaluable dataset, the mineral phases and their associated equilib-
rium temperatures are validated in each entry. Therefore, the cell entries of E
have to be cleaned up. An n-dimensional loop compares all resulting mineral
phases and their temperatures from beginning to end. Missing temperature
data is filled up with NaN while the names of j are added as the associated
phases. Simultaneously, redundant and excess information is removed. After the
completion, the procedure is executed vice versa starting at the end to check for
inconsistency within the updated array E. Then, the cell array E is analysed by
comparing the 0.25 and 0.75 quantiles, the interquartile range IQR, as well as the
1.5*IQR outliers within each entry stored in an array F (Equation 5.5).
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Fn = [(q0.75 + 1.5 IQR)− (q0.25 − 1.5 IQR)] ; for all entries in E (5.5)

Afterwards, MulT_predict statistically evaluates all n-dimensional cell entries
of Fn for the minimum element of the array excluding NaN values. The global
minimum represents the maximal convergence of the equilibrium temperatures
of the considered mineral phases (Equation 5.6).

min( f (x0)), Fn ⊆ R+, x0 ∈ Fn, f : Fn → R+, if (∀x ∈ Fn) f (x0) ≤ f (x) (5.6)

Determining the position of the global minima in the array Fn, the back-
calculated in-situ values of the reservoir parameters are extracted. In the last
step, MulT_predict re-evaluates the in-situ reservoir parameters and re-calculates
the final temperature estimation. The final results are output graphically and
tabular.

5.3 data and results

To develop a comprehensive multicomponent geothermometer and a universally
valid mineral assemblage MulT_predict has to be validated for a variety of
geothermal sites. A thorough validation is only possible with datasets, where
geochemical fluid analyses, as well as borehole temperatures, are available. Geo-
thermal sites were intentionally selected in a way, that the data covers a broad
range of different lithologies, temperatures, and geochemical characteristics to
evolve a comprehensive tool. The geothermal fluid samples from different geo-
thermal sites are mostly compiled from the literature. In sum, eight geothermal
settings were evaluated (Table 5.1). To validate MulT_predict, geochemical data,
as well as in-situ reservoir temperature measurements of the reservoir, must
be available for each site. The sites are categorised by their geology and tec-
tonic setting: crystalline basement of a rift basin, sedimentary back-arc basin
dominated by continental facies, foreland basin dominated by marine facies,
sedimentary basin dominated by marine facies, volcanic facies dominated by
andesite to rhyolite at subduction zones, and basaltic facies on the mid-ocean
ridge induced by a hotspot.
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Table 5.1: Collocation of the lithology, geological setting, location, and references of the
geothermal wells for the validation of MulT_predict.

Lithology Setting Location Reference

Granite
Basement

(rift basin)

Upper Rhine

Graben

Sanjuan et al. (2001)

Schindler et al. (2010)

Dezayes et al. (2013)

Sanjuan et al. (2016)

Vidal and Genter (2018)

Vidal et al. (2019)

Lacustrine facies Back-arc basin Pannonian Basin Varsányi et al. (1997)

Marine facies,

Malm
Foreland basin

German Molasse

Basin
Internal communication

Marine facies,

Dogger

Sedimentary

basin
Paris Basin

Michard and Bastide (1988)

Marty et al. (1988)

Criaud et al. (1989)

Rhyolite,

Andesite
Subduction zone Waiotapu

Banwell (1959)

Ellis and Mahon (1977)

Giggenbach et al. (1994)

Andesite Subduction zone Miravalles
Dennis et al. (1989)

Gherardi et al. (2002)

Dacite Subduction zone El Tatio
Ellis and Mahon (1977)

Giggenbach (1978)

Basalt,

Hyaloclastite
Hotspot Iceland

Gudmundsson and Arnórsson (2002)

Óskarsson et al. (2015)

The data representing the highly saline fluid of sedimentary origin hosted in
the granitic crystalline basement in the Upper Rhine Graben (URG) is presented
by Sanjuan et al. (2001) and Schindler et al. (2010) for GPK 1 and 2 in Soultz-sous-
Forêts, Dezayes et al. (2013) and Vidal et al. (2019) for GRT-1 in Rittershoffen,
and Sanjuan et al. (2016) as well as Vidal et al. (2019) for GTLA 1 in Landau and
INSH in Insheim. The continental sedimentary facies is represented by lacustrine
to fluvial sedimentary sequences in the Pannonian Basin published by Varsányi
et al. (1997). Malm layers in the German Molasse Basin represent marine facies in
a foreland basin (internal communication with power plant operators, Appendix
A.6). Marine sedimentary facies from Dogger layers in the Paris Basin were
published by Michard and Bastide (1988), Marty et al. (1988), and Criaud et al.
(1989). The volcanic facies are summing up different types of reservoir rock
around the Pacific Ring of Fire. For Waiotapu in New Zealand, rhyolite and
andesite reservoir formations are hosting the geothermal wells published by
Banwell (1959), Ellis and Mahon (1977), and Giggenbach et al. (1994). Further,
data from the wells of the andesite reservoir formation in Miravalles, Costa
Rica, are presented by Dennis et al. (1989), and Gherardi et al. (2002). Lastly, the
geochemical data presented by Ellis and Mahon (1977), and Giggenbach (1978)
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of a dacite reservoir in an ignimbrite formation at El Tatio, Chile, are used. The
basalt and hyaloclastite facies are visualised by data from Krafla (Gudmundsson
and Arnórsson, 2002), and Reykjanes (Óskarsson et al., 2015). For reference, the
artificial standard of ocean water is illustrated (ASTM-Standard, 2013).

To establish the new procedure for unknown temperature estimations three
steps had to be passed. First, setting-specific mineral sets were developed for
known mineralogical and temperature data. Second, coinciding mineral phases
of setting-specific mineral sets are combined into a universally valid set. Third,
to refine the general temperature estimation, a procedure of outliner removal
has to be implemented. The results of the three steps are visualised in Figure 5.1.
For each geothermal setting, the mineral set for reservoir temperature estim-
ation is compiled individually (Appendix A.7). Creating these unique sets is
time-consuming. Therefore, if known, the observed mineral composition of the
reservoir rock should be transferred into a mineral set. Hence, the main mineral
phases of the reservoir rock, as well as secondary and accessory minerals, have
to be considered. The resulting mineral assemblages have to be refined until the
optimised saturation curves converge on each other, minimising the uncertainty
of the temperature estimation (cf. Equation 5.5, 5.6). Therefore, mineralogical
foreknowledge of the reservoir rock composition and its secondary mineralisa-
tion is preferable in general. Nevertheless, in some cases this information is not
available or unknown, thus, a predefined universal mineral set is presented. This
universally valid mineral set consists of the most common rock-forming minerals
as well as secondary and accessory minerals. The focus of the universal set is
its comprehensive applicability while providing still reasonable temperature
estimations. Together with the upcoming procedure of outlier removal, the tem-
perature estimations get more precise. Thus, all evolved setting-specific mineral
sets were compared among themselves. As a result, in most of the sets, an overlap
of mineral phases is repeatedly equilibrated. Combining them, a universally
valid mineral set has been established, which can be applied on a worldwide
scale independently of reservoir mineralogy and setting. This universally valid
set consists of quartz, K-feldspar, microcline, albite, muscovite, illite, diaspore,
analcime, scolecite, anhydrite, kaolinite, and pyrophyllite (Appendix A.7).
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Figure 5.1: Comparison of three temperature estimations for an exemplary well of
individual geothermal settings around the world (Krafla on Iceland, Soultz-
sous-Forêts in the Upper Rhine Graben, Waiotapu in New Zealand, El Tatio in
Chile, Miravalles in Costa Rica, Makó in the Pannonian Basin, Unterhaching
in the German Molasse Basin, and Evry in the Paris Basin). Straight lines
separate different reservoir rock compositions (basaltic, crystalline, volcanic,
clastic, and marine facies). The orange box indicates the measured in-situ
temperature in the open hole section of the well. The first box plot (magenta),
visualises the temperature estimation with the original universally valid set.
The secondary box plot is obtained by reducing the outermost mineral phases
(black diamonds) within the universal set and recalculating the temperature
estimation (outlier reduction in green). In comparison, the third box plot
(blue) is the best-fitting mineral set individually developed for each setting
(cf. Appendix A.7).

Figure 5.1 illustrates the outlier removal procedure to obtain the most reason-
able temperature estimation. In the diagram, three temperature estimations per
geothermal setting are shown. The orange box indicates the measured in-situ
temperature corresponding to the open hole section within the example. The
first box plot (magenta) illustrates the temperature estimation by just applying
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the universally valid mineral set. In the next step, for the second box plot in
green, two statistical outliers of the universal set are removed. This corresponds
to mineral phases m, which are exceeding 1.5 times the interquartile range (IQR)
the most (Equation 5.7).

M ⊆ R+, y ∈ M,

if y > ymedian + 1.5 · IQR

if y < ymedian − 1.5 · IQR
(5.7)

This outlier removal represents the procedure, which is used to evaluate
new geochemical data with unknown mineralogy. The third box plot in blue
visualises the best fitting result obtained by developing an individual mineral
set for each setting, as mentioned in Appendix A.7. After the universally valid
mineral set for reservoir temperature estimation has been introduced, it can be
compared to the results of the outlier removal and each setting-specific mineral
set (Appendix A.7). Comparing the three box plots in Figure 5.1, the shift of
temperature estimation towards the measured in-situ temperature is evident. In
each case, the overall spread of the plot is decreasing as well as a decreasing
or steady IQR. Only for the carbonate facies of the Paris Basin and the Molasse
Basin, calcite and dolomite have to be added to the universally valid mineral set
to reconstruct reservoir conditions and temperature estimations more precisely.
For Iceland, the outlier removal reduces the IQR by 50% to 7 K, while the
median temperature remains at 235 °C, fitting the best-fit temperature and
the temperature log. For URG, two samples of GPK2 in Soultz-sous-Forêts are
presented. URG 1 was sampled in the year 1997 when the well reached 3876 m
depth. URG 2 was sampled in the year 1999 after deepening the well down to
5093 m representing the actual temperature at the bottom of GPK2. For URG 1,
the overall uncertainty decreases by 12% due to the outlier removal, but further
refinement of the mineral set is necessary to reach best-fit conditions at 166 °C.
For URG 2, the outlier removal decreases the spread of the box plot by 18 K.
The best-fit temperature estimation matches the measured in-situ temperature
of the open hole section. The two temperature estimations of GPK2 illustrate
the importance of the equilibrium reaction between the hosted reservoir and the
fluid, where the technical available temperatures are predicted. At Waiotapu,
the necessity of outlier removal for the magenta box plot is clear. The removal
reduces the spread by 59 K and emphasises the median temperature at 207 °C
within the measured temperature. In addition, the IQR (4 K) of the adjusted
universally valid mineral set equals the best-fitting result. For El Tatio, the
overall spread is reduced by 50% due to the outliner removal and increases
the median temperature to its final result at 228 °C, matching the measured
in-situ temperature. The outlier removal for Miravalles diminishes the spread by
62 K and the IQR by 45%. Likewise, the adjusted universally valid mineral set
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resembles the best-fitting plot. For the Pannonian Basin, the procedure shifts the
median temperature by 22 K into the measured temperature range. Compared
to the best-fitting plot, the mineral assemblage can be further refined to increase
accuracy. For both marine facies, the outlier removal reduces the uncertainties
but the temperature estimation does not fit the in-situ temperature. For the
Molasse Basin, the spread diminishes by 79%, while for the Paris Basin its halves.
Due to the lack of carbonate mineral phases within the universally valid mineral
set, the median of the temperature estimation in the Molasse is 20 K beneath the
best fit and in the case of Paris Basin 16 K.

5.4 discussion

For the illustration of coherence of the properties of brines from different geo-
thermal settings, geochemical key parameters are analysed. These parameters are
relevant to multicomponent geothermometry and can explain the plausibility of
a generally valid mineral set. For this purpose, the major chemical components
are used (Na+, K+, Ca2+, Mg2+, Cl-, SO4

2-, HCO3

-, and additionally pH). To
graphically cluster the brines according to the surrounding lithology, strongly
temperature-sensitive components such as SiO2 were omitted. Thus, the major
chemical components of dissolved mineral phases used in geothermometry are
evaluated. Thus, the graphical single-point method by Langelier and Ludwig
(1942) is modified. In the original two-dimensional plot, the pH value of the fluid
is added as the z-axis. Furthermore, the total dissolved solids TDS are projected
as sphere size s (Equation 5.8).

s = log (TDS · 10) (5.8)

To display the differences in sphere sizes homogenously, the TDS is multiplied
by ten and then the decadic logarithm is applied. Hence, standard fluid analysis
of the geothermal brines are plotted in the modified Langelier-Ludwig diagram
(Figure 5.2).
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Figure 5.2: Modified Langelier-Ludwig diagram for classification of geothermal settings
in different facies. The pH value was added as a third dimension (z-axis) as
well as the total dissolved solids (TDS) visualised in sphere size (s).

By plotting the geochemistry of the different geothermal sites clustering can be
observed. High saline brines from the Dogger formation in the Paris Basin, the
saltwater intrusion in the wells of the Reykjanes Peninsula, as well as the samples
from the Upper Rhine Graben, cluster below the salinity of seawater at Na++K+

40% and SO4

2-+Cl-
50%. The shift in pH value is a function of temperature and

salinity (Ellis, 1970). Increasing temperature and salinity cause the pH value
to decrease. The marine facies samples cluster near-neutral pH values. This
corresponds to a buffering reaction within the carbonates (Malm, Dogger) due
to calcite solubility equilibrium and temperature-dependent auto-dissociation
within the fluid (Ellis, 1963). Therefore, the brines in the URG (TDS ~100 g/L)
and high-temperature settings in Reykjanes (exceeding 300 °C) have lower pH
values. For the volcanic facies, Miravalles and El Tatio are forming the main
cluster around Na++K+

47% and SO4

2-+Cl-
50% with a pH of 7.5. The samples

of Waiotapu have a shift to higher pH values. For Waiotapu, (Giggenbach et al.,
1994) proposed a low content of CO2 within the parent magma and removal of
CO2 as calcite through Ca-Al-silica interaction. In addition, there is degassing
and dilution of the fluid before reaching the wells. The well waters in Krafla and
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Námafjall cluster at the highest pH values. These waters are low mineralised
and of meteoric origin. Due to degassing of CO2 and H2S the pH is increased
as well as a bicarbonate concentration trend up to 15% of HCO3

- corresponding
to an increase in magmatic activity underneath well K-20 (Gudmundsson and
Arnórsson, 2002). For samples from the Pannonian Basin, the TDS concentration
is low. The fluid chemistry clusters next to Waiotapu samples. Similar to the
bicarbonate trend in Icelandic samples, the Pannonian chemistry shows the
HCO3

- concentration increasing with temperature and depth corresponding to
lacustrine carbonates within the formations (Varsányi et al., 1997).
The clustering of samples in the Langelier-Ludwig diagram (Figure 5.2) shows
up similarities within the unique signature of each geothermal setting. In addi-
tion, the influence of evaporites and seawater can clearly be distinguished from
samples of meteoric origin. The distribution of pH values represents a variety of
geochemical processes coupled to the individual settings. The pH value sums up
buffer reactions, degassing processes, and the impact of salinity and temperature.
Therefore, the geochemistry of the geothermal fluid is an indicator of the mineral
composition leached out of the reservoir rock. Thus, these similarities in the
clustering are reflected in the universally valid mineral assemblage presented
for reservoir temperature estimations.

Furthermore, the optimisation process within MulT_predict is evaluated.
Therefore, a synthetic brine is set up and processed by MulT_predict to back-
calculate the initial brine temperature. In the next step, all parameters of the
optimisation processes are tested individually. In this case, the influence of sa-
linity, steam loss, and dilution, the pH value as well as the Al concentration are
examined. Therefore, the synthetic brine is increasingly perturbed stepwise for
one of these parameters at once. This is resumed until the numerical limits of
the optimisation of MulT_predict are reached. Thus, the individual optimisa-
tion processes can be evaluated. Lastly, the synthetic brine is perturbed for all
parameters at once. The steam loss and dilution are increased stepwise, while
random pH values and element concentrations in a predefined range are added.
In this case, the MulT_predict’s optimisation process is used interdependently to
back-calculate reservoir conditions. The synthetic mineral assemblage is equilib-
rated at 150 °C and has a pH value of six. The mineral assemblage is composed
of phases of the universally valid set: quartz, microcline, albite, calcite, anhydrite,
muscovite, illite, and stilbite. The resulting equilibrated fluid lost some mass
while reacting with stilbite (0.899 kg remaining) as well as the pH value increased
to 6.743 due to changes in the activity of hydrogen ions. To revert to initial condi-
tions, the fluid mass is set back to 1 kg. In the next step, each parameter is varied
individually and stepwise around its initial value to perturb the equilibrium
between mineral phases. Then, MulT_predict’s optimisation process is used to
reconstruct the equilibrium conditions of the fluid and determine the initial
equilibrium temperature. First, the salinity is increased in 100 steps from zero
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molar up to five molar by adding NaCl to the solution. In Figure 5.3, for each
increment, the MulT_predict computes the temperature estimations which are
plotted in the diagram. The computed temperature estimation is constantly at
148 °C close to the initial conditions of 150 °C, thus MulT_predict temperature
estimations show virtually no sensitivity to increasing salinity.

Figure 5.3: Temperature estimations corresponding to salinity changes from zero to five
molar by adding NaCl to the solution. The red line is indicating the initial
equilibrium temperature of the synthetic fluid. The red line indicates the
equilibrium temperature of 150 °C.

The assessment of the sensitivity of changes by steam loss and dilution in the
fluid is displayed in Figure 5.4. Therefore, the moles of the fluid are altered by
1% per step. For dilution, 0.555 moles of pure water are added per increment.
In contrast, 0.555 moles of pure water are subtracted mimicking steam loss.
In MulT_predict’s optimisation process, these changes are back-calculated. In
Figure 5.4a), MulT_predict’s computed concentration error is plotted against
the percentage of changes to the fluid concentration as well as the resulting
temperature estimation in Figure 5.4b).
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Figure 5.4: In graph a), the error of the reconstructed fluid concentration is plotted
against the changes to the mass of water within the fluid. The dashed red
line indicates the targeted error. In graph b), the corresponding temperature
estimations are visualised, while the solid red line indicates the targeted
temperature of 150 °C.
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For perturbations within ±20% of dilution or steam loss, the optimisation pro-
cess reconstructs the fluid with small errors of 3 percentage points on average (cf.
dashed, red line in Figure 5.4). Regardless of whether steam loss or dilution, at
higher changes MulT_predict starts to underestimate these perturbations. Thus,
the difference between the synthetic changes in the fluid and the reconstruction is
rising. This curve shape corresponds to the geochemistry in the fluid. Decreasing
water by 50% doubles the element concentration. In contrast, dilution of 100%
halves the concentration. Comparing the resulting element concentration leads
to a continuous increase in error. Nevertheless, the temperature estimations in
Figure 5.4a) have a maximum spread of 5 K (144 °C to 149 °C) and are on average
145 °C. The red line indicates the equilibrium temperature of the synthetic set.
Furthermore, changes in the pH value are evaluated in Figure 5.5. The pH value
varies between five and seven in 200 increments. The resulting pH value of the
optimisation process is plotted in 5.5a) against the synthetic pH variation. In
5.5b), the resulting pH value is illustrated against the temperature estimation.
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Figure 5.5: In graph a), the reconstructed pH value of the fluid is plotted against its
variation between five and seven. The dashed red line indicates the ini-
tial equilibrium pH at 6.743. In graph b), the corresponding temperature
estimations are visualised, while the solid red line indicates the targeted
temperature of 150 °C.

Figure 5.5a) visualises the difference between the resulting optimised pH
value and the initial equilibrate pH (6.743) indicated by the dashed, red line.
pH values increasing 6.743 cannot be back-calculated by IPhreeqc because of a
thermodynamic equilibrium gap for the aluminium concentration at higher pH.
Therefore, MulT_predict is also capped at this level, not allowing interdependent
optimisation yet. The estimations of the pH value show a pattern corresponding
to geochemical adaptations of IPhreeqc iteration steps. Because of the loss in
precision due to no redox buffering, IPhreeqc alters parameters automatically.
Therefore, the redox potential is varied so the balance equations can be solved to
obtain a chemical equilibrium (Parkhurst, Appelo et al., 2013). This leads to a
recommencement at pH 6.443 and a steady decline in the optimised pH value
towards the initial value while the redox potential is adjusted. In Figure 5.5b),
optimised pH values in the range 7.303 to 7.193 reach a temperature estimation
of 144 °C. For values from 7.183 to 6.883 the estimation is 145 °C and for a lower
pH, a temperature of 147 °C is calculated.
Finally, variations in the aluminium concentration are examined. In 160 steps,
80% of the initial aluminium concentration is added and subtracted. Figure 5.6 il-
lustrates the optimised aluminium concentration against the shift in concertation
as well as the resulting temperature estimation.
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Figure 5.6: In graph a), the reconstructed aluminium concentration is plotted against its
variation between -80% and +80%.The dashed red line indicates the initial
aluminium concentration of 0.00303 mmol/L. In graph b), the corresponding
temperature estimations are visualised, while the solid red line indicates the
targeted temperature of 150 °C.
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Figure 5.6a) shows a steady back-calculated aluminium concentration around
0.00267 mmol/L (11% less than the initial 0.00303 mmol/L) for raising concen-
trations. With decreasing aluminium concentration, IPhreeqc starts to iterate the
equilibrium calculation to converge the chemistry. Due to the variation in the
overall small aluminium concentration, errors accumulate while running the
simulation. Thus, the program automatically attempts to solve the calculation by
altering and combining tolerances and step sizes to fit the solution (Parkhurst,
Appelo et al., 2013). Similarly, the redox potential is adjusted. Therefore, the
aluminium concentration fluctuates from 0.00245 mmol/L to 0.00269 mmol/L
and reaches the maximum of 0.00304 mmol/L at -80%. However, the temperature
estimation is steady at 145 °C once rising to 147 °C at -80%. Comprising all
cases, MulT_predict underestimates the temperature estimations, anyhow not
exceeding 6 K (4% error). Only optimising individual parameters does not take
chemical interactions into account. As mentioned in the methodology, these
sensitive parameters are coupled due to secondary processes. Therefore, in a
second step, the back-calculation process is tested by optimising the parameters
interdependently. Therefore, in 5%-steps the fluid concentration was perturbed
again between -45% to 70%, as well as the values for the pH and aluminium
concentration have been randomised. For the pH, random values between pH 5

and 7 and for the aluminium concentration values between 0.001 mmol/L and
0.006 mmol/L were generated. Currently, MulT_predict is allowed to simultan-
eously optimise all sensitive parameters interdependently.
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Figure 5.7: Simultaneous and interdependent optimisation (purple) of all sensitive para-
meters plotted into each optimisation process (pale colours). a) shows the
reconstructed fluid concentration resulting from the variation of the mass of
water within the fluid. b) visualises the back-calculated pH value against its
change. In c), the interdependent reconstruction of the aluminium concentra-
tion is plotted against its variation. d) illustrates the temperature estimation
of the overall optimisation process. The dashed red lines indicate the initial
equilibrium conditions, as well as the solid red line which shows the equilib-
rium temperature of the synthetic fluid.

In Figure 5.7, the fluid concentration, pH value, and aluminium concentration
are optimised simultaneously. The interdependent estimations from test step 1

were plotted into the results of the individual optimisation processes, which were
paled out. In 5.7a), the average concentration error decreases by 2 percentage
points compared to the result of the independent back-calculation. The pH values
in 5.7b) and the aluminium concentrations in 5.7c) fit the target values more
accurately than those resulting from the individual optimisation process. For the
pH value, the maximum deviation is 0.3 less than the targeted pH. On average,
the variance of the interdependent pH optimisation is 0.056, which is negligible
compared to the mean deviation of 0.32 for the independent calculation. For the
aluminium concentration, the average deviation is 0.164 µmol/L about 5% of the
target concentration. Therefore, interdependent optimisation is circa 50% more
precise than independent optimisation. In addition, the temperature estimations
in 5.7d) improved to a mean value of 147 °C. Especially the reconstruction of
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the pH value and the aluminium concentration show the importance of an
interdependent optimisation process to reflect geochemical changes within the
fluid.

5.5 conclusions

MulT_predict is a robust multicomponent geothermometer with a built-in op-
timisation process to reconstruct the initial in-situ reservoir conditions and tem-
perature from a chemically perturbed geothermal fluid sample. The temperature
estimations are based on a standard chemical analysis of the geothermal fluid
composition. No sophisticated sampling methods nor analyses are needed. A
numerical reconstruction process of the in-situ chemical conditions is implemen-
ted to correct secondary perturbation of the fluid sample. The joint optimisation
of coupled key parameters (boiling/dilution, pH value, and aluminium con-
centration) allows for the determination of precise reservoir temperatures. A
universally valid mineral set is deduced, allowing the calculation of reservoir
temperatures. Regardless of the setting and the reservoir mineralogy, the uni-
versally valid mineral set provides a great advantage when only little or no
knowledge of the subsurface mineralogy is available. The implementation of
a statistical outlier removal refines the mineral assemblage and improves the
temperature estimation further. Therefore, MulT_predict can be used as an early
phase greenfield exploration tool, which has been validated at multiple geo-
thermal sites worldwide.
The emphasis of the study was the enhancement of the applicability of MulT_-
predict on a worldwide scale, as well as the focus on the performance of the
optimisation processes and their validation. The newly developed universally
valid mineral set allows a first temperature estimation for geothermal systems
of an unknown subsurface. The set contains twelve mineral phases (quartz,
K-feldspar, microcline, albite, muscovite, illite, diaspore, analcime, scolecite,
anhydrite, kaolinite, and pyrophyllite). These mineral phases are selected ac-
cording to their common existence in geothermal systems worldwide causing
similar chemical signatures (in terms of key parameters for multicomponent
geothermometry) to fluids of very different settings. They consist of key mineral
phases of major rock types, accessory minerals, secondary mineral phases, as
well as polymorphic mineral phases. The developed universally valid mineral
set is tested and validated at eight different geothermal sites (Iceland, Upper
Rhine Graben, German Molasse Basin, Paris Basin, Pannonian Basin, Waiotapu,
Miravalles, and El Tatio). This mineral set combines mineral phases of the associ-
ated geology of the settings (basaltic, volcanic, marine, and continental facies as
well as crystalline basement).
The functionality of the optimisation processes is tested by perturbing an equi-
librated synthetic mineral assemblage. Thus, four critical parameters are invest-
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igated: the salinity of the fluid, changes in the mass of water (steam loss and
dilution), as well as variations in the pH value, and the aluminium concentration.
First, each optimisation process is performed individually. Perturbation of the
salinity does not affect the temperature estimation of MulT_predict. Perturba-
tions in the mass of water, the pH value, and aluminium concentration lead to
an average temperature estimation of 145 °C and therefore, a reasonable error of
3.4%. For the interdependent optimisation process, the back-calculations for pH
value and aluminium concentration resemble the initial conditions. The average
temperature estimation is 147 °C, 3 K less than the initial equilibrium temperat-
ure of 150 °C. Considering all cases, MulT_predict and its built-in optimisation
processes provide precise temperature estimations. Thereby, the interdependent
optimisation process can back-calculate reservoir conditions more accurately
than an individual parameter optimisation. However, the calculation of the inter-
dependent optimisation process is more computation-intensive. Therefore, the
number of coupled sensitive parameters should be optimised jointly. Overall, the
introduced universally valid mineral set expands the usability of MulT_predict
and its applicability for the user. In addition, the effectiveness of interdependent
optimisation processes is verified, resulting in improved temperature estimations.
Eventually, MulT_predict is a fully integrated comprehensive multicomponent
geothermometer.
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abstract

Geothermometry is constituted one of the most important geochemical tools
for reservoir exploration and development. Solute geothermometers are used to
estimate the temperature in the subsurface. Therefore, the chemical composition
of a discharging geothermal fluid is used to infer the temperature of the reservoir.
Changes in the chemical composition because of boiling, degassing, and dilution
are disturbing the equilibrium state within the fluid leading to uncertainties in
the temperature estimation. Especially, the pH value, the aluminium concen-
tration, as well as boiling and dilution are parameters prone to changes. These
parameters are elaborated in the geochemical modelling process to optimise
these values to fit their in-situ reservoir conditions again. This geochemical
modelling method can be used for multicomponent geothermometers leading to
more robust and precise temperature estimations. However, this process is time-
consuming, and geochemical as well as mineralogical knowledge is beneficial.
Consequently, the field of artificial intelligence offers powerful methods to solve
complex issues, even considering multiple unknowns. Therefore, a new solute
geothermometer based on a deep learning algorithm is developed. This neural
solute geothermometer is tested and compared to the optimised multicomponent
geothermometer and in-situ temperature measurements concluding in a new
generation of solute geothermometer as precise as an optimised multicomponent
geothermometer but much easier and faster in its applicability.

6.1 introduction

The temperature determination of the reservoir is a major factor in the as-
sessment of geothermal reservoirs, especially during the exploration phase.
Solute geothermometry can provide such temperature estimations assuming
temperature-dependent equilibrium reactions between the geothermal fluid
and the host rock minerals. Originally, conventional geothermometers were
introduced using cation ratios or single mineral phases for temperature es-
timation (Arnórsson, 2000c; Fournier and Truesdell, 1973; Giggenbach, 1988).
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Followed by a more robust method introduced by Reed and Spycher (1984) using
temperature-dependent saturation indices of multiple mineral phases for reser-
voir temperature estimation. This led to the development of multicomponent
geothermometers such as MulT_predict, GeoT, and RTEst (Palmer, 2014; Spycher
et al., 2014; Ystroem et al., 2020). In an ongoing development, optimisation
processes are implemented to improve the accuracy of these multicomponent
geothermometers (Spycher et al., 2016; Ystroem et al., 2021). Especially, steam
loss and dilution, as well as trace element concentrations (e.g. Al, Fe, or Mg), and
pH value (e.g. degassing) are prone to perturbation of the in-situ equilibrium
state, which therefore is back-calculated within the different multicomponent
geothermometers. In some cases, these optimisation processes are computation-
ally intensive, when applied interdependently while there are unknowns like
the mineralogy of the reservoir (Ystroem et al., 2022). Thus, a new solute neural
geothermometer is developed. Artificial neural networks (ANN) are designed
to solve complex issues incorporating unknowns (Goodfellow et al., 2016). In
addition, a trained network is able to handle a large amount of data efficiently
conducting reservoir temperatures estimations. Further, both methodologies are
compared to evaluate the temperature estimations. Therefore, a case study of
temperature estimations is conducted based on high-quality data from Iceland.
The dataset consists of fluid samples from geothermal wells and their in-situ
temperature measurements are given by Arnórsson et al. (1983), Gudmundsson
and Arnórsson (2002) and Óskarsson et al. (2015).

6.2 method and data

Solute geothermometry is based on the temperature-dependent solubility of
mineral phases with the surrounding fluid. Under unperturbed conditions, an
equilibrium state between the dissolved element concentration of the fluid and
the reservoir rock is reached (Fournier and Truesdell, 1974). Therefore, element
ratios, as well as individual solute mineral phases can be used to determine the
temperature of the reservoir.

6.2.1 Multicomponent geothermometry

To increase the robustness and the precision of geothermometry the solubility
of multiple mineral phases can be evaluated simultaneously. In this approach,
the saturation indices SI of the mineral phases are evaluated over a predefined
temperature range (Reed and Spycher, 1984). The geochemical equilibrium is
reached when the measured ion activity product IAP is equal to the temperature-
dependent thermodynamic constant K(T) (Equation 6.1). In this case, the SI of
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the mineral phase equals zero (SI = 0).

SI(T) = log
(

IAP
K(T)

)
(6.1)

Immature fluids or secondary processes shift the fluid from its equilibrium
state. Especially, secondary processes like phase segregation, boiling, mixing,
dilution, as well as precipitation of mineral phases and complex building lead to
perturbation and thus to uncertainties in the reservoir temperature prediction
(Arnórsson et al., 1990; Cooper et al., 2013; Nitschke et al., 2017; Peiffer et al.,
2014). Optimisation processes are able to reconstruct equilibrium state condi-
tions assuming the individual mineral equilibrium temperatures converge to
an equal overall reservoir temperature. This is achieved by varying sensitive
parameters (pH value, aluminium concentration, and the fluid fraction) inter-
dependently around the initial conditions until a global minimum between the
equilibrium states of the mineral phases is reached (Ystroem et al., 2022). Figure
6.1 illustrates the output of MulT_predict. In a), the saturation indices of the
reservoir mineralogy are plotted against temperature. The intersection with the
dashed line represents the equilibrium state in the reservoir. Part b) shows the
optimisation process; sensitive parameters (pH-value, aluminium concentration,
dilution, steam loss) are simultaneously optimised and evaluated. The in-situ
reservoir conditions are assumed to be the global minimum of temperature
differences between the mineral phases. Plot c) shows the statistical evaluation
of the optimisation. The root mean square (RMSE), standard deviations (SDEV),
median (RMED), and the mean (MEAN) of the saturation indices are calculated
and plotted against the temperature. In picture d), the result of the temperature
estimation is shown. The box plot comprises the equilibrium temperatures of
the best fitting reservoir conditions of the mineral set. Depending on the optim-
isation range, these optimisation processes can be computational time intensive.
For each optimisation step, the calculations are computed interdependently
increasing the time by the power of one for each sensitive parameter.
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Figure 6.1: Example of the output of MulT_predict: a) Saturation indices of the reservoir
mineralogy against temperature. The intersection with the dashed line rep-
resents the equilibrium state in the reservoir. b) Interdependent optimisation
process of pH-value, aluminium concentration, dilution, and steam loss, the
global minimum represents reservoir conditions of the sensitive parameters.
c) Statistical evaluation of the optimisation (root mean square, standard devi-
ations, median, and the mean of the saturation indices). d) Result of the best
fitting temperature estimation as a box plot.

6.2.2 Artificial neural network geothermometry

Regarding the increasing computational time for interdependent optimisation
processes of sensitive parameters in multicomponent geothermometry, artificial
intelligence can perform calculations even for a large amount of data more
efficiently (Goodfellow et al., 2016). Therefore, an ANN is trained with geochem-
ical parameters of the fluid composition and in-situ temperature measurements
of high-quality fluid data. A dataset of geothermal wells of Iceland given by
Arnórsson et al. (1983), Gudmundsson and Arnórsson (2002) and Óskarsson
et al. (2015) is compiled as input data for the network. After screening the input
data, the selection of geochemical parameters as well as the network structure
must be elaborated. Afterward, the network is trained with a majority (70%) of
the data. The rest of the data is used for testing (20%) and validation (10%) of
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the ANN. The goal is to train the ANN to estimate the reservoir temperature
without overfitting the algorithm. The result of the training of the ANN, as well
as the performance of the trained geothermometer, are illustrated in Figure 6.2.

Figure 6.2: a) Mean square error against the epochs of the training. The early stopping
function prevents the ANN from overfitting. b) Predicted versus measured
bottom hole temperature. The testing data fits the ANN with R2 = 0.978.

In Figure 6.2a), the mean square error is plotted over the epochs of the training
phase. The even trend of the validation curve shows the adaption of the network,
while not overfitting the ANN. In Figure 6.2b), the predicted bottom hole tem-
perature is plotted over the measured bottom hole temperature. The blue dots
represent the data used for the validation, fitting the trained geothermometer
tool with a coefficient of determination R2 of 0.978.



82 deep learning and geochemical modelling as tools for solute geothermometry

6.3 results

Both methods, the solute multicomponent geothermometer as well as the ANN
geothermometer, are used to estimate the temperature of a known reservoir
in Iceland. Therefore, four samples of Krafla and Reykjanes are computed. In
Figure 6.3, the resulting temperature estimations are shown. The temperature
estimation of the multicomponent geothermometer MulT_predict is visualised
by blue box plots while the red line indicates the median temperature. The
temperature estimation of the ANN is illustrated by a green circle with an inner
black dot. The measured in-situ temperatures of the wells are indicated by an or-
ange box given by the inflow temperatures of the geothermal fluid at permeable
horizons in the open hole section.
In all cases, the median temperature of the multicomponent geothermometer
is fitting the in-situ temperatures. For the ANN geothermometer, three of four
temperature estimations are matching the measured temperature range. Only for
well 28 at Krafla, the ANN is underestimating the temperature by a maximum
of 15 K.

Figure 6.3: Comparison of multicomponent geothermometer MulT_predict (box plots)
and the ANN geothermometer (green circles). The in-situ temperature meas-
urement is indicated by the orange box for the four wells in Krafla and
Reykjanes, Iceland.
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6.4 discussion and conclusion

Comparing both geothermometer approaches in Figure 6.3, the solute multicom-
ponent geothermometer is statistically more robust than the ANN. Nevertheless,
MulT_predicts’ temperature estimations have to be optimised to obtain precise
results. Therefore, a mineralogical pre-knowledge of the hosting reservoir rock
would be beneficial. In addition, multiple interdependent optimisation processes
increase the computational time of the calculations. Regarding this, the newly
developed ANN geothermometer can compute temperature estimations more
efficiently while handling large amounts of data. In addition, no pre-knowledge
nor optimisation is necessary. Nevertheless, the ANN has to be trained with
high-quality data containing accurate in-situ temperature measurements.

While geochemical modelling of sensitive parameters in solute geothermo-
metry is the key factor for accurate reservoir temperature estimation, a further
improved and adequate ANN geothermometer is the next step in the evolution
of solute geothermometry.

acknowledgments

This study is part of the subtopic “Geoenergy” in the program “MTET - Materials
and Technologies for the Energy Transition” of the Helmholtz Association.





7
A N N R G - A N A RT I F I C I A L N E U R A L N E T W O R K S O L U T E
G E O T H E R M O M E T E R

This chapter was published in Applied Computing and Geosciences (2023)
Volume 20, 100144; DOI: 10.1016/j.acags.2023.100144

abstract

Solute artificial neural network geothermometers offer the possibility to over-
come the complexity given by the solute-mineral composition. Herein, we present
a new concept, trained from high-quality hydrochemical data and verified by
in-situ temperature measurements with a total of 208 data pairs of geochemical
input parameters (Na+, K+, Ca2+, Mg2+, Cl-, SiO2, and pH) and reservoir tem-
perature measurements being compiled. The data comprises nine geothermal
sites with a broad variety of geochemical characteristics and enthalpies. Five
sites with 163 samples (Upper Rhine Graben, Pannonian Basin, German Molasse
Basin, Paris Basin, and Iceland) are used to develop the ANN geothermometer,
while further four sites with 45 samples (Azores, El Tatio, Miavalles, and Ro-
torua) are used to encounter the established artificial neural network in practice
to unknown data. The setup of the application, as well as the optimisation of
the network architecture and its hyperparameters, are stepwise introduced. As
a result, the solute ANN geothermometer, AnnRG (Artificial neural network
Regression Geothermometer), provides precise reservoir temperature predictions
(RMSE of 10.442 K) with a high prediction accuracy of R2 = 0.978. In conclusion,
the implementation and verification of the first adequate ANN geothermometer
is an advancement in solute geothermometry. Our approach is also a basis for
further broadening and refining applications in geochemistry.

7.1 introduction

Geothermometry constitutes an important geochemical tool for reservoir tem-
perature determination. The unperturbed reservoir temperature predictions are
a key parameter for the exploration and development of geothermal resources in
the subsurface (Arnórsson, 2000a). In solute geothermometry, the geochemical
composition of the geothermal fluid reflects the temperature-dependent equilib-
rium state between reservoir and fluid (Ellis and Mahon, 1964). The saturation
state of mineral phases as well as specific cation ratios are dependent on the
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thermal conditions at depth and therefore can be used to infer the reservoir
temperature (Fournier and Truesdell, 1974). In the 1960s the first conventional
solute geothermometer was presented, which empirically linked the silica con-
centration in hot springs to the associated quartz equilibrium temperature at
depth (Fournier and Rowe, 1966). Since then, continuously new geothermometers
have been developed or improved. Most applications of solute geothermometers
are based on SiO2 concentration as well as the major cation ratios of Na/K,
Na/K/Ca, and K²/Mg (Arnórsson, 2000c; Fournier, Potter et al., 1982; Fournier
and Potter, 1979; Fournier and Truesdell, 1973; Giggenbach, 1988). Na+, K+, Ca2+,
and Mg2+ are the major cations encountered in crustal rocks and geothermal
water, whereas Cl- and SO4

2- are the major anions (Giggenbach, 1988). The mono-
valent cations, Na+ and K+, are mostly controlled by the ratio corresponding
to the equilibrium state of albite and K-feldspar (Ellis and Mahon, 1964). In
hydrothermal systems, the Ca2+ concentration is mostly given by the temperat-
ure and salinity-dependent solubility of calcite and calcium-aluminium-silicates
(Ellis, 1963; Giggenbach, 1981). Likewise, Mg2+ is controlled by the solubility
of K-Mg layer silicates, which is chlorite-dependent (Giggenbach, 1988). In geo-
thermal fluids the silica concentration is driven by reservoir conditions regarding
chalcedony or quartz equilibrium (Fournier and Rowe, 1966) with pH values
in a broad range from acidic to alkaline conditions linked to the activity of
hydrogen ions. Like the salinity, the pH value influences the ionic activity of the
geothermal fluid (Davies, 1938; Debye and Hückel, 1923).

Due to the implementation of conventional geothermometers on regional geo-
chemical data, the application is prone to variation in the chemical composition
of geothermal fluid. This leads to high uncertainties regarding reservoir temper-
ature predictions (Nitschke et al., 2017). Based on the evaluation of the saturation
state of multiple aforementioned mineral phases, Reed and Spycher (1984) in-
troduced an alternative approach by computing saturation curves based on
thermodynamic solubility data of a set of reservoir minerals against temperature.
In contrast to conventional geothermometers based on element concentrations
and ratios, the saturation indices of multiple mineral phases need to be calculated
to predict the reservoir temperature. Thereby, the aqueous ions concentration
of the geothermal fluid is compared to the equilibrium concentration of the
temperature-dependent solubility of the mineral phases. The clustering of the
mineral’s equilibrium temperatures in the chemical system of fluid and reservoir
rock are indicating the reservoir temperature. Reed and Spycher (1984) already
revealed that the results are statistically more robust than conventional geother-
mometers, which have often been proven to be afflicted with larger uncertainties
(Nitschke et al., 2018, 2017; Pang and Reed, 1998; Pang, 1988).
Nevertheless, the multicomponent geothermometer is still prone to secondary
perturbations of the equilibrium of the geothermal fluid, such as mixing, boiling
and dilution, precipitation and dissolution, or analytical errors (Pang and Reed,
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1998; Pang, 1988). The different tools have been developed with integrated optim-
isation processes correcting the error of fluid perturbation: 1) WATCH (Bjarnason,
2010), using analyses of the sampled water, gas, condensate, and excess enthalpy
to compute the reservoir composition of the fluid (the aqueous speciation, the
pH and redox potential, and the partial pressure of gas phases) (Arnórsson et al.,
1982). 2) RTEst (Palmer, 2014) using temperature, CO2 fugacity, and a mixing
fraction by minimising the saturation indices of a suggested mineral set (Plamer
et al., 2015). 3) iGeoT automatically estimates input parameters, such as the factor
of concentration/dilution, the steam weight fraction, as well as input concentra-
tions of aqueous and gas species, using the iTOUGH2 numerical optimisation
engine (Spycher and Finsterle, 2016). With PyGeoT, a pre- and post-processing
script is developed for automated mineral assemblage selection for GeoT/iGeoT
(Olguín-Martínez et al., 2022). 4) MulT_predict being firstly introduced with
distinct numerical optimisation for aluminium concentration, pH value, and
steam loss/dilution, as well as an individual high temperature (up to 350°C)
mineral assemblage for basalt settings (Ystroem et al., 2020). These optimisation
processes were merged into an interdependent back-calculation of reservoir
conditions (Ystroem et al., 2021). For worldwide applicability, a universally valid
mineral assemblage for unknown reservoir composition, a procedure of outlier
removal, and the limits of MulT_predict are developed (Ystroem et al., 2022),
demonstrating the broad and accurate applicability of solute multicomponent
geothermometers with integrated optimisation processes. However, the com-
putational effort rises dramatically with the number of optimisation processes
while the back-calculation of fluid perturbations requires necessary geochemical
preknowledge.
This situation provides ideal starting conditions for the application of machine
learning (ML) algorithms to support automated numerical optimisation pro-
grams. Compared to other natural sciences, ML is particularly rarely used in
geochemical interpretation. This is largely due to the limited amount of data
available, as geochemical analyses are usually difficult to obtain at great expense.
At the same time, the heterogeneity of the subsurface and physical parameters
limits the extrapolation of the collected data. Also, the application of ML tech-
niques has been strongly increased in geosciences recently. This development is
favoured by free software libraries such as scikit-learn (Pedregosa et al., 2011) or
TensorFlow (Abadi et al., 2015) enabling easy access to ML in various program-
ming environments. Likewise, literature and documentation such as Goodfellow
et al. (2016) educate the structure and functionality of deep learning algorithms.
ML is also favoured by the steady increase in geoscientific, complex data to
be statistically evaluated (Dramsch, 2020) and the increase in computational
power (Reichstein et al., 2019). The present paper supports this development
with respect to geochemical analyses, which have been studied far less than
other geoscience data because of their general complexity.
Geochemical fluid analyses are inflicted by a complexity of parameters that are



88 annrg - an artificial neural network solute geothermometer

mostly coupled with each other and the underlying thermodynamics. In the
early 2000s, the first attempts have been made to use artificial neural networks
(ANNs) for geochemical data analysis. In geothermometry, Ferhat Bayram (2001),
Can (2002) as well as Díaz-González et al. (2008) used ML for data regression
improving conventional Na/K geothermometer methods. In addition, the first
gaseous ANN geothermometer was introduced by Pérez-Zárate et al. (2019),
using CO2, H2S, CH4, and H2 concentration as input parameters. Haklidir and
Haklidir (2020) developed the first deep neural network (DNN) solute geother-
mometer approach based on chemical multi-parameter analysis (pH, electrical
conductivity, K+, Na+, Li+, Btotal, SiO2, and Cl-). Nevertheless, this study is based
on a small dataset of 83 samples. To increase the training data size to 66 samples,
Haklidir and Haklidir (2020) predicted the reservoir temperature of 47 thermal
springs by applying the conventional solute geothermometer of Fournier (1977)
in advance. Therefore, this DNN approach is also prone to error propagation,
since more than 70% of the training data are already reservoir temperature pre-
dictions comprising the uncertainties of conventional geothermometers. These
predictions are then used to develop a DNN for reservoir temperature predic-
tion for the regional case. Based on the data of Haklidir and Haklidir (2020),
Ibrahim et al. (2023) tested five ML algorithms for their temperature prediction
performance and the shapley additive explanation (SHAP) (Lundberg and Lee,
2017) to determine the contribution of each input parameter to the ML models.
In addition, Altay et al. (2022) also used the data of Haklidir and Haklidir (2020)
and others to test multiple machine learning methods to predict reservoir tem-
peratures in Anatolia. A grey wolf optimiser multi-layer perceptron (GWO-MLP)
showed good results, which then was further improved (Altay and Altay, 2023).

This manuscript demonstrates the development of an adequate solute ANN
geothermometer, called AnnRG, which is only trained using geochemical data
and in-situ temperature measurements of geothermal sites. No reservoir temper-
atures have to be predicted in advance to increase the data size, leading to less
error propagation. This new ML study focuses on complex and heterogeneous
geochemical data comprising thermodynamic coupling of system parameters
and element concentrations. In regard to the numerically optimised multicom-
ponent geothermometers, strong benefits in computation time are expected. The
motivation is to establish an easy-to-apply ANN solute geothermometer for
accurate reservoir temperature prediction without the need for sophisticated geo-
chemical preknowledge such as geochemical equilibrium processes or reservoir
mineral assemblages.
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7.2 data and method

7.2.1 Data acquisition

A key aspect of the development of AnnRG (Artificial neural network Regres-
sion Geothermometer) is the acquisition of a high-quality dataset consisting
of the chemical analysis of fluid samples and theirin-situ measured reservoir
temperature. This combination including high data quality and large datasets is
unfortunately rare and such data are difficult to obtain. In sum, nine geothermal
sites with a broad variety of geochemical characteristics and enthalpies are
evaluated (cf. Table 7.1). This data can be distinguished into five sites according
to their origin (Upper Rhine Graben, Pannonian Basin, German Molasse Basin,
Paris Basin, and Iceland), which are used for the development of AnnRG, and
further four sites (Azores, El Tatio, Miavalles, and Rotorua) to encounter the
ANN in practice to unknown data. The location of the geothermal field is plotted
in Figure 7.1.

Figure 7.1: Location of the acquired data of the seven geothermal sites for training and
verifying the ANN geothermometer.
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Table 7.1: Collection of geochemical fluid analyses and measured in-situ temperatures
of five geothermal sites to merge a dataset as the basis of the ANN geother-
mometer. In addition, four geothermal sites are used to verify the developed
ANN geothermometer (separated by a line). In addition, the available sample
size, the lithology, and the temperature range per site is given.

Data Sample size Lithology Temperature range Reference

Upper Rhine Graben 40

Granite,

Germanic Trias facies,

Permian facies

41 °C – 200 °C

Aquilina et al. (1997),

Dezayes et al. (2013),

Pauwels et al. (1993),

Sanjuan et al. (2001),

Sanjuan et al. (2004),

Sanjuan et al. (2006),

Sanjuan et al. (2010),

Sanjuan et al. (2016),

Schindler et al. (2010),

Stober and Bucher (2015),

Vaute (1998),

Vidal and Genter (2018),

Vidal et al. (2019)

Pannonian Basin 17 Fluvio-lacustrine facies 44 °C – 128 °C Varsányi et al. (1997)

German Molasse Basin 9 Marine facies, Malm 36 °C – 153 °C Ystroem et al. (2022)

Paris Basin 18 Marine facies, Dogger 47 °C – 76 °C
Criaud et al. (1989),

Marty et al. (1988),

Michard and Bastide (1988)

Iceland 79 Basalt, hyaloclastite 59 °C – 295 °C

Arnórsson (1977),

Arnórsson (1978),

Arnórsson et al. (1983),

Arnórsson et al. (2007),

Óskarsson et al. (2015),

Gudmundsson and Arnórsson (2002)

Azores 19 Basalt 200 °C – 240 °C Carvalho et al. (2006)

El Tatio 6 Dacite 180 °C – 253 °C
Ellis and Mahon (1977),

Giggenbach (1978)

Miravalles 10 Andesite 215 °C – 255 °C
Dennis et al. (1989),

Gherardi et al. (2002)

Rotorua 10 Rhyolite, andesite 121 °C – 211°C Mroczek et al. (2003)

Well data consisting of the chemical fluid composition and the reservoir
temperature is a key factor for avoiding the effects of data perturbation. To
develop the geothermometer, five well-studied geothermal fields have been
identified from which such data is available. In the Upper Rhine Graben, the
geothermal fluids of the rift basin represent a highly saline Na+-Cl- type (up
to 200 g/l) (Pauwels et al., 1993). They surpass Triassic to Permian sediments,
though they are mostly produced from the deeper granitic crystalline basement
(Sanjuan et al., 2016; Stober and Bucher, 2015). The Pannonian Basin is a back-arc
basin filled with interbedded fluvial and lacustrine sediments. The total dissolved
solids (TDS) of the samples are in the range of 1.2 to 4.4 g/l. The fluids are
Na+-HCO3

- type (Varsányi et al., 1997). The German Molasse Basin is a foreland
basin, where the hosting geothermal reservoirs are Jurassic marine facies, mostly
Malm (Birner et al., 2011). The fluid chemistry is varying from a northern Na+-
Ca2+-Mg2+-HCO3

- type to a more saline southern Na+-(Ca2+)-HCO3

--Cl- type
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(Birner et al., 2011). In the sedimentary Paris Basin, marine Dogger layers are the
targeted facies for energy production (Criaud et al., 1989). The Na+-Ca2+-HCO3

--
Cl- type fluids show high variability in their salinity (6.4 – 35 g/l) (Michard and
Bastide, 1988). Iceland represents basaltic facies on the mid-ocean ridge induced
by a hotspot. The high-enthalpy fields are either fed by meteoric or seawater
ranging from a Na+-HCO3

--Cl- to a Na+-Cl- type (Arnórsson et al., 1983). Based
on these five geothermal fields, AnnRG is established.
To encounter AnnRG in practice, four additional sites of unknown data are
aggregated and introduced to the established geothermometer. On the Azores,
the geochemical data is from wells drilled in the Agua de Pau Massif in the
vicinity of the Fogo Volcano. The eruption cycles show a sequence of effusive
basaltic to Plinian activity (Carvalho et al., 2006). The TDS varies between 0.07

and 27.1 g/l corresponding to Na+-HCO3

- and Na+-HCO3

--Cl- type waters (Cruz
and França, 2006). The subduction zones of the Pacific Ring of Fire are dominated
by a broad range of andesite to rhyolite. At El Tatio in Chile, the dacitic reservoir
is implemented in an ignimbrite formation resulting in a Na+-Cl- type brine
in the wells (Ellis and Mahon, 1977; Giggenbach, 1978). The geothermal site
in Miravalles, Costa Rica, produces from an andesitic reservoir (Dennis et al.,
1989; Gherardi et al., 2002). The downhole fluid samples are neutral Na+-Cl-

type brines (Grigsby et al., 1989). At Rotorua Geothermal Field in New Zealand,
the fluid is in contact with rhyolite and ignimbrite domes within the reservoir
(Wood, 1992). The chemistry of the fluid is a Na+-HCO3

--Cl- type (Mroczek et al.,
2003).

7.2.2 Implementation of the dataset and data editing

To set up the dataset, the geochemical analyses of the references are digitised
(Table 7.1). The element concentrations and system parameters of the fluid ana-
lyses are compiled into a CSV file. Afterwards, the geochemical dataset is sorted
by its count of element concentrations and by the geothermal site. In the next
step, the measured in-situ temperatures are ascertained from literature (Table 7.1)
and matched to the associated wells. Then, the geochemical dataset and their
reservoir temperatures are aggregated. This aggregated dataset is the foundation
of the database, which is customised by selecting the required input parameters.
Creating the database, intentionally only parameters such as element concentra-
tions of major cations and anions as well as system parameters, like pH value,
which are typically comprised in any standard geochemical fluid analysis, are
used. This selection increases the data availability, whereas constituent trace
elements such as aluminium or lithium, as well as elements with species of
different oxidation states such as sulfur and carbon have been excluded. Such
parameters are often not measured and therefore, would lead to an incomplete
database and a decrease in sample number. As a compromise of sensitivity and
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availability, the following input parameters are selected: Na+, K+, Ca2+, Mg2+,
Cl-, SiO2, and pH. The sensitivity of temperature to the concentration of these
parameters makes them also essential for conventional solute geothermometry
(e.g. Arnórsson (2000b), Fournier and Truesdell (1973), Giggenbach (1988), Nieva
and Nieva (1987) and Spycher et al. (2014)). Regarding the established para-
meter selection, the dataset is equalised. All unnecessary parameters are deleted.
The distribution of each parameter comprising the data is visualised in Figure 7.2.

Figure 7.2: Parameter distribution of the data compiled from the literature (cf. Table 7.1)
as boxplots, where the median (red line) and the mean (green line) of the
dataset are visualised.

Statistical data editing is performed to evaluate the dataset. Throughout the
dataset, 163 samples are identified representing geothermal fluid from boreholes
with measured in-situ reservoir temperatures (c.f. Table 7.1). The data of these
samples are stored in matrix X ∈ R 163x7 corresponding to the seven previously
selected geochemical input parameters ( Na+, K+, Ca2+, Mg2+, Cl-, SiO2, and
pH). In addition, the matrix X is extended by the vector of the associated in-situ
reservoir temperature Y ∈ R 163x1. After the merging, the matrix Z contains
individual fluid samples in each row while the columns correspond to the
geochemical features and the measured in-situ temperature. The matrix Z is the
database for the training of the ANN. Validation is performed to ensure the
quality of the database and remove outliers. Therefore, a basic neural network is
trained and tested with standardised features. The range of the input parameters
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is scaled and centred to not bias the net while training. In this regard, the mean of
a parameter is subtracted from the value and divided by the standard deviation
of the parameter. Afterwards, the temperature predictions are compared to the
measured in-situ reservoir temperatures. To improve the quality of the database
and thus, the accuracy of the ANN, wide reservoir temperature differences have
to be removed. To identify these outliers, a threshold criterion is defined as the
twofold initial root mean square error (RMSE) (Equation 7.1).

2 RMSE = 2

√
∑n−1

0 (y − ŷ)2

n
(7.1)

In the outlier detection, the RMSE shows the average distance between the
predicted reservoir temperatures ŷ and the known in-situ reservoir temperatures
y regarding the sample size n. The results of each sample are given in Figure 7.3.
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Figure 7.3: a) Outlier detection within the dataset. The threshold is defined as twofold
root mean square error (RMSE [K], black dotted line) of the initial predicted
temperature difference. b): Dataset after outlier removal with the new twofold
RMSE [K] (green dotted line).

The result of the threshold criterion (Equation 7.1) is a temperature deviation
of 40.2 K, which is indicated by the dotted black line in Figure 7.3. For each
sample, the absolute deviation is plotted (blue data points) throughout the
database. As a result, eight outliers exceed the threshold value (Figure 7.3a).
After the outlier removal, the neural network is trained and tested again resulting
in a more homogenous deviation distribution, where the new twofold RMSE is
23.8 K, which is visualised by the dotted green line (Figure 7.3b). The database
(matrix Z ∈ R 155x8) is validated for the establishment of the baseline model of
the neural network.

7.2.3 Baseline model, network architecture, and hyperparameter optimisation

AnnRG is processed in Python 3.8.5 (Van Rossum, Drake et al., 1995). Multiple
libraries such as NumPy for scientific computation (Harris et al., 2020; Van der
Walt et al., 2011), pandas for data analysis (Reback et al., 2020), and Matplotlib
(Caswell et al., 2020; Hunter, 2007) as well as seaborn (Waskom, 2021) for visu-
alisation are used. In addition, scikit-learn (Pedregosa et al., 2011), as well as
TensorFlow (Abadi et al., 2015; TensorFlow, 2022) are used for the ML algorithm.
For the latter, the high-level application programming interface Keras (Chollet
et al., 2015) runs on top of it.
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The data structure of chemical analyses and associated borehole temperatures
qualifies the application of a supervised learning approach. A feedforward mul-
tilayer perceptron (MLP) is realised for the regression analysis of fluid chemistry
and reservoir temperature. This regression problem is given by the function
f : Rm → R fitting multiple parameter m to one scalar output. To train the MLP,
the data is split into three groups: 70% training data, 20% validation data, and
10% testing data. This allocation is chosen to train the model properly, while
the hyperparameters, which control the model capacity are not overfitted; as
well as a separate test set to monitor the generalisation error. To run the code
with the same random seed again, the global and the operation seed are set.
This seed randomly assigns the data to each group. Hence, the developed net-
works are comparable and the progress of optimisations can be displayed. To
not bias the network, the data is transformed in a centred and scaled manner
like aforementioned. During the training, the MLP repeatedly adjusts weights
within neurons while minimising the error between the predicted and measured
reservoir temperature via gradient descent (Rumelhart et al., 1986). The gradi-
ent descent is calculated using back-propagation computing the sum of partial
derivatives of the error, which are depending on the weights of the connected
neurons throughout the neural net (Graves, 2012). This error surface is searched
for its global minimum as the best-fitting result of the network (Rumelhart et al.,
1986). As a result, the input parameters are processed within the hidden layer
finding learning rules iteratively matching the output data.

The architecture of the neural network is evolved to establish a reasonable
baseline model for the development of AnnRG. Afterwards, the baseline model
is refined by hyperparameter optimisation minimising the error within the MLP.
The data structure and the intrinsic properties of the temperature estimation
problem constrain the network architecture. A simple supervised MLP with
fully connected layers is chosen. The input layer is given by seven neurons,
representing the predefined input parameters. For the output layer, a single
neuron is implemented ensuing in the temperature prediction. The adjustment
of the network design is coupled to the number of hidden layers as well as the
number of neurons within these layers. Starting with this simple baseline model,
the architecture design of the network is improved based on validation error
minimisation. The number of hidden layers is tested stepwise via scikit-learn’s
GridSearchCV up to 20 layers. Simultaneously, the number of neurons is varied
from 10 to 100 in five increments per layer. During the architecture optimisation,
Early Stopping (Wahba, 1987; Yao et al., 2007) is used to avoid overfitting the
neural net. The patience of GridSearchCV is set to 20 epochs while the MLP is
able to perform up to 300 epochs. To solve the regression problem of the temper-
ature estimation, different activation functions were tested: the rectified linear
unit (ReLu) (Agarap, 2018; Hahnloser et al., 2000; Jarrett et al., 2009), sigmoid
function, and softmax. As a result, the best-fitting architecture is achieved with
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one hidden layer, 80 neurons, and ReLu as the activation function. The measured
performance of the established network has a coefficient of determination (R2) >
0.9, which is acceptable to continue the optimisation. The developed architecture
design is used for further refinement of the hyperparameters.

In order to optimise the hyperparameter, multiple parameters were selected
and stepwise analysed using scikit-learn’s GridSearchCV. Overall, the network is
trained while using Early Stopping to prevent overfitting. The patience is set to
20 epochs, before the GridSearchCV is active, while the MLP is able to perform
up to 300 epochs. The optimisers, as well as their learning rate and batch size,
were analysed interdependently.
In the case of Keras’ optimisers, adaptive moment estimation (Adam) (Kingma
and Ba, 2014), stochastic gradient descent (SGD) (Sutskever et al., 2013), as well
as root mean square propagation (RMSprop) (Tieleman, Hinton et al., 2012) were
compared. To fit the model to an optimal effective capacity, the learning rate
within the optimisers is varied from 10

-4 to 10
-1 increasing by half an order of

magnitude per step. The batch size is varied from 1 up to 32 in 2
n steps. All

parameters are varied interdependently to lower the generalisation error while
matching the training error. The training error, validation error, and testing error
are monitored. The errors of the best-fitting MLP are presented in Table 7.2.

Table 7.2: Illustration of three error types of the best-fitting MLP. The mean absolute
percentage error (MAPE), the root mean square error (RMSE), and R2 are
given for the training, validation, and testing of the neural net.

Error type Training Validation Testing

MAPE 0.067 0.092 0.092

RMSE 9.965 11.269 10.091

R2
0.983 0.972 0.978

The three error types are chosen due to their inherent information in the
regression analysis. In Equation 7.2, the mean absolute percentage error (MAPE)
indicates the precision of the regression function and its multiple input parameter
m to its output f : Rm → R, where ŷ is the predicted reservoir temperature, y is
the known in-situ reservoir temperature, and n is the sample size.

MAPE =
1
n

n−1

∑
0

y − ŷ
|ŷ| (7.2)
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The RMSE defines the average accuracy between the predicted and the in-situ
temperature (Equation 7.3).

RMSE =

√
∑n−1

0 (y − ŷ)2

n
(7.3)

The R2 shows how accurately the model predicts the measured in-situ temper-
atures (Equation 7.4).

R² = 1 − ∑n
1(y − ŷ)2

∑n
1(y − ( 1

n ∑n
1 y))2

(7.4)

These errors are given for all three phases of training, validating, and testing
the neural net. In addition, the shape of the loss function is visualised as learning
curves in Figure 7.4.

Figure 7.4: Learning curves of the training (blue line) and the validation (orange line) of
the ANN. The Cross-entropy loss is visualised against the epochs until the
Early Stopping function completes the learning phase.

The learning curves of the training phase (blue line) and the validation phase
(orange line) are plotted over the epochs of the MLP. The error minimisation
of the loss function is illustrated by the mean square error (MSE). Regarding
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Figure 7.4, the Early Stopping function fixed the weights of the 142 epoch
resulting in the best hyperparameter configuration of the predefined network
architecture. As a result of the GridSearch CV, the activation function Adam
(Kingma and Ba, 2014) with a learning rate of 10

-3 and a batch size of 16 is fitting
the regression problem of temperature estimation best. These hyperparameters
are further used for AnnRG.

7.3 results and discussion

After the establishment of the neural network architecture and the hyperpara-
meter configuration, the final MLP geothermometer (Figure 7.5) is given by the
following configuration (Table 7.3):

Table 7.3: Final network architecture and hyperparameter configuration of AnnRG.

Layers Neurons Activation Optimiser Learning rate Batch size Metrics Losses

Input layer

Hidden layer

Output layer

7

80

1

ReLu Adam 10
-3

16

RMSE

MAPE

R²

MSE

One input layer with seven neurons, representing the input parameters ( Na+,
K+, Ca2+, Mg2+, Cl-, SiO2, and pH), one hidden layer with 80 neurons, and the
output layer with one neuron representing the reservoir temperature prediction.
The layers are fully connected with ReLu as the activation function and Adam as
the optimiser. For the hyperparameter optimisation, a learning rate of 10

-3 and a
batch size of 16 is fitting the best, when the net is trained with Early Stopping
(patience 20, and up to 300 epochs). Regarding the sufficient sample size of the
dataset (Z ∈ R 155x8), this shallow network is less prone to overfitting compared
to a deep neural network. This also corresponds to the errors while establishing
the net (Table 7.2). The MAPE of the training (0.067), validation (0.092), and
testing (0.092) show a close correlation between the input parameters and the
regression problem. The slight increase in the MAPE from the training phase to
the validation and testing phase is the result of the data splitting (70% training,
20% validation, and 10% testing) and therefore, the stepwise decrease in data.
The low deviation of the RMSE for the three phases displays a good accuracy
amongst predicted and measured temperatures on average. The variance of 1.304

K from training to validation, as well as the variance of -1.178 K from validation
to testing, is in the order of randomisation of the data. In addition, the deviation
of their R2 values is also marginal representing a well-established model. Thus,
the accuracy of the temperature prediction is comparable for each step. These
results also correspond to the learning curves (Figure 7.4). The smooth shape
of the validation curve implies an appropriate tuning of the hyperparameters
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fitting the model. The close distance between the validation and training curve
equals a small generalisation gap implying a well-balanced model capacity.

Figure 7.5: Result of the predicted temperature against the measured in-situ temperature
with R2 = 0.978. The training data (blue points) and testing data (red points)
are visualised with the regression line (black line, R2 = 1).

In Figure 7.5, the results of the regression problem of the temperature estima-
tion are visualised for the best-fitting MLP geothermometer. The coloured dots
illustrate the actual results of the training (blue), the testing (red), and their
deviation of the regression line (cf. Figure 7.6). The homogeneous distribution of
the dots, as well as an R2 of 0.978, approve the developed MLP.
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Figure 7.6: Error distribution of the temperature difference in kelvins between the pre-
dicted and measured temperature of the entire dataset.

In Figure 7.6, the overall error distribution of the dataset is displayed as a
kernel density plot. It visualises the probability density of a random temperature
prediction based on the weights. Hence, the curve comprises the positive and
negative deviation of each temperature prediction in comparison to the meas-
ured reservoir temperature. The shape of the distribution has a slight positive
skewness, implying a minor under-prediction of the reservoir temperature. In
addition, a box plot gives the axis of symmetry. The maximum temperature
differences are ±30 K in each case for two samples. The median is 1.9 K where
the box has also a slight positive overhang implying a marginal over-prediction
of the reservoir temperature. The interquartile range (IQR) of 17.3 K also shows
the accuracy of AnnRG. To investigate the results of the testing phase, the testing
error is decoupled and plotted as a histogram in Figure 7.7.
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Figure 7.7: Error histogram of the temperature difference in kelvins between the pre-
dicted and measured temperature of the test dataset.

The error histogram of the test set (31 samples) is distributed between -18 and
22 K, which is more precise than the overall error distribution of the dataset
(Figure 7.6). In line with the positive skewness of the error distribution (Figure
7.6), the temperature estimations of the test set are minorly underestimate the
temperature.

To verify AnnRG and encounter the established geothermometer in practice,
the geothermometer was applied to unknown data from other geothermal sys-
tems: The Azores, Portugal; El Tatio, Chile; Miravalles, Costa Rica; and Rotorua,
New Zealand (Table 7.1). The geochemical data of these four geothermal sites
are processed by the MLP and compared with the measured in-situ temperat-
ures. In Figure 7.8, the results of each site are plotted on top of the developed
geothermometer.
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Figure 7.8: The introduction of AnnRG to unknown data: a) Azores, Portugal b) El Tatio,
Chile c) Miravalles, Costa Rica d) Rotorua, New Zealand (c.f. Table 7.1). The
data (grey points) are visualised with the regression line (grey line, R2 = 1)
and the results of the transferred data (coloured points).
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Figure 7.9: Error distribution of the introduced data with a batch size of 5 kelvins.
Count of the samples against the temperature deviation of Azores, Portugal
(magenta); El Tatio, Chile (blue); Miravalles, Costa Rica (cyan); Rotorua, New
Zealand (red).

The predicted temperatures of all four sites (Figure 7.8) fit the measured
temperatures in the same order of <±30 K as the MLP error distribution (Figure
7.6). The error distribution of each transferred sample is visualised in Figure 7.9.
Especially for the Azores (±11 K), El Tatio (±13 K), and Miravalles (±15 K), the
predictions are more precise than the error distribution of the test set (Figure
7.7). Nevertheless, the variation between measured and predicted temperatures
at Rotorua (±27 K) is higher than the average test error but lower than the overall
error distribution. In summary, the introduction of unknown data to the trained
MLP verifies the applicability of AnnRG.

As mentioned in the introduction, the predictions of an ANN are sensitive
to the size of the dataset. To evaluate the sufficiency of data pairs, a sensitivity
analysis of the sample size of the database is conducted. The validated database is
successively reduced in its sample size. In each iteration, the dataset is randomly
reduced by one sample and the MLP is trained again with the same model
parameters. The R2 of each recalculation is plotted over the remaining sample
size (Figure 7.10).
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Figure 7.10: Sensitivity analysis of the sample size of the database. The R2 is calculated
stepwise reducing one random sample at a time. The distribution of the R2

(black dots) is fitted by a curve of exponential decay (red curve).

The results of the R2 score (black dots) are fitted by an exponential decay
function (red line). For a sample size between 155 and 65, the R2 is varying
between 0.911 and 0.987. This spread is attributable to the random incremental
reduction of the sample size, while the seed of the database is fixed. Therefore,
the samples within the batches are reallocated, which means that the same
amount of data is used to train the MLP in every iteration. The R2 score declines
exponentially with a sample size of less than 65 and reaches 0.365 at 58 samples.
In conclusion, a sufficient sample size (>65) is required to obtain a suitable
database to train, validate and test the MLP.

7.4 conclusion

Up to now, due to typical limited data density and availability the application
of ML approaches in geochemistry is very rare. Herein, for the first time, a
unique dataset of 208 samples is compiled as the basis for the development
of the first adequate solute ANN geothermometer, called AnnRG. This data
comprises measured hydrochemical fluid data and corresponding measured
in-situ temperature from a broad variety of geological settings with high com-
plexity in fluid chemistry (Table 7.1). The MLP is suitable for processing such
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heterogeneous data resulting from complex thermodynamic processes of sub-
surface water-rock interaction. AnnRG is built upon the evaluation of element
concentrations and ratios similar to conventional geothermometry. Moreover,
the tool performs a multi-parameter analysis training itself without explicitly
programming the tool. In contrast to automated and numerical optimised mul-
ticomponent geothermometers, no implementation of sophisticated optimisation
processes, or adaptation of the reservoir mineral assemblage is needed. In ad-
dition, AnnRG evaluates data more efficiently in a timely and computationally
manner. Nevertheless, the development of AnnRG is sensitive to the size of the
dataset. Regarding this issue, a data size sensitivity analysis was conducted.
As a result, >65 data pairs are a sufficient sample size still yielding precise
prediction accuracy. Fortunately, nowadays there is a continuous increase in
geochemical data, which can be compiled by enhancing the database and im-
proving AnnRG. For AnnRG a standard geochemical fluid analysis comprising
system parameters and major element concentration ( Na+, K+, Ca2+, Mg2+, Cl-,
SiO2, and pH) is sufficient to predict reservoir temperatures without the need to
sample and analyse trace elements, isotopes, or gas phases. After the removal of
eight outliers, 155 data pairs are used to train the tool. Then, the applicability
and accuracy of the geothermometer are tested on 61 samples comprising 45

samples of new unknown data from four different geothermal fields worldwide.
The applicability of the trained MLP is successfully verified resulting in a similar
average accuracy (RMSE 9.405 K) than the original dataset (10.442 K). AnnRG is
applicable to regional-scale sies independent of geological settings. In addition,
this application leads to less error propagation than approaches with predicted
reservoir temperatures as input parameters. Eventually, the optimisation of the
network architecture as well as the hyperparameters continuously improves the
geothermometer throughout its development. AnnRG provides precise reservoir
temperature predictions with an IQR of 17.3 K. In addition, the geothermometer
has a high prediction accuracy of R2 = 0.978. Overall, the implementation and
verification of AnnRG is an advancement in solute geothermometry showing
that ML can identify coherencies between hydrochemical data and temperature.
Moreover, the potential for further development regarding new applications
in geochemistry and increasing data size is vast. In the future, more advanced
statistical evaluation regarding algorithms or optimisations may further enhance
the accuracy of ML in geochemistry.
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In the future, the expansion of geothermal energy will continue to increase
due to the global demand for sustainable and renewable energy. Compared to
other renewable energy sources, such as photovoltaic or wind power, geothermal
energy has the ability to provide baseload electricity and heat independent of
meteorological effects, as well as daily and seasonal cycles. The amount of heat
energy available in the subsurface is related to the temperature of the reservoir,
its permeability, and the presence of a heat transfer fluid. In particular, enhanced
geothermal systems (EGS) offer the possibility of decentralised energy produc-
tion on a global scale. However, the initial investment costs for exploration and
construction are high, while the risk of project failure is present.
Geochemical prospection offers a risk minimisation approach to the development
of geothermal energy. The chemical investigation of geothermal manifestations
such as hot springs, mud pools, geysers, and fumaroles provides important in-
formation about the subsurface reservoir without the need for direct access to the
source. Solute geothermometry can provide crucial information about the reser-
voir temperature. To estimate the reservoir temperature of a hydrothermal fluid,
its geochemical composition must be analysed. Due to temperature-dependent
dissolution and precipitation reactions in the reservoir, the mineral assemblage
of the reservoir rock and the aqueous solution are in equilibrium. This chemical
equilibrium state in the hydrothermal fluid contains information about the reser-
voir temperature.
Based on the fundamental assumptions of Fournier et al. (1974) for solute geo-
thermometry, little or no reequilibration, nor mixing of the fluid occurs during
migration to the surface. In reality, these ideal conditions could not be maintained.
The chemical equilibrium can be changed by phase precipitation, degassing,
boiling, dilution, or mixing with shallow and low-mineralised waters, as well as
by reequilibration with surrounding rocks during ascent to the surface. These
secondary effects can perturb the chemical equilibrium of the hydrothermal fluid.
In addition, the sampling and analysis of geothermal fluids can introduce further
uncertainties. These perturbations and uncertainties cause an error propagation
that affects the reservoir temperature estimations of solute geothermometry.
These issues are addressed in this thesis to extend, facilitate and improve the
applicability of solute geothermometry.
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8.1 major findings

In solute multicomponent geothermometry, the reconstruction of undisturbed
chemical conditions is essential. Since the real reservoir conditions are only
accessible in geothermal wells with wired-box sampling at depth, these reservoir
conditions have to be numerically reconstructed. The first study (Chapter 3)
addressed this issue and developed a multicomponent geothermometer based
on the coupling of MATLAB (MATLAB, 2019) with IPhreeqc (Charlton and
Parkhurst, 2011; Parkhurst, Appelo et al., 2013) with integrated optimisation
processes for sensitive parameters, called MulT_predict (Appendix B). This
geothermometer is based on a standard chemical analysis of the geothermal
fluid composition, which includes the main concentrations of mineral-forming
elements and system parameters. No sophisticated sampling methods (e.g. wired-
box sampling, gas sampling) or analyses (e.g. gas composition, isotopes) are
required. In the second study (Chapter 4) the optimisation process of MulT_-
predict has been further developed and in the third study (Chapter 5) the final
solute multicomponent geothermometer is presented and tested on a global scale.
MulT_predict improves the usability and applicability of geothermal exploration
as an economically efficient tool for reservoir temperature determination.

A series of variations in system parameters and element concentrations were
carried out (Chapter 3 & 4) to identify the most sensitive parameters for op-
timisation. For system parameters, pH, redox potential, dilution, and steam
loss were investigated. For element concentrations, aluminium, magnesium, and
iron are analysed as major components of the mineral phases, but only as trace
elements in the solution. During these variations, all parameters other than
the one being analysed are fixed. As a result, pH, aluminium concentration,
steam loss, and dilution have the greatest effect on the chemical equilibrium.
Therefore, MulT_predict has implemented individual optimisation processes for
each sensitive parameter. These individual optimisation processes automatic-
ally perform a sensitivity analysis to determine the value that gives the most
accurate temperature estimate. In Chapter 4, a more detailed evaluation of the
individual optimisation processes revealed the interdependence of the sensitive
parameters. Therefore, the working principle is improved to a single multidi-
mensional numerical optimisation. In an internal benchmark (Chapter 5) using a
synthetic brine, the individual optimisation processes, and the interdependent
optimisation process are analysed and compared. As a result, the interdependent
optimisation process is more accurate in back-calculating reservoir conditions,
given more precise reservoir temperature predictions. The development and in-
tegration of the numerical optimisation process into MulT_predict has facilitated
and improved the applicability of solute geothermometry.
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To extend the applicability of MulT_predict (Appendix B), the underlying
Lawrence Livermore National Laboratory thermodynamic database llnl.dat (Dav-
eler and Wolery, 1992) is extrapolated to estimate reservoir temperatures up to
350 °C (Chapter 3). The database can normally calculate saturation indices from
20 °C to 300 °C. As the aqueous activity coefficient model of llnl.dat is based on
the Ḃ Equation (Helgeson, 1969) (Chapter2), the Debye-Hückel constants A, B
and Ḃ are extrapolated. The extrapolation scheme of Helgeson (1969) is used,
resulting in values similar to those calculated and presented by Helgeson et al.
(1981). The parameters in llnl.dat are thus implemented and adjusted to improve
the ability of MulT_predict to estimate reservoir temperatures for high-enthalpy
settings.

In addition, the third study (Chapter 5) also addressed the issue of applicability.
Using the extended thermodynamic database (Chapter 3) in combination with
the improved optimisation process (Chapter 4), several reservoir temperature
estimations are performed on prominent geothermal settings. These settings
cover a wide range of lithology, temperature, and salinity on a global scale. As a
result, a universally valid mineral set is developed that is capable of estimating
reservoir temperatures for unknown subsurface mineralogy. In addition, a stat-
istical outlier removal is introduced to individually refine the universally valid
mineral set, resulting in a more accurate multicomponent geothermometer. The
combination of the developed mineral set and the outlier removal provides a
great advantage where little or no knowledge of the subsurface mineralogy is
available. These methods further reduce the barriers to the applicability of solute
geothermometry.

In the fourth study (Chapter 6), the machine learning approach of deep learn-
ing is used to estimate reservoir temperatures. High-quality geochemical data
from Iceland and associated in-situ temperature measurements are used to train
and test the approach. As a result, the deep learning approach has estimated
reservoir temperatures mostly in the range of the measured in-situ reservoir
temperature comparable to the approach of multicomponent geothermometry.
This method opens up a new vein in solute geothermometry.

The fifth study (Chapter 7) adopts the idea of the deep learning algorithm
(Chapter 6) and develops a new adequate solute artificial neural network geo-
thermometer. A supervised feedforward multilayer perceptron is implemented
using the programming language Python (Van Rossum, Drake et al., 1995). This
regression-based solute geothermometer is called AnnRG (Appendix C). Its
development involves the establishment of a baseline model, the creation and
adaptation of a network architecture, and the stepwise optimisation of hyper-
parameters. As a result, AnnRG represents the first adequate solute artificial
neural network geothermometer trained only by in-situ temperature measure-
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ments.

To develop AnnRG, a unique dataset is established in Chapter 7. A total
of 208 data pairs of geochemical fluid parameters and in-situ temperature
measurements are collected and compiled. The dataset covers a wide variety of
geothermal settings and fluid chemistries from nine geothermal areas around the
world (e.g. Upper Rhine Graben, Pannonian Basin). Such data density and quality
are rare in this branch of geochemistry. The processing of such heterogeneous
data trains the ANN complex thermodynamic water-rock interactions in the
subsurface. Compared to multicomponent geothermometry, the input of AnnRG
is reduced to only seven parameters: Na, K, Ca, Mg, Cl, SiO2, and pH, avoiding
the need to measure mineral-forming trace elements. This further enhances
AnnRG’s usability and applicability as a geothermal exploration tool.

8.2 outlook

MulT_predict is an optimised solute multicomponent geothermometer. Through
the integrated optimisation process, the universally valid mineral set, and its
individual refinement, the geothermometer can be used worldwide.
To further refine the reservoir temperature estimations of the tool, additional
vulnerable parameters need to be investigated and implemented. In particular,
the CO2 fugacity is an important factor considering the degassing and hence
multiphase flow during the ascent to the surface. Therefore, the thermodynamic
database has to be revised as the llnl.dat has no correction for the pressure
range and is based on the ideal gas law when dealing with fugacity coefficients.
Therefore the new database had to be based on the Peng-Robinson equation of
state.
To further improve MulT_predict, a real mixing model can be implemented.
This mixing model is created by processing the end members of two aqueous
solutions. In a stepwise optimisation, the two solutions are mixed in different
fractions until the best-fitting ratio is back-calculated.
However, the implementation of additional optimisation processes increases the
computational time and complexity of MulT_predict. Eventually, a balance has
to be found between optimisation and accuracy.

AnnRG represents a new generation of solute geothermometers. As in other
fields, artificial neural networks are becoming increasingly important in solute
geothermometry and geochemistry in general. A ANN that estimates reservoir
temperatures is the equivalent of an ideal solute geothermometer. The user of the
geothermometer does not need any geochemical or geological knowledge. Only
a basic, inexpensive geochemical analysis of the hydrothermal fluid is required to
compute the reservoir temperature estimation. In addition, the ANN can analyse
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large amounts of data within seconds. The potential for further improvements
is huge, with increasing data size, new algorithms, and increasing computing
power. At present, the accuracy of temperature predictions can be improved
mainly by increasing the size of the database. However, this data processing is
still done manually.
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D E C L A R AT I O N O F AU T H O R S H I P

chapter 3 : a multicomponent geothermometer for high temper-
ature basalt settings

Ystroem, L. H., Nitschke, F., Held, S. and Kohl, T. (2020). ‘A multicomponent
geothermometer for high-temperature basalt settings’. In: Geothermal Energy 8:2,
pp. 1–21. DOI: 10.1186/s40517-020-0158-z.

This study was conducted within the Helmholtz Association’s portfolio project
’Geoenergy’ supported by the program ’Renewable Energies’, under the topic
’Geothermal Energy Systems’ and was supported by EnBW, Energie Baden-
Württemberg AG, Germany.
In this study, I set up the conception of a multicomponent geothermometer based
on the geochemical modelling tool IPhreeqc. I wrote the MATLAB code interact-
ing with IPhreeqc. I implemented an automated script, statistically evaluating the
IPhreeqc output within MATLAB. I performed sensitivity analyses on vulnerable
system parameters and implemented three separate optimisation processes for
pH, aluminium concentration, and steam loss/dilution in the MATLAB code.
For the calculation of temperature predictions exceeding 300 degrees Celsius, I
evaluated multiple thermodynamic databases and extrapolated the Lawrence
Livermore National Laboratory database. I tested the multicomponent geother-
mometer on data from Krafla and Reykjanes developing a site-specific basalt
mineral assemblage. I compared the results to conventional geothermometers
based on the original and back-calculated fluid composition. I visualised and
interpreted the results. I wrote the manuscript of the paper.

chapter 4 : an integrated sensitivity analysis for the basalt

specific multicomponent geothermometer for high temperature

settings

Ystroem, L. H., Nitschke, F., Held, S. and Kohl, T. (2021). ‘An Integrated Sensitiv-
ity Analysis for the Basalt Specific Multicomponent Geothermometer for High
Temperature Settings’. In: Proceedings World Geothermal Congress 2020+1, p. 4.

This study was conducted within the Helmholtz Association’s portfolio project
’Geoenergy’ supported by the program ’Renewable Energies’, under the topic
’Geothermal Energy Systems’ and was supported by EnBW, Energie Baden-
Württemberg AG, Germany.



In this study, I set up the conception of an interdependent sensitivity analysis for
the multicomponent geothermometer. I restructured the MATLAB code and com-
bine the three separate optimisation processes for pH, aluminium concentration,
and steam loss/dilution. I added a fourth optimisation process for an addi-
tional element concentration or system parameter. I created a multidimensional
IPhreeqc output of the interdependent optimisation processes and adapted the
statistical evaluation of this data. I developed a visualisation of the statistical
evaluation of the reservoir temperature estimation as a four-panel output file. I
exemplarily recalculated the Krafla data, illustrated it, and interpreted it. I wrote
the manuscript of the proceeding.

chapter 5 : mult_predict - an optimised comprehensive multicom-
ponent geothermometer

Ystroem, L. H., Nitschke, F. and Kohl, T. (2022). ‘MulT_predict - An optimised
comprehensive multicomponent geothermometer’. In: Geothermics 105, p. 102548.
ISSN: 0375-6505. DOI: 10.1016/j.geothermics.2022.102548

This study was conducted as part of the subtopic “Geoenergy” in the pro-
gram “MTET - Materials and Technologies for the Energy Transition” of the
Helmholtz Association and was supported by multiple power plant operators in
the German Molasse Basin with their geochemical fluid analyses.
In this study, I set up the conception of a universally valid mineral assemblage
for the multicomponent geothermometer. This mineral assemblage is applicable
for unknown reservoir composition. I established a three-step procedure for un-
known temperature estimations using the universally valid mineral assemblage
and perform an outlier removal for temperature estimation refinement. I tested
the new method on data from eight geothermal sites worldwide and validated
using in-situ measured temperatures. I performed an internal benchmark of
the optimisation process with a synthetic brine. I stepwise perturbed the chem-
istry of the synthetic brine (pH, aluminium concentration, steam loss/dilution,
and salinity) and back-calculated the initial conditions via the optimisation pro-
cess. I compared the performance of three separate optimisation processes (pH,
aluminium concentration, and steam loss/dilution) as well as the interdepend-
ent optimisation process. I visualised and interpreted the results. I wrote the
manuscript of the paper.

chapter 6 : deep learning and geochemical modelling as tools

for solute geothermometry

Ystroem, L. H., Vollmer, M., Nitschke, F. and Kohl, T. (2022). ‘Deep learning
and geochemical modelling as tools for solute geothermometry’. In: Proceedings



European Geothermal Congress 2022, p. 4. ISBN: 978-2-9601946-2-3.

This study was conducted as part of the subtopic “Geoenergy” in the pro-
gram “MTET - Materials and Technologies for the Energy Transition” of the
Helmholtz Association.
In this study, I set up the conception of comparing the reservoir temperature
estimation of the numerically optimised multicomponent geothermometer and a
newly developed deep learning algorithm. I improved the Python script of the
deep learning algorithm, which was developed by Mark Vollmer in his master
thesis. I acquired more data to improve the deep learning algorithm. I performed
the calculation of Icelandic data via the numerically optimised multicomponent
geothermometer and the deep learning algorithm. I visulised, compared, and
interpreted the results. I wrote the manuscript of the proceeding.

chapter 7 : annrg - an artificial neural network solute geother-
mometer

Ystroem, L. H., Vollmer, M., Kohl, T. and Nitschke, F. (2023). ‘AnnRG - An
artificial neural network solute geothermometer’. In: Applied Computing and
Geosciences 20:100144, DOI: 10.1016/j.acags.2023.100144.

This study was conducted as part of the project “MALEG” of the German Federal
Ministry for Economic Affairs and Climate Action (BMWK, No. 03EE4041B),
implemented by the Project Management Jülich (PtJ). This study is part of the
subtopic “Geoenergy” in the program “MTET - Materials and Technologies for
the Energy Transition” of the Helmholtz Association.
In this study, I developed an adequate solute artificial neural network geothermo-
meter, called AnnRG. I remodelled the deep learning algorithm of Mark Vollmer
to a feedforward multilayer perceptron. I developed and tested the new architec-
ture of the artificial neural network. I performed a hyperparameter optimisation
on the artificial neural network. I acquired 208 data pairs of geochemical fluid
parameters and in-situ temperature measurements worldwide to establish the
geothermometer. I conducted an outlier removal of the database to improve the
input for the artificial neural network. I performed a sensitivity analysis of the
required amount of data necessary to train the geothermometer (>65 samples). I
used 155 samples to set up the geothermometer. To verify the geothermometer,
I transferred 45 unknown samples to the trained artificial neural network and
calculated the reservoir temperature. I visulised and interpreted all results. I
wrote the manuscript of the paper.
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II appendix

Figure A.1: Comparison of conventional qualitative solute geothermometers based on
back-calculated element concentrations using WATCH 2.4 (Bjarnason, 2010)
(cf. Appendix A.4) with the end results of MulT_predict (Fig. 3.7) for the
wells at Krafla



appendix III

Figure A.2: Comparison of conventional qualitative solute geothermometers based on
back-calculated element concentrations using WATCH 2.4 (Bjarnason, 2010)
(cf. Appendix A.4) with the end results of MulT_predict (Fig. 3.10) for the
wells at Reykjanes
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Table A.7: Individual setting-specific minerals sets for reservoir temperature estimation.
(Montmor. = Montmorillonite)

URG Iceland El Tatio Waiotapu Miravalles Pannonia Paris Molasse

Quartz Quartz Chalcedony Quartz Chalcedony Quartz Quartz Quartz

K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar

Microcline Microcline Microcline Microcline Microcline Microcline Microcline Microcline

Albite Albite Albite Albite Albite Albite Albite Albite

Muscovite Muscovite Muscovite Muscovite Muscovite Muscovite Muscovite Muscovite

Illite Illite Illite Illite Illite Illite Illite

Diaspore Diaspore Diaspore Diaspore Diaspore Diaspore Diaspore Diaspore

Analcime Analcime Analcime Analcime Analcime Analcime Analcime

Scolecite Scolecite Scolecite Scolecite Scolecite Scolecite Scolecite

Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite

Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite

Pyrophyllite Pyrophyllite Pyrophyllite Pyrophyllite Pyrophyllite Pyrophyllite

Montmor. Montmor. Montmor. Montmor. Montmor. Montmor. Montmor. Montmor.

Beidellite Beidellite Beidellite Beidellite Beidellite Beidellite Beidellite

Calcite Calcite Calcite Calcite Calcite

Sanidine Sanidine Sanidine Sanidine Sanidine

Smectite Smectite Smectite Smectite Smectite

Mesolite Mesolite Mesolite Mesolite

Stiblite Stiblite Stiblite Stiblite Stiblite

Saponite Saponite Saponite Saponite

Paragonite Paragonite Paragonite Paragonite

Tremolite Tremolite

Clinochlore Clinochlore Clinochlore

Laumontite Laumontite Laumontite

Gibbsite Gibbsite Gibbsite Gibbsite

Dolomite Dolomite Dolomite

Clinoptilolite Clinoptilolite

Enstatite Enstatite

Wollastonite Wollastonite

Wairakite
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%==========================================================================

% MulT_predict.m

%

% FUNCTION:

% - Version 0.22: L. H. Ystroem (KIT) - March 2023

% MulT_predict is a MATLAB tool to facilitate the application of multicom-

% ponent geothermometry on geochemical data. Saturation indices of

% mineral phases were automatically calculated via IPhreeqC and evaluated

% by sensitivity analyses. The result is a best-fit temperature estimation.

%

% INPUT:

% - xlsx-file:[Sample No., Name, Pressure, pH value, Temperature, Element

% concentration]

% An xlsx-file, in a given template, can be read automatically and the geo-

% chemical data is passed to IPhreeqC.

%

% OUTPUT:

% - ’Name’.fig: [Saturation indices vs. temperature plot, statistics,

% temperature estimation]

% A saved MATLAB figure, which contains a diagram of the saturation indi-

% ces of each utilized mineral phase plotted against the temperature, as

% well as the statistics (Root mean square error, standard deviation, etc)

% and the temperature estimation box plot of the best-fit values.

%

% - Text message: [steamloss/dilution [%], pH, and Al-concentration]

% A text message in MATLABs Command Window with the details about the best

% fit parameters (-steamloss/+dilution ’w’%, pH value is ’x’, and Aluminium

% concentration ’y’, and ’individual element’ concentration is ’z’[unit]).

%

% WARNING:

% - Only one xlsx-file can be read and calculated at the time

% - The xlsx-file must be written in the given template

% - Mineral phases which do not intersect or multiply intersect with the

% equilibrium line is not taken into account.

%

% PLEASE NOTE:

% - MulT_predict was programmed in MATLAB R2020b;

% - To run MulT_predict, IPhreeqcCOM server (3.7.3) has to be installed

% - The instruction of MulT_predict is described in the following

% ’*’-framed section

%==========================================================================
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%**************************************************************************
%* INSTRUCTION *
%* - To use MulT_predict, MATLAB and IPhreeqC must be installed *
%* - Start MulT_predict via the Run-button in the Editor Window in MATLAB *
%* - Select an xlsx-file, in the recommended template, as an input file *
%* - Select the samples which should be calculated *
%* - Select the temperature-, pH-, Al concentration- and dilution range *
%* - Enter, if needed pH-, Al-, -steamloss/+dilution- fixation or leave *
%* it empty *
%* - Select mineral phases, which are taken into account for the tempera- *
%* ture estimation *
%* - Runtime, status updates, and the best-fit parameters are printed in *
%* the Command Window in MATLAB *
%* - The final results are given in a four-parted figure which is saved *
%* as a fig-file named like the selected well in the list *
%* *
%* - Changes in the used mineral phases or the size and numbers of *
%* sensitivity analysis steps must NOT be varied in the MATLAB Code! *
%**************************************************************************

% Reading the xlsx-inputfile and listing all selectable samples

[filename,pathname] = uigetfile(’*.xlsx’, ’Select an Inputfile’);

if filename == 0

fprintf(’No Inputfile found \n’)

return

else

[numdata,header,raw] = xlsread([pathname,filename]);

[rows,columns] = size(numdata);

fprintf(’Inputfile read \n’)

[cName,dName] = find(contains(header,’List’)==1);

b = size(header)- size(numdata);

list1 = header((cName+b(1)):end,dName);

listin = listdlg(’ListString’,list1);

end

% Reading the values of the chosen sample (e.g. element concentration)

a = listin(1:end);

clear(’SenMa’,’Sen1’,’Sen1m’,’Sen2’,’Sen2m’)

ccon = find(contains(header(1,:),’[’));

bcon = strfind(header(1,ccon),’[’);

econ = strfind(header(1,ccon),’]’);

con = header{1,ccon}(1,cell2mat(bcon)+1:cell2mat(econ)-1);

Clist = {’Pressure’,’Temperature’,’pH’,’Al’,’Ba’,’CO2’,’Ca’,’Cl’,’Fe’,...

’H2S’,’K’,’Mg’,’Na’,’SiO2’,’SO4’};

for bc = 1:numel(Clist)

[~,db] = find(contains(header(1:2,:),Clist{1,bc})==1);

Clist{2,bc} = numdata(a,(db-b(2)));
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clear(’db’)

end

struct = cell2struct(Clist(2,:),Clist(1,:),2);

% Inpute values for temperature, pH etc.

prompt = {’Enter minimum temperature [C]:’,...

’Enter maximum temperature [C]:’,’Enter temperature steps:’,...

’pH change per step +/-:’,’pH steps combined:’,...

’Aluminium steps:’,’Boil/Dilu [%] per step +/-:’,...

’Boil/Dilu steps combined:’,’pH fixation’,’Aluminium fixation’,...

’-Boil/+Dilu fixation [%]’,’Threshold mineral phases’}; %,’Element steps:’

dlgtitle = ’Input’;

definput = {’20’,’300’,’200’,’0.1’,’10’,’20’,’0’,’0’,’’,’’,’’,’6’};

dims = [1 32];

opts = ’off’;

answer = inputdlg(prompt,dlgtitle,dims,definput,opts);

values = str2double(answer); % to activate change values(x)+1

aaa = values(5)+1; % number of pH sensitivity steps

bbb = values(6)+1; % number of Al-con. sensitivity steps

ccc = values(8)+1; % number of steamloss/dilution sensitivity steps

ddd = 1; % number of element-concentration sensitivity steps

if values(1) >= 1 && values(1) <= 250

tmin = values(1);

else; tmin = 20; % temperature lower limit

end

if values(2) >= 1 && values(2) <=351 % temperature upper limit

tmax = values(2);

else; tmax = 300;

end

tstp = values(3);

pHc = values(4);

cstp = values(7)/100;

if isempty(answer{11,1}) == 0 % fixed concentration

cfix = abs((values(11)/100)-1);

else; cfix = 1;

end

if isempty(answer{10,1}) == 0 % fixed Al-con.

struct.Al = values(10);

else; struct.Al = struct.Al;

end

if isempty(answer{9,1}) == 0 % fixed pH value

pHn = values(9);

else; pHn = struct.pH;

end

threshold = values(12); % threshold minerals

% Selection of possible mineral phases

%============================= llnl.dat ===================================
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list2 = {’Calcite ’,’Araggonite ’,’Dolomite ’,’Spinel ’,’Hematite ’,...

’Goethite ’,’Pyrite ’,’Pyrrhotite ’,’Diaspore ’,’Gibbsite ’,...

’Anhydrite ’,’Gypsum ’,’Forsterite ’,’Grossular ’,’Andradite ’,...

’Andalusite ’,’Sillimanite ’,’Kyanite ’,’Gehlenite ’,’Lawsonite ’,...

’Epidote ’,’Zoisite ’,’Wollastonite ’,’Diopside ’,’Hedenbergite ’,...

’Ferrosilite ’,’Enstatite ’,’Anthophyllite ’,’Tremolite ’,...

’Pargasite ’,’Talc ’,’Muscovite ’,’Paragonite ’,’Phlogopite ’,...

’Illite ’,’Smectite-high-Fe-Mg ’,’Smectite-low-Fe-Mg ’,...

’Clinochlore-14A ’,’Clinochlore-7A ’,’Kaolinite ’,’Quartz ’,...

’Chalcedony ’,’Anorthite ’,’Albite_high ’,’Albite_low ’,...

’Sanidine_high ’,’K-Feldspar ’,’Maximum_Microcline ’,’Analcime ’,...

’Laumontite ’,’Wairakite ’,’Barite ’,’Pyrophyllite ’,’Dolomite-dis ’,...

’Dolomite-ord ’,’Beidellite-Ca ’,’Beidellite-K ’,’Beidellite-Mg ’,...

’Beidellite-Na ’,’Montmor-Ca ’,’Montmor-K ’,’Montmor-Mg ’,’Montmor-Na ’,...

’Annite ’,’Nepheline ’,’Nontronite-Ca ’,’Nontronite-H ’,...

’Nontronite-K ’,’Nontronite-Mg ’,’Nontronite-Na ’,’Saponite-Ca ’,...

’Saponite-H ’,’Saponite-K ’,’Saponite-Mg ’,’Saponite-Na ’,’Scolecite ’,...

’Sepiolite ’,’Clinoptilolite-Ca ’,’Clinoptilolite-K ’,...

’Clinoptilolite-Na ’,’Stilbite ’,’Natrolite ’,’Mordenite ’,’Mesolite ’,...

’Chamosite-7A ’,’Ripidolite-14A ’,’Ripidolite-7A ’,’Margarite ’,...

’SiO2(am) ’};

[indx,tf] = listdlg(’ListString’,list2,’InitialValue’,...

[1 11 32 35 40 41 45 47 48 49 76 81]);

%==========================================================================

minerals = list2(indx);

minC = strcat(’si_’,minerals(:));

minC = regexprep(minC, ’\s’, ’’);

% Defining the size of later on used matrices and vectors

Sensitivity = cell(aaa*2,bbb,ccc,ddd);

ValuepH = zeros(aaa,1);

ValueAl = zeros(bbb,1);

ValueC = zeros(ccc,1);

ValueK = zeros(ddd,1);

starttime = cputime;

fprintf(’Sensitvity analysis started \n’)

% For-loops of the several sensitivity analyses calculated via IPhreeqC

for bb = 1:bbb % numbre of aluminium concentration sensitivity steps

for cc = 1:ccc % number of steamloss/dilution sensitivity steps

for aa = 1:aaa % number of pH sensitivity steps

for dd = 1:ddd % number of individual concentration sensitivity steps

iphreeqc = actxserver(’IPhreeqcCOM.Object’);

iphreeqc.LoadDatabase([’C:\Program Files\USGS\IPhreeqcCOM’ ...

’ 3.7.3-15968\database\llnl.dat’]); % pathname to IPhreeqcCOM

iphreeqc.ClearAccumulatedLines;

iphreeqc.AccumulateLine (’SOLUTION 1’);

iphreeqc.AccumulateLine ([’-units ’ con]);



mult_predict XV

iphreeqc.AccumulateLine ([’-pressure ’ (num2str(struct.Pressure))]);

iphreeqc.AccumulateLine ([’-temperature ’ (num2str(...

struct.Temperature))]);

iphreeqc.AccumulateLine ([’-pH ’ (num2str(struct.pH))]);

if bb == 1 % size of aluminium concentration sensitivity steps

iphreeqc.AccumulateLine ([’Al ’ (num2str(struct.Al))]);

ValueAl(bb,:) = (struct.Al);

elseif (bb > 1) && (bb <= bbb)

iphreeqc.AccumulateLine ([’Al ’ (num2str((struct.Al)...

*(0.1+1.9/(bbb-1)*(bb-1))))]);

ValueAl(bb,:) = (struct.Al*(0.1+1.9/(bbb-1)*(bb-1)));

end

if cc == 1 % size of steamloss/dilution sensitivity steps or fix

iphreeqc.AccumulateLine ([’C(4) ’ (num2str(struct.CO2/cfix))]);

iphreeqc.AccumulateLine ([’Si ’ (num2str(struct.SiO2/cfix))]);

iphreeqc.AccumulateLine ([’Cl ’ (num2str(struct.Cl/cfix))]);

iphreeqc.AccumulateLine ([’Ca ’ (num2str(struct.Ca/cfix))]);

iphreeqc.AccumulateLine ([’S(-2) ’ (num2str(struct.H2S/cfix))]);

iphreeqc.AccumulateLine ([’K ’ (num2str(struct.K/cfix))]);

iphreeqc.AccumulateLine ([’Fe ’ (num2str(struct.Fe/cfix))]);

iphreeqc.AccumulateLine ([’Na ’ (num2str(struct.Na/cfix))]);

iphreeqc.AccumulateLine ([’Mg ’ (num2str(struct.Mg/cfix))]);

iphreeqc.AccumulateLine ([’S(6) ’ (num2str(struct.SO4/cfix))]);

iphreeqc.AccumulateLine ([’Ba ’ (num2str(struct.Ba/cfix))]);

ValueC(cc,:) = cfix;

elseif (cc > 1) && (cc <= ((ccc-1)/2)+1)

iphreeqc.AccumulateLine ([’C(4) ’ (num2str(struct.CO2/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’Si ’ (num2str(struct.SiO2/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’Cl ’ (num2str(struct.Cl/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’Ca ’ (num2str(struct.Ca/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’S(-2) ’ (num2str(struct.H2S/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’K ’ (num2str(struct.K/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’Fe ’ (num2str(struct.Fe/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’Na ’ (num2str(struct.Na/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’Mg ’ (num2str(struct.Mg/abs(cfix...

+cstp*(cc-1))))]);

iphreeqc.AccumulateLine ([’S(6) ’ (num2str(struct.SO4/abs(cfix...

+cstp*(cc-1))))]);
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iphreeqc.AccumulateLine ([’Ba ’ (num2str(struct.Ba/abs(cfix...

+cstp*(cc-1))))]);

ValueC(cc,:) = (cfix+cstp*(cc-1));

elseif (cc > ((ccc-1)/2)+1) && (cc <= ccc)

iphreeqc.AccumulateLine ([’C(4) ’ (num2str(struct.CO2/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’Ca ’ (num2str(struct.Ca/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’Cl ’ (num2str(struct.Cl/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’Fe ’ (num2str(struct.Fe/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’S(-2) ’ (num2str(struct.H2S/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’K ’ (num2str(struct.K/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’Mg ’ (num2str(struct.Mg/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’Na ’ (num2str(struct.Na/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’Si ’ (num2str(struct.SiO2/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’S(6) ’ (num2str(struct.SO4/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

iphreeqc.AccumulateLine ([’Ba ’ (num2str(struct.Ba/abs(cfix...

-cstp*(cc-((ccc-1)/2+1)))))]);

ValueC(cc,:) = (cfix-cstp*(cc-((ccc-1)/2+1)));

end

if dd == 1 % size of individual concentration sensitivity steps

iphreeqc.AccumulateLine ([’Si ’ (num2str(struct.SiO2))]);

ValueK(dd,:) = (struct.SiO2);

elseif (dd > 1) && (dd <= ddd)

iphreeqc.AccumulateLine ([’Si ’ (num2str((struct.SiO2)*(0.8+0.4/...

(ddd-1)*(dd-1))))]);

ValueK(dd,:) = (struct.SiO2*(0.8+0.4/(ddd-1)*(dd-1)));

end

if aa == 1 % size of pH sensitivity steps

if struct.pH <= pHn

iphreeqc.AccumulateLine (’EQUILIBRIUM_PHASES 1’);

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(pHn)) ’ NH3’]);

else

iphreeqc.AccumulateLine (’EQUILIBRIUM_PHASES 1’);

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(pHn)) ’ HNO3’]);

end

ValuepH(aa,:) = (pHn);

elseif (aa > 1) && (aa <= ((aaa-1)/2)+1)
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if struct.pH < pHn-pHc*(aa-1)

iphreeqc.AccumulateLine (’EQUILIBRIUM_PHASES 1’);

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(pHn-pHc...

*(aa-1))) ’ NH3’]);

else

iphreeqc.AccumulateLine (’EQUILIBRIUM_PHASES 1’);

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(pHn-pHc...

*(aa-1))) ’ HNO3’]);

end

ValuepH(aa,:) = (pHn-pHc*(aa-1));

elseif (aa > ((aaa-1)/2)+1) && (aa <= aaa)

if struct.pH <= pHn+pHc*(aa-(((aaa-1)/2)+1))

iphreeqc.AccumulateLine (’EQUILIBRIUM_PHASES 1’);

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(pHn+pHc...

*(aa-(((aaa-1)/2)+1)))) ’ NH3’]);

else

iphreeqc.AccumulateLine (’EQUILIBRIUM_PHASES 1’);

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(pHn+pHc...

*(aa-(((aaa-1)/2)+1)))) ’ HNO3’]);

end

ValuepH(aa,:) = (pHn+pHc*(aa-(((aaa-1)/2)+1)));

end

% pH fixation in IPhreeqC

iphreeqc.AccumulateLine (’PHASES’);

iphreeqc.AccumulateLine (’Fix_pH’);

iphreeqc.AccumulateLine (’H+ = H+’);

iphreeqc.AccumulateLine (’-log_k 0’);

iphreeqc.AccumulateLine (’REACTION_TEMPERATURE 1’);

iphreeqc.AccumulateLine ([(num2str(tmin)) ’ ’ (num2str(tmax))...

’ in ’ (num2str(tstp)) ’ steps’]);

iphreeqc.AccumulateLine (’SELECTED_OUTPUT 1’);

iphreeqc.AccumulateLine ([’-si ’ minerals{:}]);

iphreeqc.AccumulateLine (’-temperature’);

iphreeqc.AccumulateLine (’-pH’);

iphreeqc.AccumulateLine (’-totals Al’);

try

iphreeqc.RunAccumulated;

% Extraction of temperature data and saturation indices of mineral phases

out_PHREEQC = iphreeqc.GetSelectedOutputArray;

names = out_PHREEQC(1,:);

Te = find(strncmp(’temp’,names,4));

te = 2:size(out_PHREEQC);

Temperature = cell2mat(out_PHREEQC(te,Te));

Si = find(strncmp(’si_’,names,3));

Matrix = cell2mat(out_PHREEQC(te,Si));

Matrix(Matrix == 0) = 0.001;
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% Clean up of non- or multiple-intersecting mineral phases

Data = diff(sign(Matrix));

d = any(Data(2:end,:));

e = sum(Data(2:end,(d == 1)));

f = find(e == 0);

Matrix(:,(d == 0)) = [];

Matrix(:,f) = [];

NameLegend = names(Si(1):end);

NameLegend(d == 0) = [];

NameLegend(f) = [];

Data = diff(sign(Matrix));

g = sum(abs(Data(2:end,:)));

Matrix(:,(g > 2)) = [];

NameLegend(g > 2) = [];

% Calculation of equilibrium temperature of each mineral phase

Temp = zeros(1,numel(NameLegend));

h = 1;

for j = 1:numel(NameLegend)

Temp(h) = Temperature(find(diff(sign(Matrix(2:end,j)))));

h = h+1;

end

% Saving equilibrium data (temperatures of mineral phases) in a cell-array

Sensitivity{aa*2-1,bb,cc,dd} = NameLegend;

Sensitivity{aa*2,bb,cc,dd} = num2cell(Temp);

if numel(cell2mat(Sensitivity{aa*2,bb,cc,dd})) <= threshold

Sensitivity{aa*2-1,bb,cc,dd} = minC(:).’;

Sensitivity{aa*2,bb,cc,dd} = {nan(1)};

end

catch

end

end

end

end

Time = cputime - starttime

end

fprintf(’Sensitvity analysis completed \n’)

% Clean up mineral phases for a consistent, statistically evaluable dataset

for rr = 1:size(Sensitivity,2)

for tt = 1:2:size(Sensitivity,1)

for oo = 1:size(Sensitivity,3)

for uu = 1:size(Sensitivity,4)

try

x = setdiff(Sensitivity{1,1,1,1},Sensitivity{tt,rr,oo,uu});
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z = setdiff(Sensitivity{tt,rr,oo,uu},Sensitivity{1,1,1,1});

if isempty(x) == 0

for ee = 1:size(Sensitivity,2)

for ff = 1:2:size(Sensitivity,1)

for pp = 1:size(Sensitivity,3)

for vv = 1:size(Sensitivity,4)

y = find(contains(Sensitivity...

{ff,ee,pp,vv},x));

for gg = length(y):-1:1

Sensitivity{ff,ee,pp,vv}...

(:,y(1,gg)) = [];

Sensitivity{ff+1,ee,pp,vv}...

(:,y(1,gg)) = [];

end

end

end

end

end

elseif isempty(z) == 0

for ee = 1:size(Sensitivity,2)

for ff = 1:2:size(Sensitivity,1)

for pp = 1:size(Sensitivity,3)

for vv = 1:size(Sensitivity,4)

y = find(contains(Sensitivity...

{ff,ee,pp,vv},z));

for gg = length(y):-1:1

Sensitivity{ff,ee,pp,vv}...

(:,y(1,gg)) = [];

Sensitivity{ff+1,ee,pp,vv}...

(:,y(1,gg)) = [];

end

end

end

end

end

end

catch

end

end

end

end

end

fprintf(’Mineral comparison completed \n’)

% Statistical evaluation of the matched data and extraction in a matrix

SenMa = zeros(size(Sensitivity,1)/2,size(Sensitivity,2),...

size(Sensitivity,3),size(Sensitivity,4));

for ll = 1:size(Sensitivity,2)
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for ii = 2:2:size(Sensitivity,1)

for qq = 1:size(Sensitivity,3)

for ww = 1:size(Sensitivity,4)

if isempty(Sensitivity{ii,ll,qq,ww}) == 1

Sensitivity{ii,ll,qq,ww} = {nan(1)};

end

SenMa(ii/2,ll,qq,ww) = range(cell2mat(Sensitivity...

{ii,ll,qq,ww}));

end

end

end

end

[Mmin,Imin] = min(SenMa(:),[],’omitnan’);

[Ib_row, Ib_col, Ib_pag, Ib_cub] = ind2sub(size(SenMa),Imin);

NameLegende = Sensitivity{2*Ib_row-1,Ib_col,Ib_pag,Ib_cub};

NameLegende = regexprep(NameLegende, ’si_’, ’ ’);

fprintf(’Statistics completed \n’)

% Rerun IPhreeqC with the best fit values obtained by sensitivity analyses

% Enter ValueK(Ib_cub) for individual element concentration

iphreeqc = actxserver(’IPhreeqcCOM.Object’);

iphreeqc.LoadDatabase([’C:\Program Files\USGS\’ ...

’IPhreeqcCOM 3.7.3-15968\database\llnl.dat’]);% pathname to IPhreeqcCOM

iphreeqc.ClearAccumulatedLines;

iphreeqc.AccumulateLine (’SOLUTION 1’);

iphreeqc.AccumulateLine ([’-units ’ con]);

iphreeqc.AccumulateLine ([’-pressure ’ (num2str(struct.Pressure))]);

iphreeqc.AccumulateLine ([’-temperature ’ (num2str(struct.Temperature))]);

iphreeqc.AccumulateLine ([’Al ’ (num2str(ValueAl(Ib_col)))]);

iphreeqc.AccumulateLine ([’C(4) ’ (num2str(struct.CO2/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’Ca ’ (num2str(struct.Ca/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’Cl ’ (num2str(struct.Cl/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’Fe ’ (num2str(struct.Fe/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’S(-2) ’ (num2str(struct.H2S/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’K ’ (num2str(struct.K/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’Mg ’ (num2str(struct.Mg/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’Na ’ (num2str(struct.Na/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’Si ’ (num2str(struct.SiO2/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine ([’Ba ’ (num2str(struct.Ba/ValueC(Ib_pag)))]);

iphreeqc.AccumulateLine (’EQUILIBRIUM_PHASES 1’);

if struct.pH <= ValuepH(Ib_row)

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(ValuepH(Ib_row)))...

’ NH3’]);

else

iphreeqc.AccumulateLine ([’Fix_pH -’ (num2str(ValuepH(Ib_row)))...

’ HNO3’]);

end

iphreeqc.AccumulateLine (’PHASES’);
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iphreeqc.AccumulateLine (’Fix_pH’);

iphreeqc.AccumulateLine (’H+ = H+’);

iphreeqc.AccumulateLine (’-log_k 0’);

iphreeqc.AccumulateLine (’REACTION_TEMPERATURE 1’);

iphreeqc.AccumulateLine ([(num2str(tmin)) ’ ’ (num2str(tmax))...

’ in ’ (num2str(tstp)) ’ steps’]);

iphreeqc.AccumulateLine (’SELECTED_OUTPUT 1’);

iphreeqc.AccumulateLine ([’-si’ NameLegende{:}]);

iphreeqc.AccumulateLine (’-temperature’);

iphreeqc.AccumulateLine (’-pH’);

iphreeqc.RunAccumulated;

% Extraction of temperature data and saturation indices of mineral phases

out_PHREEQCB = iphreeqc.GetSelectedOutputArray;

namesB = out_PHREEQCB(1,:);

TeB = find(strncmp(’temp’,namesB,4));

teB = 2:size(out_PHREEQCB);

Temperature = cell2mat(out_PHREEQCB(teB,TeB));

SiB = find(strncmp(’si_’,namesB,3));

MatrixB = cell2mat(out_PHREEQCB(teB,SiB));

MatrixB(MatrixB == 0) = 0.001;

% Clean up of non- or multiple-intersecting mineral phases

DataB = diff(sign(MatrixB));

e = any(DataB(2:end,:));

f = sum(DataB(2:end,(e == 1)));

g = find(f == 0);

MatrixB(:,(e == 0)) = [];

MatrixB(:,g) = [];

NameLegendB = namesB(SiB(1):end);

NameLegendB(e == 0) = [];

NameLegendB(g) = [];

DataB = diff(sign(MatrixB));

i = sum(abs(DataB(2:end,:)));

MatrixB(:,(i > 2)) =[];

NameLegendB(i > 2) = [];

% Calculation of equilibrium temperature of each mineral phase

Best = zeros(1,numel(NameLegendB));

jj = 1;

for kk = 1:numel(NameLegendB)

Best(jj) = Temperature(find(diff(sign(MatrixB(2:end,kk)))));

jj = jj+1;

end

% Visulisation of saturation curves

o = 2:size(Temperature);

figure
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u = header(a+b(1),dName);

sgtitle(u);

plotbrowser(’on’)

plot(Temperature(o),MatrixB(o,:));

xlabel(’Temperature [C]’)

ylabel(’Saturation index’)

line([0 max(Temperature)], [0 0],’Linestyle’,’--’,’Color’,’k’)

h = legend(NameLegendB,’Location’,’best’);

h.Interpreter = ’none’;

keyboard % possibility to delete false phases or just click on "RUN" again

fc = get(gca,’Children’);

hLegend = findobj(gcf,’Type’,’Legend’);

LegendB = hLegend.String;

MatrixB = get(fc,’YData’);

MatrixB = (flip(cell2mat(MatrixB(2:end,:))))’;

Best = zeros(1,numel(LegendB));

ss = 1;

for tt = 1:numel(LegendB)

Best(ss) = Temperature(find(diff(sign(MatrixB(2:end,tt)))));

ss = ss+1;

end

% Statistics and output of the best fit parameters

RMSE = rms(MatrixB’);

SDEV = std(MatrixB’);

RMED = median(abs(MatrixB’));

MEAN = mean(abs(MatrixB’));

fprintf(’Best fit completed \n’)

Results = [(1-ValueC(Ib_pag))*100, ValuepH(Ib_row),ValueAl(Ib_col),...

ValueK(Ib_cub)];

formatSpec = [’-Steamloss/+Dilution %2.0f%%, pH is %4.3f, Aluminium’ ...

’ concentration %5.6f, and SiO2 concentration %.3f %s \n’];

fprintf(formatSpec,Results,con)

% Ploting and saving of the best fit data

LegendB = regexprep(LegendB, ’si_’, ’’);

o = 2:size(MatrixB);

figure

u = header(a+b(1),dName);

sgtitle(u);

subplot(2,2,1) %[1,2]

plot(Temperature(o),MatrixB(o,:));

title(’Saturation indices’)

xlabel(’Temperature [C]’)

ylabel(’Saturation index’)

line([0 max(Temperature)], [0 0],’Linestyle’,’--’,’Color’,’k’)

h = legend(LegendB,’Location’,’best’);

h.Interpreter = ’none’;
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legend(’boxoff’);

subplot(2,2,3)

t = plot(Temperature(o),RMSE(o),Temperature(o),SDEV(o),Temperature(o),...

RMED(o),Temperature(o),MEAN(o));

title(’Statistics’)

xlabel(’Temperature [C]’)

ylabel(’Saturation index’)

legend(’RMES’,’SDEV’,’RMED’,’MEAN’);

subplot(2,2,4)

boxplot(Best,’whisker’,8);

ylim([0 max(Temperature)])

title(’Temperature estimation’)

xticklabels(strjoin(u))

ylabel(’Temperature [C]’)

drawnow;

subplot(2,2,2)

for xx = 1:numel(ValueC)

surf(sort(ValueAl),ValuepH,SenMa(:,:,xx),’FaceColor’,’interp’); hold on

end

xlabel(’Al concentration’)

ylabel(’pH value’)

zlabel(’\Delta T’)

saveas(gcf, strjoin(u),’fig’);

fprintf(’Sample finished \n’)
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"""

AnnRG - An artificial neural network solute geothermometer

FUNCTION:

- Version 0.03: M. Vollmer (KIT), L. H. Ystroem (KIT) - June 2023

An artificial neural network solute geothermometer trained by data from

the measured reservoir temperatures worldwide. Using a feedforward

multilayer perceptron to solve the regression analysis of fluid chemistry

and reservoir temperature.

INPUT:

- cvs-file:[’pH’,’Na’,’K’,’Ca’,’Mg’,’SiO2’,’Cl’,’Temperature’]

OUTPUT:

- graphical output of predicted vs. measured data plus error diagrams

- array of errors and predictions

PLEASE NOTE:

- The solute ANN geothermometer was programmed in Python 3.8 with

associated libraries: pandas, matplotlib, numpy, seaborn, tensorflow,

keras

INSTRUCTION:

- To use the geothermometer, Python (3.8) and associated libraries

must be installed

- Training data and new unknown data must be in the recommended csv-file

template: [’pH’,’Na’,’K’,’Ca’,’Mg’,’SiO2’,’Cl’,’T’]

- csv-input-files must be renamed within the code (lines 59 & 151)

- Start the ANN via the Run-button

- Results are visualised in "plots" and output text on the console

- Further results can be picked from the variables

"""

# Libraries

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from numpy.random import seed

# Preprocessing

from sklearn.model_selection import train_test_split
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from sklearn.preprocessing import StandardScaler

# Metrics

from sklearn import metrics

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_percentage_error

#Tensorflow & Keras

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras.callbacks import ModelCheckpoint

import tensorflow as tf

# Reading the csv-inputfile and delet all nan/0 from data

data= pd.read_csv("Training_correct.csv", delimiter=",")

data= data.dropna()

# Fixing up global and local seed

seed(0)

tf.random.set_seed(0)

# Splitting the input data

temp, test = train_test_split(data, test_size=0.2)

train, val = train_test_split(temp, test_size=0.1)

# Define input variables and output variable

X_train = train[[’pH’,’Na’,’K’,’Ca’,’Mg’,’SiO2’,’Cl’]]

y_train = train[[’T’]]

X_val = val[[’pH’,’Na’,’K’,’Ca’,’Mg’,’SiO2’,’Cl’]]

y_val = val[[’T’]]

X_test = test[[’pH’,’Na’,’K’,’Ca’,’Mg’,’SiO2’,’Cl’]]

y_test = test[[’T’]]

# Scale and centre data

scaler_input, scaler_target = StandardScaler(), StandardScaler()

scaler_input.fit(X_train)

scaler_target.fit(y_train)

X_train = scaler_input.transform(X_train)

y_train = scaler_target.transform(y_train)

X_test = scaler_input.transform(X_test)

y_test = scaler_target.transform(y_test)

X_val = scaler_input.transform(X_val)

y_val = scaler_target.transform(y_val)

# Determine the input features

n_features = X_train.shape[1]
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# Set initializer with optimiser

kernel_initializer = ’normal’

opt = tf.keras.optimizers.Adam(learning_rate=0.001)

# Implementing Early Stopping

es = EarlyStopping(monitor=’val_loss’, mode=’auto’, verbose=1, patience=20,

restore_best_weights=True)

# Save the trained model

checkpoint_filepath = ’./checkpoint.hdf5’

checkpoint = ModelCheckpoint(filepath = checkpoint_filepath, verbose = 1,

save_best_only = True,

monitor =’val_loss’, save_weights_only =

True, mode = "auto")

# Define model architecture

model = Sequential()

model.add(Dense(80, activation=’relu’, kernel_initializer=

kernel_initializer, input_shape=(n_features,)))

model.add(Dense(1))

# Compile the model

model.compile(optimizer=opt, loss=’mean_squared_error’)

# Hyperparameter optimisation

history = model.fit(X_train, y_train, epochs=300, batch_size=16, verbose=2,

validation_data=(X_val,y_val),

callbacks=[es])

# Prediction of the test set

yhat = model.predict(X_test)

X_train_p = model.predict(X_train)

X_val = model.predict(X_val)

# Plot learning curves

plt.xlabel(’Epochs’)

plt.ylabel(’Mean square error’)

plt.plot(history.history[’loss’], label=’Training’)

plt.plot(history.history[’val_loss’], label=’Validation’)

plt.legend()

plt.title(’Learning curves’)

plt.savefig(’loss.png’)

plt.show()

# Inverse transform scaled and centred data

y_test = scaler_target.inverse_transform(y_test)

ypred = scaler_target.inverse_transform(yhat)
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X_train_p = scaler_target.inverse_transform(X_train_p)

y_train = scaler_target.inverse_transform(y_train)

X_val = scaler_target.inverse_transform(X_val)

y_val = scaler_target.inverse_transform(y_val)

X_train = scaler_input.inverse_transform(X_train)

# Metric scores (change for other sets)

mse = mean_squared_error(y_test, ypred)

rmse = np.sqrt(metrics.mean_squared_error(y_test,ypred))

mape =mean_absolute_percentage_error(y_test, ypred)

r2 = r2_score(y_test, ypred)

print(’MAPE: %.3f’ % mape)

print(’MSE: %.3f’ % mse)

print(’RMSE: %.3f’ % np.sqrt(mse))

print(’R_squared: %.3f’ % r2)

# Reading in csv-inputfile of new transferable data

extra = pd.read_csv("Verification.csv", delimiter=",")

x_a = extra[[’pH’,’Na’,’K’,’Ca’,’Mg’,’SiO2’,’Cl’]]

y_a = extra[[’T’]]

# Scale, centre, and predict new transferable centre data

scaler_x = StandardScaler()

scaler_y = StandardScaler()

scaler_x.fit(x_a)

scaler_y.fit(y_a)

Xnew = scaler_x.transform(x_a)

y_pred_a = model.predict(Xnew)

y_pred_a = scaler_y.inverse_transform(y_pred_a)

y_true = y_a

# Polt of predicted temperature vs measured temperature plus transferred

data

plt.figure()

plt.plot(X_train_p, y_train,’.b’, label=’Training’,markersize=8)

#color=’#808080’, marker=’.’, markersize=8, label=’ANN’, linewidth=0

plt.plot(X_val, y_val,’.b’,markersize=8)

plt.plot(y_test, ypred,’.r’, label=’Testing’,markersize=8)

plt.plot(y_true, y_pred_a,’.g’, label=’Transfer’,markersize=8)

plt.plot(y_test,y_test,’k’, label =’Regression’) #color=’#606060’

plt.xlabel(’Measured bottom hole temperature [C]’)

plt.ylabel(’Predicted bottom hole temperature [C]’)

plt.xlim(0,350)

plt.ylim(0,350)

plt.legend(loc=’upper left’)

plt.title(’R$^2$: %.3f’ % r2)

plt.savefig(’regression.png’)

plt.show()
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# Error histogram of test set

error = ypred - y_test

plt.hist(error, bins=20)

plt.xlabel(’Predicted temperature difference [K]’)

plt.ylabel(’Quantity’)

plt.xlim(-40,40)

plt.ylim(0,6)

plt.title(’Error histogram of tested data’)

plt.savefig(’histogram.pdf’)

plt.show()

error_train = y_train - X_train_p

error_val = y_val - X_val

error_main = np.concatenate([error,error_val,error_train])

# Violinplot of the error distribution

sns.violinplot(error_main, cut=1)

plt.title(’Error distribution’)

plt.ylabel(’Dataset’)

plt.xlabel(’Predicted temperature difference [K]’)

plt.xlim(-40,40)

plt.savefig(’disribution.pdf’)

plt.show()

# Plot of the outlier removal

abs_error_main = np.absolute(error_main)

measured = np.concatenate([y_test , X_train_p, X_val])

predict = np.concatenate([ypred , y_train, y_val])

rmse_error = np.sqrt(metrics.mean_squared_error(measured, predict))

plt.stem(abs_error_main, linefmt=’:’)

plt.axhline(y=2*rmse_error, c=’black’, ls=’:’)

plt.title(’Outlier detection’)

plt.ylabel(’RMSE’)

plt.xlabel(’Datapoint’)

plt.ylim(-5,75)

plt.savefig(’outlier removal.pdf’)

plt.show()
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