
Data-driven algorithms for predicting
energy-efficient operating points

in agricultural soil tillage

Benjamin Kazenwadel, Simon Becker, Lukas Michiels, Marcus Geimer
Institute of Mobile Machines (Mobima)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Contact: benjamin.kazenwadel@kit.edu

Abstract

Sustainability is especially important in power-intensive tasks in the agricultural industry, and therefore an
aspect with optimization potential. During adjustments of the operating speed, fuel consumption can vary. The
prediction of the most efficient operating point for the tractor-implement combinations is challenging due to the
complexity of the machinery and the varying interaction forces between soil and machine. Currently, human drivers
are required to manually adjust the operating speed. This paper presents and compares two optimization algorithms
for predicting the most energy-efficient operating speed based on real-time measurements of the system state. Field
tests were conducted to evaluate the algorithms under varying soil types and operating conditions. The algorithms
accurately determined advantageous operating points within the defined working quality boundaries, making them
promising tools for increasing sustainability in the agricultural industry.

Index Terms

Efficiency, Data-driven Algorithms, Optimization, Operating Point Prediction

INTRODUCTION

Data-driven algorithms, in particular artificial neural networks, offer high potential in the agricultural
sector, especially in image processing, such as plant detection, and plant growth and health prediction.
Further applications include weather analysis and yield prediction. [1]
The control of the drives in agricultural machines is complex and therefore under continuous research [2].
This paper demonstrates that data-driven algorithms can also be used for the optimization of these control
tasks. We demonstrate the method by optimizing the operating speed during soil tillage. The operating
speed influences the efficiency of the tractor and cultivator combination. The most efficient operating point
depends on the operating conditions, including the soil composition, slope, and machine settings. Finding
the most efficient operating point can be formulated as an optimization problem with the fuel efficiency
η as the target function. The fuel efficiency is defined with the operating speed vreal, the working width
w, and the fuel rate B.

vopt = argmax(η) (1)

η =
vreal · w

B
(2)

Figure 1 visualizes the target function for varying operating depths of a cultivator on even and parallel
rows with constant soil composition. With an increase in depth, not only the overall efficiency decreases,
but the optimal operating point shifts to lower speed settings.
In our previous research publications, we presented two approaches to solve this problem. One approach
used off-policy reinforcement learning [3] and the other one used traction and draft modeling combined
with a neural network for fuel rate prediction [4]. Both algorithms were limited to a discrete action space



Fig. 1: Fuel Efficiency Example (Stationary Operating Points)

of accelerating, decelerating, and maintaining constant speed and could therefore not directly predict the
optimal operating speed. This paper presents an offline reinforcement learning algorithm and an algorithm,
which was specifically designed for agricultural tasks and uses an artificial neural network to predict the
fuel consumption of the machine. Both algorithms were trained using a static dataset, which was created
with a Fendt 724 tractor and a LEMKEN Karat 9 KUTA (4 m) cultivator driven by a human driver.
The training dataset contains the signals of the internal CAN-Bus, which were merged by timestamp and
filtered with a rolling mean filter. Furthermore, turning maneuvers were filtered out. The dataset contains
approximately 82,000 individual machine states from 5.7 hours of fieldwork.

ALGORITHM 1: CONSERVATIVE Q-LEARNING

Reinforcement learning algorithms can solve complex control tasks using data from the interactions of
a machine with its environment. They can be divided into on-policy algorithms, where the policy πk is
trained with state transitions (state st, action at, next state st+1 and reward rt) from their current policy,
whereas off-policy algorithms save several state transitions in a buffer and the data collection policy is
not updated after each measured state transition. The updates are usually applied to the data collection
policy after a few state transitions. Offline reinforcement learning algorithms, also known as batch learning
algorithms, are adaptations of off-policy algorithms, developed to train the policy πβ with a static dataset
and a different and unknown policy πα during data collection. Direct interaction with the environment is
therefore not required during the training process. Figure 2 visualizes these different approaches. [5]

Fig. 2: Reinforcement Learning Algorithms, edited after [5]

For the training of online reinforcement learning algorithms, one option is to conduct extensive train-
ing in the field. This is unfeasible in agricultural processes as the costs of field experiments are high
and appropriate operating quality cannot be guaranteed during the training process. An alternative is



training in accurate simulation models, which require complex machine and environment models. Offline
reinforcement learning algorithms solve these issues by being trained on a previously collected dataset,
which is independent of the policy used during training data collection. Therefore, a dataset from a human
operator can be used to train the included neural networks. Conservative Q-Learning (CQL) is one of these
algorithms. The algorithm uses an additional loss term to counteract the effects of the prediction of out-
of-distribution actions and the distributional shift between training and evaluation data [6]. The algorithm
is an adaptation of the soft-actor critic algorithm (SAC) and is therefore applicable for continuous control
problem [7]. Specific tests were implemented as a preselection strategy of promising trained control
policies to reduce the number of required field experiments. Two parallel rows on an even field with
uniformly distributed soil were driven manually, one at approximately 5 km/h and one at full throttle.
Then the observation of these rows was played back and the proposed actions of the algorithm were
compared, since in an ideal setting, the algorithm should propose the same optimal operating points on
both rows. Furthermore, only fully trained policies were selected where the weights in the neural networks
converged to static values. The choice of the reward function has a major impact on the generalization
of the algorithm. The policies trained with the default target function (Equation (2)) failed to pass the
preselection process. Therefore, we modified the reward function R of the CQL algorithm to optimize the
specific power output by including the draft force FD.

R =
vreal · FD

B
(3)

The action vector a⃗ contains the theoretical speed vtheo. The state vector s⃗ contains the operating speed
vreal, the theoretical speed vtheo, the draft force FD, the slope δ, the acceleration a and the fuel rate B.

a⃗ = (vtheo)
T (4)

s⃗ = (vreal, vtheo, FD, δ, a, B)T (5)

The actions and observations were scaled to be in the range between 0 and 1. The algorithm was
implemented in the open-source framework d3rlpy [8]. The architecture consists of two layers of 256
neurons for the actor-network and for the critic-network.

ALGORITHM 2: INTERACTNET
The second proposed algorithm is an analytic model for the interactions of the machine with its envi-
ronment in combination with a neural network for efficiency prediction. The algorithm is visualized in
Figure 3. This algorithm, called InterActNET, is built on the core principles of [4], surpassing the limita-

Fig. 3: InterActNET Optimization Architecture

tions of its predecessor by directly discretizing action spaces and increasing the speed and transferability
of the algorithm. The algorithm assumes a quasi-stationary process where the variation of the optimal
operating point as well as soil and slope conditions are negligible during the optimization interval of one



second. The algorithm identifies the current active interaction characteristics using action measurements
a⃗ and state measurements s⃗ taken from the machine. Then, the optimizer suggests actions a⃗i, of each
of which the adjacent system states s⃗i are modeled using the identified interaction characteristics. The
proposed actions and their respective states are entered into the machine model, which is represented by
a neural network. This model returns a prediction of machine-internal variables r⃗i. The resulting states
and internal variables are compared in the optimizer using a target function (here: Equation (2)) and the
best action a⃗opt is returned to the machine’s internal controllers as a new target action.
The interaction model used in the interaction detection and prediction steps consists of a traction and a
draft model, which are combined using the force equilibrium parallel to the surface under the neglection
of the air resistance. In contrast to [4], the static force equilibrium parallel to the surface is adjusted by
considering the weight forces of the tractor and implement separately and the inertia of the tractor and
implement. The inertia is only used in the detection step and set to zero during the prediction step, since
the goal is to predict stationary states. The weight forces are calculated using the slope angle δ and the
tractor and implement weights, which were measured beforehand. The changing lifting forces of the rear
links are neglected. The traction model assumes all-wheel drive, locked differentials, and that the overall
traction characteristics of the tractor are similar to those of a single wheel. This assumption neglects
the multi-pass effect and the effect of shifting weight forces on the axles. Furthermore, it assumes the
same slip s for all wheels. The traction characteristics are modeled using the model by Brixius with the
parameters for radial tires by Zoz and Grisso [9], [10]. In our algorithm, the included parameter cT is
identified in the interaction detection step, and the model can then be used for traction prediction.

FT = Fg,n · (1− e−0.08cT ) · (1− e−7.0s)− 1.2

cT
− 0.5s

√
cT

(6)

The interaction forces parallel to the ground between the implement and ground were modeled similarly
to [4] using the proposed relationships by Harrigan and Rotz [11], [12]. The action and state vector are
defined as

a⃗ = (vtheo)
T (7)

s⃗ = (vreal, FD, a, δ)
T (8)

The machine model is a fully connected neural network with three layers of 128 neurons each, which
is trained in a supervised fashion. The network was implemented in TensorFlow [13]. This reduces the
modeling effort because machine internal characteristics, for example, the power-split transmission and
the engine, do not have to be modeled manually or represented by a characteristic map. The input vector
for the neural network combines a selection of the parameters from the action and the state vectors which
were normalized between zero and one, whereas the output solely contains the fuel rate B:

input = (vtheo, vreal, FD, a)
T (9)

output = r⃗ = (B)T (10)

The acceleration is set to zero during the prediction step due to the assumption of a quasi-stationary
system state. The included neural network is trained by using a static dataset and skipping the interaction
identification and prediction steps. The embedding of the acceleration in the training phase allows the use
of non-stationary data points in the training phase. Therefore, the measured actions and states are directly
used as input parameters, and the deviation between the predicted output vector and the measured output
vector is used to train the neural network. The training process is described in Figure 4.
The optimizer evaluated the action space between 5 and 15 km/h which was discretized in 0.33 km/h
steps. To avoid oscillation between accelerating and decelerating in the wide optimum of efficient states



Fig. 4: InterActNET Machine Model Training

(Figure 1) we only allowed the adaptation of the target speed if the algorithm suggested an increase in
efficiency of at least two percent compared to the previously selected action.

aopt =

{
aopt,t−1, ηt(⃗aopt,t) ≤ 1.02 · ηt(⃗aopt,t−1)
aopt,t, ηt(⃗aopt,t) > 1.02 · ηt(⃗aopt,t−1)

(11)

EVALUATION

The evaluation was performed with the same Fendt 724 tractor and a LEMKEN Karat 10 (3 m) to
demonstrate transferability. The test driver was a professional test driver who was tasked with driving
parallel lines each for a reference line and then one line for each algorithm. Automatic steering and four-
wheel drive were enabled. The algorithm runs were conducted fully automatically, and the driver did not
interfere with the proposed settings other than setting a minimum and maximum speed limit. A total of
14 of these evaluation runs with varying depths and operating conditions were conducted, approximately
one hectare for each algorithm.

RESULTS

To achieve comparable results, the data points collected during the evaluation were averaged for each
row. Since the evaluation conditions are not comparable between the evaluation runs, it is only possible
to compare the relative differences with the human reference driver. Figure 5 visualizes the results.

CQL InterActNET
Efficiency

0

10

20

30

Re
la

tiv
e 

Ch
an

ge
 in

 %

CQL InterActNET
Operating Speed

40

30

20

10

0

10

20

Re
la

tiv
e 

Ch
an

ge
 in

 %

Fig. 5: Results



The CQL algorithm improved efficiency in eleven of the test rows with an average increase of 9.7%,
which is represented by the green triangle. InterActNET was able to improve in all the test rows, with
an average of 15.6%. In three of the test rows, the CQL algorithm suggested higher average speeds than
the reference driver, and the respective rows did not fully coincide with the rows where CQL failed to
optimize efficiency.
InterActNET suggested slower average operating speeds in all test rows. Both algorithms never selected
actions outside the minimum and maximum speed boundaries. The test driver reported, that from a driver’s
perspective, the CQL algorithm suggests more pleasant speed changes. This can be explained by the fact
that it uses state transitions and therefore acceleration characteristics during training, whereas InterActNET
does not consider acceleration dynamics. Due to the overall suggestion of slower operating speeds, it can be
argued that choosing the minimum operating speed regarding operating quality automatically maximizes
fuel efficiency. However, this is dependent on the machine combination, settings, target function, and
operating conditions (see Figure 1, Depth 7 cm).

DISCUSSION AND OUTLOOK

Both proposed algorithms showed that they were able to predict more energy-efficient operating points.
The offline reinforcement learning approach showed that purely data-based solutions can solve complex
control optimization problems in agriculture. However, the solution is still limited to a specific target
function and a specific task. This is not the case for InterActNET, where full states are predicted and
implements and target functions can be exchanged. Possible improvements include updating the traction
model to a wheel-specific model, taking soil compression due to the multi-pass effect, the front wheel
advance, and the different wheel loads into account. Therefore, the lifting forces of the rear links of
the tractor must be measured. Furthermore, the algorithm can be extended to include the PTO and the
hydraulics in the optimization process.

ACKNOWLEDGEMENTS

We would like to thank AGCO for supporting this research and for conducting the field experiments.
Furthermore, we would like to thank LEMKEN for providing the test cultivators.

REFERENCES

[1] S. Kujawa and G. Niedbała, “Artificial Neural Networks in Agriculture,” Agriculture, vol. 11, p. 497, June 2021. Number: 6 Publisher:
Multidisciplinary Digital Publishing Institute.

[2] M. Geimer, Mobile working machines. Warrendale, Pennsylvania (USA): SAE International, 2020.
[3] S. Becker, K. Daiss, K. Daaboul, M. Geimer, and M. J. Zöllner, “Machine Learning for Process Automation of Mobile Machines in

Field Applications,” in Land.Technik AgEng 2019 : Hannover, Nov. 8th + 9th 2019 : 77th International Conference on Agricultural
Engineering, p. 187, 2019. ISSN: 0083-5560.

[4] S. Becker, B. Kazenwadel, and M. Geimer, “Automation and Optimization of Working Speed and Depth in Agricultural Soil Tillage
with a Model Predictive Control based on Machine Learning,” in LAND.TECHNIK 2022 The Forum for Agricultural Engineering
Innovations, (Online), pp. 55–64, VDI Verlag, Feb. 2022. ISSN: 0083-5560.

[5] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems,”
Nov. 2020. arXiv:2005.01643 [cs, stat].

[6] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-Learning for Offline Reinforcement Learning,” June 2020.
[7] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement Learning with Deep Energy-Based Policies,” July 2017.

arXiv:1702.08165 [cs].
[8] T. Seno and M. Imai, “d3rlpy: An Offline Deep Reinforcement Learning Library,” Nov. 2021. arXiv:2111.03788 [cs].
[9] W. Brixius, “Traction prediction equations for bias ply tires,” Tech. Rep. ASAE paper No. 87-1622, ASAE, St. Joseph MI, 1987.

[10] F. Zoz and R. Grisso, “Traction and Tractor Performance,” ASAE Distinguish. Ser., vol. 27, Mar. 2012.
[11] T. Harrigan and C. Rotz, “Draft Relationships for Tillage and Seeding Equipment,” Applied engineering in agriculture, vol. 11, pp. 773–

783, Nov. 1995.
[12] “ASAE D497.7 Agricultural Machinery Management Data,” tech. rep., American Society of Agricultural and Biological Engineers

(ASABE), 2011. Place: St. Joseph, MI Publisher: ASABE.



[13] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems,” 2015.


