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Abstract

We present two new data structures to efficiently maintain dynamic sorted sequences.

Our approach is based on the Packed Memory Array (PMA). PMAs offer cache efficient

scan queries by allocating all elements in contiguous memory. During updates, they

have to rebalance elements within the array, requiring amortized O(log2 𝑁 ) time. Our

approach stores elements in buffer blocks, and employs rebalancing on the level of block

references, rather than individual elements. In this way, our first contribution, the Buffered
Packed Memory Array (BPMA) improves the cost for sequential, single-element updates to

amortized O(log𝑁 ) time, bridging the gap to traditional pointer-based data structures.

Our second contribution, the Batch-Parallel Buffered Packed Memory Array (BBPMA),

offers update operations that insert or delete a batch of elements or keys in parallel. It

builds on the design of the BPMA but adds effective work-balancing for both inserting the

elements and rebalancing the data structure in parallel. In this way, inserting a batch of 𝑘

elements is possible in amortized span O(log𝑁 + log𝑘).
Experimental evaluation for the BBPMA shows that it offers batch-parallel insertions

that are faster by a factor of 1.2–2.5 for regular inputs and a factor of up to 25 for worst-case

inputs, than a comparable batch-parallel PMA without the block indirection. At the same

time, we show that our block indirection has small effects on scan performance. In the

configuration that offers the fastest insertions, scans in the BBPMA are between 30 % faster

and up to 35% slower than in the traditional PMA, but 2 times faster than in a search

tree. With a configuration that focuses on scan performance, the BBPMA dominates the

traditional PMA: Scans in the BBPMA are a factor of 1.25–2 faster, while it reaches similar

insertion performance.
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Deutsche Zusammenfassung

Diese Arbeit entwickelt zwei neue Datenstrukturen, um dynamische sortierte Folgen effizi-

ent zu verarbeiten. Sie basieren auf dem PackedMemory Array (PMA), einer Datenstruktur,

die besonders effizient Teile der sortierten Folge scannen kann, da sie alle Elemente in

einem kontinuierlichen Speicherblock alloziert. Für Einfügungen oder Löschungen müs-

sen sie Elemente im Speicher rebalancieren, sodass eine Änderung amortisiert O(log2 𝑁 )
Zeit benötigt. Die Datenstrukturen, die in dieser Arbeit vorgestellt werden, speichern

Elemente in Pufferblöcken und rebalancieren auf dem Niveau von Pufferblöcken, anstatt

einzelner Elemente. Auf diese Weise verbessert die erste Datenstruktur — das Buffered
Packed Memory Array (BPMA) — die amortisierten Kosten für sequentielle Änderungen ein-

zelner Elemente auf O(log𝑁 ). Damit ist sie asymptotisch gleich schnell wie zeigerbasierte

Suchbaumdatenstrukturen.

Die zweite Datenstruktur, das Batch-Parallel Buffered Packed Memory Array (BBPMA),

bietet Änderungsoperationen, die einen ganzen Satz von Elementen oder Schlüsseln auf

einmal in die Datenstruktur einfügt oder aus ihr löscht. Sie baut auf dem BPMA auf und

erweitert es um effektive Lastverteilung sowohl für das Einfügen neuer Elemente als auch

das Rebalancieren der Datenstruktur. Dies ermöglicht die effiziente parallele Verarbeitung
einer Operation. Auf dieseWeise ermöglicht sie es, einen Satz von 𝑘 Elementen in optimaler

paralleler Bearbeitungszeit von O(log𝑁 + log𝑘) einzufügen.
Die experimentelle Evaluation des BBPMA zeigt, dass die Einfügeoperationen um einen

Faktor von 1.2 bis 2.5 für reguläre Eingaben und bis zu 25 für ungünstige Eingaben

schneller sind als in einem vergleichbaren PMA ohne Pufferblöcke. Gleichzeitig haben die

Pufferblöcke einen geringen Einfluss auf die Scan-Performance. In einer Konfiguration, die

die schnellsten Einfügungen ermöglicht, sind Scans im BBPMA zwischen 30% schneller

und 35 % langsamer als in einem PMA ohne Pufferblöcke, aber um einen Faktor 2 schneller

als in Suchbäumen. Mit einer Konfiguration, die auf optimale Scan-Performance ausgelegt

ist, dominiert das BBPMA traditionelle PMAs: Scans im BBPMA sind einen Faktor von

1.25 bis 2 schneller, während Einfügungen ähnlich schnell verarbeitet werden.
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1. Introduction

Data structures for sorted sequences are the foundation of various applications that need

to handle large dynamic data sets [2, 26]. They simultaneously enable fast update and

lookup queries on the data set by storing the elements in sorted order [24]. Search trees

are the most common representation if elements can only be compared to each other, and

no knowledge about the keys can be used [2, 24]. However, Packed Memory Arrays (PMAs)

[21, 9, 4] are a more efficient data structure in practice for some use cases like representing

dynamic graphs [29, 28, 26, 15], or as a building block of (concurrent) cache-oblivious

search trees [9, 4, 11, 10, 6, 5].

PMAs store the elements of a sorted sequence in a single, contiguous array. This

layout enables memory-efficient scan operations as data can be prefetched efficiently from

contiguous memory, allowing fast memory accesses. Opposed to that, scans in pointer-

based data structures like search trees require many expensive random accesses [26].

Therefore, PMAs are an ideal candidate for use cases that require fast scans on dynamic

data sets. One example are graph algorithms, as they often scan all edges of a node with

fast subroutines for each edge [29].

While storing data in a contiguous array benefits the performance of scan queries,

it complicates updates, i.e., insertions and deletions. An update in a naive sorted array

requires worst-case linear time for moving all existing elements, whereas search trees

achieve a running time of O(log𝑁 ). To improve update times, PMAs intersperse the

elements with additional empty cells (gaps). Carefully engineered update algorithms

rebalance elements in the array to ensure that there is always an appropriate number of

gaps in each region of the PMA. In this way, PMAs realize an interesting tradeoff between

insertions and scan queries: They achieve amortized update times of O(log2 𝑁 ) with only a
constant factor of additional gaps. Hence, range queries are still efficient as only few empty

cells are scanned unnecessarily. At the same time, the few empty memory cells suffice

to achieve updates that are significantly faster than in the naive case. However, updates

on PMAs are slower than for search trees both in practice [16, 12] and asymptotically in

theory.

In recent years, the increase in performance of a single processor core has slowed down

significantly. Instead of faster single-core processors, multi-core processors have become

the standard solution for increasing the performance of a computer [2]. One drawback

of multi-core processors is that they do not automatically provide better application

performance. Instead, the application must be explicitly parallelized so that it can be

executed on multiple processor cores in parallel to improve performance. Depending on

the application, this process can be difficult or even require a complete redesign of the

underlying algorithms or data structures. Overheads for the coordination of work between

the cores can quickly reduce the speedup that is achieved by parallel execution.

1



1. Introduction

Therefore, fast and scalable parallel data structures are fundamental for the performance

of parallel applications — and hence for efficiently using modern multi-core processors

and continuing to take advantage of hardware improvements. In the context of parallel

sorted sequences, there are two paradigms for parallelization. On the one hand, concurrent
sorted sequences parallelize the access to the data structure: They allow multiple threads

to concurrently perform queries on shared data, and threads see the effects of the updates

of other threads. Concurrent data structures can be a simple option to parallelize an

application: Instead of a single thread operating on a sequential data structure, multiple

threads operate on a shared, concurrent data structure. However, concurrent sorted

sequences have significant practical drawbacks. In the worst case, all concurrent updates

target the same section of the data structure. Here, concurrent data structures do not

scale well, as expensive locking or lock-free synchronization of threads is needed [2, 24].

Good concurrent performance often requires relaxing the semantics [19]. Achieving good

speedups over tuned sequential data structures appears to be challenging unless solely

read-only operations are executed concurrently [24].

On the other hand, batch-parallel sorted sequences process a batch of elements in each

update and parallelize the execution of an individual batch update. By processing multiple

elements in one operation, the work necessary for the update can be distributed efficiently

across multiple threads. Moreover, parts of the work (like searching for the insertion

position) can be amortized over multiple elements (a section of the batch). In contrast to

concurrent data structures, any write accesses to the data structure depend only on the

unique current batch update, and not on potential concurrent updates. Hence, sequential

correctness is usually easy to achieve and complex parallelization techniques can be used.

A recent result fromWheatman et. al. [26] suggests that batch-parallel PMAs can maintain

the cache-efficiency of sequential PMAs and therefore provide faster scan queries than

batch-parallel trees. However, batch updates on the PMA quickly require lots of work

for rebalancing. In practice, the parallel execution becomes memory-bound, significantly

restricting scalability [26].

We suggest the Buffered Packed Memory Array (BPMA), a novel approach of using

a PMA to store references to buffer blocks — with capacity for multiple elements —

instead of individual elements. Rebalancing in traditional PMAs is particularly memory-

intensive because individual elements are moved. In our approach, the blocks buffer

insertions or deletions until they over- or underflow. Only then, buffer blocks need to

be split or merged, triggering insertions or deletions on the PMA. Hence, rebalancing

work is significantly reduced. We extend the BPMA to the Batch-Parallel Buffered Packed
Memory Array (BBPMA), a variant with batch-parallel update operations. With one level

of indirection, our new data structures are a middle ground between single-element PMAs

(without any indirections) and traditional, pointer-based search trees with many levels of

indirections.

This thesis is structured as follows: We define sorted sequences and PMAs in Chapter 2

before reviewing related work in Chapter 3. Our new data structures are described and

theoretically analyzed in Chapter 4. We give an overview of our implementations in

Chapter 5 before presenting extensive experimental evaluations in Chapter 6. Finally, we

summarize our findings and discuss future work in Chapter 7.

2



2. Preliminaries

In this chapter, we define sequential as well as batch-parallel sorted sequences and intro-

duce an abstract definition of a Packed Memory Array (PMA). Explanations and analyses

throughout this thesis will build on this abstract PMA.

2.1. Sorted Sequences

Largely following the definition by Sanders et al. [24], we define a basic sequential sorted

sequence that provides update operations for single elements. A sorted sequence S stores

a set of elements from a universe 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 . Each element 𝑒 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 is associated with

a key 𝑘𝑒𝑦 (𝑒) ∈ 𝐾𝑒𝑦 from a universe of keys 𝐾𝑒𝑦. The binary relation ≤ on 𝐾𝑒𝑦 induces

a total order on the elements. The sorted sequence stores its elements in this order. We

use ⊥ ∉ 𝐾𝑒𝑦 as null key to indicate that an entry is invalid. The number of elements in

the data structure is 𝑁 and we write 𝑒 ≤ 𝑒′ as a shortcut for 𝑘𝑒𝑦 (𝑒) ≤ 𝑘𝑒𝑦 (𝑒′). The basic
operations of a sequential sorted sequence, insertion, deletion, search, and scan are defined

as follows:

• S.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡) : S B S ∪
{
𝑒𝑎 ∈ {𝑒} | �𝑒𝑏 ∈ S : 𝑘𝑒𝑦 (𝑒𝑏) = 𝑘𝑒𝑦 (𝑒𝑎)

}
• S.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑘 ∈𝐾𝑒𝑦) : S B S \ {𝑒 ∈ S | 𝑘𝑒𝑦 (𝑒) = 𝑘}

• S.𝑙𝑜𝑐𝑎𝑡𝑒 (𝑘 ∈𝐾𝑒𝑦) : returnmin{𝑒 ∈ S | 𝑘𝑒𝑦 (𝑒) ≥ 𝑘}

• S.𝑠𝑐𝑎𝑛(𝑘min ∈𝐾𝑒𝑦, 𝑘max ∈𝐾𝑒𝑦, 𝑓 ∈𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) :
for {𝑒 ∈ S | 𝑘min ≤ 𝑘𝑒𝑦 (𝑒) ≤ 𝑘max} do apply 𝑓 to 𝑒

The operation S.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡) adds a new element 𝑒 to the set, if no element with

the key 𝑘𝑒𝑦 (𝑒) was contained in the set before. This ensures that keys are unique for all

elements in S. Conversely, the operation S.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑘 ∈ 𝐾𝑒𝑦) removes the unique element

with the given key 𝑘 from the set, if it exists. The search operation S.𝑙𝑜𝑐𝑎𝑡𝑒 (𝑘 ∈ 𝐾𝑒𝑦)
returns the element with the smallest key larger than or equal to the given key 𝑘 . Finally,

the scan operation S.𝑠𝑐𝑎𝑛(𝑘min ∈𝐾𝑒𝑦, 𝑘max ∈𝐾𝑒𝑦, 𝑓 ∈𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) applies an operation 𝑓

to all elements 𝑒 ∈ S with 𝑘min ≤ 𝑘𝑒𝑦 (𝑒) ≤ 𝑘max. We prohibit duplicate keys in S and

require that an existing element remains unchanged if a subsequent insertion operation

tries to insert an element with the same key.

2.2. Batch-Parallel Sorted Sequences

Instead of the 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒) and 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑘) operations which insert or remove a single element,

batch-parallel sorted sequences offer batch manipulation operations that insert a batch of

3



2. Preliminaries

elements B into the data structure or remove elements corresponding to a batch of keysK
from the data structure. The number of elements or keys in the batch is 𝑘 . The definitions

of the single-element operations canonically extend to the batch operations:

• S.𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑎𝑡𝑐ℎ(B ⊆ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡) : S B S ∪
{
𝑒𝑎 ∈ B | �𝑒𝑏 ∈ S : 𝑘𝑒𝑦 (𝑒𝑏) = 𝑘𝑒𝑦 (𝑒𝑎)

}
• S.𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑎𝑡𝑐ℎ(K ⊆ 𝐾𝑒𝑦) : S B S \ {𝑒 ∈ S | 𝑘𝑒𝑦 (𝑒) ∈ K}

Similar to the single element insertions, batch elements with keys that already exist in

the data structure are ignored by 𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑎𝑡𝑐ℎ(B). Practical implementations typically

sort the batches for efficient parallel executions. For simplicity, we assume that batches

are presorted and do not contain duplicate keys. In sorted batches, duplicates are easy

to remove in a linear-time preprocessing step. A batch-parallel operation is executed in

parallel by 𝑝 processing elements (PEs). Lookup and scan operations remain unchanged.

They can be called concurrently, but the read-only queries have to wait for potential

batch-updates to finish.

2.3. Packed Memory Arrays

In this section, we establish an abstract definition of Packed Memory Arrays (PMAs) before

we discuss specific realizations in Chapter 3. We start with the data structure layout, then

present an abstract explanation of update and search operations and discuss rebalancing

operations in detail. Our description closely follows that of Bender et al. [4, 9].

Data Structure Layout The PMA is a cache-friendly data structure that stores elements

of a sorted sequence in contiguous memory. Figure 2.1 displays a schematic overview.

A PMA for 𝑁 elements is an array of size 𝑃 = Θ(𝑁 ), where 𝑃 is a power of two larger

than or equal to 𝑁 . The array stores elements interweaved with gaps (empty memory

cells). A PMA maintains the density invariant that there are always Θ(ℓ) elements stored

in any section of length ℓ greater than some small constant [12]. It ensures that there

are enough gaps for fast updates, but also enough elements for memory efficiency and

fast linear scans. To enforce the invariant, elements are rebalanced (i.e., moved within the

array) if necessary. The array is implicitly subdivided into segments, i.e., sections of the
array, of size log 𝑃 . Some operations on PMAs are defined using tree-terminology on an

implicit perfect binary tree over the 𝑃/log 𝑃 segments. Each leaf on level zero corresponds

to one segment. The region 𝑟 (𝑣) of a node 𝑣 in the tree is the section of the PMA that is

covered by segments in the subtree of 𝑣 . The binary tree is not maintained explicitly.

Operations on the PMA Searches in the PMA are performed using binary search on the

array. If a new middle index points to a gap in the PMA, the next valid entry can be found

using linear search. A scan query simply locates the start of the range and iterates the

PMA linearly until reaching the end of the range. The density invariant ensures memory

efficiency. An insertion into a PMA consists of two phases: First, the position for the new

element is located. If the position is not empty, other elements are moved out of the way

until an empty cell is found. Then, the new element is written to the correct location.

Thereafter, a rebalancing operation restores the density invariant, starting at the memory

4



2.3. Packed Memory Arrays

ℓ = 3

ℓ = 2

ℓ = 1

ℓ = 0

𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7

Figure 2.1.: Schematic overview of a Packed Memory Array with 𝑁 = 19, 𝑃 = 32 and

segment size 4. A contiguous array (bottom) stores elements (purple) with

gaps in between them (white). The array is implicitly classified into segments

𝑠𝑖 (green). An implicit binary tree (top) over the segments is used to simplify

the definition and analysis of algorithms. Leaves are on level zero.

cell that was empty and now contains an element (the new element or the shifted element

that was present before). Rebalancing operations are explained in detail below. Removals

proceed analogously: After the element is located, it is replaced by a gap, and a rebalancing

operation starting from the new gap restores the density invariant.

Density Thresholds and Rebalancing Tomaintain the density invariant stated above, PMAs

assert that the density in PMA regions defined by the implicit binary tree remains within

specific thresholds. Let 𝑢 be a node in the implicit binary tree on level ℓ = ℓ (𝑢) with
region 𝑟 = 𝑟 (𝑢). It has capacity 𝑐𝑎𝑝 (𝑢) equal to the length of its region. The density 𝜏 (𝑢)
is defined as the ratio of used cells in 𝑟 (𝑢) to 𝑐𝑎𝑝 (𝑢). PMAs bound the density of a node

from below and above using a minimum density function 0 ≤ 𝜏min(ℓ) < 1 and a maximum
density function 0 < 𝜏max(ℓ) ≤ 1 that depend on the level ℓ of the node. Here, 𝜏min(ℓ)
is monotonically increasing and 𝜏max(ℓ) is monotonically decreasing in the level of the

region. We write 𝜏 (𝑢) and 𝜏 (𝑟 (𝑢)) as a shortcut for 𝜏 (ℓ (𝑢)). The density invariant follows

as all PMA implementations require these thresholds for some level ℓ where 𝜏min(ℓ) > 0,

𝜏max(ℓ) < 1 and the capacity of nodes on level ℓ is a small constant.

A rebalancing operation ensures that all regions respect their density thresholds. Sup-

pose that a region 𝑟 (𝑢) no longer respects its density thresholds after an insertion or

deletion. The rebalancing operation redistributes elements in an enclosing rebalancing
region 𝑟 ′ ⊋ 𝑟 (𝑢) that respects its thresholds. Effectively, this moves elements from too

dense regions into less dense surrounding regions (after insertions) or from sufficiently

dense regions into regions that do not have enough elements (after deletions). If the

PMA does not respect its density threshold globally, it is typically reallocated in an array

that is larger or smaller by a constant factor, and elements are distributed uniformly in

it. The rebalancing region is constructed by ascending the implicit binary tree from 𝑢 to

the root. At each node, the number of elements in the corresponding region is counted.

5



2. Preliminaries

The rebalancing region 𝑟 (𝑣) is the region of the lowest node 𝑣 whose region respects its

thresholds.
1
Once the rebalancing region is established, elements are redistributed in it.

Most implementations use a simple uniform distribution. Lemma 1 shows that this leaves

𝑟 (𝑣) and all subregions (including 𝑟 (𝑢)) with valid densities. Since we are only interested

in the asymptotic behavior, we ignore rounding errors for simplicity.

Lemma 1. Let 𝑟 ′ be a region that respects its density thresholds:

𝜏min(𝑟 ′) ≤ 𝜏 (𝑟 ′) ≤ 𝜏max(𝑟 ′)

By redistributing elements in 𝑟 ′ uniformly, all subregions 𝑟sub ⊊ 𝑟 ′ respect their density
thresholds:

𝜏min(𝑟sub) ≤ 𝜏 (𝑟sub) ≤ 𝜏max(𝑟sub)

Proof. Let 𝑟sub ⊊ 𝑟 ′ be a subregion of 𝑟 ′. Since ℓ (𝑟sub) < ℓ (𝑟 ′), 𝑟sub has density thresholds

that are less strict than or equal to those of 𝑟 ′:

𝜏min(𝑟sub) ≤ 𝜏min(𝑟 ′) and 𝜏max(𝑟sub) ≥ 𝜏max(𝑟 ′) (2.1)

If elements are distributed uniformly in 𝑟 ′, 𝑟sub has density 𝜏 (𝑟sub) = 𝜏 (𝑟 ′), conforming to

the stricter thresholds of 𝑟 ′. With Inequations 2.1, it follows that 𝑟sub respects its density

thresholds.

1
As the binary tree is not held explicitly in practice, “ascending” the tree corresponds to extending the

region to the left or right with exponentially growing lengths, constructing the regions defined by the

tree.
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3. Related Work

Packed Memory Arrays are well-studied in the literature. We first consider results in

the sequential, single-element case to outline the strengths and weaknesses of PMAs.

In the parallel case, we briefly consider concurrent approaches, but focus on existing

batch-parallel works. For the batch-parallel case, we also review an approach based on

search trees that we use in our experimental evaluations.

3.1. Sequential Packed Memory Arrays

The general problem of storing a dynamic set of 𝑁 elements in sorted order in Θ(𝑁 ) space
[12] has been studied extensively before, both specifically in the context of PMAs [21, 22,

9, 4, 12, 16], but also independent of those [30, 31, 32, 8, 14, 17]. As far as possible, our

descriptions rely on the schematic PMA introduced in Section 2.3 and only explain the

specific choices made for its components in the respective work. An overview of running

times for selected sequential PMA data structures can be found in Table 3.1.

Early Works Itai et al. [21] introduce an approach similar to modern PMAs (called Sparse
Tables) and prove that amortized O(log2 𝑁 ) element moves are necessary per insertion,

without considering deletions. Their data structure mostly follows our schematic de-

scription in Section 2.3, but it does not consider deletions and has no minimum density

threshold. The maximum density threshold decreases by a constant term for each level,

i.e., logarithmically in the length of the region. Itai and Katriel [22] prove that it is possible

to achieve the same asymptotic bounds without restricting rebalancing regions to the

regions defined by the implicit binary tree but note that there are no practical benefits to

their rebalancing procedure.

Willard [30, 31, 32, 12] first proves a worst-case bound of O(log2 𝑁 ) element moves per

insertion. We focus on a simplified variant of his data structure by Bender et al. [7]. We

start with the abstract PMA from Section 2.3. Regions that originate from sibling nodes in

the implicit binary tree are referred to as sibling regions. Besides limiting the densities of

individual regions, Bender et al. require that the number of elements in sibling regions from

level 𝑖 differs by at most 2 · 2𝑖 . Whenever this does not hold for such regions, 2
𝑖
elements

are moved from the dense to the less dense region by shifting elements linearly to the less

dense end. This requires O(2𝑖+1 log𝑁 ) element moves, as elements in 2
𝑖+1

segments of

length Θ(log𝑁 ) need to be moved. To deamortize the time needed for rebalancing, the

element moves are performed during the next 2𝑖 insertions or deletions that occur within
the two regions, processing O(log𝑁 ) operations per insertion or deletion. In this way,

partial rebalancing operations that originate from different past update operations on two

sibling regions can be required during the same subsequent update operation. Bender

et al. show that these can be executed together in O(log𝑁 ) time. For each insertion or

7



3. Related Work

Name Ref. Year Impl. Del.

Insertion Search

Time I/Os I/Os

Sparse

Array

[21] 1981 ◦ ◦ O
(
log

2 𝑁
)

O
(
log

2 𝑁
)

O (log𝑁 )

Deam-

ortized

[7, 30] 2002 ◦ • O
(
log

2 𝑁
)
* O

(
log

2 𝑁
)
* O (log𝑁 )

PMA [9, 4] 2005 ◦ • O
(
log

2 𝑁
)
O

(
1 + log

2 𝑁

𝐵

)
O (log𝑁 )

APMA [12] 2007 • ◦ O
(
log

2 𝑁
)
O

(
1 + log

2 𝑁

𝐵

)
O (log𝑁 )

O (log𝑁 )‡ O
(
1 + log𝑁

𝐵

)‡
RMA [16] 2019 • • O

(
log

2 𝑁
)
O

(
1 + log

2 𝑁

𝐵

)
O (log𝑁 )

O (log𝑁 )‡ O
(
1 + log𝑁

𝐵

)‡
SPMA [27] 2023 • • O

(
log

2 𝑁
)
O

(
1 + log

2 𝑁

𝐵

)
O

(
log𝐵 𝑁

)
Table 3.1.: Summary of selected sequential PMA data structures in chronological order.

Year is the publication year of the latest cited reference. Impl. shows if an
implementation is provided in the original source, and Del. shows if deletions
were considered in the analysis. Search times are O(log𝑁 ) for all structures.
Running times marked with an asterisk* are worst case running times, all others

are amortized. Running times marked with a dagger
‡
only apply to certain

input sequences.

deletion, rebalancing is needed for regions in at most O(log𝑁 ) levels, yielding the worst

case bound of O(log2 𝑁 ).

A generalization of the data maintenance problem for PMAs is Online List Labeling
[8, 14, 17]. Here, 𝑁 items of a dynamic set have to be stored in sorted order in an array

of size 𝑃 . The objective is to minimize the number of element moves required for an

insertion or deletion. Clearly, PMAs rely on the special case 𝑃 = (1 + Θ(1)) 𝑁 . An upper

bound of O(log2 𝑁 ) can be derived from the previously mentioned works [21, 30, 31,

32]. The same bound was shown to be a lower bound for deterministic algorithms [14]

and any algorithms that only redistribute elements of a continuous subarray uniformly

[17]. A recent theoretical result [8] proposes a randomized algorithm with expected cost

O(log3/2 𝑁 ), constituting a significant improvement over the previous state of the art.
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3.1. Sequential Packed Memory Arrays

Cache-Oblivious Packed Memory Array Bender et al. [9, 4] introduce the first cache-

oblivious variant of the previous sparse array and introduce the term Packed Memory
Array. Their data structure closely follows that of Itai et al. [21] but is also cache efficient

as it uses only amortized O(1 +
(
log

2 𝑁
)
/𝐵) memory transfers in insertions and deletions,

for the cache line size 𝐵. Opposed to Itai et al., they additionally support deletions while

maintaining fast updates and scans by adding lower-bound density thresholds for regions.

After each update, the rebalancing region is constructed by scanning to the left and right of

the updated cell, reconstructing the regions of the leaf-to-root path in the implicit binary

tree. Elements are then distributed uniformly in the rebalancing region. This way, only

O(1 + ℓ/𝐵) memory transfers are necessary for rebalancing a region of length ℓ .

Improvements to Packed Memory Arrays Several improvements to PMAs have been pro-

posed. Bender and Hu [12] present the Adaptive Packed Memory Array (APMA) that

achieves the original bounds from Bender et al. [9, 4] for all input distributions, but

performs asymptotically better on some distributions. Specifically, APMAs improve the

rebalancing cost to amortized O(log𝑁 ) operations and amortized O(1+ log𝑁 /𝐵) memory

transfers for sequences of random inserts, repeated inserts after the same element, as well

as bulk inserts, where up to 𝑛 elements are inserted at the same location at once. Opposed

to traditional PMAs, APMAs do not necessarily distribute elements uniformly when rebal-

ancing a region. Instead, they distribute them unevenly to achieve lower density in those

segments of the PMA where recent insertions took place, anticipating further insertions

there in the next operations. To control the uneven distributions, APMAs store a set of

markers, i.e., predecessors of elements recently inserted into the PMA. For each marker,

the predictor data structure maintains a pointer to the segment to which the element was

inserted. Furthermore, the predictor provides an insertion number, a lower bound to the

number of insertions after the marker within the last O(log2 𝑁 ) insertions. The predictor
is designed to ignore noisy insertions, i.e., few insertions that do not follow the current

update pattern. When redistributing the elements of a rebalancing region, elements are

distributed unevenly to segments, and segments with a large insertion number receive less

elements. The densities are carefully chosen to ensure that the usual amortized O(log2 𝑁 )
number of element moves is maintained in all cases and that the work needed for redis-

tributions is asymptotically the same as for uniform redistributions. Deletions are not

considered in the theoretical analyses and experiments. Experimental evaluations show

that APMAs are up to 7 times faster than traditional PMAs when all elements are inserted

at the same position, the worst case for traditional PMAs. A speedup of 3 is achieved if

inserts at the start of the data structure and random inserts are mixed equally. For random

inserts, uneven distributions do not seem to offer a practical advantage and APMAs are

slower than traditional PMAs due to the additional overhead.

In Rewired Memory Arrays (RMAs), De Leo and Boncz [16] provide several improvements

to (A)PMAs. They reconstruct the adaptive rebalancing scheme from Bender and Hu [12]

to make it more robust. To improve scan performance, they store all elements of a segment

at one end of the segment, while all empty cells are stored at the other end. As elements are

no longer randomly interspersed with gaps, there are less branch mispredictions during

scans. To maximize the length of continuous dense sections, they alternate between

shifting elements to the left and right of a segment, so that two segments always form

9



3. Related Work

one larger block of elements. To improve search performance, they add a static (fixed

size) index with keys that can be used for faster navigation to the segments. Finally, they

use memory rewiring [25] to rebalance elements in regions larger than a memory page

with only one write per element instead of two. Traditionally, rebalancing first moves

the elements of the rebalancing region to auxiliary storage without gaps, and then writes

them back uniformly into the rebalancing region in the PMA. Instead, RMAs directly write

elements uniformly to unused memory pages and replace the pages in the rebalancing

region with the new pages by changing the virtual page addresses. The authors report a

speedup of about 20 % by memory rewiring. Their adaptive rebalancing has an overhead of

about 20 % for random insertions but achieves a speedup factor of around 5 for sequential

inserts at the same position.

While PMAs are more cache-efficient than B-Trees [3] for scanning, they are less cache-

efficient for searches. Each step of a binary search in a PMA reads an element from an

arbitrary position, so that a binary search requiresΘ(log𝑁 ) memory transfers. In contrast,

B-Trees read Θ(𝐵) splitters at once in an inner node, so that only Θ(log𝐵 𝑁 ) memory

transfers are required. Since search is also a component of update and scan queries, it

influences their running times as well. Wheatman et al. develop Search-optimized Packed
Memory Arrays (SPMAs) [27] to improve binary searches. Compared to traditional PMAs,

SPMAs use a small auxiliary data structure that stores the first element, called head, of
each segment. A binary search for the target segment in this compact data structure is

more cache-friendly than in the full PMA. Cache-efficiency can be further improved by

permuting the head elements so that the order in the auxiliary data structure resembles

the order in which the elements would be accessed during a binary search. In this way,

searches in PMAs can match the theoretical memory efficiency bound for B-Trees. In

practice, searches in SPMAs are up to 3.6 times faster than in PMAs for an application

benchmark for data stores. They achieve a speedup of around 2 compared to B+-Trees.

3.2. Parallel Packed Memory Arrays

To understand how PMAs can be parallelized, we first review works on concurrent PMAs.

Then, we turn towards previous works on PMAswith batch-parallel operations, the focus of

this thesis. Table 3.2 presents a comparison of the batch-parallel PMA and a batch-parallel

search tree (see Section 3.3).

Concurrent Operations De Leo and Boncz [15] use a PMA with concurrent access to store

dynamic graphs. Their data structure maintains one lock per segment. Before inserting

or deleting an element and rebalancing a region, a thread has to acquire the lock of the

respective segment. This is challenging if a rebalancing region extends further than the

segment that was originally locked by the updating thread. Here, it is necessary to acquire

additional locks, as the rebalancing region can include segments that are concurrently

written by other operations. To avoid deadlocks, such rebalancing operations are executed

by a centralized rebalancing service. It computes the rebalancing region, acquires all

necessary locks, and partitions the rebalancing operation into subtasks. The subtasks are

issued to a job queue from where they are fetched by worker threads. The rebalancing

service releases the locks once all subtasks are executed and wakes up other threads that
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3.2. Parallel Packed Memory Arrays

wait for the lock of an updated segment. These threads have to verify that they still target

the respective segment, as its content might have changed. Experimental evaluations

show that this scheme is slow if concurrent updates target the same region of the PMA, as

multiple writers compete for the same locks. To achieve better throughput in this scenario,

a writer waiting for a lock passes its update operation to the thread that currently holds the

lock. The update operation will then be executed asynchronously by the thread holding

the lock. Again, a special case treatment is necessary if the queue of a thread contains

elements that no longer belong to the segment that the thread updates. No theoretical

analysis is presented for the data structure.

Wheatman and Xu [28] also present a PMA for dynamic graphs with concurrent updates

but handle large rebalancing regions differently. Rather than centralizing the rebalancing

in such cases, rebalancing is coordinated by the thread that performed the original update

operation. This thread acquires all necessary locks for the rebalancing region using a

carefully engineered scheme to acquire multiple locks in parallel while avoiding deadlocks.

The element moves necessary for large rebalancing regions are then performed by multiple

threads, using inter-operation parallelism: A concurrently called update might be executed

by multiple threads. In this way, all operations have polylogarithmic span. To facilitate

locking, all elements are stored to the left of a segment.

Batch-Parallel Operations Durand et al. [18] present a PMA that processes updates in

mixed batches of insertions and deletions but executes these batch operations sequentially.
Their solution is tailored to workloads from particle simulations. In each time step, the

location of certain particles is updated by deleting the old entry for a particle and inserting a

new one at the new location. Deletions and insertions are executed as one batch operation.

First, all deletions are executed without rebalancing by replacing the respective elements

with gaps. Second, insertions are performed by recursively splitting the PMA and the

sorted list of insertion elements in the middle. After each split, the number of old and new

elements in each half of the split is determined. If either of the two halves does not respect

its density bound, both are rebalanced together, ending this branch of the recursion. If both

halves respect their density bounds, they are each split again. A global resize is necessary

if both initial halves do not respect their density bounds with the new number of elements.

No theoretical analysis is provided.

Wheatman et al. [26] propose the batch-parallel Compressed Packed Memory Array
(CPMA), the first PMA variant with batch-parallel updates. The batch insertion proceeds

in three stages. First, the sorted batch ismerged into the PMA. Second, a set of rebalancing

regions is computed in the counting phase. Finally, the rebalancing regions are rebalanced.

To merge the batch into the PMA, the PMA segment for the middle element of the batch

is located. The range of batch elements that need to be merged into the segment is found

using exponential search on the batch. The remaining left and right halves of the PMA

and the batch are processed recursively. For each segment reached by the insertion, a job

is dispatched to insert the section of the batch into a segment. If all batch elements fit

into the segment, they are inserted directly. Otherwise, all elements from the segment and

those from the batch are stored in auxiliary storage and the segment maintains a pointer

to them. If one segment receives a large section of the batch, this process is done using
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Name Ref. Year Del.

Insertion Scan

Work Span I/Os

Parallel

Search

Tree

[2] 2016 ◦ O
(
𝑘 log 𝑁

𝑘
+ log𝑁

)
O (log𝑁 ) O

(
log𝐵 𝑁 + ℓ

)
CPMA [26] 2023 • O

(
𝑘 log2 𝑁

)† O
(
log

2 𝑁
)
O

(
log𝐵 𝑁 + ℓ

𝐵

)
Table 3.2.: Comparison of two data structures for sorted sequences with batch-parallel

updates. Year is the publication year of the cited reference. Both variants are

implemented in the cited source. Del. shows if deletions were considered in the

analysis. Running times marked with a dagger
†
are amortized, all others are

worst case. Scan performance is for a scan of ℓ elements.

parallel merge. A reference to any segment that is altered during this phase is stored in a

thread-safe set.

CPMAs use a binary tree over the segments to find rebalancing regions. Opposed to

single-element operations, multiple segments of the PMA may have been changed in

one batch update. To find all necessary rebalancing regions at once, the counting phase

ascends the tree level-wise, processing levels sequentially and the necessary nodes of each

level in parallel. The counting phase starts with the nodes on level zero that correspond to

segments of the tree that were changed before. Here, it counts the number of elements in

the corresponding segments. Whenever a number of elements is computed for any node,

it is cached so that it can be reused later. If a leaf does not respect its density thresholds,

its parent is stored to be counted in the next level. On each level above level zero, a node is

counted by summing its children, reusing the cached number of elements for the children.

If the number of elements is not cached for a child, the counting phase descends into the

subtree rooted at the child. The traversal ends at any nodes that have a cached number of

elements, or at leaves. Leaves are counted for a first time and the value is cached. When

backtracking to the node that needs to be counted, the respective number of elements

is cached for each node along the paths. In this way, it is guaranteed that each segment

is only counted once in the counting phase and no segment is counted unnecessarily. If

a node on a level above level zero respects its density bounds, its PMA region is stored

as a rebalancing region. Otherwise, its parent is stored to be counted in the next level.

Finally, the rebalancing regions from the previous step are rebalanced. First, the elements

from the segment and its auxiliary storage are copied densely to a buffer. Then, they are

redistributed uniformly into the target segments. Parallel copy is employed to parallelize

the process.

CPMAs support insertions of sorted batches of size 𝑘 in O(𝑘 log2 𝑁 ) amortized work

and O(log2 𝑁 ) worst-case span. Experimental evaluation shows that scalability is limited

in the variant described so far, as the algorithm is memory-bound in practice. It achieves

a relative speedup of 19 on 128 cores. Therefore, the CPMA adds compression by delta-
encoding elements in the segments. Each segment only stores its first element explicitly.

From there, only differences (deltas) between subsequent elements are stored using the
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minimal number of bits possible. Wheatman et al. use the CPMA as a key-store, storing

only 40-bit integers without associated values. In this setting, delta encoding halves the

space usage in comparison to a standard PMA, and the CPMA achieves a relative speedup

of 43 on 128 cores. As the space reduction through compression depends on how small

the deltas are, it is unclear how effective delta encoding can be for general use cases like

storing keys associated with mapped values. While the key could be encoded efficiently,

delta encoding offers no benefit for arbitrary (unordered) values. At the same time, values

need to be stored inline in the PMA so that range queries accessing them are fast.

3.3. Parallel Search Trees

Search trees are a widely used representation for sorted sequences with various different

implementations in the sequential case [24]. We briefly introduce sequential (𝑎, 𝑏)-trees
as they are the foundation of the batch-parallel search tree by Akhremtsev and Sanders

[2] that we use for comparison to our data structures.

The (𝑎, 𝑏)-tree [1, 20, 24] is a sequential search tree. Elements are stored in leaves, which

are also connected in a doubly-linked list. In the search tree, each inner node except

the root has an outdegree 𝑑 between 𝑎 and 𝑏. It stores 𝑑 − 1 splitters, i.e., keys that are
used for navigation between the children. All leaves have the same depth, so that the

total tree depth is logarithmic in the number of elements. Search queries are answered

by descending the tree from the root, selecting the next child using binary search in the

splitters of each node. If 𝑏 ≤ 2𝑎, a search requires time O(log𝑏 + log𝑁 ). Insertions create
a leaf for the new element and add it as a child to the correct inner node. If the degree of

an inner node is greater than 𝑏, it is split and the new inner node is added to its parent

recursively.

Akhremtsev and Sanders [2] present a batch-parallel search tree based on the (𝑎, 𝑏)-tree.
We will refer to this data structure as the Parallel Search Tree (PST). A sorted batch of

elements is inserted by parallelly splitting the tree and the batch into 𝑝 subtrees and

sections of the batch such that each section can be inserted into one subtree. Then, each

processor can independently insert (or merge) its batch section into (or with) the subtree.

Finally, the subtrees are joined in parallel. To achieve good load balance, the split positions

are carefully chosen depending on both current tree and batch. Using intricate parallel

split and join methods, a batch update for tree size 𝑁 and batch size 𝑘 requires parallel

time

O
(
𝑘

𝑝
log

𝑁

𝑘
+ log𝑝 + log𝑁

)
.

A comparison of this data structure and the CPMA is given in Table 3.2.
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4. Buffered Packed Memory Arrays

In this section, we introduce three new Packed Memory Array data structures. First, we

present the Buffered PackedMemory Array (BPMA), a sequential PMAwith single-element

operations and the block indirection. We continue with a description of the Batch-Parallel

Buffered Packed Memory Array (BBPMA), a variant with batch-parallel operations. Finally,

we add the Global Rebalancing Batch-Parallel Buffered Packed Memory Array (GBPMA),

a simplified variant of BBPMA to investigate a simpler way of rebalancing.

4.1. Sequential Buffered Packed Memory Array

While traditional PMAs offer faster scans than pointer-based data structures, a major

disadvantage of PMAs is that they require amortized O(log2 𝑁 ) time per single-element

insertion or deletion, whereas search trees need time O(log𝑁 ). The update cost is domi-

nated by expensive rebalancing operations that move elements within the array. Existing

PMAs can only match the update cost of pointer-based data structures for certain input

patterns [12], but not in general. The Buffered Packed Memory Array (BPMA) is a new data

structure based on PMAs that achieves update cost of only O(log𝑁 ) using a single level

of indirections, matching traditional pointer-based data structures.

4.1.1. Data Structure

Figure 4.1 shows the layout of the BPMA. Let 𝑁 be the number of elements in the BPMA.

It stores the elements in 𝑀 blocks 𝑏 𝑗 for 𝑗 = 0, . . . , 𝑀 − 1. Blocks are maintained using

the reference PMA, a PMA R with an array size of 𝑃 = Θ(𝑀). Each of the entries R[𝑖] for
𝑖 = 0, . . . , 𝑃 − 1 is either a valid reference entry for a block 𝑏 or empty. A reference entry
for the block 𝑏 is a three-tuple

𝑟𝑒 𝑓 (𝑏) B (ℎ𝑒𝑎𝑑 (𝑏), 𝑠𝑖𝑧𝑒 (𝑏), 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 (𝑏)).

The head ℎ𝑒𝑎𝑑 (𝑏) is the key of the first element in 𝑏 and 𝑠𝑖𝑧𝑒 (𝑏) stores the current number

of elements in 𝑏. The pointer 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 (𝑏) references the memory location for the elements

in 𝑏. An empty entry is written as

(⊥, 0, null),

where ⊥ is the null key. Valid block references in the reference PMA are sorted by the

heads of their blocks. As usual, the reference PMA is allocated in contiguous memory. We

write R[𝑖] .ℎ𝑒𝑎𝑑 , R[𝑖] .𝑠𝑖𝑧𝑒 and R[𝑖] .𝑝𝑜𝑖𝑛𝑡𝑒𝑟 for the respective part of a reference entry at

index 𝑖 in the reference PMA.
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Each block has capacity 𝐶 = Θ(log𝑁 ) that is a multiple of 4. Elements in a block are

stored densely (i.e., without gaps) and in sorted order. In this way, the order of block

references in the reference PMA induces a global ordering of all elements in the BPMA.

Elements in block 𝑏 are indexed using 0-based indices and empty cells are marked as ⊥:

𝑏 = ⟨𝑏 [0], . . . , 𝑏 [𝑠𝑖𝑧𝑒 (𝑏) − 1], ⊥, . . . , ⊥⟩.

The BPMA adopts the behavior of the PMA of Bender et al. [4, 9] for its reference PMA.

Details are defined in Section 4.1.3. Furthermore, a BPMAmaintains the block size invariant.
It asserts that a block always contains at least 𝐶/4 elements, except if 𝑁 < 𝐶/4 and𝑀 = 1.

This limits the number of blocks and — simultaneously — the number of entries in the

reference PMA to

𝑀 = Θ

(
𝑁

log𝑁

)
.

Consequently, the maximum array size of the reference PMA is

𝑃 = Θ(𝑀) = Θ

(
𝑁

log𝑁

)
.

Note that previous works often use the notion “block” for our PMA “segments”. In our case,

a block is allocated independently of the reference PMA and contains multiple elements.

A nonempty entry of the reference PMA is a reference to a block. A segment is a sequence

of adjacent (empty or nonempty) entries in the reference PMA.
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Reference

PMA

Blocks

Figure 4.1.: A Buffered Packed Memory Array. The reference PMA (top) stores pointers

(blue) to blocks along with the size and key of the first element (head) of the

block. Block references are sorted with respect to the heads. The blocks (bot-

tom) store elements (green) in sorted order. Each block has capacity Θ(log𝑁 )
and is at least one quarter full. For clarity, we only show three blocks and leave

invalid block references empty. As an example, we store integers in the BPMA.
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4.1.2. Search and Scan Queries

A search query 𝑙𝑜𝑐𝑎𝑡𝑒 (𝑘) in the BPMA first finds the last block 𝑏 with head ℎ𝑒𝑎𝑑 (𝑏) ≤ 𝑘
in R. This part of the search query only uses the reference PMA as the head of each block

is stored within R. If an element with key 𝑘 exists, it must be in block 𝑏. Subsequently,

the element is located within the block using binary search. A search query returns two

pointers: One to the reference of the block in the reference PMA and one to the correct

entry within the block.

To perform a scan query 𝑠𝑐𝑎𝑛(𝑘min, 𝑘max, 𝑓 ), the start of the range is found using a

search query for 𝑘min on the BPMA. The search query initializes the two pointers used

for iteration: One pointer to the current entry in the reference PMA and one pointer to

the current element in the respective block. Since elements are stored densely in blocks,

iterating a block is trivial. Whenever the end of a block is reached, the next valid block is

found through a linear search on the reference PMA. The scan ends when an element 𝑒

with 𝑘𝑒𝑦 (𝑒) > 𝑘max is found or when the end of the BPMA is reached.

4.1.3. Update Operations and Rebalancing

Algorithm 1 gives a pseudocode representation of an insertion query 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒) on the

BPMA. The BPMA first uses a search on the reference PMA to locate the last block 𝑏 with

ℎ𝑒𝑎𝑑 (𝑏) ≤ 𝑘𝑒𝑦 (𝑒). For a new global minimum 𝑒 , the first block is found instead. If 𝑏 is full,

the upper half of the elements is split off into a new block 𝑏′, and 𝑟𝑒 𝑓 (𝑏′) is inserted into

R behind 𝑟𝑒 𝑓 (𝑏). After a block split, 𝑏 is set to the block that 𝑒 needs to be inserted to.

After the split, or if no split is necessary, 𝑒 is inserted into 𝑏. The insertion position in 𝑏

is found using binary search and greater elements are shifted back by one position. The

size and head of the block are updated in the PMA. If 𝑁 is too large for the current block

capacity 𝐶 , the data structure is reconstructed with blocks that are larger or smaller by a

constant factor.

A remove operation 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑘) proceeds similar to insertions. Pseudocode is given

in Algorithm 2. After the element 𝑒 with 𝑘𝑒𝑦 (𝑒) = 𝑘 is located in block 𝑏, it is removed

from 𝑏. If 𝑠𝑖𝑧𝑒 (𝑏) ≥ 𝐶/4, it suffices to update 𝑠𝑖𝑧𝑒 (𝑏) and ℎ𝑒𝑎𝑑 (𝑏) in the reference PMA. If

instead 𝑠𝑖𝑧𝑒 (𝑏) < 𝐶/4, the deletion triggered an underflow, conflicting with the block size

invariant. To maintain a valid block size, the BPMA initially tries to steal the first or last

element from 𝑏′, the successor or predecessor block of 𝑏 and insert it to the end or start of 𝑏
[23]. If either of these blocks has 𝑠𝑖𝑧𝑒 (𝑏′) > 𝐶/4, an element can be stolen and the reference

PMA entry for 𝑏′ is updated. Otherwise, some neighbor block 𝑏′ has 𝑠𝑖𝑧𝑒 (𝑏′) = 𝐶/4. In
this case, 𝑏 can be merged into 𝑏′ at the start or end, so that 𝑠𝑖𝑧𝑒 (𝑏′) = 𝐶/2 − 1 and 𝑏′ is
still valid. After a merge, the reference PMA entry for 𝑏′ is updated and the entry for 𝑏

is removed from the reference PMA, potentially triggering a rebalancing operation on

the reference PMA. The only case that leaves 𝑏 with 𝑠𝑖𝑧𝑒 (𝑏) < 𝐶/4 is if no neighbors are

found. Then, 𝑏 is the only block so that 𝑁 < 𝐶/4 and𝑀 = 1. Here, the block size invariant

is trivially respected.

Rebalancing operations on the reference PMA are performed as outlined in Section 2.3.

We redefine the density thresholds by Bender et al. [4, 9] in the notation introduced in

Section 2.3. Note that we use levels (where leaves are on level zero) instead of depths
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Algorithm 1: BPMA single-element insertion

Input: BPMA R with 𝑁 elements, new element 𝑒 with key 𝑘𝑒𝑦 (𝑒).
Output: BPMA R′ that contains all elements of R as well as 𝑒 , in sorted order.

1 (𝑏, 𝑖) ← R .𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘 (𝑘𝑒𝑦 (𝑒)) // block 𝑏, index 𝑖 to reference in R

2 if 𝑠𝑖𝑧𝑒 (𝑏) = 𝐶 then
3 (𝑏, 𝑏′) ← 𝑏.𝑠𝑝𝑙𝑖𝑡 () // lower and upper half

4 R[𝑖] .𝑠𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑏) 𝑗 ← R .𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑡 (𝑏′, 𝑖) // insert 𝑟𝑒 𝑓 (𝑏′) as successor

of 𝑟𝑒 𝑓 (𝑏)
5 if 𝑘𝑒𝑦 (𝑒) ≥ ℎ𝑒𝑎𝑑 (𝑏′) then // insert 𝑒 to 𝑏′

6 (𝑏, 𝑖) ← (𝑏′, 𝑗)

7 𝑏.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒)
8 R[𝑖] .𝑠𝑖𝑧𝑒 ← R[𝑖] .𝑠𝑖𝑧𝑒 + 1
9 R[𝑖] .ℎ𝑒𝑎𝑑 ← 𝑏 [0]

10 if 𝑁 + 1 is too large for 𝐶 then
11 Reallocate the BPMA with larger blocks

12 return R

(where the root node has depth zero). For height ℎ of the implicit binary tree of the

reference PMA, densities are controlled through arbitrary constants

0 < 𝜏0
min

< 𝜏ℎ
min

< 𝜏ℎ
max

< 𝜏0
max

= 1.

Then, the minimum and maximum density functions for nodes on level ℓ are defined as

𝜏min(ℓ) B 𝜏ℎ
min
+ ℓ ·

𝜏ℎ
min
− 𝜏0

min

ℎ

and

𝜏max(ℓ) B 𝜏0
max
− ℓ ·

𝜏0
max
− 𝜏ℎ

max

ℎ
.

Note that 𝜏min(ℓ) is strictly monotonic increasing and 𝜏max(ℓ) is strictly monotonic de-

creasing in ℓ . On low levels, more variation in densities is tolerated — local densities can

vary considerably. On higher levels, densities are controlled more strictly to keep the

global density in a small range. During rebalancing, references in the reference PMA are

distributed uniformly within a rebalancing region.

4.1.4. Analysis

To assess the influence of the block indirection in the BPMA in comparison to traditional

PMAs, we analyze the space consumption of our data structure as well as the running

times for update, search and scan queries. For the update queries, we perform an amortized

analysis of the running times for single-element insertions and deletions.
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Algorithm 2: BPMA single-element removal

Input: BPMA R with 𝑁 elements, key 𝑘 .

Output: BPMA R′ that contains all elements of R except 𝑒 with 𝑘𝑒𝑦 (𝑒) = 𝑘 .
1 (𝑏, 𝑖) ← R .𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘 (𝑘) // block 𝑏, index 𝑖 to reference in R

2 𝑏.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑘)
3 if 𝑠𝑖𝑧𝑒 (𝑏) ≥ 𝐶

4
then // only update reference

4 R[𝑖] .ℎ𝑒𝑎𝑑 ← 𝑏 [0]
5 R[𝑖] .𝑠𝑖𝑧𝑒 ← R[𝑖] .𝑠𝑖𝑧𝑒 − 1
6 else // fix block size

7 (𝑏ℓ , 𝑖ℓ) ← R .𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 (𝑖)
8 (𝑏𝑟 , 𝑖𝑟 ) ← R .𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 (𝑖)
9 if 𝑏ℓ ≠ ⊥ and 𝑠𝑖𝑧𝑒 (𝑏ℓ) > 𝐶

4
then // steal from predecessor

10 𝑒ℓ ← 𝑏ℓ .𝑠𝑡𝑒𝑎𝑙𝐸𝑛𝑑 ()
11 R[𝑖ℓ] .𝑠𝑖𝑧𝑒 ← R[𝑖ℓ] .𝑠𝑖𝑧𝑒 − 1
12 𝑏.𝑖𝑛𝑠𝑒𝑟𝑡𝐹𝑟𝑜𝑛𝑡 (𝑒ℓ)
13 R[𝑖] .ℎ𝑒𝑎𝑑 ← 𝑏 [0]
14 else if 𝑏𝑟 ≠ ⊥ and 𝑠𝑖𝑧𝑒 (𝑏𝑟 ) > 𝐶

4
then // steal from successor

15 𝑒𝑟 ← 𝑏𝑟 .𝑠𝑡𝑒𝑎𝑙𝐹𝑟𝑜𝑛𝑡 ()
16 R[𝑖𝑟 ] .ℎ𝑒𝑎𝑑 ← 𝑏𝑟 [0]
17 R[𝑖𝑟 ] .𝑠𝑖𝑧𝑒 ← R[𝑖𝑟 ] .𝑠𝑖𝑧𝑒 − 1
18 𝑏.𝑖𝑛𝑠𝑒𝑟𝑡𝐸𝑛𝑑 (𝑒𝑟 ) // no update needed

19 else if 𝑏ℓ ≠ ⊥ then // merge with predecessor

20 𝑏ℓ .𝑚𝑒𝑟𝑔𝑒𝐺𝑟𝑒𝑎𝑡𝑒𝑟 (𝑏)
21 R[𝑖ℓ] .𝑠𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑏ℓ)
22 R .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑖)
23 else if 𝑏𝑟 ≠ ⊥ then // merge with successor

24 𝑏𝑟 .𝑚𝑒𝑟𝑔𝑒𝑆𝑚𝑎𝑙𝑙𝑒𝑟 (𝑏)
25 R[𝑖𝑟 ] .ℎ𝑒𝑎𝑑 ← 𝑏𝑟 [0]
26 R[𝑖𝑟 ] .𝑠𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑏𝑟 )
27 R .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑖)
28 else

// 𝑁 < 𝐶
4

and 𝑀 = 1. Invariant fulfilled.

29 if 𝑁 − 1 is too small for 𝐶 then
30 Reallocate the BPMA with smaller blocks

31 return R

19



4. Buffered Packed Memory Arrays

Space Consumption We define the space consumption of a single element as 1. A tra-

ditional PMA with 𝑁 elements requires space Θ(𝑁 ) as the PMA invariants ensure that

it only uses a constant factor of empty cells, and because the auxiliary memory that is

required during rebalancing operations is in Θ(𝑁 ). We show that the BPMA maintains

the asymptotic space consumption of traditional PMAs, requiring only a constant factor

more space than the optimum space consumption of 𝑁 .

Lemma 2. A BPMA containing 𝑁 elements can be stored in space Θ(𝑁 ).

Proof. The BPMA stores elements in blocks instead of storing them directly in the PMA.

Each block is allocated with a static capacity of𝐶 . The block size invariant guarantees that

it contains at least 𝐶/4 elements. Therefore, the total space requirement for all blocks is

Θ(𝑁 ). Due to the block size invariant, there are at most Θ(𝑁 /log𝑁 ) blocks. The reference
PMA has to store an equal number of block references, requiring space Θ(𝑁 /log𝑁 ) which
is dominated by the space required for the elements. Analogously, the additional space

required for rebalancing the reference PMA is a lower order term.

Search and Scan Queries A search query on the BPMA requires a search on the reference

PMA for the correct block and a search within the block. We show that search queries

require the same time as in traditional PMAs.

Lemma 3. A search query on a BPMA containing 𝑁 elements requires time O(log𝑁 ).

Proof. Finding the correct block reference on a reference PMA that contains 𝑀 block

references requires time O(log𝑀) = O(log(𝑁 /log𝑁 )) = O(log𝑁 ).1 Binary search

within the correct block requires running time O(log𝐶) = O(log log𝑁 ).

Lemma 4. A scan query that scans ℓ elements of a BPMA containing 𝑁 elements requires
time O(log𝑁 + ℓ).

Proof. A scan query first uses a search query to find the start of its range. From there,

it iterates the elements of the PMA. Elements are densely stored in blocks so that O(1)
operations are needed per element within a block. When the end of a block is reached,

worst-caseO(log(𝑁 /log𝑁 )) = O(log𝑁 ) operations are needed to find the next valid block
reference using linear search on the segment. As each block contains at least Θ(log𝑁 )
elements, the search cost per scanned element is O(1).

Amortized Analysis of Update Operations Both insertions and deletions first navigate the

reference PMA and work on blocks locally before potentially rebalancing the reference

PMA. We consider the time for navigation and local work first before concentrating on an

analysis of the amortized time needed for rebalancing the reference PMA.

1
Note that this running time is only achieved by additionally storing the index or key of the first valid

entry of each segment of the PMA. Then, the binary search can find the first key of each segment that is

reached in O(1). Otherwise, scanning the segment would require O(log𝑀) time per step of the binary

search, yielding a search time of O(log2𝑀). Updating the additional information does not alter the other

running times, as any update (insertion, deletion, or rebalancing) already traverses the entire segment in

the worst case. Implementations that using segments of constant length do not require the additional

information as segments can be scanned in time O(1).
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Lemma 5. Without rebalancing, a single-element insertion or deletion into a BPMA with 𝑁
elements can be executed in worst-case time O(log𝑁 ).

Proof. The block that an element must be inserted to can be found with a search query

in time O(log𝑁 ). Inserting or deleting an element in a block, splitting a full block,

stealing from a neighboring block as well as merging with it are each possible in time

O(𝐶) = O(log𝑁 ). A new reference entry for a split block can be added by moving

O(log𝑁 ) existing entries in the segment. Neighboring blocks for stealing or merging can

be found in the same time by iterating the reference PMA.

The remaining running time arises from rebalancing the reference PMA. We analyze

the influence of BPMA update operations on rebalancing operations in the reference PMA.

Our analysis broadly uses the argument of Bender et al. [4, 9].

Theorem 1. Rebalancing on the reference PMA after single-element insertions and deletions
in a BPMA with 𝑁 elements is possible in amortized time O(log𝑁 ) per update operation on
the BPMA.

Proof. We use the token method for amortized analysis [24]. To simplify the proof that

sufficient tokens are available at each point, we implicitly subdivide the global account

into one account for each combination of a block in the reference PMA and a level of

the implicit binary tree. Each insertion deposits Θ(ℎ) = Θ(log(𝑁 /log𝑁 )) = Θ(log𝑁 )
tokens in total, 𝑐 = Θ(1) per account for each level of the block that its element was

inserted to. Deletions deposit tokens analogously, but into the accounts of the block that

ultimately lost an element. Typically, this is the block 𝑏 the element was removed from.

However, if an underflow in 𝑏 was corrected by stealing from another block 𝑏′, the tokens
are deposited to 𝑏′. A rebalancing operation on a node𝑢 on level ℓ requires time O(𝑐𝑎𝑝 (𝑢)).
Hence, it withdraws 𝑐𝑎𝑝 (𝑢) tokens from the respective accounts for level ℓ in all blocks

that are currently in 𝑟 (𝑢). When a block is split, the balances of its accounts are equally

distributed to the accounts in the two new blocks. If two blocks are merged, their accounts

are aggregated level-wise.

It needs to be shown that 𝑐 can be chosen in such a way that there are sufficient tokens

for each necessary rebalancing operation. Let an insertion into or deletion from the BPMA

trigger a rebalancing operation for a node 𝑢 at level ℓ of the implicit binary tree over R.
Then, 𝑟 (𝑢) is within threshold, while the region of one of its children 𝑣 (at level ℓ − 1) is
not. After the last rebalancing operation that affected 𝑟 (𝑣), 𝑟 (𝑣) had a density conforming

to the (stronger) thresholds of 𝑢 on level ℓ instead of its level ℓ − 1 (compare the proof of

Lemma 1):

𝜏min(ℓ) ≤ 𝜏 (𝑣) ≤ 𝜏max(ℓ)

To show that there are enough tokens, we consider the number of block insertions

or removals in the region 𝑟 (𝑣) of the reference PMA (caused by block splits and block

merges). We only look at operations that happened since the last rebalancing operation

that affected 𝑟 (𝑣). First, consider the case that 𝑟 (𝑣) is too dense, which is triggered by an
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insertion. If 𝑣 has density 𝜏 (𝑣) > 𝜏max(𝑣) = 𝜏max(ℓ − 1), there must have been at least

(𝜏max(ℓ − 1) − 𝜏max(ℓ)) 𝑐𝑎𝑝 (𝑣) =
𝜏0
max
− 𝜏ℎ

max

ℎ
𝑐𝑎𝑝 (𝑣)

= Θ

(
1

log 𝑃

)
𝑐𝑎𝑝 (𝑣)

(4.1)

block reference insertions. Each insertion into the reference PMA requires a block 𝑏 to

have been split into 𝑏 and 𝑏′. At some previous point, 𝑏 contained at most 𝐶/2 elements.

For the block to have required a split, at least another 𝐶/2 elements must have been

inserted into 𝑏. These insertions also added 𝑐 ·𝐶/2 tokens into the account of 𝑏 for level ℓ .

Since the last rebalancing operation affecting 𝑣 , 𝑢 was not rebalanced as rebalancing it

would have affected 𝑟 (𝑣). Therefore, the tokens were not withdrawn from the accounts for

level ℓ . In total, there were Θ(1/log 𝑃) · 𝑐𝑎𝑝 (𝑣) block splits (Equation (4.1)), each requiring

𝐶/2 element insertions. In total, this leaves

Θ (𝐶) · Θ
(

1

log 𝑃

)
· 𝑐𝑎𝑝 (𝑣) = Θ (𝑐𝑎𝑝 (𝑣)) (4.2)

tokens available in the collective accounts for level ℓ of all blocks in 𝑟 (𝑢).
The removal case is analogous: If 𝑣 has density 𝜏 (𝑣) < 𝜏min(𝑣) = 𝜏min(ℓ − 1), there must

have been at least

(𝜏min(ℓ) − 𝜏min(ℓ − 1)) 𝑐𝑎𝑝 (𝑣) =
𝜏ℎ
min
− 𝜏0

min

ℎ
𝑐𝑎𝑝 (𝑣)

= Θ

(
1

log 𝑃

)
𝑐𝑎𝑝 (𝑣)

removals in the reference PMA, i.e., block merges of 𝑏1 and 𝑏2. Because they participate in

a block merge operation, 𝑠𝑖𝑧𝑒 (𝑏1) ≤ 𝐶/4 and 𝑠𝑖𝑧𝑒 (𝑏2) ≤ 𝐶/4. Since new blocks are only

created by splitting existing blocks, both blocks once used to have 𝐶/2 elements. This

is even true for the initial block of the BPMA (which starts without any elements), as it

must have been split at some point so that there is another block with which it can be

merged. At least 𝐶/4 elements must have been removed from each block to reach a size

smaller than or equal to 𝐶/4. For each of the removals, 𝑐 tokens were deposited into the

account for level ℓ of 𝑏1 and 𝑏2. In sum, there are Θ(𝐶) tokens available per block merge.

With Equation (4.2), it follows that there are Θ(𝑐𝑎𝑝 (𝑢)) tokens in the collective accounts

of blocks in 𝑟 (𝑢).
Therefore, 𝑐 = Θ(1) can be chosen so that the total number of tokens is sufficient

for the withdrawals by the rebalancing operation. As the number of tokens withdrawn

for a rebalancing operation is proportional to its cost, and the number of tokens spent

per insertion or deletion is O(log𝑁 ), the amortized cost of an insertion or deletion is

O(log𝑁 ).
Note that block references can move in the reference PMA due to rebalancing operations

or reference insertions. However, the argument made above is independent of block

movements as we track tokens per block. The accounts of a block always have a number
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of tokens that is proportional to the previous number of insertions and deletions in the

block. At any point, the tokens are available to the region that a block resides in. Above,

we count the number of update operations by arguing how many block splits or merges

must have occurred since the last rebalancing operation affecting the region. Therefore,

no blocks can be moved into or out of 𝑟 (𝑢) by a rebalancing operation. If a region for a

leaf 𝑢 has density 1 and a block 𝑏 must be split, existing block references must be shifted

to make space for the new block reference. In this case, a block reference for a block 𝑏′ can
be moved out of 𝑟 (𝑢), so that its tokens are no longer available to 𝑢. Our proof already

considers this: Instead of 𝑏′, there is now an additional block that was split from 𝑏. To the

same degree that there are less tokens in the new block than in 𝑏′, there are also more

free slots that can be used for future insertions. Block shifts therefore do not change the

amortized complexity of update operations.

The result of Theorem 1 above is consistent with the result that is achieved when

considering the reference PMA as a black box. The proof indicates that amortized O(log𝑁 )
single-element updates on the BPMA are necessary to trigger a block reference insertion

or removal in the reference PMA. Rebalancing operations on the reference PMA take

amortized O(log2 𝑁 ) time. This cost can be charged to the O(log𝑁 ) single-element

updates, so that O(log𝑁 ) amortized operations are necessary for rebalancing per single-

element update on the BPMA.

23



4. Buffered Packed Memory Arrays

4.2. Batch-Parallel Buffered Packed Memory Array

The Batch-Parallel Buffered Packed Memory Array (BBPMA) is a variant of the BPMA

that supports batch-parallel insertions. The efficient rebalancing operations of BPMAs

are particularly promising in the batch-parallel case as the existing solution suffers from

insufficient memory bandwidth to support fast parallel rebalancing in the PMA [26].

4.2.1. Data Structure

The data structure layout is based on the layout of the BPMA (see Section 4.1.1 and

Figure 4.1). However, batch-parallel update operations create two new problems that

need to be handled: First, a single batch-parallel update operation can affect multiple

regions of the reference PMA so that they require rebalancing. To compute the rebalancing

regions, densities must be computed in parallel in potentially overlapping regions. A naive

parallelization of the sequential counting mechanism would count regions repeatedly,

impairing efficiency. To avoid repeated computations of the same partial results, there

needs to be a mechanism to store previously generated results. Second, good work balance

must be ensured even in cases where few, large rebalancing regions have to be rebalanced.

To this end, we need to be able to split large rebalancing regions into independent sections

of a desired amount of work so that large rebalancing regions can be rebalanced in parallel.

Both of these requirements can be fulfilled by maintaining the (previously implicit)

binary tree explicitly as a rebalancing tree T = (V, E). Its nodes store the number of block

references in their regions of the reference PMA. In this way, a result that was generated

by one PE can be reused by other PEs, addressing the first problem. Moreover, the tree

can be used to efficiently find subregions with a specific number of block references to

split large rebalancing tasks, solving the second problem. We therefore define the BBPMA

as a two-tuple

(R, T)

consisting of the reference PMA R and the rebalancing tree T = (V, E). Due to the PMA

invariants and the block size invariant, R has size

𝑃 = Θ(𝑀) = Θ

(
𝑁

log𝑁

)
.

As before, we use the rebalancing tree to define potential rebalancing regions. Leaves in

the rebalancing tree correspond to segments in the reference PMA. Opposed to traditional

PMAs and the BPMA, we use segments of constant size 𝑆 = Θ(1) for the BBPMA.While this

does not increase the asymptotic space requirements, it enables more efficient rebalancing,

see Section 4.2.4. There are 𝐿 = O(𝑃) leaves and the tree has height ℎ = O(log 𝑃). We

will define more precisely how the information in T is updated and when it is used in

Section 4.2.2.

Search and scan queries are identical to the BPMA case. The read-only queries can

be run concurrently but have to wait for potential batch-updates to finish. This can be

implemented using a readers-writer-lock.
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4.2.2. Batch-Parallel Insertion

A batch-parallel insertion inserts a batch B of elements into the data structure, ignoring

elements with keys that are already present. Opposed to the single-element variant, we

do not treat the reference PMA as a black box but define how it is rebalanced for each

batch-parallel insertion. Broadly, the operation proceeds in three phases. First, the insertion
phase splits both batch and the reference PMA into 𝑝 sections so that each PE inserts one

batch section into the corresponding section of the reference PMA. Second, the update
phase updates the rebalancing tree and generates a set of global rebalancing regions. Third,
the rebalancing phase distributes the work in the rebalancing regions to 𝑝 tasks which are

executed in parallel by the PEs. Pseudocode with an overview can be found in Algorithm 3.

Algorithm 3: BBPMA batch-parallel insertion (overview)

Input: BBPMA (R, T) with 𝑁 elements, sorted batch of new elements B of size 𝑘 ,

number of PEs 𝑝 .

Data: MapM of rebalancing tree nodes to be updated, rebalancing RegionsV′,
collection of auxiliary blocks A.

Output: BBPMA (R′, T ′) that contains all elements of (R, T) as well as new
elements from B, in sorted order.

1 do in parallel // 1: Insertion Phase

2 Partition R and B into 𝑝 corresponding parts (R0, B0), . . . , (R𝑝−1, B𝑝−1)
3 Insert B𝑖 into R𝑖
4 Store new blocks in A
5 Store altered leaves to rebalance inM

6 do in parallel // 2: Update Phase

7 Update T usingM, get rebalancing regionsV′ ⊆ V
8 ClearM

9 do in parallel // 3: Rebalancing Phase

10 Distribute rebalancing work inV′ to 𝑝 rebalancing tasks 𝑇0, . . . , 𝑇𝑝−1
11 Execute the rebalancing task 𝑇𝑖 , merging sections of R and A
12 Store altered leaves to recount inM
13 Clear A andV′

Data Dependencies To improve the presentation of the algorithm, we first give an

overview over the main data dependencies in our batch insertion algorithm, which are also

reflected in Algorithm 3. The first data dependency is between the insertion phase and the

rebalancing phase of the same batch insertion operation. Opposed to the single-element

case, inserting a section of a batch into a section of the reference PMA can generate

multiple new blocks at once before the next rebalancing operation is run. Therefore, it is

possible that a region of the reference PMA does not have sufficient space for new block

references. Consider a block 𝑏 that is referenced from index 𝑖 in R and let 𝑏 be split into
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two blocks 𝑏1 and 𝑏2. We refer to 𝑏1 and 𝑏2 as auxiliary blocks and their block references

𝑟𝑒 𝑓 (𝑏1) and 𝑟𝑒 𝑓 (𝑏2) are stored in auxiliary storage A. To ensure that auxiliary blocks

are found and represented at the correct position in the reference PMA, R maintains a

pointer from cell 𝑖 to the auxiliary blocks that originated from 𝑏 along with the number of

auxiliary blocks for 𝑏. Blocks are written to A in the insertion phase and read from A
in the rebalancing phase, where they are merged into the reference PMA at the relative

position of the pointers that reference them. Figure 4.2 gives an example. For simplicity,

we do not show explicit pointers but draw auxiliary blocks below the cell from which they

originate, in sorted order from top to bottom.

Rold

Rint

A

Rnew

Figure 4.2.: Schematic representation of a batch-insertion operation on the reference PMA

Rold. Each square is one cell of a reference PMA. Existing block references are

purple. The initial status is depicted as Rold, while Rint shows the intermediate

status after the insertion phase. We represent auxiliary blocks ofA below their

origin cell in R (green). Cells with both colors are blocks that existed in Rold,

received new elements and were moved to A. At the bottom, Rnew shows the

status after rebalancing. The rebalancing phase merges blocks from A back

into R in the desired order. It finds a region that respects its density thresholds

with the new blocks (here: the entire reference PMA) and distributes block

references uniformly in it.

The second data dependency concerns the update of the rebalancing tree T . It is only
used to generate rebalancing regions and distribute work in them. Hence, it is sufficient if

T is correct after the insertion phase and before the rebalancing phase. The update phase

not only ensures correctness of T , but also integrates the generation of rebalancing regions
into the update procedure. The update phase in a batch insertion operation must consider

changes made by the current insertion phase as well as those made by the rebalancing

phase of the previous batch insertion. Both phases track the leaves of T that correspond

to changed segments in R. However, changes from the two phases must not be treated

equally: If a segment 𝑠 was updated in a past rebalancing phase, its number of blocks might

have changed. Hence, its leaf must be recounted in the update phase. The rebalancing

phase already ensures that all densities are valid, and no further blocks must be merged.

Only if 𝑠 was changed during the current insertion phase, new blocks might have been

written to A that need to be merged and the densities can be invalid. Here, the leaf must
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be rebalanced to ensure that a rebalancing region is created for it. To coordinate which

leaves need to be recounted or rebalanced, both insertion and rebalancing phase write

leaves to a concurrent mapM. For each updated leaf, an entry inM tracks whether it

needs rebalancing or just recounting. To track the combined changes of two subsequent

batch insertions,M is persistently stored in the BBPMA. It is only cleared after it was

read during an update phase, but not at the end of a batch insertion.

The last data dependency is between the update and rebalancing phases: The update

phase creates a set of rebalancing regions that is described by their root nodesV′ ⊆ V in

the rebalancing tree. It is read and cleared in the following rebalancing phase.

After the overview over the data dependencies, we describe the three phases of a batch

insertion in detail. The description of the insertion and rebalancing phases are each split

into a work distribution phase and an execution phase.

Insertion Phase: Distribution The insertion phase starts by distributing the work for

insertions. To distribute the work, batch and reference PMA are partitioned into 𝑝 regions

each, such that each region of the batch can be inserted into the blocks in the corresponding

region of the reference PMA. In that way, 𝑝 PEs can process the actual insertions in parallel

without synchronization as they write to disjoint parts of the data structure. To compute

the partition, 𝑝 batch elements with equal distances in the sorted batch are selected as

splitters. PE 𝑖 uses the 𝑖-th splitter 𝑠 and locates the block 𝑏 into which 𝑠 needs to be

inserted using a binary search. Then, each PE uses exponential search on the batch to find

the first batch element in front of 𝑠 that needs to be inserted into 𝑏. These searches can

be run in parallel. In this way, each PE has defined the starting position of its regions in

the batch and the reference PMA. The ends of the regions are derived from the starting

positions of the successor PE, with appropriate sentinels for the last PE.

If consecutive splitters map to the same block, the ranges generated so far are not

necessarily disjoint in the reference PMA. Therefore, a post-processing step ensures that

there is a unique PE which performs all insertions for each block. This can lead to uneven

work balancing if large sections of the batch map to a single block. To ensure good work

balance on all input distributions, more flexibility is needed. If multiple PEs originally

decided to work on the same block 𝑏, and there are sufficiently many batch elements in B′
to be inserted, we use inverse merge execution of the insertions. In the standard execution

described above, a small section of a batch is merged into the (comparably larger) block

by a single PE. An inverse merge execution inverts this principle if a large section B′
of the batch has to be inserted into a (comparably smaller) block 𝑏. Here, the existing

block elements are merged into new blocks that are generated for the batch elements. The

elements in B′ are distributed equally between the PEs that were assigned to 𝑏. The PEs

will create new blocks for their elements of B′ and merge the appropriate elements of 𝑏

into them so that 𝑏 is no longer needed. To maintain the block size invariant, each PE that

participates in an inverse merge execution must receive enough batch elements so that

it can write at least one valid block. If there are not enough batch elements, the number

of PEs that participate in the inverse merge execution is reduced. To accommodate new

block references, each PE is allocated a section of A depending on the maximum number

of block references that it can write.
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Insertion Phase: Execution We begin the description of insertion execution with standard

insertion execution and describe the inverse merge case below. Consider a PE 𝑖 that

got a section of the reference PMA R𝑖 and a corresponding section of the batch B𝑖 . For
standard insertion execution, the PE sequentially iterates over the blocks in R𝑖 and adds

all necessary elements from B𝑖 to each block. It maintains pointers to the current insertion

block 𝑏ins, the next block 𝑏next after 𝑏ins in R𝑖 , and the next batch element 𝑒 that needs to

be inserted. At the start of the operation and whenever all batch elements were added to

the previous insertion block, exponential search on R𝑖 finds the new insertion block 𝑏ins,

i.e., the first block such that 𝑘𝑒𝑦 (𝑒) ≥ ℎ𝑒𝑎𝑑 (𝑏ins). Then, the number of batch elements

𝑛 that need to be inserted into 𝑏ins is computed. If 𝑠𝑖𝑧𝑒 (𝑏ins) + 𝑛 ≤ 𝐶 , the elements are

directly merged into the block.

Otherwise, 𝑏ins must be split to accommodate all elements. Pseudocode for this case can

be found in Algorithm 4. We will refer to the original 𝑏ins as origin block. The reference
for 𝑏ins is removed from R as it will be written to A. We iterate over the 𝑛 elements that

need to be inserted into 𝑏ins. At each new element 𝑒 , the algorithm first checks if 𝑒 needs

to be inserted into a block that was previously split off instead of into 𝑏ins. To this end, the

algorithm maintains a pointer 𝑏split that stores a block that was split off, which is initially

unused. If 𝑒 has to be inserted into 𝑏split, 𝑏ins is no longer needed. It is written to A as

next child of the origin block and 𝑏ins is overwritten by 𝑏split. If 𝑏ins is full, the greater 𝐶/2
elements of 𝑏ins are split off into a new block 𝑏new. If 𝑏split is not used yet, 𝑏new is stored in

𝑏split for the next iteration.

The alternative case is also possible: The insertion block has been split once, leaving

greater elements in 𝑏split. Then, it is filled up and split again, leaving three blocks 𝑏ins, 𝑏new
and 𝑏split with elements in this order. An important observation is that in this situation,

no more elements have to be inserted into 𝑏ins. Figure 4.3 illustrates our argument with an

example. After the insertion block was split the first time, 𝑏ins has exactly 𝐶/2 elements.

For it to be split again, another 𝐶/2 insertions from B are necessary. Therefore, 𝑏ins
contains these elements when it is split again. Because the batch is sorted, the next batch

element 𝑒 is greater than all the 𝐶/2 elements that were inserted. After the second split,

𝑏ins contains the half of the elements with the smaller keys. There are two possible cases.

In the worst case, these are all 𝐶/2 elements from the batch that were previously inserted.

As 𝑒 is greater than all those, it must either be inserted at the end of 𝑏ins or into 𝑏new. In

the second case, at least one of the 𝐶/2 elements that were inserted from the batch is in

𝑏new after the split. Then, 𝑒 must be inserted into 𝑏new. In both cases, it is possible to insert

𝑒 into 𝑏new, so that 𝑏ins is no longer needed. The current 𝑏ins can be written to A as next

child of the origin block and replaced by 𝑏new. In consequence, the three block pointers are

sufficient for all necessary references. After any block split, it is checked again if 𝑒 has to

be inserted into 𝑏ins or 𝑏split. Then, the element can be inserted into the respective block.

Once all elements are added, 𝑏ins and potentially 𝑏split are written to A as next children

of the origin block in that order. In total, this removes the origin block from R and adds a

sequence of auxiliary blocks in A. See Figure 4.2 for an example.

In the case of inverse merge execution, each PE receives a section of the batch B𝑖 and a

single block 𝑏merge that it shares with other PEs. It first computes the section of 𝑏merge that

it needs to merge with its batch section. Starting with an empty insertion block 𝑏ins, it

iterates through B𝑖 and its section of 𝑏merge. At each iteration, it selects the next element 𝑒
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Figure 4.3.: Example for the insertion of a batch section ⟨2, 4, 5, 6, 8, 11⟩ (green) into a

block 𝑏ins (elements in orange) with repeated splits. At operation (1), the

element 2 is added into 𝑏ins, triggering its first split. After operation (2), the

first 𝐶/2 batch elements were added to 𝑏ins. In operation (3), the insertion of

the next batch element 8 triggers the second split. Now, any further batch

elements (8, 11) can be inserted into 𝑏new or 𝑏split instead of 𝑏ins and 𝑏ins is no

longer needed for insertions.

from B𝑖 and 𝑏merge. In the case of equal keys, elements from 𝑏merge are favored. Then, 𝑒 is

appended to 𝑏ins. If 𝑏ins is full, it cannot always simply be replaced by a new empty block.

This is only possible if it is guaranteed that the remaining elements suffice to maintain

the block size invariant for the new block. Therefore, the minimum number of elements

𝑛min that is left to be inserted is computed, considering potential duplicates. If 𝑛min ≥ 𝐶/4,
𝑏ins can be written to A and be replaced by a new, empty block. Otherwise, 𝑏ins is split,

the left half is written to A and the remaining elements are added to the right half. If

more than 𝑛min elements are left to insert, the block might need to be split again. Each PE

adds their new blocks to A as children of 𝑏merge. There, they are ordered first by the PE

adding them, then by the order in that they were added by their PE to ensure a correct

global ordering. After all insertions are executed in all PEs, 𝑏merge is removed from R as

its elements are now represented in blocks in A.

Whenever the insertion phase removes a block reference from R or adds new blocks to

A as children of a cell in R, the corresponding segment 𝑠 must be updated in the following

update phase. Let 𝑣 be the leaf of T that corresponds to 𝑠 . If there is no entry for 𝑣 inM,

the insertion phase adds an entry that classifies it as a rebalancing node. If there is an entry

for 𝑣 that classifies it as a recounting node, the insertion phase adjusts the entry to classify

𝑣 as a rebalancing node instead.

Update Phase The update phase updates the rebalancing tree so that the information

stored in it is correct. This serves two purposes: The rebalancing regions are computed in

the update phase using the rebalancing tree T with updated information. Furthermore,

the following rebalancing phase uses T to parallelize the rebalancing process. The update

phase passes the tree twice: The upwards pass updates the information in the tree, while

the downwards pass generates the set of necessary rebalancing regions. Both passes

process levels sequentially in the respective order, while they process the relevant nodes
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Algorithm 4: BBPMA batch-parallel insertion: block split case

Input: Insertion block 𝑏ins, number of batch elements 𝑛 to be inserted, batch

section B that has to be inserted with |B| = 𝑛, mapM of rebalancing tree

nodes to be updated, auxiliary blocks A.

1 remove 𝑏ins from R // moves to A
2 add leaf for 𝑏ins toM for rebalancing

3 𝑏split ← ⊥; 𝑖 ← 0

4 while 𝑖 < 𝑛 do
5 if 𝑏split ≠ ⊥ and B[𝑖] ≥ ℎ𝑒𝑎𝑑 (𝑏split) then // switch blocks

6 A .𝑤𝑟𝑖𝑡𝑒 (𝑏ins)
7 𝑏ins ← 𝑏split; 𝑏split ← ⊥
8 if 𝑠𝑖𝑧𝑒 (𝑏ins) = 𝐶 then // block must be split

9 (𝑏ins, 𝑏new) ← 𝑏ins.𝑠𝑝𝑙𝑖𝑡 () // lower and upper half

10 if 𝑏split = ⊥ then
11 𝑏split ← 𝑏new
12 else
13 A .𝑤𝑟𝑖𝑡𝑒 (𝑏ins) // at least 𝐶/2 insertions to 𝑏ins ∪ 𝑏new,
14 𝑏ins ← 𝑏new // B[𝑖] greater than all those, can go to 𝑏new

15 else
16 𝑏ins.𝑖𝑛𝑠𝑒𝑟𝑡 (B[𝑖])
17 𝑖 ← 𝑖 + 1

18 A .𝑤𝑟𝑖𝑡𝑒 (𝑏ins)
19 if 𝑏split ≠ ⊥ then A .𝑤𝑟𝑖𝑡𝑒 (𝑏split)

on each level in parallel. They maintain the nodes that need to be processed in the current

level in a mapM and add nodes that need to be processed on the next level to a mapM′.
The roles ofM andM′ are swapped after each level.

The upwards pass maintains the invariant that all information stored in levels that were

already processed is correct. On each level, all nodes inM are processed in parallel by

the PEs, either as recounting or rebalancing node. We describe how an individual node

is processed sequentially by the PE to which it was assigned. Pseudocode can be found

in Algorithm 5. We start at level zero, considering a leaf 𝑢. First, the total number of

block references in its segment including auxiliary blocks is counted. The remaining work

depends on the type of 𝑢. For a recounting leaf 𝑢, the value of the leaf in T is updated to

the new number of elements. If the value changes, the parent 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) is added toM′
as a recounting node so that the updated count is propagated up the tree. Processing a

rebalancing leaf 𝑢 is more complicated: If the corresponding segment respects its density

threshold, 𝑢 is marked as potential rebalancing node in T . Then, the entry for 𝑢 in T
is updated. If the value changes, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) is added toM′ as a recounting node. As the
rebalancing region was already created, it suffices to propagate the updated number of

elements up the tree. If the density threshold for 𝑟 (𝑢) is not respected, 𝑢 is not marked,
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the entry in T is updated and 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) is added toM′ as a rebalancing node, even if the

number of blocks did not change. This ensures that a rebalancing region will be generated

on a higher level. Similar to the insertion phase, any node 𝑣 that is added toM′ as a
rebalancing node overwrites a potential previous entry that classifies 𝑣 as a recounting

node. A new update classifying 𝑣 as recounting node is ignored if an existing entry for 𝑣

classifies it as a rebalancing node. For inner nodes, the number of blocks is counted by

simply adding the values for the two children. These are correct due to the invariant stated

above. The upwards pass finishes at the root node or if no more nodes need to be updated.

Algorithm 5: BBPMA batch-parallel insertion: node update (upwards pass)

Input: BBPMA (R, T), single node 𝑢 to be updated as recounting or rebalancing

node. MapM′ for nodes to be updated on the next level.

1 if ℓ (𝑢) = 0 then // compute number of blocks

2 𝑛 ← R .𝑐𝑜𝑢𝑛𝑡𝐵𝑙𝑜𝑐𝑘𝑠 (𝑟 (𝑢)) + R .𝑐𝑜𝑢𝑛𝑡𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝐵𝑙𝑜𝑐𝑘𝑠 (𝑟 (𝑢))
3 else
4 𝑛 ← T [𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 (𝑢)] + T [𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 (𝑢)]

5 if 𝑢 is recounting node then
6 if T [𝑢] ≠ 𝑛 then
7 Add 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) toM′ as recounting node
8 else // 𝑢 is rebalancing node

9 if 𝑛/𝑐𝑎𝑝 (𝑢) ≤ 𝜏max(𝑢) then
10 Mark 𝑢 as potential rebalancing node

11 if T [𝑢] ≠ 𝑛 then
12 Add 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) toM′ as recounting node
13 else // still needs rebalancing

14 Add 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) toM′ as rebalancing node

15 T [𝑢] ← 𝑛 // update node value

The objective of the downwards pass is to find all nodes that were previously marked

as potential rebalancing nodes and that are not in the subtree of any other node that is

marked. Their regions form the set of required rebalancing regions without any duplicate

work. The downwards pass only considers nodes that were processed during the upwards

pass. To this end, each node remembers from which child nodes it was reached in the

upwards pass (none, left, right, or both). In the downwards pass, each node in M is

classified as a generating node or clearing node. A generating node might still generate a

rebalancing region in its subtree, while a clearing node is in the subtree of a node that

created a rebalancing region. It is only used to clear the auxiliary information stored in T
(marks for potential rebalancing nodes and children from which a node was reached). The

downwards pass begins at the highest level where nodes were processed in the upwards

pass. Here, it considers all nodes that were processed on that level (using the previous

M) as generating nodes. Again, we describe the sequential processing of a node 𝑢. For a
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clearing node 𝑢, the respective children 𝑢 was reached from are added toM′ as clearing
nodes, and the auxiliary information of 𝑢 is cleared. For a generating node 𝑢 which is

not marked as potential rebalancing region, the respective children from which 𝑢 was

reached are added toM′ as generating nodes and its auxiliary information is cleared. If

𝑢 is a generating node marked as potential rebalancing region, 𝑢 is added to V′. This
ensures that 𝑟 (𝑢) becomes a rebalancing region. In this case, the respective children of

𝑢 are added toM′ as clearing nodes. No more rebalancing regions are needed from the

subtree of 𝑢, but the auxiliary information in it needs to be cleared. This ensures that all

required rebalancing regions are found, while the downwards pass processes only the

nodes that were already used in the upwards pass. If the root node does not respect its

density threshold, a rebalancing region for the entire reference PMA is created that triggers

R to be reallocated in a larger array. In this case, the downwards pass is not needed.

Rebalancing Phase: Distribution The rebalancing regions generated in the update phase

define the necessary work to rebalance R. To rebalance a region 𝑟 (𝑢), the respective blocks
from R and A are merged in the correct order and uniformly distributed in 𝑟 (𝑢). An
example with multiple rebalancing regions can be found in Figure 4.4. If no rebalancing

regions were generated, all auxiliary data structures are reset and the batch insertion

operation is complete.

It is crucial to distribute the work in the rebalancing regions for good work balance.

Notably, it is not sufficient to just allocate entire rebalancing regions to the PEs and

rebalance each region with one PE. In the worst case, there is only a single large rebalancing

region so that this approach would not be scalable. We first define the distribution we want

to achieve and then explain how it can be computed. Consider a set of rebalancing regions

defined by the set of their root nodesV′. Each rebalancing region 𝑟 (𝑢) respects its density
thresholds so that the sequence of blocks from R and A can be uniformly distributed

in 𝑟 (𝑢). We define the target numbering of all blocks of all rebalancing regions ofV′ as
follows: We process rebalancing regions from left to right in R. Within each rebalancing

region, we use an in-order numbering of blocks from R and A, compare Figure 4.4. The

objective of the distribution is that each PE processes an equally sized, continuous section

of the blocks with respect to the target numbering. Figure 4.4 shows the distribution

using colored blocks. In terms of the target numbering, the desired distribution is trivially

defined: Each PE reads an equally wide range of target numbers and writes them to

uniformly distributed positions defined by the target numbers. However, to execute the

rebalancing work, we need to access the respective blocks. In particular, it is not sufficient

to only distribute indices in R as all the work might be in auxiliary blocks that originated

from a single cell in R. Therefore, we introduce an extended block index that uniquely

identifies each block reference from R and A. An extended block index is a tuple (𝑖, 𝑗)
where 𝑖 is an index into R and 𝑗 is an index into the sequence of auxiliary blocks of R[𝑖].
We use 𝑗 = −1 to denote the block reference at R[𝑖]. Values 𝑗 ≥ 0 denote the respective

entry in the sequence of auxiliary blocks of R[𝑖] with zero-based indices. Examples are

given in Figure 4.4.

The remaining challenge is to map a given target number 𝑡 to an extended block index

(𝑖, 𝑗). We start by computing an inclusive prefix sum over the number of block references

that need to be rebalanced in each rebalancing region. This can be done using a parallel
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Figure 4.4.: Schematic representation of the rebalancing phase. The top shows the status

of the BBPMA after the update phase. New blocks inA are drawn below their

parent cells. There are three rebalancing regions (dark green) with a total of 20

block references that need to be rebalanced. Block references are numbered in

the target ordering. We give two examples for extended block indices (purple).

The rebalancing regions are split between four PEs (blue, orange, light green,

yellow) for good work balance. One block reference does not need to be moved

(gray). The bottom shows the reference PMA after the rebalancing regions

were executed. Blocks from Anew are merged into R and block references are

distributed uniformly in their respective rebalancing regions.

prefix sum. Then, a binary search on the prefix sum for the first rebalancing region 𝑟 (𝑢)
with prefix sum greater than the desired target number 𝑡 yields the rebalancing region

that contains the block index 𝑖 . Using the prefix sum, 𝑡 is transformed to a local target
number within 𝑟 (𝑢). Then, the correct extended index is found by descending the subtree

rooted at 𝑢 to the leaves. A pseudocode representation of this procedure can be found

in Algorithm 6. At each inner node 𝑣 , the algorithm decides between the left and right

child. If the number of block references in the left child is greater than or equal to the

current value of 𝑡 , it descends to the left child. Otherwise, the right child is chosen and 𝑡

is reduced by the number of block references that were skipped in the left child. Once a

leaf 𝑣 is reached, its segment 𝑠 is scanned from left to right. When scanning an entry at

index 𝑘 , 𝑡 is reduced by 1 for a valid block reference in R[𝑘] and by the number of block

references in A that correspond to R[𝑘]. When 𝑡 reaches a value below or equal to zero

at an index 𝑘 , the block index is 𝑖 = 𝑘 and the respective index for the auxiliary block 𝑗

can be computed from 𝑡 .
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Algorithm 6: BBPMA batch-parallel insertion: rebalancing range split

Input: Rebalancing region denoted by node 𝑢, local target number 𝑡 of the block

reference that shall be found in 𝑟 (𝑢).
Output: Extended index (𝑖, 𝑗) of the block reference with local target number 𝑡

within 𝑟 (𝑢).
1 while ℓ (𝑢) > 0 do // descend subtree

2 if 𝑡 > T [𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 (𝑢)] then // go right, skip left blocks

3 𝑢 ← 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 (𝑢)
4 𝑡 ← 𝑡 − T [𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 (𝑢)]
5 else // go left

6 𝑢 ← 𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 (𝑢)

7 foreach index 𝑖 in 𝑟 (𝑢) do // 𝑢 is a leaf, search locally

8 if 𝑡 = 0 then // found at normal block

9 return (𝑖, −1)
10 if R[𝑖] is valid block reference then
11 𝑡 ← 𝑡 − 1
12 if 𝑡 < R .𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝐵𝑙𝑜𝑐𝑘𝑠 (𝑖) then // found at auxiliary block

13 return (𝑖, 𝑡)
14 𝑡 ← 𝑡 − R .𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝐵𝑙𝑜𝑐𝑘𝑠 (𝑖)

We can now assemble the whole rebalancing distribution process. Each PE receives a

target number range of blocks [𝑎, 𝑏] that it has to rebalance. Using binary searches on

the prefix sum, it computes a corresponding range of rebalancing regions 𝑟0, . . . , 𝑟𝑖 . The

first and last rebalancing regions can be shared between multiple PEs, each rebalancing a

section of it. Therefore, the PE maps its block range [𝑎, 𝑏] to the local numbering within

the respective rebalancing region using the prefix sum. Then, it descends the tree as

described above to receive a range of extended indices that it works on within the region.

For the remaining rebalancing regions, no computations are necessary as the PE rebalances

the entire region in R. Example 1 defines the mapping corresponding to Figure 4.4.

Example 1. We define the distribution described in Figure 4.4 in terms of target numbering
and extended indices. As there are 20 block references to rebalance, each of the four PEs
rebalances five blocks. This yields target number ranges [1, 5], [6, 10], [11, 15], and [16, 20]
for the respective PE. These regions are mapped as follows: The first and second PE rebalance
only the first region. The subregions in terms of extended indices are (0, −1) to (2, 3) for the
first PE and (2, 4) to (12, −1) for the second PE (inclusive ranges). The third PE works on
all three rebalancing regions. For the first region, it only rebalances the block with extended
index (15, −1). It rebalances the second region entirely and only considers block (26, −1)
for the third region. Finally, the fourth PE only works on the third region and rebalances the
extended block indices (28, 0) to (28, 4).
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Rebalancing Phase: Execution Executing the rebalancing work requires two steps: In the

read step, blocks are read from R and A and merged densely to some auxiliary storage

for all rebalancing regions in parallel. Then, all PEs are synchronized. If necessary, the

reference PMA is reallocated. In the write step, the PEs write the blocks from their auxiliary

storage back into R, distributing them uniformly in their rebalancing regions.

We consider a PE with a set of rebalancing regions 𝑟0, . . . , 𝑟𝑖 from the distribution phase.

For the first and last rebalancing task, it has a region of extended indices that it needs to

consider while it processes the remaining rebalancing regions entirely. The PE iterates

over its range of rebalancing regions. For a rebalancing region 𝑟 (𝑢) that it needs to process
entirely, both steps are straightforward: In the read step, the PE iterates over the respective

entries in R and their children in A in the order of the target numbering and writes all

block references densely to the auxiliary memory, removing them from R. In the write

step, it iterates over the dense section of block references in auxiliary memory and writes

the block references back to the range 𝑟 (𝑢) in R uniformly.

Processing a section of the first or last rebalancing region 𝑟 (𝑣) requires some additional

work. In the read step, the PE iterates over the read section, the section of 𝑟 (𝑣) defined by

the extended indices as computed in the distribution. Again, it writes block references

densely to some auxiliary memory. After the synchronization, the PE computes the write
section, the section of 𝑟 (𝑣) in R to which it needs to write the block references uniformly.

To this end, it maps the local target number range that it processes in 𝑟 (𝑣) to uniformly

distributed indices in 𝑟 (𝑣). This ensures that each PE writes to independent subregions

of 𝑟 (𝑣). The global synchronization between read and write step ensures that no blocks

are overwritten before they are copied to auxiliary memory. This is crucial as the write

section is not necessarily equal to the read section of a PE (compare Figure 4.4). As all PEs

work on disjoint sections of 𝑟 (𝑣) in both phases, no further synchronization is needed.

During the write phase, the PE adds the leaves corresponding to all changed segments

of R toM as recounting nodes. After all blocks are read by all PEs, pointers from R to A
are reset and the rebalancing tasks are cleared.

4.2.3. Batch-Parallel Removal

Batch-parallel removals proceed largely analogous to batch-parallel insertions. Therefore,

we focus on key differences to the insertion case. Again, the removal is split in three

phases for deletion of the respective elements, update of T and rebalancing of R.

Deletion Phase In the deletion phase, distribution starts similar to the insertion case by

partitioning the batch of keys K and R into 𝑝 sections each, such that only one PE works

on every block. While the total number of deletions that is possible in a block is bounded

by 𝐶 , the number of keys that map to a block is not. In the worst case, each key must be

searched, so that a single block can require up to O(𝑘 log𝐶) operations. In such cases,

an inverse deletion execution is used to parallelize the work. The inverse deletion for a

deletion block 𝑏del splits the corresponding batch into one section for each participating

PE. A PE then tests whether any keys of its section are in the corresponding subrange of

𝑏del. In this case, the PE overwrites the elements in 𝑏del. Potential concurrent writes to the

same entry of 𝑏del are not an issue as each writing thread overwrites the entry with the
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null key. After all PEs are done, 𝑏del is sequentially compacted by shifting the remaining

elements forwards.

During the execution of standard deletions, blocks are treated similarly to the sequential,

single-element deletion case. Specifically, the PE first deletes all elements from the blocks

in its region. Then, it iterates over the blocks again to reinstate the block size invariant.

Whenever a block 𝑏 does not have enough elements, the PE either steals elements from

the previous block 𝑏′ or it merges 𝑏′ and 𝑏. During this step, each PE only considers block

references within its section of R to avoid race conditions. This leaves all blocks with

valid sizes, unless there is only one block 𝑏 in the entire region of a PE, and 𝑠𝑖𝑧𝑒 (𝑏) < 𝐶/4.
To handle this case, a global postprocessing step steals or merges such blocks with blocks

in the regions of neighboring PEs. This can be done in parallel by pairing the regions of

the PEs according to a binary tree over the PEs. As in the insertion case, updated leaves

are tracked in a mapM as rebalancing leaves.

Update Phase The update phase is almost identical to the insertion case. The only

difference is that the densities must be compared to minimum densities 𝜏min(ℓ) for a level ℓ .
As there are no auxiliary blocks in a deletion operation, they do not have to be considered

when the number of blocks in the segment for a leaf is counted. If the root node does not

respect its density, a global rebalancing region must be created to trigger the reallocation

of the reference PMA with a smaller size.

Rebalancing Phase The rebalancing phase is less complex than the insertion case as there

are no new blocks that need to be merged with existing blocks. The target numbering

is simply a standard numbering from left to right of all block references that need to be

rebalanced. In the distribution part, each PE first receives an interval of target numbers

that it has to rebalance. Using a prefix sum, it maps the interval to a set of rebalancing

regions. For the first and last rebalancing region, it descends the respective subtree of T
to find the desired indices (instead of extended indices) in R. Again, the linear scan of

segments does not need to consider auxiliary blocks. Rebalancing regions that are not the

first or last of a PE are rebalanced entirely.

Processing a rebalancing region in the deletion case resembles the procedure in the

sequential, single-element case: All block references are already in R (without extra blocks

in A) in an arbitrary distribution. Redistributing them uniformly therefore does not

require any merging. Instead, two simple iterations suffice: One to write block references

densely to auxiliary memory and another one to write them back uniformly.

4.2.4. Analysis

As the BBPMAadds auxiliary data structures compared to the BPMA,we begin by analyzing

its space consumption. Then, we turn towards an amortized analysis of the parallel running

times of batch update operations. We build on the analysis of the sequential, single-element

variant in Section 4.1.4. The running times for search and scan queries are identical to

those of BPMAs.

Space Consumption Like for the BPMA, we show that the BBPMA requires the same

asymptotic space as traditional PMAs. To this end, we bound the space consumption of all
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additional auxiliary data structures that are used for the BBPMA, but not for the BPMA.

The claim is then proven in combination with Lemma 2. Again, the space consumption of

a single element is defined as constant.

Lemma 6. The additional auxiliary data structures required for a BBPMA containing 𝑁
elements compared to the BPMA have a space consumption of O(𝑁 ).

Proof. The rebalancing tree is a binary tree over the segments of the reference array. The

number of leaves is 𝐿 = O(𝑁 /log𝑁 ) so that the total number of nodes in the binary tree is

O(𝑁 /log𝑁 ). The space consumption per node is O(1). Therefore, the space consumption

of the tree is O(𝑁 /log𝑁 ). The same holds for the update mapM as it stores at most 𝐿

entries, one for each leaf.

The only remaining auxiliary data structure is the auxiliary storage A that stores block

references of new blocks that are created during a batch-parallel insertion operation for a

batch of size 𝑘 . In the worst case, two auxiliary blocks are created per batch element: If an

element has to be inserted into a block 𝑏 with 𝑠𝑖𝑧𝑒 (𝑏) = 𝐶 , 𝑏 is split into two blocks. Both

references for the new blocks are stored in A. Therefore, the total number of references

for auxiliary blocks is in O(𝑘). After the operation, 𝑁 ≥ 𝑘 holds as each batch element is

either inserted or an element with the same key is already present in the data structure. As

each block reference requires space O(1), the total space required for all auxiliary block

references is O(𝑘) = O(𝑁 ).

Model of Computation We analyze our data structures in the Parallel Random Access Ma-
chine (PRAM) model [24]. Here, 𝑝 PEs all access a shared memory. We use the concurrent

read, exclusive write (CREW) variant, indicating that concurrent read accesses to the same

memory location are allowed, while concurrent write accesses to the same location are

forbidden. To analyze the parallel performance of our algorithms, we analyze the total

work𝑊 (𝑝) and the parallel execution time𝑇 (𝑝) for an execution with 𝑝 PEs for individual

phases of the algorithm. The work is the collective number of operations performed by

all PEs running the algorithm, while the parallel execution time is the time required to

run the algorithm in parallel with the given number of PEs. For the complete algorithm,

we additionally analyze the span 𝑆 = inf𝑝 𝑇 (𝑝) of the entire batch-parallel insertion. The
span is the optimal parallel execution time that can be reached with any number of PEs.

Amortized Analysis of Update Operations We start the analysis by extending Theorem 1

to the batch insertion case but prove a bound for the amortized number of blocks that

need to be moved during rebalancing, rather than for the execution time. We then use this

abstract result to analyze the running time of our batch-parallel insertion algorithm.

Theorem 2. After the insertion of a sorted batch of size 𝑘 into a BBPMA with 𝑁 elements,
the amortized number of block references that must be moved to rebalance the reference PMA
and merge block references is O (𝑘 log𝑁 ).

Proof. Theorem 1 shows that amortized O(log𝑁 ) block references must be moved in the

single-element insertion case. We extend this argument to the batch insertion case by

proving that the batch insertion algorithm is consistent with the proof of Theorem 1. Then,

the claimed number of block moves follows by the repeated application of Theorem 1 for
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each of the 𝑘 batch elements. The batch insertion algorithm has three important differences

in comparison to the single-element case:

Most importantly, the BBPMA processes elements in batches. Hence, it rebalances only

after 𝑘 elements were inserted, whereas the BPMA performs a rebalancing operation after

every single-element insertion. In this proof, we treat each insertion of an element as

part of a batch insertion like a single-element insertion in Theorem 1. Opposed to the

single-element case, a single batch insertion operation can require the rebalancing of

multiple rebalancing regions. Consider the set of rebalancing regionsV′ (identified by

the root nodes of their subtrees) that would be created if a suitable rebalancing region

was created for each segment that were changed by the batch insertion, independent of

any other necessary rebalancing regions. Theorem 1 shows that there are sufficiently

many tokens for the regions inV′. However, rebalancing regions in the BBPMA are not

independent of each other. Two cases must be distinguished for a rebalancing region 𝑟 (𝑢)
fromV′: First, 𝑟 (𝑢) can be unique, i.e., no part of 𝑟 (𝑢) is contained in any other region. In

this case, 𝑟 (𝑢) can be treated just as in the sequential case. Second, 𝑟 (𝑢) can be dominated
by another region 𝑟 (𝑣) such that 𝑢 is in the subtree of 𝑣 . In that case, 𝑟 (𝑢) does not need
to be rebalanced individually as it will be rebalanced as part of 𝑟 (𝑣). No tokens are needed

for 𝑟 (𝑢), and all tokens that are required for 𝑟 (𝑣) are independent of 𝑟 (𝑢) as they originate

from a child of 𝑣 that does not respect its threshold, while 𝑢 respects its threshold. No

other cases are possible as the regions that are defined by the binary tree cannot partially

overlap each other.

The second difference concerns inverse merge execution of a batch insertion. Blocks

that are added to the reference PMA can be completely full, seemingly contradicting the

assumption made in the proof of Theorem 1 that each block has at most 𝐶/2 elements at

some point. However, the block that is added started completely empty. All elements in it

are inserted from the current batch or the block that elements are merged from. In either

case, the respective tokens can be added to the accounts of the block, as new tokens that

are charged to the batch insertion or as existing tokens from the merge block. Even if the

block that is added is entirely full, its account already contains the tokens that might be

required for its rebalancing.

Third, managing the block references is more complicated in BBPMAs. As there might

not be enough space within R, block references are written to A instead. Therefore, we

extend the argument made in Theorem 1. During the rebalancing of a region 𝑟 (𝑢) of some

node 𝑢 in the rebalancing tree, tokens can also be taken from the accounts of all auxiliary

blocks that are children of blocks in 𝑟 (𝑢). Beyond this, it is irrelevant if a block reference

is stored in R or A as we only consider the number of blocks that needs to be moved.

The additional effort for the merging of block references from R and A is considered in

Lemma 10.

To analyze the parallel performance, we consider the five phases of the batch insertion

(see Section 4.2.2) individually in Lemmas 7 to 11. Theorem 3 summarizes the results and

analyzes the total span of a batch-parallel insertion into the BBPMA.

Lemma 7. The insertion distribution phase for inserting a sorted batch of size 𝑘 into a BBPMA
with 𝑁 elements requires work O(𝑝 (log𝑁 + log𝑘)) and parallel time O(log𝑁 + log𝑘+ log𝑝).
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Proof. Each PE uses time O(log(𝑁 /log𝑁 )) = O(log𝑁 ) to find its splitter in R and time

O(log𝑘) for the exponential search on the batch. By comparing neighboring PEs hier-

archically, work O(𝑝) and parallel time O(log𝑝) is needed to ensure that all PEs work

on disjoint sections of R. A PE that participates in an inverse merge execution spends

parallel time O(log𝐶) = O(log log𝑁 ) to find the range of elements that it merges from

the merge block.

Lemma 8. The insertion execution phase for inserting a sorted batch of size 𝑘 into a BBPMA
with 𝑁 elements requires amortized expected work O(𝑘 log𝑁 ) and amortized expected
parallel time O(𝑘/𝑝 log𝑁 ).

Proof. We first consider the work that is required to insert individual elements, starting

with standard merge executions. Consider an element 𝑒 that is inserted into block 𝑏. In

the worst case, it is the only element for 𝑏. The exponential search on R for 𝑏 requires

time O(log(𝑁 /log𝑁 )) = O(log𝑁 ). Time O(log𝑁 ) is required to insert the element into

the block and split the block, if necessary. If an element 𝑒 is inserted by inverse merge

execution, no search on the PMA or the merge block is necessary as the information was

already computed in the insertion distribution phase. At most O(log𝑁 ) elements need

to be merged from the existing block so the new block can be written in time O(log𝑁 ).
In both cases, new blocks can be added to A in O(1). Using a hash map, the respective

segment can be added toM in amortized expected time O(1). The total work for all

element insertions is O(𝑘 log𝑁 ).
To prove the bound on parallel time, we need to prove that each PE processes Θ(𝑘/𝑝)

elements. The splitters are chosen from the batch with equal distance so that each PE starts

with Θ(𝑘/𝑝) elements. Unless multiple splitters are mapped to one block, the maximum

imbalance in the work between the PEs is a constant factor. Suppose instead that 𝑞 splitters

map to one block 𝑏. In standard insertion execution, all elements that need to be inserted

into 𝑏 would be processed by a single PE, possibly impairing the work balance by a factor

of 𝑞 = Ω(1). In this case, the distribution algorithm ensures the usage of inverse merge

execution, so that the work can be evenly distributed between Θ(𝑞) PEs. The PEs then
independently process their section of the elements in parallel. Therefore, the maximum

imbalance is bound to a constant factor, even if the distribution of batch elements to the

blocks is highly skewed.

Lemma 9. The update phase for inserting a sorted batch of size 𝑘 into a BBPMA with 𝑁
elements requires amortized expected work O(𝑘 log𝑁 ) and amortized expected parallel time
O((1 + 𝑘/𝑝) log𝑁 ).

Proof. We first consider the upwards pass. Let𝑚 be the number of leaves that need to

be updated (recounted or rebalanced) in T . It consists of the number of leaves that were

changed during the current insertion phase and the number of leaves that were rebalanced

in the previous rebalancing phase. The insertion phase changes at most O(𝑘) leaves.
Theorem 2 bounds the number of block references that need to be moved during the

previous rebalancing phase. Each moved block reference requires the update of at most 2

segments. Therefore, the number of updated leaves is bounded in the same way:

𝑚 = O(𝑘 log𝑁 ).
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On the lowest level, each leaf requires recounting a segment of constant length, requiring

total work of O(𝑚). On all higher levels combined, the number of inner nodes that need

to be updated is at most

ℎ∑︁
𝑖=1

𝑚

2
𝑖
= O(𝑚).

Each node requires O(1) time to update and check whether it needs to be marked as

potential rebalancing region. Using a hash map, adding the parent node for the next level

takes expected amortized work O(1). Together, this yields the total work bound stated

above.

Levels of the tree are updated sequentially, requiring execution time of O(ℎ). On each

level, individual nodes are processed in time O(1). As the work is balanced between the

PEs, the global time of a PE to update the nodes that it processes across all levels is O(𝑚/𝑝).
This yields the parallel time stated above.

The downwards pass only considers nodes that were already considered in the upwards

pass. The work per node is O(1) so that the total work and parallel time are identical to

that of the upwards pass.

Lemma 10. The rebalancing distribution phase for inserting a sorted batch of size 𝑘 into a
BBPMA with 𝑁 elements requires amortized expected work

O (𝑘 log𝑁 + 𝑝 (log𝑘 + log log𝑁 ))

and amortized expected parallel time

O (𝑘/𝑝 log𝑁 + log𝑝 + log𝑘 + log log𝑁 ) .

Proof. The update phase finds the minimum set of rebalancing regions. Combined with

Theorem 2, the number of rebalancing regions is bounded by O(𝑚) = O(𝑘 log𝑁 ). The
parallel prefix sum of their sizes can be computed in work O(𝑚) and parallel time O(𝑚/𝑝 +
log𝑝) [13].
Each PE performs O(1) binary searches on the prefix sum that require parallel time

O(log𝑚) = O(log(𝑘 log𝑁 )) = O(log𝑘 + log log𝑁 ). The subtree for any rebalancing

region contains at most O(𝑚) leaves so that it can be descended in time O(log𝑚). Each
PE descends subtrees for at most two regions. The final linear search within a segment is

possible in constant time.

Lemma 11. The rebalancing execution for inserting a sorted batch of size 𝑘 into a BBPMA
with 𝑁 elements requires amortized expected work O(𝑘 log𝑁 ) and amortized expected
parallel time O(𝑘/𝑝 log𝑁 ).

Proof. The work for moving a block reference is O(1) and O(𝑘 log𝑁 ) block references

need to be moved. Due to the rebalancing distribution, the work is balanced between the

PEs and no further searches are necessary. Because of the density invariants, iterating the

reference PMA generates no asymptotic overhead. Theorem 2 bounds the total work and

— due to the work balance — the parallel time.
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Theorem 3. Assuming 𝑝 ≤ 𝑘 , inserting a sorted batch of size 𝑘 into a BBPMA with 𝑁
elements and 𝑝 PEs requires amortized expected work

O(𝑘 log𝑁 + 𝑝 log𝑘)

and amortized expected execution time

O
(
𝑘

𝑝
log𝑁 + log𝑝 + log𝑘

)
.

The amortized expected span is
O(log𝑁 + log𝑘).

Proof. Proven by the combination of Theorem 2 and Lemmas 7 to 11. The span is achieved

with 𝑝 = 𝑘 .
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4.3. Batch-Parallel Buffered Packed Memory Array with Global
Rebalancing

Our BBPMA uses the block indirection of the BPMA and performs batch-parallel insertions.

We showed that this enables rebalancing in work that is dominated by O(𝑘 log𝑁 ), rather
than O(𝑘 log2 𝑁 ) in the only previous solution for a batch-parallel insertion into a PMA-

based data structure. On the other hand, rebalancing for batch-parallel insertions comes

at significant overhead — both regarding the complexity of the data structure as well as

practical running times. We study whether a PMA data structure with the block indirection

still requires the complete, parallel rebalancing that is used in the BBPMA. To this end, we

propose a simplified variant, the Global Rebalancing Batch-Parallel Buffered Packed Memory
Array (GBPMA). Similar to the BBPMA, it uses the block indirection and supports batch-

parallel update operations. However, it avoids the intricate rebalancing scheme using

global rebalancing. In simple terms, global rebalancing replaces frequent local rebalancing

operations by simple global rebalancing operations, while trying to reduce their frequency.

4.3.1. Data Structure

Analogous to the BBPMA, the GBPMA stores elements in blocks of capacity𝐶 = Θ(log𝑁 )
and maintains references to the blocks in a reference PMA R. It uses the same invariants

as the BBPMA but requires a block to contain at least 𝐶/2 elements as we do not consider

deletions. Before defining the remaining parts of the data structure, we give an overview

over global rebalancing. The objective is to perform insertions without any rebalancing

as long as possible. Once any rebalancing is needed locally, the entire reference PMA is

rebalanced globally with additional gaps, so that the cost can be amortized over the next

insertions. The insertion distribution phase proceeds analogous to the BBPMA. Afterwards,

each PE checks whether it can guarantee that its section of the reference PMA has sufficient

space for the maximum number of blocks that it can generate during the insertions. If

this is the case for all PEs, no rebalancing is necessary. If any PE might need more space

for its blocks than its section of R has, a global rebalancing operation is triggered, which

enlarges R so that it has a constant growing factor 𝑔 = Θ(1) more space than needed.

Contrary to the BBPMA, there is no rebalancing tree, as no rebalancing regions are

needed. Instead, global rebalancing requires fast range queries for the number of elements

that are stored in a range of the reference PMA. To this end, the GBPMA uses the size
manager S, a simple linear data structure that maintains the collective number of elements
that is stored in the blocks of each segment of R. The PEs use the size manager to check

whether their blocks fit into their region of R. In total, the GBPMA is defined as a two-tuple

(R, S)

consisting of the reference PMA R of size 𝑃 and the size manager S. As before, 𝑀 =

Θ(𝑁 /log𝑁 ) holds. However, global rebalancing does do not guarantee any bounds re-

garding 𝑃 . As the layout of R is identical, search and scan queries work just as in the

BPMA. The information stored in S can be used for rank, select and counting queries.
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4.3.2. Batch-Parallel Insertion

The batch-parallel insertion operation proceeds in three phases. The first phase is identical

to the insertion distribution phase of the BBPMA described in Section 4.2.2. After the

insertion distribution, the size estimation phase checks whether the insertions can be

performed in-place in the current reference PMA, or whether the insertions need to be

performed out-of-place in a larger reference PMA. Finally, the insertion execution inserts

the batch in the respective way.

Size Estimation In the insertion distribution, each PE is assigned a section of the reference

PMA R𝑖 and a corresponding section of the batch B𝑖 . In the size estimation phase, each

PE checks whether it can guarantee that the block references for all blocks that it will

create in the insertions fit into R𝑖 . To this end, the size estimation phase computes the

maximum number of elements 𝑛 that must be contained in all blocks after the insertions.

From there, it computes the maximum number of blocks 𝑚 that can be required for 𝑛

elements. If R𝑖 has sufficient space for 𝑚 blocks, the PE could proceed with in-place

insertion. The insertion is executed in-place if all PEs can insert in-place. Otherwise,

out-of-place execution is used.

To compute 𝑛, the number of elements in R𝑖 and B𝑖 is added. While the number of

elements in B𝑖 is clear, the number of elements in R𝑖 is computed with a range query

using S. To this end, the PE aggregates the number of elements for all segments in S that

are entirely contained in R𝑖 . Then, it adds the number of elements from segments that are

only partially contained in R𝑖 .
Once an upper bound to the total number of elements 𝑛 is established, an upper bound

to the required number of blocks 𝑚 is computed using the minimum block size. Both

insertion variants ensure that each block contains at least 𝐶/2 elements. Therefore, the

number of required blocks is at most

𝑚 =
𝑛

𝐶/2 =
2𝑛

𝐶
.

Insertion Execution: In-Place Variant Consider a PE that received a section of the reference

PMA R𝑖 and a corresponding section of the batch B𝑖 . All PEs asserted in the size estimation

that their section of the reference PMA has sufficient space for the insertions. The in-place

insertion execution proceeds similarly to the insertion execution of the BBPMA, but there

are two important differences. As it is certain that there is enough space in R𝑖 , block
references are always written to R, and there is no need for auxiliary block storage. To

ensure that all block references can be added, existing blocks must be shifted away, if

necessary. This has to be possible in both directions to ensure that all cells in R𝑖 are usable.
The second difference is that the entries in S must be kept up-to-date. Instead of

using an update phase, changes in R are reflected in S on the fly. Changes can arise

from two operations: First, simply adding elements to an existing block or adding a new

block reference at a previously empty index in R increases the number of elements in the

segment accordingly. Here, S is updated by simply adjusting the value for the respective

segment. The more complex update is necessary if block references are shifted within R
to free an entry for a new block reference. In this case, the counts for all segments that are

affected by the change must be updated. As block references are always only shifted by
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one position, this can be done by considering only those block references that crossed a

segment border. Their number of elements must be subtracted from one and added to the

count of the other segment, depending on the direction of the shift.

Insertion Execution: Out-of-Place Variant The out-of-place insertion execution is used if

any PE was unable to guarantee that it can perform all insertions within its section of the

reference PMA. A new reference PMA Rnew is allocated with a capacity that is a factor of 𝑔

larger than the sum of the total maximum number of blocks that the PEs can write. Then,

each PE is assigned a section of Rnew so that it can write all its block references into it.

Now, the insertion execution can proceed as described for the in-place variant above.

However, it now has to write all block references — of new and existing blocks — to Rnew.

To this end, R𝑖 is iterated linearly, rather than with exponential search, and all references

for blocks that do not receive new batch elements are copied to Rnew. Each PE writes

elements densely to its section of Rnew. Once all PEs are done, R is resized to the same

size as Rnew, and each PE writes its block references back from Rnew to R, distributing
them uniformly in its section. After this operation, S is recomputed.
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This chapter presents details about our implementation of the BBPMA and the GBPMA.

We first outline some simplifications in the implementation compared to the description in

Section 4.2.2 and describe the fundamental data structures of our implementation. Finally,

we specify how our insertions are parallelized. Our data structures are implemented

in C++20. The implementation is available at https://github.com/moritzpotthoff/

Buffered-Packed-Memory-Array. Both BBPMA and GBPMA are able to store elements of

an arbitrary type for which a keyOf() function is available that extracts the key of the

element.

Simplifications in the Implementation We implement batch-parallel insertions, search

queries, and scan queries, but do not consider deletions. The description uses a block size

𝐶 = O(log𝑁 ). For simplicity and improved cache efficiency, we instead use a sufficiently

large constant 𝐶 = O(1) that is greater than log𝑁 for practical values of 𝑁 . The constant

block size also avoids the reconstruction of blocks that is otherwise needed if the number

of elements changes sufficiently. Since deletions are not considered, out implementation

ensures a minimum block size of 𝐶/2 instead of 𝐶/4 in the description. As block sizes are

typically small enough, we use linear search instead of binary search on blocks. Section 6.2.1

contains details concerning the specific values chosen for 𝐶 .

At two points, our implementation proceeds sequentially instead of parallelly: In the in-

sertion distribution phase, we sequentially check whether any PEs work on the same block.

In the rebalancing distribution phase, we compute the prefix sum over the rebalancing

regions sequentially.

Finally, the update phase only uses the upwards pass through the rebalancing tree. The

upwards pass already generates a rebalancing region for each node that is marked as

potential rebalancing node in the description. All dominated rebalancing regions are then

filtered out in a post processing step. A rebalancing region 𝑟 (𝑢) is dominated if 𝑢 is in the

subtree of another node 𝑣 for which a rebalancing region was created. This is checked by

ascending the path from 𝑢 to the root of T . If any node on the path is marked as potential

rebalancing tree, 𝑟 (𝑢) does not need to be rebalanced. The post processing step checks

this in parallel for all rebalancing regions. While this procedure is asymptotically less

efficient, it saves the update phase from having to sequentially scan all levels twice, which

is hard to parallelize efficiently in practice.

Data Structures Our reference PMA is implemented as an array R, where each entry is a

structure containing head and size of, as well as the pointer to its block. Storing the size in

R (rather than with the blocks) improves memory efficiency of the update phase. A global

pointer to the last entry of R that is currently used improves efficiency for searches and

scans. While a rebalancing region is rebalanced, block references are densely stored in a
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5. Implementation Details

secondary array Rswap of the same capacity as R. Here, each PE uses the same region that

it will write back to in R.
The container for references of auxiliary blocksA is also an array. It is stored persistently

with the data structure to avoid repeated memory allocations. Its capacity is adjusted using

the bound on the number of auxiliary blocks shown in the proof of Lemma 6. Analogously,

each PE is allocated a sufficiently large section of A depending on the number of batch

elements that it processes. It is crucial that auxiliary blocks can be found from the cell

in R from which they were created. The description uses a simplified representation of

the auxiliary blocks. In practice, an additional array P of the capacity of R maintains

the respective range of auxiliary blocks in A using two pointers for each cell in R. A
comparison between the two representations can be found in Figure 5.1. The pointers

also allow to efficiently query the number of auxiliary blocks at each cell of the reference

PMA. During an inverse merge execution, multiple PEs write the blocks that make up the

auxiliary blocks of a single cell. To this end, each PE first receives a region of the auxiliary

block array that it writes to. Afterwards, the blocks in combined region for the cell are

compacted and the pointers of the cell are updated.

R

A

(a) Simplified representation

R

A

(b) Physical representation

Figure 5.1.: Representation of a reference PMA R with additional auxiliary blocks A. In

the simplified representation, we draw auxiliary blocks below their parent

blocks (Subfigure a). In the physical representation (Subfigure b), pointers for

each cell of R define the range of auxiliary blocks in A.

For each size 𝑃 of the array used for the reference PMA, the rebalancing tree is static.

Therefore, it is stored inline in a fixed-size array. The update mapM is implemented

using a concurrent bucket hash map approach similar to that used in the implementation

of CPMA [26]. It uses O(𝑝) sequential hash maps as buckets and distributes elements

to the hash maps using the hash values of their keys. Each hash map is guarded by a

lock. Preliminary practical evaluations show good distribution of the elements across

the buckets and low contention. During the update phase, elements inM are processed

in parallel by parallelizing over the buckets. Each PE repeatedly receives a bucket and

processes all entries in it sequentially. Each block 𝑏 is an std::array of fixed capacity 𝐶 .

The block size is only maintained in the reference entry for 𝑏 in R.

Memory Management Depending on 𝑁 and 𝑘 , the data structures need to increase their

capacity. The auxiliary block storage can simply be resized before the insertion execution

begins. To avoid having to copy their contents, resizing R, Rswap, T and P is more

involved. First, it can be observed that it is only necessary to resize R if a rebalancing

region was created for the root node of T . In this case, the entire content of R will be

rewritten during the rebalancing execution. Therefore, we interweave the rebalancing

execution and the resizing processes. If resizing is necessary, the rebalancing distribution
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phase starts by resizing Rswap to the new size. It uses a size that is a constant factor

greater than the number of block references that need to be stored. See Section 6.2.1 for

details. At this point, Rswap is empty, so that no entries need to be copied. After the block

references were written from R to Rswap, R and P can be reallocated to the same size as

Rswap. Additionally, the array that stores T is reallocated accordingly. The information

stored in T does not need to be recomputed here: In the next step, block references will

be written from Rswap back to R. The leaf of any segment that receives a block reference

will be added toM as a recounting node. Therefore, the update phase of the following

batch insertion will recompute the necessary parts of T , together with additional changes

from the insertions of that operation.

Parallelization Our implementation is parallelized using OpenMP. The distribution phases

store information about the tasks for each PE, and each OpenPM thread executes its

respective tasks. We pin threads to cores for improved performance and reproducible

results. During the batch-parallel insertion, threads mostly write to disjoint regions of all

data structures. Therefore, no synchronization is needed. The only data structure in which

multiple PEs access the same data isM. Its synchronization mechanisms are described

above. We use oneAPI Threading Building Blocks (oneTBB)
1
in our implementation. Its

concurrent vector stores the rebalancing regions that are generated in the update phase.

As blocks can be allocated concurrently during the insertion execution phase, we use the

scalable_allocator from oneTBB to improve efficiency. All other reallocations described

above proceed sequentially.

1
Formerly known as Intel TBB. Documentation available at https://spec.oneapi.io/versions/latest/

elements/oneTBB/source/nested-index.html (last visited 07/17/2023).
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6. Evaluation

We analyze the performance of our batch-parallel data structures using an extensive

experimental evaluation. First, we describe our experimental setup including experiments

and different inputs. Then, we present an experimental evaluation of the BBPMA as well

as the GBPMA and compare their performance to that of two competitors, one based on

search trees and one based on PMAs without the block indirection.

6.1. Experimental Setup

We evaluate all data structures using implementations in C++20 that are compiled with

GCC 10.3.0 with optimization flags -march=native and -O3. All evaluations were run on a

machine with an AMD EPYC Rome 7702P processor with 64 cores (128 logical threads)

on a single socket, clocked at 2.0–3.35GHz, with 1 024GB of DDR4 memory (3 200MHz)

and 256MB of L3 cache. The L3 cache is distributed into 16 sections of 16MB each. Each

section is shared by four cores.

Implementations and Competitors We compare our data structures to two competitors:

The Parallel Search Tree (PST) byAkhremtsev and Sanders [2] and the CPMAbyWheatman

et al. [26]. A description of the data structures can be found in Sections 3.2 and 3.3.

For both competitors, we use implementations provided by the authors.
1
We use the

configuration provided by the authors unless it is noted otherwise. For the CPMA, we use

a variant without compression in PMA segments and without the optimizations for search

queries that are described in [27]. While this is not the optimal variant of the CPMA,

it resembles traditional PMAs more closely so that we can better examine the influence

of our block indirection. Additionally, it is unclear how effective the compression is for

general workloads, where large, unsorted values need to be stored with the elements. As

it is uncompressed, we identify this variant of the CPMA as uCPMA in our evaluations for

clarity. The implementation of the parallel search tree does not allow sequential execution,

so we only consider it for at least 2 threads. For the BBPMA, we use the implementation that

is outlined in Chapter 5. The code is available at https://github.com/moritzpotthoff/

Buffered-Packed-Memory-Array.

Evaluation Inputs In the following, we introduce the six distributions that our inputs

are based on. An approximation of the density functions for relevant distributions can be

found in Figure 6.1. The uniform and normal distributions use the respective distributions

1
The implementations are available at https://git.scc.kit.edu/akhremtsev/ParallelBST and https:

//github.com/wheatman/Packed-Memory-Array, respectively (both last visited 07/17/2023).
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provided in the C++ standard library. For the zipf distribution, we use an implementation

by Lucas Lersch that is published under the MIT License.
2

• uniform: A simple uniform distribution.

• normal: A normal distribution with a standard deviation of 2 % of the length of the

key range.

• dense normal: A normal distribution with a standard deviation of 0.2 % of the length

of the key range.

• zipf : A zipfian distribution with a skew parameter of 0.99.

• ascending: A uniform distribution that generates keys that are sorted across the

batches: If two batches B1 and B2 are processed in this order, the ascending distribu-

tion ensures that all keys from B2 are greater than all keys in B1.

• descending: Like the ascending distribution, but all keys from B2 are smaller than all

keys in B1. Within each batch, keys are sorted in ascending order.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10
−4

10
−3

10
−2

10
−1

10
0

Relative position 𝑥 in key range

D
e
n
s
i
t
y
a
t
𝑥

dense normal

normal

zipf

uniform

Figure 6.1.: Approximation of the density functions for the distributions. The ascending

and descending distributions are omitted as their keys follow the uniform

distribution.

We generate an input for our evaluations by combining two distributions: The prefill
distribution is used to prefill the data structure before themeasurements, while themeasured
distribution generates elements for the operations that are used during the measurements

of running times. We use eight different inputs, which are described in Table 6.1. The first

2
Available at https://github.com/llersch/cpp_random_distributions (last visited 07/17/2023).

50

https://github.com/llersch/cpp_random_distributions


6.1. Experimental Setup

six inputs are obtained by combining uniform prefill with the respective distribution as

measured distribution. They are identified by the name of their measured distribution.

Additionally, we add two inputs, ascending* und descending* that also use ascending

or descending prefill. In particular, the ordering between batches is also maintained

between batches of the prefill and batches that are measured. The standard ascending and

descending inputs always insert an entire batch into a small section relative to the uniform

prefill, where the section slides across the data structure with the batches. Opposed to that,

the starred variants always insert an entire batch at the end (ascending*) or beginning

(descending*) of the current data structure.

Input

Distribution

Locality

Insertion

point
Prefill Measured

uniform uniform uniform very low everywhere

normal uniform normal low center

dense normal uniform dense normal medium center

zipf uniform zipf high left

ascending uniform ascending high moving

descending uniform descending high moving

ascending* ascending ascending very high right

descending* ascending descending very high left

Table 6.1.: Description of the prefill and measured distributions for the eight inputs with

an informal characterization of their locality and the point at which elements

from the measured distribution are inserted relative to the prefill distribution.

Experiments We evaluate batch-parallel insertions, searches and scans. In the experi-

ments, we use the data structures to store only keys (no mapped values) and use 64 bit

integers as keys. We use keys in the range [1, 1013] for elements, and the key 0 is our null

key. All inputs are generated ahead of the experiments so that operations on the data

structure can be run without interruptions. For evaluations of the insertion operation, we

report the average running times of five iterations, measuring the time required to insert

batches from the measured distribution. Running times for prefilling are not measured in

the experiments. For search and scan queries, we use the uniform input. Search queries

search for keys drawn from the uniform distribution. Scan queries scan a key range

[𝑎, 𝑎 + ℓ) where 𝑎 is a key that is generated by the uniform distribution and the range

length ℓ is generated by the zipf distribution. This ensures that scan queries of a variety of

range lengths are generated.

The experiment code can be found in our implementation. We use SqlPlotTools by Timo

Bingmann to create the tables and plots for experiment results.
3
It is published under the

GNU GPL v3 license.

3
Available at https://github.com/bingmann/sqlplot-tools (last visited 07/17/2023).
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6.2. Batch-Parallel Buffered Packed Memory Array

We first present results for the tuning of important parameters before evaluating the

performance of the tuned variant in depth. We select two sets of parameters, the insertion
configuration and the scan configuration.

6.2.1. Parameter Exploration

The performance of a BBPMA is mainly influenced by the block size 𝐶 , the segment size 𝑆

and the density configuration. For insertions, the density configuration is defined by two

parameters, the maximum density on the highest level 𝜏ℎ
max

and the growing factor 𝑔. The

growing factor is multiplied to the number of block references that need to be stored to

determine the new size of R when the reference PMA is reallocated.

We evaluate the performance of our data structure regarding batch-parallel insertions,

scans and search queries for a wide range of combinations of the three tuning parameters

mentioned above. In this way, we are able to consider interdependencies between the

parameters. We repeat the experiments using uniform, dense normal and zipf inputs to

ensure that the tuned data structure performs well on a wide range of inputs without

being overfitted to a specific scenario. The five remaining inputs enable the validation of

the universal performance using scenarios that were not used for the parameter tuning.

The block size is the most important tuning factor as it characterizes our main contribu-

tion. Therefore, we evaluate the data structure for all combinations of block sizes 𝐶 and

segment sizes 𝑆 from

• 𝐶 ∈ {16, 32, 64, 128, 256, 512, 1 024, 2 048, 4 096} and

• 𝑆 ∈ {256, 512, 1 024, 2 048, 4 096}.

Preliminary experiments showed that the density parameters have relatively little influence

on the performance. Therefore, we only consider three density configurations. We use

symbolic names 𝛼 , 𝛽 and 𝛾 for simplicity:

• Density configuration 𝛼 : 𝜏ℎ
max

= 0.9, 𝑔 = 1.8

• Density configuration 𝛽 : 𝜏ℎ
max

= 0.9, 𝑔 = 1.2

• Density configuration 𝛾 : 𝜏ℎ
max

= 0.7, 𝑔 = 1.8

For the parameter tuning evaluations, we use a batch size of 10
6
elements and insert

100 batches as prefill and 100 batches during the measurements. Afterwards, we perform

1 000 search and scan queries each. For search queries, we report the average running

time of a query. We distinguish scan queries into two categories. Short scan queries scan

up to 1 000 elements while long scan queries scan more elements. For both, we report the

throughput of scanned elements per second. The full results including search and scan

queries (omitting some irrelevant configurations for readability) are given in Tables A.1

to A.9.
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Analysis We start the analysis of the results with a focus on insertions. Figure 6.2 gives

an overview of the insertion performance for the density configurations 𝛼 and 𝛾 . A

preliminary evaluation showed that density configuration 𝛽 has no advantages. As we

are interested in a scalable configuration, we consider the case for 𝑝 = 64 threads. The

plots show significant differences in the behavior for the different inputs. On the contrary,

the two density configurations behave very similarly, except for the zipf input. Here, the

optimal case for density configuration 𝛼 is around 7 % better than for density configuration

𝛾 . Therefore, we consider density configuration 𝛼 for the remainder of this section.

For the uniform input, block size 128 is optimal for all segment sizes, with 10–28%

higher throughputs than other block sizes depending on the segment size. The best results

are achieved with segment sizes 1 024 and 2 048 which achieve almost identical throughput.

The differences between the segment sizes are small: For a block size of 128, the optimal

segment size of 2 048 is only around 12% faster than the worst evaluated segment size

4 096. On the dense normal input, the best throughput is achieved with a block size of 1 024,

but block sizes 128, 256 and 512 are only between 3 % and 6% slower for all segment sizes.

The best configuration overall uses block size 1 024 and segment size 512. The throughput

for a block size of 128 and segment size 1 024 is only 3.5 % lower. The dense normal input

has much more focused insertions than the uniform input. Here, the reduced rebalancing

work gained from larger block sizes seems to make up for more expensive operations on

the blocks. The zipf input again achieves the best throughput for a block size of 128 for all

competitive segment sizes, beating the next best segment size by 11–24%. The segment

sizes 256 and 512 achieve practically identical optimal throughputs. The very focused

insertions of the zipf input seem to prefer smaller segment sizes. The performance gain is

likely achieved because the size of rebalancing regions can be controlled more finely and

counting a segment is faster. Larger segment sizes are prone to generating rebalancing

regions that are unnecessarily large.

This exemplary study showed that a small set of configurations seems to be competitive

overall. We use the configuration with density configuration 𝛼 , block size 128 and segment

size 1 024 as a candidate for our final configuration. To ensure that it provides the best

possible tradeoffs, we study more detailed results in Table 6.2. For each input, it shows

the insertion throughput results for those configurations that are competitive in one of

the scenarios considered in Figure 6.2. Additionally, it contains the relative throughput

compared to the candidate configuration. As no combination with density configurations

𝛽 or 𝛾 is dominant, we focus on density configuration 𝛼 for simplicity.

For the uniform input, the configuration with 𝐶 = 128 and 𝑆 = 2 048 is optimal, while

the candidate configuration is less than 1% slower. The dense normal input favors the

configuration with 𝐶 = 1024 and 𝑆 = 512. It is 3.6 % faster than the candidate. However, it

is almost 24 % slower for the uniform input. The zipf input achieves optimal throughput

with a configuration of block size 128 and segment size 512, which is 2.3 % faster than the

candidate. For the uniform input, it is almost 3 % slower than the candidate.

To select a universal configuration for our data structure, we need to weigh the impor-

tance of the three inputs we used. The uniform input is a standard case and resembles

many inputs that occur in practice. Conversely, the dense normal input models input

distributions with insertions that are more focused to a specific key range. Finally, the
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Figure 6.2.: BBPMA parameter tuning results for three inputs and the density configura-

tions 𝛼 (𝜏ℎ
max

= 0.9, 𝑔 = 1.8, left) and 𝛽 (𝜏ℎ
max

= 0.7, 𝑔 = 1.8, right).
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Input

Size Throughput Rel. thr.

Block Segment (·106 el./s) (% opt.)

uniform 128 512 60.82 97.10

1 024 62.63 100.00

2 048 63.08 100.71
1 024 512 47.76 76.25

dense normal 128 512 100.23 101.13

1 024 99.11 100.00

2 048 96.53 97.39

1 024 512 102.74 103.66

zipf 128 512 100.08 102.33
1 024 97.80 100.00

2 048 92.92 95.01

1 024 512 55.49 56.74

Table 6.2.: Summary of the BBPMA parameter tuning results for density configuration

𝛼 . Insertion throughput results are for 𝑝 = 64, the relative performance is

compared to the optimum configuration for the input. Bold values are the best

for their input.

zipf input is very skewed and fewer practical workloads will resemble it. Therefore, we

consider the uniform input as most important, and the zipf input as least important.

Based on this consideration, optimal performance on the uniform input is crucial. While

the candidate configuration was not optimal for each input, it achieves consistently high

throughputs for all inputs. In particular, it offers better tradeoffs than other configurations

that were competitive for certain scenarios. Therefore, we define the insertion configuration
as follows: It uses density configuration 𝛼 (𝜏ℎ

max
= 0.9, 𝑔 = 1.8), block size 𝐶 = 128 and

segment size 𝑆 = 1 024.

Focus on Scan Performance So far, we only considered the insertion throughput in our

evaluations. The configuration derived from that allows for very fast insertions but

does not consider search or scan speed. As shown in Appendix A.1, larger block sizes

significantly improve performance for search or scan queries, independent of the other

tuning parameters. The larger blocks store more elements densely, so that more elements

can be scanned very efficiently before a less efficient linear search for the next block

reference is needed on the reference PMA. Moreover, the reference PMA is smaller which

improves search performance. The results indicate that a wide variety of tradeoffs between

insertion performance and performance for scans and searches can be realized.

Besides the insertion configuration described above, we choose a scan configuration
that favors scan performance while only impairing insertion performance to a reasonable

degree. To this end, Table 6.3 shows results for all block sizes that achieve at least 75 % of

the performance of the insertion configuration. As the influence of the block size on the

scan performance is mostly independent of the input, the segment size, and the density
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configuration, we focus on the uniform input, density configuration 𝛼 and the best segment

size for each block size with regards to insertion throughput.

Size Thr. (·106 el./s) Rel. perf. (% opt.)

Block

Seg-

ment

Ins. Scan Ins. Scan

𝑝 = 64 short long 𝑝 = 64 short long

64 2 048 49.26 15.13 256.57 78.64 90.19 86.09

128 1 024 62.63 16.77 298.03 100.00 100.00 100.00
2 048 63.08 16.48 298.64 100.71 98.27 100.20

256 1 024 55.29 19.34 424.57 88.28 115.30 142.46

512 256 49.76 21.81 565.31 79.45 130.03 189.68

1 024 256 49.33 28.32 672.76 78.76 168.80 225.74

2 048 256 51.19 28.82 842.94 81.73 171.84 282.84
4 096 256 47.76 23.57 977.49 76.25 140.54 327.98

Table 6.3.: BBPMA Parameter tuning results for the uniform input, density configuration 𝛼

and 𝑝 = 64. We consider all block sizes for which an insertion throughput of at

least 75 % of the value for the insertion configuration can be achieved. For each

block size, we select the optimal segment size with regards to insertion through-

put. Additionally, the table contains the insertion configuration (upper bold

line). The scan configuration is the lower bold line. The relative performance is

in comparison to the respective value achieved by the insertion configuration.

The results show that it is possible to increase scan query performance drastically (by

up to 3.27x) while still maintaining acceptable insertion throughput. For long scan queries,

larger blocks monotonically enable faster scans, whereas a saturation seems to be reached

at block size 2 048 for short scans. With even larger blocks, a scan for less than 1 000

elements has to scan a large portion of the block unnecessarily before reaching its elements.

To achieve a good tradeoff between insertion throughput and scan performance for short

and long ranges, we select the configuration with block size 𝐶 = 2 048 and segment size

𝑆 = 256 as our scan configuration. It achieves 81.7 % of the insertion performance relative

to the insertion configuration while being a factor of 1.71 and 2.82 times faster for short

and long scans, respectively. Table 6.4 gives an overview over the insertion and scan

configuration.

Configuration

Name

Density Size

𝜏ℎ
max

𝑔 Block Segment

Insertion 0.9 1.8 128 1 024

Scan 0.9 1.8 2 048 256

Table 6.4.: Overview over the two configurations used for the evaluation of the BBPMA.
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6.2.2. Evaluation

After tuning the BBPMA in the previous section, we now analyze the performance of the

batch-parallel insertion operation more closely, focusing on the insertion configuration.

Scan queries as well as the scan configuration will be analyzed in comparison to the

competitors in Section 6.4.

Running Times by Phases We analyze the behavior of our batch-parallel insertion algo-

rithm in depth by considering the contribution of the five phases of the insertion algorithm

(see Section 4.2.2) to the overall running time. Figures 6.3 and 6.4 give an overview of the

contributions for all inputs.

We begin with an analysis of the normal, dense normal, zipf, and uniform inputs which

are shown in Figure 6.3. In the sequential case, the running time for executing the insertions

clearly has the most influence, requiring at least 80 % of the running time. The remainder

of the time is dominated by the rebalancing execution time. The update phase requires a

short but significant time, while both insertion and rebalancing distribution phases are

not relevant. In the sequential case, the inputs behave very similarly.

In the inputs considered here, insertions are — to a varying degree — distributed relative

to the uniform prefill. They require insertions and rebalancing across the entire data

structure. This means that insertions are needed for many blocks, but each block likely

only receives few elements. These distributed insertions are more expensive than if few

blocks require insertions, and each block receives a large portion of the batch. On the

other hand, inserting few elements per block makes block splits less likely. Therefore,

large rebalancing regions are rare. Additionally, rebalancing is done on the block level,

rather than on the element level, so that less work is needed in general. Together, this

explains why significantly more time is needed for the insertions than for rebalancing.

The update phase is significantly faster than the rebalancing phase in the sequential case,

although rebalancing a section requires that it was considered multiple times in the update

phase. This shows that the read-only update phase is very efficient in the sequential case.

There is little difference in the relative running times of the phases for the different

inputs, but the overall times vary. The more distributed the insertions are, the longer it

takes to execute them. This underscores the argument made above: Inserting batches

that are widely distributed across the data structure is more costly. While the zipf input

requires the least time for the insertion phase, its rebalancing time is relatively the highest.

This shows that if the input is more skewed, rebalancing work increases. But even with

relatively more rebalancing work, the zipf input performs best across all inputs which

shows that the block indirection helps with efficiently handling inputs that are traditionally

hard for PMA-based data structures.

We now focus on the running times for more threads. For eight threads, good speedups

of 5–6.5 are achieved for the normal, dense normal and uniform inputs. The insertion

execution phase behaves best and scales almost perfectly. Here, the distributed insertions

are beneficial as the work is easily parallelized and efficiently executed in parallel. The

rebalancing time is improved as well, but the speedup compared to the sequential execution

is slightly lower. The update phase is faster for two threads than for one but does not show

additional speedup for more threads. Opposed to the other phases, it is much harder to

parallelize: There is less work to do in the first place, and the work is distributed across the
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Figure 6.3.: Contribution of the five phases of an insertion to the total running time per

batch insertion in the BBPMA with the insertion configuration for the respec-

tive input. The experiments use 10
8
elements of prefill and measure 100 batch

insertions of 10
6
elements each. The plots show the maximum time a thread

spends in the respective region.
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tive input. The experiments use 10
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elements of prefill and measure 100 batch
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elements each. The plots show the maximum time a thread

spends in the respective region.
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levels of the tree, which have to be processed sequentially. The amount of work decreases

exponentially with the levels. Additionally, a node on higher levels only requires adding

the values for its two children, while a leaf requires scanning the entire segment. More

detailed evaluations revealed that while the lowest level can be parallelized efficiently, this

is no longer true for the higher levels.

For 64 threads, the insertion execution phase still makes up the largest part of the

running time, but the rebalancing phase and the update phase are much more relevant.

While the phases with large amounts of distributed work scale well, this is not true for the

update phase, which therefore becomes a bottleneck for the parallel insertion throughput.

Using more threads than cores makes the insertions slower.

Figure 6.4 shows the results for the sorted inputs. We first consider the ascending

and descending inputs, which use uniform prefill. In the sequential case, the insertion

execution phase still makes up 80% of the running time. Relative to the uniform prefill,

each batch is inserted into one section of the reference PMA, so that elements are still

distributed across a number of blocks. However, the section is much smaller than in the

previous cases (by expectation, around 1% of the reference PMA), which explains why

the running times are up to 5 times faster than in Figure 6.3. Relative to the faster overall

times, the distribution phases for insertion and rebalancing are now visible, but do not

make up a significant share of the sequential running time.

Scalability is good for up to four threads but deteriorates for more threads. Once more,

the update phase does not scale well, and the distribution phases have a larger share in

the running time, which hinders scalability. The running time of the insertion distribution

phase does not change with a higher number of threads. While the work is parallelized

trivially between the threads, the work increases linearly with the number of threads, and

the running time is dominated by the span. The update phase performs worse for 32 or

more threads. Here, the overheads induced by the parallelization outweigh the benefits.

Finally, the ascending* and descending* inputs have the most skewed insertions. Here,

the relation between insertion and rebalancing execution phase are inverted, and the

insertion phase is much faster than the rebalancing phase in the sequential case. For these

inputs, the entire batch is inserted into a single block at one of the ends of the data structure.

The batch is efficiently split up into blocks, and only relatively few elements from the

existing block have to be merged into it. On the other hand, many new blocks are created

at either end of the data structure, which creates a significant imbalance. Rebalancing

the block references is comparably expensive in the sequential case. As the behavior is

almost identical between the ascending* and descending* inputs, the data structure does

not differentiate whether the elements are inserted at the front or end of the data structure.

This highlights a drawback of using the rebalancing tree to generate rebalancing regions:

Its potential regions are predefined based on the position of the input. In the worst case,

the update phase decides to rebalance a large number of blocks from the end of the data

structure to the left, where existing blocks must be moved. It can overlook that there

might be empty slots to the right, so that rebalancing to the right would be much easier.

The sequential time for the update phase remains similar to the previous inputs but has a

larger relative share.

In the parallel cases, the insertion phase scales well for up to four threads. With more

threads, the running times stagnate. Here, the insertions might be memory-bound, as they
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copy a large number of elements with a high degree of parallelization. The update phase

only scales well for two threads and becomes slower for a higher number of threads. Here,

the update phase has little work on each level, so that it is even harder to parallelize. From

one to two threads, the rebalancing execution phase exhibits a superlinear speedup of

around 3. First of all, this underscores that our rebalancing distribution algorithm can

parallelize even the rebalancing of a single, large rebalancing region. The most likely cause

for the superlinear speedup is the additional cache capacity that is provided by additional

cores. To an even larger degree than for the more regular inputs, the parallel running

times are hindered by the update and distribution execution phases which do not scale as

well as the execution phases.

Strong Scaling Evaluation We examine the same evaluation setup again, but now focus

on the overall throughput that is achieved for each input. The results are summarized in

Figure 6.5. Besides the previous batch size of 10
6
, we additionally consider a smaller batch

size of 10
5
to investigate the influence of the batch size on the strong scaling behavior.

We first consider the results for batch size 10
6
. The results reflect the findings from the

analysis of the running time of the individual phases: The more distributed the inputs

are, the worse the overall throughput. The throughput clearly distinguishes the inputs

into three groups. The speedups are relatively good for up to 32 threads, but no additional

speedups are achieved for more threads.

The lowest throughputs are achieved for the inputs dense normal, normal, zipf, and

uniform. The data structure can process between 64 million (uniform) and 100 million

(dense normal) insertions per second with 64 threads. The relative speedup ranges from 12

(zipf) to 16 (uniform). It is greater for the inputs where the share of the insertion execution

time is higher, as the phases that do not scale well are less relevant.

The sorted inputs achieve significantly higher overall throughputs. For 64 threads, the

BBPMA processes up to 139 million (descending) and 223 million (descending*) elements

per second. It achieves the best results for the inputs that are traditionally the hardest

for PMAs. This shows that the block indirection significantly improves the robustness of

PMA-based data structures against skewed input and that our batch-parallel rebalancing

scheme is effective.

The relations between the inputs are identical for smaller batches of size 10
5
. With the

smaller batches, the overheads that are necessary to distribute the batch insertion must be

amortized over less elements. The smaller batches make it more likely that many blocks

receive few elements each. Therefore, the throughputs are smaller by factors of around

2–3, depending on the input. Moreover, the scalability is worse for smaller batches as the

phases that do not scale well become more significant. This indicates that large batches

are necessary for the efficient parallelization of the BBPMA.

Weak Scaling Evaluation The strong scaling evaluation results indicate that the scalability

of the batch-parallel insertion operation depends on the batch size and is limited for a

fixed batch size. Figure 6.6 presents the results of a weak scaling experiment, where the

batch size scales with the number of threads. Specifically, it measures 100 batch-parallel

insertions of batches each containing 50 000 elements per thread. Performing insertions

in larger batches improves the throughput even for a fixed number of threads. To isolate

the influence of a varying number of threads, we evaluate the execution times of batch
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Figure 6.5.: Strong scaling evaluation for the BBPMA with the insertion configuration,

different inputs and two batch sizes. All evaluations were runwith 10
8
elements

of prefill and measured batch insertions for 10
8
elements.
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insertions, rather than the throughput. As we insert more elements in the measured

insertions, we use 2 · 108 elements of prefill to reduce the influence of growing the data

structure for a high number of threads. Optimal scalability would be achieved if running

times remain constant across all numbers of threads.
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Figure 6.6.: Weak scaling evaluation for the BBPMA with the insertion configuration for

all inputs. All evaluations are run with 2 · 108 elements of prefill and measure

100 batch insertions each, where batches contain 50 000 elements per thread.

The scalability depends on the input. For the uniform input, scalability is good for up to

32 threads. For 64 threads, the running time is 1.18 times slower than in the sequential case,

which shows that the insertion algorithm does not scale well for this case. The scalability

for the normal, dense normal and zipf inputs is slightly worse — they scale well for up to

16 threads but exhibit a slowdown of up to 2.1 for 32 threads, and a factor of up to 2.4 for 64

threads. These inputs require more rebalancing work, so that more overhead is necessary

in the distribution. For the ascending, descending, ascending* and descending* inputs, the

scalability is very good for up to 32 threads. For 64 threads, they have a slowdown of up

to 5 compared to the sequential variant. For all cases, the insertions do not scale well if

more threads than cores are used.

The weak scaling evaluation shows that the insertion operation with sufficiently large

batches scales optimally for up to 16 threads for all inputs. For 32 threads, the scalability

is still optimal for inputs that do not require much rebalancing or insert their elements

extremely locally. For the other distributions, the insertion has a slowdown of up to 2. For

64 threads, the insertions do not scale well in any cases. Here, the additional overheads no
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longer justify the additional threads, even if batches are large enough. Figures 6.3 and 6.4

show that the update phase becomes significantly slower for 64 threads in comparison to

32 threads. Against this background, it seems likely that the update phase is responsible

for the lack of scalability for 64 threads.

Data Structure Size Influence Figure 6.7 studies the influence of the prefill size on the

insertion throughput. The previous relations between the inputs are reflected around the

prefill of 10
8
elements. For less prefill, the relations remain almost the same. If the prefill

is much smaller than the measured workload, there are no more differences between the

normal, dense normal and uniform inputs. Here, the structure of the PMA quickly adapts

to the new input and performs the insertions almost equally fast, independent of the inputs.

The better throughput of the zipf input is caused by duplicate elements, which are counted

as insertions but require less work. For the more regular inputs dense normal, normal

and uniform, the throughput slowly drops with a larger data structure. If the prefill gets a

factor of 10
3
larger, the throughput drops by between 10 % for the dense normal input and

around 70% for the uniform input.
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Figure 6.7.: Throughput for the insertion of 10
8
elements in batches of size 𝑘 = 10

6
into the

BBPMA with the insertion configuration after the data structure was prefilled

with the respective number of elements.

The throughputs for the ascending* and descending* inputs are less prone to degradation

due to more prefill. Here, an entire batch is always inserted at the right or left end of the
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current data structure. There is always only a single, large rebalancing region which is

efficiently rebalanced in parallel. An interesting behavior can be observed by the ascending

and descending input. The throughput for both inputs has a distinct peak with a prefill

of 256 million elements, while it is lower for both less and more prefill. These inputs

insert each individual batch into a small region of the reference PMA which slides across

the reference PMA with the batches. The peak likely forms because the prefill of 256

million elements is sufficient so that each batch insertion can insert all its elements into

the respective segments without requiring much rebalancing work. While the segments

remain with a high density, no future insertions will insert elements into them, so that

the rebalancing cost must never be made up. With less prefill, the batch is inserted into

a smaller section of the reference PMA, so that more rebalancing is needed. With even

more prefill, the range in which a single batch is inserted becomes larger again, so that

the insertions are less efficient.
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6.3. Batch-Parallel Buffered Packed Memory Array with Global
Rebalancing

We briefly evaluate the performance of the GBPMA, the variant of the BBPMA that uses a

simplified global rebalancing routine. Analogous to the BBPMA, we first tune important

parameters and then evaluate the performance of the data structure.

6.3.1. Parameter Exploration

The GBPMA has two important tuning parameters: The growing factor 𝑔 that determines

the size of the new reference PMA after a global rebalancing operation, and the block size

𝐶 . For simplicity, we tune the two parameters independently.

Growing Factor Recall that the GBPMA aims to be efficient by using a sufficiently large

growing factor so that the expensive out-of-place insertions happen rarely. At the same

time, a higher growing factor impairs the efficiency of other operations as it decreases

the density in the reference PMA. Figure 6.8 shows the influence of the growing factor

on the frequency of out-of-place insertions with block size 𝐶 = 128. This evaluation does

not prefill the data structure, so that the behavior can be analyzed even for situations in

which the data structure grows.

To analyze the results, we must distinguish between the inputs. The uniform input

is clearly the most suitable for the GBPMA. An out-of-place insertion adds a factor of

𝑔 of additional space which subsequent operations can use. As the batch elements are

distributed uniformly, all PEs are expected to receive a region of similar length and a

similar number of batch elements. In this way, many subsequent operations can fill up the

additional space. If an insertion requires out-of-place execution again, all regions of the

PE are almost full, so that the additional space can be used effectively. Therefore, even a

small growing factor of 1.1 suffices for less than 10% of out-of-place insertions. With a

growing factor of 1.8, only 1 % of the insertions has to be executed out-of-place.

This effect is also visible — but less strong — for the more focused inputs normal, dense

normal and zipf. Here, it is increasingly more likely that a single PE is unable to insert

all its elements in-place. In this case, it triggers a global out-of-place execution, although

most threads would still have sufficient space for more in-place insertions. Therefore,

higher growing factors are needed, and even with a growing factor of 1.8, it is still not

possible to achieve less than 9% of out-of-place executions.

Finally, the sorted inputs take this development to the extreme: They insert all of their

batches into very focused regions of the reference PMA so that it is almost never possible to

use an in-place insertion with the growing factors evaluated here, except for the ascending

input and a high growing factor. The growing factor adds space globally, but it is only

required locally. Therefore, each local insertion triggers expensive, global rebalancing.

With low growing factors, the data structure is not expected to perform well for such

inputs.

To tune our data structure, we focus on the input that it is expected to perform well on

and use a growing factor of 𝑔 B 1.8. It uses little space but still consistently ensures few

out-of-place insertions for the four relevant inputs.
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Figure 6.8.: Frequency of out-of-place insertions when using the given growing factor

in the GBPMA. The evaluation uses no prefill and performs 100 measured

insertions of batch size 10
6
and block size 𝐶 = 128.

Block Size The influence of the block size on the insertion throughput is evaluated in

Figure 6.9. As we use this evaluation to decide for a block size, we need to be careful which

results we consider: The previous evaluation indicated that the data structure likely will

not perform well for the sorted inputs — which can be expected due to the simplified global

rebalancing. Therefore, Figure 6.9 only considers the other inputs. Results for all inputs

can be found in Figure A.1. In fact, the sorted inputs perform better for larger blocks, but

this is likely because larger blocks can buffer more insertions before a global rebalancing

operation is required.

For the remaining inputs, it can be seen that block sizes 32, 64, and 128 perform the best

for most inputs. Block size 128 seems to be ideal as it is only slightly slower than the other

candidates for the uniform, normal and dense normal inputs while it is significantly better

for the zipf input. Therefore, we use the GBPMA with a growing factor of 1.9 and block

size of 𝐶 = 128.

6.3.2. Evaluation

After the parameter tuning, we conclude the evaluation of the GBPMA with a brief study

of the strong scaling behavior of insertions. Figure 6.10 shows the results for all inputs. It

must be noted that — opposed to the parameter tuning experiment for the growing factor

— we prefill the data structure with the same number of elements that will ultimately be

inserted. Therefore, we expect the influence of out-of-place insertions to be lower than

indicated by Figure 6.8.
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Figure 6.9.: Insertion throughput in the GBPMA for different block sizes, using a growing

factor of 1.8 and 64 threads. Results for all inputs can be found in Figure A.1.
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As anticipated, the GBPMA does not scale well for the sorted inputs, where no speedup

is achieved by the parallel variants. Surprisingly, the sequential throughput is considerably

better than for other inputs, except for the descending* input. Here, there is only a single

thread with one global region, so that it is more likely that there is enough space for

an in-place insertion. The in-place insertions for the skewed inputs are fast, similar to

previous evaluations. However, the good sequential performance cannot be transferred

to the parallel case. Here, the regions of the threads become smaller and it is more likely

that a thread can no longer insert in-place. The global out-of-place rebalancing operations

become more frequent, and the parallelization does not ensure good work balance.

On the other hand, the more regular inputs normal, dense normal, zipf, and uniform

scale well. For the uniform input, relative speedups of 19 and 22 are achieved for 32 and

64 threads, respectively. The growing factor enables them to perform a large part of the

insertions in-place. No overhead is needed for generating, distributing, and processing any

rebalancing regions. As the out-of-place insertions occur very rarely, they do not affect the

overall throughput. Similar to the BBPMA, the uniform input performs worst. Again, it

inserts elements into blocks in all regions of the PMA which is particularly expensive. The

normal and dense normal inputs achieve higher throughput. They benefit from inserting

into less blocks, which is more efficient. The very good throughput for the relatively

skewed inputs indicates that the global rebalancing scheme seems to work well in this

evaluation. Figure 6.8 shows that few out-of-place insertions are needed with the selected

growing factor. This indicates that the GBPMA is particularly well suited for workloads

that have uniformly distributed insertions and keep the data structure size stable over

time.
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6.4. Comparison of the Data Structures

In this section, we compare the performance of our new data structures with each other

and with the two competitors. We evaluate the performance for insertion and scan queries.

Data Structure Selection For our contribution, we consider the BBPMA in its two configu-

rations (described as BBPMA (insert) and BBPMA (scan), see Table 6.4 for details) as well as
the GBPMA. With the competitor data structures, we aim to contextualize the performance

of our new data structures in the tradeoff between insertion and scan performance. Tradi-

tionally, PMA-based data structures are more efficient to scan, but less efficient to insert

than pointer-based search trees. One of the main research questions of this thesis is how

the block indirection affects the positioning along this tradeoff. The theoretical analysis of

the (B)BPMA shows that its asymptotical performance for insertions is equal to that of

(parallel) search trees, ignoring lower order terms for the BBPMA. The comparison with

the PST allows us to analyze how insertions behave practically and how much advantage

the BPMA-based approach yields for scan queries. While the block indirection allows

us to reach the theoretical efficiency of search trees for insertions, it comes at a cost for

scans, as the elements are no longer allocated in contiguous memory, but in blocks. The

comparison with the uCPMA allows us to analyze the influence of this design on the scan

performance. Additionally, it provides a baseline for the insertion performance that can

be reached with a traditional PMA-based approach. While our data structures and the

uCPMA ignore duplicate elements, the PST can contain multiple elements with the same

key. This might cause some differences in behavior for the zipf input, which generates the

most duplicates.

Strong Scaling for Insertions Figures 6.11 and 6.12 show the strong scaling results of all

five data structures on all inputs. As we already analyzed the results for our data structures

above, we focus on an analysis of the performance of the competitors and how our new

data structures compare to them

The behavior for the more regular inputs can be found in Figure 6.11. Except for the

zipf input, the uCPMA consistently performs the worst. Its insertions are a factor of 2.5–3

slower than those of the Parallel Search Tree. The scalability is acceptable for up to 64

threads. Meanwhile, the PST achieves significantly higher overall throughput and scales

well even for 128 threads. The comparison confirms the traditional weakness of PMAs

compared to search trees for insertions.

Even with the scan configuration, the performance of our BBPMA is better than that of

uCPMA for all inputs except the zipf input for every number of threads. For 64 threads,

it is 20 % slower than the uCPMA for the zipf input, but up to 2.25 times faster for the

other inputs. For 128 threads, it is 40 % faster than the uCPMA even on the zipf input.

Compared to the PST, the BBPMA with the scan configuration is a factor of less than 2

slower. With the insertion configuration, the BBPMA is faster than the PST for up to

32 threads on all inputs except the uniform input. For a higher number of threads, the

scalability is once more limited so that PSTs have an advantage. For 64 threads, the BBPMA

with the insertion configuration is around 34%, 14 % and 8% slower than the PST for the

uniform, dense normal and normal inputs. It is 17 % faster for the zipf input, but this might

be partially due to the different treatment of duplicates. The BBPMA with the insertion
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configuration is faster than the uCPMA by a factor of 2 for all inputs except the uniform

input where it is around 20% faster. Finally, the GBPMA performs best overall on the

regular inputs. It is consistently faster even compared to the PST for up to 64 threads.

The sorted inputs in Figure 6.12 are particularly hard for traditional PMAs as the

insertions require lots of rebalancing. We start the analysis with the ascending* and

descending* inputs. Here, the uCPMA performs poorly. It achieves only a very low

throughput and does not scale. In the ascending* case, the throughput is lower than the

simple GBPMA (which does not scale either). In both cases, the throughput for the uCPMA

is two orders of magnitude below that of the PST. This shows that the uCPMA suffers from

the same problems for hard inputs as traditional PMAs with single-element insertions.

Meanwhile, the PST exhibits very good parallel performance. No rebalancing is needed,

and large local insertions are fast due to pointer manipulations in the search tree.

The performance varies significantly between our data structures. As seen before, the

GBPMA does not scale at all. It is not suited for workloads that do not have regular input

patterns. The BBPMA with the insertion configuration beats the PST for up to 32 threads.

For 64 threads it does not scale as well as the PST, so that it is a factor of around 2.5 slower

than the PST. Interestingly, the most efficient data structure overall is the BBPMA with the

scan configuration. It beats all competitors by a factor of up to 5 for a number of threads

between four and 64. This might be an artifact of its configuration in combination with the

batch size: It uses a block size of 2 048 and a segment size of 256, so that more than 500 000

elements can be stored in a single segment. When inserting a batch of 10
6
elements at the

left or right end of the data structure, the required rebalancing work is usually small and

occasional larger rebalancing regions are efficiently executed in parallel.

For the ascending and descending input, the uCPMA scales better, but its performance

is only in the range of that of the simpler GBPMA. Again, it is about a factor of 10 slower

than the PST. The PST achieves the best throughputs and exhibits the best scalability in

comparison to all other data structures, including our new data structures.

The BBPMA with the insertion configuration achieves the same throughputs as the

PST for up to 16 threads. Afterwards, the additional speedup for the BBPMA is small

and the PST clearly performs better. For these hard inputs, even the intricate rebalancing

scheme of the BBPMA seems to come to a limit. The pointer-based operations on the PST

offer parallel throughput that is a factor of almost 3 higher. Compared to the uCPMA, the

BBPMA with the insertion configuration is around 2.5 times faster for 64 threads. While

the scan configuration of the BBPMA performs a factor of 2 worse than the insertion

configuration for low number of threads, it achieves even slightly better performance for

high parallelization. Here, the update phase is likely less relevant as the reference PMA

is much smaller for the larger blocks. Once more, the scan configuration achieves better

performance than the uCPMA for more than 8 threads. The GBPMA does not perform

well and is around one order of magnitude worse than the PST.

In conclusion, the BBPMA with the insertion configuration is consistently faster than

the uCPMA on all inputs and for each number of threads. In the parallel case, it is a factor

of 1.2–2.5 faster on inputs where the uCPMA scales well, and a factor of around 25 faster

on inputs where uCPMA does not scale well. Compared to the PST, it is up to 34 % slower

for the regular inputs, and a factor of 2.5–3 slower for very skewed inputs. The BBPMA

with the scan configuration is usually slower to insert than the insertion variant, but faster
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Figure 6.11.: Strong scaling comparison between the data structures for different inputs.

All evaluations were run with batch size 10
6
and 10

8
elements of prefill and

measured insertions, each.
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Figure 6.12.: Strong scaling comparison between the data structures for different inputs.

All evaluations were run with batch size 10
6
and 10

8
elements of prefill and

measured insertions, each.

73



6. Evaluation

than the uCPMA for almost all cases. Both variants are far more robust against skewed

inputs than the uCPMA. The GBPMA offers very good throughputs for the regular inputs,

even beating the PST consistently. However, it does not perform well on skewed inputs,

so that its performance on mixed real-world workloads cannot be guaranteed.

Different Batch Sizes So far, we only compared the data structures for batch size 10
6
.

Figure 6.13 shows the insertion throughputs for 64 threads and batch sizes from 100 to 10
7

elements. We consider the uniform input, where our data structure performs the worst

out of the regular inputs compared to the competitors. For all batch sizes, we use 10
8

elements of prefill and then insert 10
8
elements during the measurements to ensure a fair

comparison.
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Figure 6.13.: Insertion throughput for different batch sizes. Each data structure starts

by inserting 10
8
elements of prefill, before measuring the insertions of 10

8

elements in batches of the given size. All evaluations use the uniform input

and 𝑝 = 64.

The PST performs best for all batch sizes up to 10
6
, beating the BBPMA and the uCPMA

by a factor of 2–5. Up to a batch size of 50 000, the uCPMA is faster than the BBPMA by

a factor of 3–7. The comparison to the PST shows that both PMA-based data structures

perform significantly worse for small batches. They need to rebalance the data structure

for each batch insertion. Even if less of the data structures needs to be rebalanced for

smaller batches, substantial time is required to find out where rebalancing is necessary.

The BBPMA appears to be affected more significantly than the uCPMA for very small

batches. In this case, it is unlikely that multiple elements are inserted into a block, so that

the cost of updating a block can be amortized over less insertions. As we consider the
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throughput for 64 threads, the BBPMA additionally suffers from worse scalability for small

batches.

BBPMAs are already faster than uCPMAs for batches that contain at least 500 000

elements. Here, the block indirection is useful again. With batches of at least 5 million

elements, BBPMAs even beat the throughput achieved by the PST. In conclusion, the

BBPMA is particularly suited for large batch sizes. Here, it benefits most from efficient

insertions due to the block indirection and scales the best.

Scan Queries The main benefit of traditional PMA-based data structures is that they

enable faster scan queries than search trees, as the elements are allocated in contiguous

memory. We compare the scan performance of all five data structure variants. As the

original implementation of the PST does not provide a scan query, we implement it

ourselves. Within each leaf, the scan query simply iterates the elements. It navigates

between the leaves of the search tree using a linked list between the leaves. As the PST

manipulates the search tree without maintaining such a linked list, we artificially establish

it after the insertions are completed. We do not consider the time that is required for

building the linked list in the scan query evaluation, which gives the PST a slight advantage.

Figure 6.14 shows the throughput of scanned elements that is achieved during scan

queries. We distinguish scan queries into seven buckets depending on the number of

elements that are scanned. Between the two competitor data structures, the uCPMA clearly

offers faster scan queries across all range lengths, conforming with the expectations. Scan

queries in the uCPMA have more variation than in the PST, as they depend strongly on

the density of elements in the region that is scanned.

For our data structures, we first focus on the BBPMA with the insertion configuration.

For very short scans of up to 100 elements, it is around a factor of 2 faster than the uCPMA.

Here, a scan likely only considers one or two blocks, where elements are stored densely.

For the short scans, the BBPMA also benefits from its faster search queries. For search

queries of lengths between 101 and 1 000 elements, the scan performance of the BBPMA is

still around 30% faster than that of the uCPMA. For longer scans, the BBPMA is slower

than the uCPMA by up to 35 %. Here, every query considers elements in many blocks and

the additional search times for the next blocks lower the overall throughput. Throughout

all range lengths, the BBPMA is faster than the PST by a factor of at least 2. The GBPMA

performs similarly to the BBPMA with the insertion configuration. The slight differences

are likely caused by different densities in the reference PMA, as both data structures use

the same block size.

As expected, scan queries perform even better in the BBPMAwith the scan configuration.

Here, up to 2 048 elements are stored in one block, so that they can be scanned quickly

and less new blocks need to be searched. For scans of up to 1 000 elements, it achieves a

speedup of around 2 compared to the uCPMA. For longer scans, the speedup is around a

factor of 1.25–1.6. For ranges of more than 10 000 elements, the running times of individual

queries on the BBPMA are much more consistent than those of the uCPMA, as scans in

the PMA have less influence. The BBPMA with the scan configuration is a factor of about

3.5–6 faster than the PST.

In total, we evaluated two variants of the BBPMA. The variant with the insertion

configuration comes close to the Parallel Search Tree in insertions and offers significantly
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faster scans. With the scan configuration, insertions are slower than those of the PST, but

still comparable to the uCPMA. In turn, the scan queries are a factor of 1.25–2 faster than

in the uCPMA and up to a factor of 6 faster than in the PST.
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Figure 6.14.: Range query evaluation for different data structures. The evaluation prefills

the data structures with 10
8
elements with keys from the uniform distribution

and runs 10 000 random scan queries on each data structure. The PST requires

an additional postprocessing step to enable fast scan queries. We do not

measure the running time required for the postprocessing step, so that the

evaluation gives the PST an advantage.
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To conclude this work, we summarize our contributions and evaluate our results in

comparison to the state of the art. We finish with an outlook on future work.

Our Contribution The guiding theme of this work is the introduction of the block in-

direction in data structures that are based on Packed Memory Arrays (PMAs). Due to

their cache efficient scan queries, PMAs are an interesting data structure for use cases

that frequently scan sections of the data. However, their insertions are slower than in

pointer-based data structures because of their expensive rebalancing routines, so that they

can only be used if significantly lower insertion performance can be tolerated. With the

block indirection, our new data structures mitigate this effect as they offer significantly

faster insertions with only a slight decrease in scan performance for long-range scans

compared to traditional PMAs.

Our first contribution is the Buffered Packed Memory Array (BPMA), a new data

structure that integrates the block indirection into a traditional PMA for sequential, single-

element update queries. The block indirection enables more efficient rebalancing: We

prove that our data structure achieves an amortized update cost of O(log𝑁 ). In this

way, our data structure achieves the same asymptotic update time as pointer-based data

structures, bridging the gap between traditional PMAs and search trees.

The second contribution is the Batch-Parallel Buffered Packed Memory Array (BBPMA),

an extension of the BPMA that offers batch-parallel update operations. We prove that

it transfers the theoretical performance guarantees of the BPMA to the batch-parallel

case by enabling batch-parallel insertions of 𝑘 elements in amortized expected span

O(log𝑁 + log𝑘). Analogous to the sequential case, it improves the update performance

by a logarithmic factor compared to the best result for a traditional batch-parallel PMA

[26]. At the same time, its performance is close to the theoretical optimal running time

that can be achieved in a pointer-based data structure [2]. The only source of expected

running times is an internal hash map.

We present an implementation of the BBPMA with insertion, search, and scan queries

and extensively evaluate the practical performance of our data structure. Additionally, we

compare it to the performance of two competitors: A traditional PMA with batch-parallel

updates, but without the block indirection, as well as the Parallel Search Tree, which uses

a pointer-based search tree. The comparisons allow us to contextualize the performance of

the BBPMAwithin the state of the art and evaluate the practical influence of our theoretical

improvements. When focusing on insertion performance, the BBPMA is 1.2–2.5 times

faster on realistic inputs and up to 25 times faster on worst-case inputs than the traditional

PMA. At the same time, it reaches up to 30 % better scan performance for short scans, while

long scans are up to 35% slower than in the traditional PMA. Compared to the Parallel

Search Tree, insertions are up to 34% (realistic inputs) or a factor of 2.5–3 (worst-case
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inputs) slower, but scan queries are at least 2 times as fast over all scan lengths. The

evaluation underscores the results of the theoretical analysis: The insertion performance

comes close to that of search trees, while it clearly dominates the insertion performance of

traditional PMAs. Particularly, the BBPMA is significantly more robust against worst-case

inputs than the traditional PMA. While we maintain the known benefit of batch insertions

for traditional PMAs [26], our block indirection and the efficient parallel rebalancing

further enhance the robustness and ensure scalability.

No traditional PMA data structure is known that achieves the same update cost as our

data structures for all inputs. Theoretical results from the context of online list labeling

give a lower bound of Θ(log2 𝑁 ) work for deterministic rebalancing in a traditional PMA

[14, 17]. With the block indirection, we circumvent this lower bound by weakening the

property of traditional PMAs that all elements are allocated in contiguous memory. In

our data structures, the PMA stores references to blocks, rather than individual elements.

While it asymptotically improves update times, this new data structure layout impairs

the cache efficiency of scan queries: As elements are allocated in individual blocks, it can

be necessary to switch blocks during a scan query. However, pointer-chasing can still be

avoided in our data structure: References to subsequent blocks can be found efficiently

directly in the reference PMA without having to follow a sequence of pointers first. In this

way, our layout enables efficient prefetching of successive blocks, which improves cache

efficiency during scan queries. The practical evaluation shows that even with a focus

on insertion performance, scan queries in the BBPMA still perform significantly better

than in a pointer-based data structure and are only slightly worse than in a traditional

PMA. Traditional PMAs are the go-to solution for use cases that require optimal scan

performance while tolerating slightly worse insertion performance. With a configuration

that focuses on scan performance, the BBPMA offers scan queries that are a factor of 1.25–2

faster than traditional PMAs, while reaching the same insertion performance. Therefore,

our BBPMA dominates traditional PMAs for their main use cases.

While the block indirection significantly reduces the amount of work that is necessary

for rebalancing, our data structures still use the same full-fledged rebalancing scheme

of traditional PMAs. We investigate whether the complexity can be reduced using a

simplified variant of the BBPMA that avoids intricate rebalancing operations for batch-

parallel updates. By avoiding overheads for rebalancing, it enables significantly improved

insertion performance for inputs with regular distributions. However, it does not offer any

performance guarantees, and the performance degrades rapidly for skewed workloads.

The result justifies our approach of combining the block indirection with rebalancing of

traditional PMAs, as our data structure offers performance guarantees and significantly

more robust practical performance.

Future Work The evaluation results revealed that the main weakness of the BBPMA is

its low scalability for a large number of threads. As our analysis showed, this is mainly

caused by the update phase. Its running times are insignificant in the sequential case.

However, the speedup for the update phase is very low, so that it becomes a bottleneck in

the parallel case and limits the overall scalability. In the data structure description, we

already present a variant of the update phase that is asymptotically more efficient than

the variant of our implementation. It needs to be evaluated how it performs in practice.
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While its asymptotic behavior is promising, it sequentially processes all levels twice. In

practice, this could increase the span and therefore offer no improvement. In this case,

more engineering work might be necessary on the current update algorithm. Specifically,

it could be faster to process nodes on a level sequentially in some cases. Furthermore, the

update map that maintains the nodes that need to be processed has a great influence on the

update phase. It needs to offer both low contention and good work balance in the parallel

processing of the levels. The evaluation also revealed that the BBPMA scales better with

larger blocks, but smaller segments, so the parameter tuning is an important factor for the

scalability.

While the BPMA reaches the same asymptotical insertion time as traditional search

trees, the BBPMA is asymptotically slightly slower than the Parallel Search Tree. It is

an interesting theoretical question whether the batch-parallel insertion algorithm can be

improved to reach the same asymptotical behavior. Another valuable contributionwould be

a theoretical analysis of batch-parallel deletions, for which we only outlined an algorithm.

The practical evaluation showed varying behavior for the different inputs. A better

theoretical understanding of the influence of the input distribution on the performance

could be the basis for more informed tuning of our data structure.

Finally, we did not evaluate the performance of the BPMA, our sequential data structure,

in practice. As it offers good theoretical performance guarantees, an evaluation of its

practical performance would be a key factor in the understanding of the block indirection

in PMAs. The good practical performance of the BBPMA appears to be promising for

the BPMA. Importantly, we showed that for the batch-parallel case, the block indirection

further improves the insertion performance for skewed inputs, as the blocks buffer in-

sertions. Performance degradation for skewed inputs is more problematic for sequential,

single-element insertions than in the batch case. Therefore, the BPMA could have an

important practical advantage over traditional PMAs. An implementation of the BPMA

would be significantly simpler for the BBPMA as it does not require parallelization, work

balancing or the explicit rebalancing tree.
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A. Appendix

A.1. Full Parameter Tuning Results for BBPMA

Tables A.1 to A.9 show extended results of the parameter tuning results described in

Section 6.2.1 for the uniform, zipf and dense normal inputs and the three density configu-

rations.

A.2. Full Block Size Evaluation Results for GBPMA

Figure A.1 shows the results of the block size tuning experiment for the GBPMA described

in Section 6.3.1 for all inputs.
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Figure A.1.: Insertion throughput in the GBPMA for different block sizes, using a growing

factor of 1.8 and 64 threads. This plot shows the results for all inputs, of which

some are included in Figure 6.9.
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A. Appendix

Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 3.51 12.04 28.24 41.74 14.69 254.30 1.74

512 3.38 11.59 28.24 45.52 14.90 256.60 1.71

1024 3.39 11.66 29.05 47.24 14.90 258.09 1.71

2048 3.38 11.77 29.63 49.26 15.13 256.57 1.72

4096 3.42 11.94 29.10 49.19 15.06 256.95 1.72

128 256 3.97 14.34 35.71 58.66 16.51 289.18 1.42

512 3.91 14.11 36.16 60.82 16.95 292.23 1.42

1024 3.82 13.96 36.43 62.63 16.77 298.03 1.38

2048 3.96 14.41 37.14 63.08 16.48 298.64 1.40

4096 3.86 14.14 36.03 54.56 17.18 297.06 1.41

256 256 3.69 13.89 34.56 54.26 18.50 417.50 1.12

512 3.66 13.78 34.79 55.21 18.62 419.10 1.06

1024 3.61 13.68 34.59 55.29 19.34 424.57 1.10

2048 3.63 13.73 34.41 50.78 18.94 423.02 1.08

4096 3.62 13.71 33.16 50.05 19.12 418.72 1.07

512 256 3.44 13.19 31.84 49.76 21.81 565.31 1.02

512 3.37 12.95 31.77 49.69 21.72 562.98 0.99

1024 3.43 13.07 31.60 46.63 21.40 559.36 1.03

2048 3.36 12.86 31.05 46.29 22.87 566.29 0.97

4096 3.42 13.04 30.91 45.79 23.10 560.59 0.99

1024 256 2.61 10.23 30.84 49.33 28.32 672.76 0.87

512 2.85 11.10 31.80 47.76 27.95 672.57 0.88

1024 2.60 10.20 30.58 47.07 28.26 672.69 0.88

2048 2.82 11.02 31.17 45.93 28.34 673.44 0.87
4096 2.60 10.17 30.04 44.00 27.76 674.00 0.90

2048 256 1.97 7.77 27.29 51.19 28.82 842.94 1.11

512 1.98 7.82 27.35 51.13 28.57 843.03 1.11

1024 1.97 7.78 27.15 50.67 28.49 843.86 1.11

2048 1.98 7.79 27.14 49.73 27.59 844.31 1.11

4096 1.97 7.76 26.83 48.77 28.36 844.31 1.11

4096 256 1.27 5.00 19.16 47.76 23.57 977.49 1.57

512 1.00 3.96 15.26 41.51 24.07 971.81 1.57

1024 1.28 5.04 19.07 47.24 25.07 980.79 1.50

2048 1.00 3.96 15.22 40.93 25.43 983.11 1.50

4096 1.27 5.01 18.97 46.31 24.82 973.62 1.54

Table A.1.: Parameter tuning results for the uniform input and density configuration 𝛼

(𝜏ℎ
max

= 0.9, 𝑔 = 1.8). The best value of each column is marked in bold. Scan

and search results are for the variant with 𝑝 = 64.
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A.2. Full Block Size Evaluation Results for GBPMA

Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 3.49 11.96 28.03 41.99 14.55 254.77 1.73

512 3.40 11.67 28.27 44.97 15.05 256.06 1.72

1024 3.34 11.56 29.14 47.53 14.66 256.35 1.73

2048 3.39 11.81 29.53 49.12 14.75 256.36 1.70

4096 3.40 11.87 29.28 49.16 15.04 257.41 1.69

128 256 4.08 14.66 35.93 58.37 16.52 291.78 1.41

512 3.84 14.02 36.21 60.69 17.03 299.61 1.42

1024 3.95 14.32 36.71 62.78 17.26 294.18 1.40

2048 3.83 14.00 36.80 62.87 16.74 297.27 1.41

4096 3.97 14.41 35.82 54.65 17.01 295.76 1.41

256 256 3.69 13.87 34.56 54.28 18.64 423.22 1.06

512 3.62 13.66 34.63 54.94 18.66 425.24 1.13

1024 3.63 13.70 34.65 55.51 19.10 430.84 1.08

2048 3.59 13.57 34.29 50.70 19.49 423.87 1.06

4096 3.63 13.74 33.47 50.24 19.45 420.50 1.08

512 256 3.38 13.02 31.89 49.51 21.64 555.11 0.99

512 3.43 13.12 31.77 49.78 21.70 561.13 1.01

1024 3.37 12.91 31.54 46.67 21.32 566.42 1.05

2048 3.42 13.03 31.03 46.26 22.21 562.43 1.05

4096 3.36 12.88 30.92 45.88 23.45 555.18 1.03

1024 256 2.83 11.03 31.76 49.56 28.22 672.61 0.88

512 2.61 10.22 30.79 47.81 28.17 673.57 0.88

1024 2.83 10.98 31.56 47.16 27.98 673.03 0.88
2048 2.60 10.19 30.26 46.03 28.54 673.42 0.88

4096 2.83 11.03 31.04 42.48 22.61 665.64 1.02

2048 256 1.98 7.81 27.39 51.16 27.99 843.44 1.11

512 1.97 7.77 27.27 51.02 28.42 843.38 1.11

1024 1.98 7.81 27.25 50.74 28.75 844.60 1.11

2048 1.96 7.75 27.00 49.83 27.97 845.30 1.12

4096 1.98 7.55 25.45 39.88 22.07 823.06 1.23

4096 256 1.00 3.95 15.26 41.68 24.45 974.71 1.52

512 1.28 4.99 19.01 47.64 24.33 973.65 1.50

1024 1.00 3.95 15.24 41.15 24.74 977.28 1.53

2048 1.30 5.00 18.97 46.79 25.04 978.03 1.56

4096 1.00 3.90 14.64 36.26 24.35 947.01 1.82

Table A.2.: Parameter tuning results for the uniform input and density configuration 𝛽

(𝜏ℎ
max

= 0.9, 𝑔 = 1.2). The best value of each column is marked in bold. Scan

and search results are for the variant with 𝑝 = 64.
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A. Appendix

Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 3.50 12.00 27.66 41.62 14.62 254.35 1.70

512 3.35 11.54 28.10 44.97 14.77 256.42 1.71

1024 3.37 11.61 29.03 47.09 14.89 256.08 1.72

2048 3.37 11.69 29.36 48.72 14.84 257.35 1.73

4096 3.42 11.91 29.34 49.24 14.82 256.39 1.70

128 256 3.94 14.27 35.63 57.89 16.23 288.90 1.37

512 3.98 14.36 36.15 60.46 16.53 297.46 1.42

1024 3.82 13.96 36.40 62.25 16.73 296.13 1.39

2048 3.95 14.35 36.93 62.93 16.62 305.60 1.44

4096 3.84 14.13 35.88 54.39 16.73 297.16 1.41

256 256 3.68 13.84 34.44 54.11 18.34 415.71 1.07

512 3.66 13.75 34.60 54.96 19.47 419.88 1.07

1024 3.62 13.65 34.57 55.40 18.86 420.20 1.16

2048 3.61 13.67 34.33 50.71 19.65 422.29 1.05

4096 3.61 13.70 33.32 50.18 19.28 422.27 1.07

512 256 3.44 13.21 31.83 49.68 22.54 570.71 0.94

512 3.34 12.82 31.79 49.84 21.50 556.66 1.02

1024 3.42 13.06 31.63 46.71 21.41 572.20 1.11

2048 3.35 12.85 31.10 46.19 22.21 563.75 1.02

4096 3.42 13.03 30.90 45.97 23.34 563.34 1.00

1024 256 2.61 10.22 30.87 49.50 28.11 672.38 0.87

512 2.85 11.07 31.80 47.85 28.20 672.70 0.88

1024 2.60 10.17 30.60 47.05 28.62 673.00 0.87
2048 2.82 11.02 31.16 45.90 28.57 673.01 0.88

4096 2.60 10.17 30.04 44.04 27.54 674.10 0.88

2048 256 1.97 7.78 27.24 51.19 28.64 840.93 1.11

512 1.98 7.81 27.37 50.90 28.25 844.29 1.11

1024 1.96 7.68 26.97 50.65 27.33 846.06 1.12

2048 1.98 7.78 27.07 49.85 28.52 843.38 1.12

4096 1.97 7.74 26.82 48.61 27.89 843.69 1.11

4096 256 1.28 5.01 19.13 47.88 25.36 988.35 1.51

512 1.00 3.96 15.16 41.48 24.63 979.69 1.47

1024 1.27 4.98 18.98 47.01 24.80 970.89 1.56

2048 1.00 3.96 15.19 40.79 25.30 982.16 1.57

4096 1.29 5.06 19.08 46.03 24.73 975.35 1.57

Table A.3.: Parameter tuning results for the uniform input and density configuration 𝛾

(𝜏ℎ
max

= 0.7, 𝑔 = 1.8). The best value of each column is marked in bold. Scan

and search results are for the variant with 𝑝 = 64.
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A.2. Full Block Size Evaluation Results for GBPMA

Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 7.56 16.38 34.56 76.18 18.76 252.84 1.22

512 7.13 15.96 34.39 76.96 18.72 253.92 1.25

1024 6.74 15.41 33.31 73.28 18.58 254.99 1.25

2048 6.19 14.78 31.45 68.10 18.94 255.51 1.27

4096 5.80 14.02 30.18 62.58 18.72 256.25 1.26

128 256 8.66 18.18 44.05 100.03 21.89 297.79 0.99

512 8.49 17.83 43.65 100.08 21.87 297.76 0.99

1024 8.01 17.26 42.53 97.80 21.81 296.79 1.00

2048 7.93 17.18 40.62 92.92 22.09 298.99 0.98

4096 7.40 16.39 38.90 71.60 22.77 298.51 0.97

256 256 8.18 16.48 41.10 89.33 26.16 430.21 0.82

512 8.06 16.52 41.57 90.05 25.73 429.52 0.82

1024 8.02 16.06 40.18 84.42 25.54 431.20 0.81

2048 7.81 15.83 39.57 75.59 25.74 427.62 0.81

4096 7.71 15.40 37.46 73.05 26.23 430.87 0.80

512 256 7.41 14.59 34.97 71.07 29.49 580.94 0.77

512 7.16 14.28 34.55 68.86 29.92 577.98 0.76

1024 7.33 14.37 34.50 67.56 30.49 575.76 0.77

2048 7.07 14.09 33.81 65.27 30.51 581.86 0.76
4096 7.19 14.14 32.96 62.66 30.77 568.08 0.76

1024 256 5.05 10.53 26.59 56.12 33.15 678.71 0.90

512 5.55 10.79 26.16 55.49 33.62 679.03 0.90

1024 5.03 10.49 26.31 55.42 33.95 679.13 0.91

2048 5.51 10.75 25.85 54.39 33.12 678.65 0.90

4096 5.01 10.43 25.91 53.46 33.68 679.28 0.89

2048 256 3.52 7.77 19.52 43.93 33.68 846.91 1.13

512 3.61 7.79 19.63 44.00 33.68 847.17 1.14

1024 3.51 7.76 19.45 43.65 34.05 846.77 1.14

2048 3.61 7.78 19.55 43.26 33.19 848.62 1.14

4096 3.51 7.76 19.32 42.24 33.43 846.54 1.13

4096 256 2.26 5.07 13.31 34.41 27.95 972.51 1.63

512 1.81 4.43 12.92 34.25 28.06 969.82 1.63

1024 2.26 5.07 13.26 34.19 28.85 974.77 1.62

2048 1.81 4.43 12.88 33.96 28.26 972.53 1.62

4096 2.25 5.05 13.19 33.61 28.53 971.97 1.62

Table A.4.: Parameter tuning results for the zipf input and density configuration 𝛼 (𝜏ℎ
max

=

0.9, 𝑔 = 1.8). The best value of each column is marked in bold. Scan and search

results are for the variant with 𝑝 = 64.
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Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 7.52 16.36 35.05 77.31 18.52 253.30 1.26

512 7.25 16.10 34.50 77.04 19.02 253.93 1.24

1024 6.68 15.43 33.22 73.03 18.94 255.23 1.24

2048 6.18 14.66 31.21 68.40 18.31 255.52 1.26

4096 5.75 14.07 30.23 62.51 19.21 256.07 1.25

128 256 8.93 18.59 43.85 99.98 21.89 296.04 1.01

512 8.36 17.73 43.70 99.78 22.09 298.15 0.98

1024 8.31 17.67 42.57 98.18 22.50 297.21 0.97

2048 7.68 16.78 40.86 92.31 21.36 300.15 0.97

4096 7.60 16.58 38.35 71.58 22.77 300.31 0.98

256 256 8.07 16.70 41.63 89.93 25.61 429.72 0.80

512 8.08 16.25 41.01 89.95 25.80 431.93 0.79

1024 7.95 16.20 40.65 84.50 25.69 432.24 0.80

2048 7.85 15.58 39.25 75.24 22.60 425.79 0.90

4096 7.65 15.54 38.19 73.03 25.59 428.97 0.79

512 256 7.21 14.40 34.74 71.06 30.25 575.52 0.76

512 7.36 14.47 34.89 68.84 30.39 575.78 0.77

1024 7.13 14.19 34.41 67.74 30.14 572.63 0.76

2048 7.26 13.85 31.72 57.38 25.80 557.08 0.87

4096 7.01 13.88 32.71 63.35 31.05 579.94 0.76
1024 256 5.53 10.77 26.25 55.72 32.48 678.14 0.89

512 5.04 10.52 26.52 55.90 33.97 679.61 0.90

1024 5.51 10.73 25.95 55.17 34.08 679.59 0.89

2048 4.99 10.37 25.27 51.06 32.10 654.14 1.02

4096 5.51 10.72 25.63 52.82 34.24 678.86 0.89

2048 256 3.61 7.79 19.67 44.07 32.93 846.48 1.13

512 3.51 7.77 19.50 43.81 33.06 847.28 1.14

1024 3.61 7.79 19.62 43.83 33.50 848.19 1.14

2048 3.48 7.73 18.96 42.19 28.86 816.10 1.26

4096 3.61 7.78 19.44 42.71 33.85 848.26 1.14

4096 256 1.81 4.43 12.90 34.31 29.07 981.70 1.60

512 2.27 5.05 13.27 34.33 28.54 976.05 1.63

1024 1.81 4.43 12.89 34.15 27.97 972.85 1.61

2048 2.25 5.02 13.25 34.03 28.69 973.29 1.61

4096 1.81 4.43 12.85 33.30 28.99 980.66 1.58

Table A.5.: Parameter tuning results for the zipf input and density configuration 𝛽 (𝜏ℎ
max

=

0.9, 𝑔 = 1.2). The best value of each column is marked in bold. Scan and search

results are for the variant with 𝑝 = 64.
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A.2. Full Block Size Evaluation Results for GBPMA

Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 7.17 15.12 30.37 58.54 16.62 251.38 1.68

512 6.79 14.76 30.61 59.34 16.83 252.02 1.68

1024 6.41 14.44 29.82 59.09 16.84 252.13 1.62

2048 5.97 13.94 29.15 56.37 17.01 253.06 1.60

4096 5.77 14.08 29.83 62.68 18.91 256.10 1.25

128 256 8.33 17.22 39.64 82.58 19.55 293.55 1.31

512 8.38 17.38 39.59 85.04 19.38 293.51 1.31

1024 7.84 16.78 40.22 84.20 19.79 294.92 1.28

2048 7.81 17.07 40.57 92.94 22.08 301.65 0.96

4096 7.24 15.84 36.97 65.18 21.35 292.89 1.16

256 256 8.06 16.29 39.43 82.53 22.04 427.09 1.02

512 7.99 16.28 41.22 84.56 24.36 424.66 0.92

1024 8.02 15.98 40.14 84.53 25.88 429.78 0.79

2048 7.75 15.82 39.47 75.72 27.00 428.04 0.79

4096 7.67 15.29 37.16 73.03 26.82 434.38 0.77

512 256 7.41 14.40 35.04 69.19 27.47 584.09 0.89

512 7.11 14.16 34.60 69.11 30.30 580.98 0.75
1024 7.31 14.39 34.44 67.48 31.52 579.91 0.76

2048 7.04 13.99 33.59 65.03 31.56 584.13 0.78

4096 7.18 14.14 33.06 62.75 30.96 567.07 0.79

1024 256 5.03 10.52 26.60 56.12 33.17 679.18 0.89

512 5.48 10.79 26.18 55.43 34.07 680.03 0.88

1024 5.03 10.48 26.33 55.47 33.51 663.87 0.90

2048 5.49 10.73 25.82 54.20 33.00 678.44 0.90

4096 5.01 10.44 25.90 53.44 33.47 679.82 0.91

2048 256 3.51 7.77 19.51 43.87 33.19 846.10 1.14

512 3.61 7.79 19.63 43.99 32.75 849.40 1.13

1024 3.49 7.69 19.28 43.55 32.82 847.07 1.14

2048 3.61 7.77 19.52 43.50 33.91 848.20 1.14

4096 3.51 7.74 19.28 42.15 33.59 848.30 1.14

4096 256 2.26 5.05 13.28 34.42 27.78 972.81 1.59

512 1.81 4.43 12.91 34.25 27.44 974.99 1.63

1024 2.25 5.04 13.26 34.27 28.20 977.36 1.63

2048 1.81 4.43 12.89 33.88 28.68 972.56 1.62

4096 2.27 5.08 13.25 33.69 28.87 981.46 1.62

Table A.6.: Parameter tuning results for the zipf input and density configuration 𝛾 (𝜏ℎ
max

=

0.7, 𝑔 = 1.8). The best value of each column is marked in bold. Scan and search

results are for the variant with 𝑝 = 64.
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Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 5.65 18.75 46.08 69.00 17.38 251.45 1.36

512 5.60 18.82 47.86 73.48 17.35 251.46 1.38

1024 5.74 19.72 50.26 75.27 17.40 252.65 1.36

2048 5.68 19.43 49.89 74.82 17.49 251.95 1.36

4096 5.77 19.97 50.81 72.35 17.38 251.77 1.41

128 256 6.30 22.82 59.65 96.84 20.40 282.54 1.08

512 6.37 22.96 62.11 100.23 21.09 283.12 1.04

1024 6.22 22.78 63.23 99.11 20.67 283.52 1.06

2048 6.56 23.96 64.46 96.53 20.65 283.01 1.04

4096 6.31 23.20 63.63 89.93 20.52 288.24 1.03

256 256 6.18 23.29 63.28 100.77 23.62 416.50 0.95

512 5.98 22.64 63.21 99.90 24.29 418.14 0.85

1024 6.16 23.55 64.63 97.94 23.33 412.74 0.86

2048 6.00 22.94 63.49 92.56 23.62 415.28 0.86

4096 6.21 23.71 63.20 89.77 23.74 416.37 0.89

512 256 5.58 21.64 64.28 103.09 26.61 561.69 0.89

512 5.36 20.90 63.41 100.71 26.25 565.43 0.95

1024 5.61 21.79 64.47 97.92 26.72 565.49 0.93

2048 5.38 20.94 62.36 94.47 27.18 563.32 0.93

4096 5.57 21.66 62.76 90.32 26.78 569.01 0.92

1024 256 3.49 13.61 48.11 100.95 28.99 667.03 0.86

512 4.12 16.02 55.04 102.74 29.26 666.94 0.86

1024 3.49 13.61 47.95 97.79 29.53 666.91 0.86

2048 4.10 15.97 54.35 98.20 29.12 666.71 0.84
4096 3.49 13.63 47.55 92.86 29.55 667.25 0.87

2048 256 2.34 9.01 33.44 88.78 29.08 840.30 1.08

512 2.44 9.49 35.27 91.16 29.04 838.43 1.08

1024 2.33 9.00 33.44 87.85 27.50 839.62 1.08

2048 2.44 9.49 35.08 88.86 28.24 841.97 1.07

4096 2.33 9.01 32.95 84.50 27.81 840.24 1.06

4096 256 1.49 5.62 21.43 59.32 24.44 974.16 1.46

512 1.11 4.31 16.20 46.40 24.10 978.36 1.46

1024 1.48 5.78 21.66 59.75 24.40 981.60 1.53

2048 1.11 4.32 16.18 46.13 24.42 981.48 1.46

4096 1.47 5.72 21.19 58.07 24.88 979.47 1.43

Table A.7.: Parameter tuning results for the dense normal input and density configuration

𝛼 (𝜏ℎ
max

= 0.9, 𝑔 = 1.8). The best value of each column is marked in bold. Scan

and search results are for the variant with 𝑝 = 64.
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A.2. Full Block Size Evaluation Results for GBPMA

Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 5.54 18.54 45.87 68.06 17.23 251.10 1.35

512 5.68 19.20 48.41 73.59 17.47 251.67 1.39

1024 5.61 19.40 49.47 74.83 17.67 251.97 1.39

2048 5.72 19.60 49.79 74.46 17.43 251.75 1.36

4096 5.66 19.80 50.67 72.82 17.19 252.15 1.42

128 256 6.54 23.42 60.34 97.88 20.62 285.13 1.08

512 6.26 22.66 61.72 100.13 20.39 289.08 1.07

1024 6.55 23.70 63.64 99.84 20.32 282.36 1.07

2048 6.27 22.98 63.63 97.18 20.65 283.07 1.05

4096 6.53 23.88 63.35 89.53 20.58 279.98 1.02

256 256 5.96 22.43 62.57 100.27 23.14 420.70 0.90

512 6.16 23.31 64.13 100.77 22.94 420.94 0.84

1024 5.97 22.76 63.63 97.66 23.54 423.92 0.85

2048 6.16 23.49 64.06 92.68 24.01 419.52 0.86

4096 6.01 23.03 62.54 90.34 23.61 416.87 0.92

512 256 5.37 20.83 62.79 102.57 27.15 564.74 0.86

512 5.56 21.65 64.42 100.77 27.62 560.09 0.85

1024 5.38 20.93 63.24 97.34 26.62 559.91 0.96

2048 5.58 21.71 63.68 94.91 27.54 555.33 0.90

4096 5.38 20.96 61.61 89.81 27.35 567.97 0.90

1024 256 4.09 15.92 54.66 103.66 28.59 667.66 0.87

512 3.49 13.62 48.21 98.91 28.62 666.28 0.86

1024 4.09 15.99 54.76 100.54 29.68 666.53 0.85

2048 3.50 13.42 46.84 95.12 29.13 668.00 0.84
4096 4.10 16.02 53.97 95.61 29.75 666.38 0.88

2048 256 2.44 9.50 35.27 91.46 29.04 840.31 1.07

512 2.33 9.01 33.43 88.57 27.77 839.60 1.08

1024 2.44 9.49 35.24 90.69 27.53 840.41 1.06

2048 2.33 9.00 33.33 87.21 26.99 840.15 1.08

4096 2.44 9.48 34.81 85.95 28.83 839.53 1.08

4096 256 1.11 4.31 16.22 46.52 24.54 981.05 1.46

512 1.49 5.72 21.53 59.57 23.83 975.97 1.47

1024 1.11 4.31 16.22 46.35 24.79 982.48 1.47

2048 1.46 5.57 19.81 47.18 18.70 941.63 1.73

4096 1.11 4.31 16.16 45.60 24.70 986.30 1.50

Table A.8.: Parameter tuning results for the dense normal input and density configuration

𝛽 (𝜏ℎ
max

= 0.9, 𝑔 = 1.2). The best value of each column is marked in bold. Scan

and search results are for the variant with 𝑝 = 64.
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Size Throughput [·106 elem. /s] Search

time

[𝜇s]Block

Seg-

ment

Batch insertion Scan

𝑝 = 1 𝑝 = 4 𝑝 = 16 𝑝 = 64 short long

64 256 5.55 18.65 45.41 67.00 17.56 249.78 1.44

512 5.52 18.94 47.33 73.37 17.60 250.46 1.45

1024 5.68 19.56 49.46 74.43 17.40 249.84 1.41

2048 5.60 19.52 49.64 74.63 17.05 249.49 1.47

4096 5.73 19.74 49.86 72.67 17.92 249.18 1.39

128 256 6.23 22.53 59.52 97.04 20.53 282.26 1.10

512 6.48 23.63 62.50 100.50 20.29 284.92 1.12

1024 6.21 22.83 62.95 99.56 21.27 284.60 1.10

2048 6.46 23.73 63.51 97.09 19.77 285.19 1.12

4096 6.25 23.13 63.37 88.15 20.28 277.97 1.11

256 256 6.15 23.20 62.89 99.80 23.62 418.86 0.91

512 5.97 22.61 62.87 99.75 22.92 414.68 0.89

1024 6.17 23.47 64.19 98.38 23.59 413.60 0.88

2048 5.96 22.77 62.81 91.53 23.14 413.60 0.95

4096 6.19 23.57 63.51 87.80 23.84 415.84 0.89

512 256 5.57 21.65 63.63 101.63 26.19 560.19 0.94

512 5.33 20.84 63.03 101.42 26.62 560.07 0.95

1024 5.54 21.61 64.25 96.48 26.35 554.54 0.90

2048 5.34 20.82 62.15 93.37 26.45 559.59 0.91

4096 5.56 21.61 62.50 90.74 26.10 559.88 0.95

1024 256 3.47 13.53 48.05 99.95 28.10 666.06 0.87

512 4.04 15.88 54.32 99.90 27.01 665.06 0.85
1024 3.49 13.61 48.02 97.04 27.99 665.60 0.85

2048 4.09 15.85 53.86 97.45 28.56 666.61 0.86

4096 3.49 13.64 47.39 90.46 28.40 666.98 0.87

2048 256 2.33 9.02 33.62 88.11 26.57 838.24 1.08

512 2.43 9.48 35.23 90.79 26.99 839.23 1.09

1024 2.32 8.97 33.38 87.60 27.16 840.06 1.09

2048 2.44 9.49 35.02 88.38 27.31 839.41 1.07

4096 2.33 9.01 32.91 84.73 28.08 839.37 1.08

4096 256 1.48 5.74 21.37 59.51 23.89 984.58 1.50

512 1.11 4.31 16.18 46.44 23.75 980.52 1.45

1024 1.46 5.73 21.40 58.93 24.07 978.01 1.45

2048 1.11 4.31 16.17 46.04 24.20 974.43 1.50

4096 1.50 5.81 21.43 57.85 25.03 987.53 1.49

Table A.9.: Parameter tuning results for the dense normal input and density configuration

𝛾 (𝜏ℎ
max

= 0.7, 𝑔 = 1.8). The best value of each column is marked in bold. Scan

and search results are for the variant with 𝑝 = 64.
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