
Reducing Memory Footprints in Purity Estimations
of Volumetric DDoS Traffic Aggregates

Hauke Heseding†, Timon Krack∗, Martina Zitterbart†
†Institute of Telematics, †KASTEL Security Research Labs

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
hauke.heseding@kit.edu, timon.krack@student.kit.edu, zitterbart@kit.edu

Abstract—Distinguishing between attack and legitimate traffic
in volumetric DDoS scenarios is challenging. Hierarchical Heavy
Hitter algorithms can efficiently monitor high-volume traffic
aggregates, but provide no insight into traffic composition.
Monitoring complementary traffic features enables classification
of traffic aggregates with machine learning, but increases the
memory footprint of Hierarchical Heavy Hitter algorithms. Since
the performance of these algorithms depends on the efficiency of
memory usage, we evaluate feature importance to find a compact
feature set for accurate distinction of legitimate and attack traffic.

Index Terms—Distributed denial of service, hierarchical heavy
hitters, machine learning, feature importance

I. INTRODUCTION

Hierarchical Heavy Hitter (HHH) [1] algorithms can process
high-volume traffic in volumetric DDoS attack scenarios at
line speed (e.g., [2], [3]). These algorithms monitor traffic
volume distribution, but not traffic composition. To make HHH
algorithms useful for attack traffic removal, additional infor-
mation is required to distinguish between attack and legitimate
traffic. By monitoring complementary features (besides traffic
volume), machine learning (ML) can be used to estimate the
purity of attack traffic in a traffic aggregate and to blacklist
subnets that primarily send attack traffic. However, using
complementary features increases the memory footprint of
HHH algorithms, which impedes monitoring efficiency.

To reduce the number of required features, we evaluate
the impact of individual features on attack traffic purity
estimations. For this, we utilize permutation feature impor-
tance [4] to measure the increase in the absolute estimation
error after shuffling the values of a single feature randomly.
Our results based on authentic MAWI traffic and synthesized
attack patterns indicate that only few features are required to
achieve high accuracy in attack traffic purity estimations.

II. ATTACK TRAFFIC PURITY ESTIMATION

HHH algorithms perform traffic volume aggregation to
detect high-volume IP prefixes, i.e., prefixes whose traffic
comprises a certain fraction ϕ of the total traffic (not including
the volume of longer high-volume prefixes). Estimating the
attack traffic purity of such high-volume prefixes enables
blacklisting of highly malicious IP source subnets to protect
network infrastructures from attack traffic.

∗Research performed while student at KIT.

p4p3 p5p2

Estimated attack traffic purity ො𝜋p

HHH traffic
aggregation

p1 𝑐1 𝑐2 ⋯ 𝑐𝑛

Artificial
neural
network

HHH prefix Non-HHH prefix

𝔉 = ℱ1, ℱ2, ℱ3, ℱ4, … , ℱ𝑛−1, ℱ𝑛

Feature vector of pCounters of p

query

Fig. 1: ML-based regression to estimate attack traffic purity of aggregates.

Specifically, we denote the attack traffic purity of a prefix p
as the ratio πp = Ap/Vp of attack traffic volume Ap to
total traffic volume Vp. To obtain an estimate π̂p of πp, ML-
based regression can be applied to complementary features as
depicted in Fig. 1. To obtain these features, we modify an HHH
algorithm to count how often packets in the source address
range of a high-volume prefix exhibit certain characteristics.
For example, the counter c1 of prefix p1 can count the number
of times the TCP protocol occurred in its address range.
By continually monitoring different traffic characteristics, the
HHH algorithm provides insight into aggregate composition.

The counters can be queried at regular intervals to obtain
a feature vector F with features F1,F2, Given a set of
feature vectors and target values of πp, an artificial neural
network can be trained to estimate attack traffic purity. For this,
we use a straightforward model architecture (implemented in
TensorFlow). The model applies z-score normalization (fitted
on training data) in the first layer followed by an alternating
sequence of eight fully-connected layers (128 neurons and
ReLU activation) and eight dropout layers that reduce the risk
of over-fitting. A final layer outputs the attack traffic purity
estimation π̂p using a single neuron with a linear activation
function. The model is trained on dynamic traffic patterns
described in Sec. IV that model multiple volumetric DDoS
attack vectors overlaid on authentic, legitimate traffic.

III. FEATURE IMPORTANCE

To assess the impact of individual features on model perfor-
mance, we use permutation feature importance on the features
and vectors in Tab. I. We then shorten the vectors to reduce
memory footprints and retrain the models for comparison.

TABLE I: Features and Feature Vectors

Feature Meaning

FPKT Aggregate packet count
FVOL Aggregate traffic volume in bytes

FTCP, FUDP #occurrences of TCP and UDP protocols
FPORTS∈[X,Y] #occurrences of source ports in the range [X,Y]
FSIZE∈[X,Y] #occurrences of frame sizes in the range [X,Y]

Feature vectors Included features

FPROTO {FTCP,FUDP}
FPROTO+SIZE FPROTO ∪

{
FSIZE∈[0,199],FSIZE∈[200,1999]

}
FPROTO+PORTS FPROTO∪

{
FPORTS∈[0,210−1],FPORTS∈[210,216−1]

}
FALL FPROTO ∪{FPKT,FVOL}

∪
{
FPORTS∈[i·210,(i+1)·210−1] | i ∈ [0, 63]

}
∪
{
FSIZE∈[i·200,(i+1)·200−1] | i ∈ [0, 9]

}

Initially, the vector Fall uses all features and serves as a
baseline. To find its important features, we perform two-steps:

Feature importance assessment. First, for a given feature
vector, we calculate the cumulative distribution function (CDF)
of the absolute errors |πp − π̂p| of a trained model. We then
calculate the area under the curve (AUC) of the CDF. A
higher AUC implies better estimations. This can be used to
assess permutation feature importance. For this, we shuffle
each feature in a test dataset individually and perform attack
traffic purity estimations with a trained model. A reduction in
the AUC indicates the importance of a feature to the model.

Feature reduction. Second, we eliminate or combine fea-
tures of FALL that yield low AUC reductions (e.g., by com-
bining short port ranges). This yields the vectors FPROTO+SIZE,
FPROTO+PORTS, and FPROTO from Tab. I that focus on protocol,
frame size, and/or port information. These vectors are signifi-
cantly shorter to reduce the number of counters required by the
HHH algorithm. By measuring the AUC after re-training on
shorter vectors, we identify relevant complementary features.

IV. EVALUATION

We train the model on a synthesized dataset with authentic,
legitimate MAWI traffic [5] and synthesized attack patterns
with randomized time-dynamic behavior:

• UDP-based DNS, NTP and OpenVPN amplification at-
tacks with frame size distributions reported in [6].

• TCP-based flood attacks with random frame sizes and
ports in the range 60− 1492 and 49152− 65535 (resp.).

The DNS and NTP attacks use high-volume sources, while
OpenVPN and TCP attacks use wide-spread, low-volume
sources to generate different aggregates with varying traffic
volume. Randomizing sources and attack traffic characteristics
renders the estimation of πp challenging.

The feature importance of the most relevant features for
each feature vector is shown in Fig. 2. Protocol information
(particularly TCP) has the highest impact on model perfor-
mance. Based in the feature importance of FALL we determine
shorter feature vectors. Notably, the short frame size and port
ranges of FALL have low individual impact. Therefore, we
combine them into larger ranges to shorten vector length.

TC
P

co
un

t
Tr

af
fic

 v
ol

um
e

Po
rt

10
24

-2
04

7
Si

ze
 1

40
0-

15
99

Si
ze

 0
-1

99
Po

rt
0-

10
23

Pa
ck

et
 c

ou
nt

UD
P

co
un

t

0.00

0.25

AU
C

re
du

ct
io

n

ALL

TC
P

co
un

t
UD

P
co

un
t

Si
ze

 2
00

-1
99

9
Si

ze
 0

-1
99

PROTO + SIZE

TC
P

co
un

t
UD

P
co

un
t

Po
rt

10
24

-6
55

35
Po

rt
0-

10
23

PROTO + PORTS

TC
P

co
un

t
UD

P
co

un
t

PROTO

Fig. 2: Feature importance ranked by AUC reduction for all feature vectors.

0.0 0.2 0.4 0.6 0.8 1.0
Absolute error

0.7

0.8

0.9

1.0

CD
F

ALL (AUC 0.9887)
PROTO + SIZE (AUC 0.9864)
PROTO + PORTS (AUC 0.9708)
PROTO (AUC 0.9632)

Fig. 3: Cumulative distribution function of the absolute errors in estimations
of the attack traffic purity πp when using different feature vectors.

Since there is no clear preference for port over frame size
information, we use the complementary vectors FPROTO+PORTS

and FPROTO+SIZE for comparison and additional size reduction.
Fig. 3 summarizes the CDF of absolute errors for different

feature vectors. The vector FALL achieves the highest esti-
mation performance with an AUC of 0.9887. In comparison,
protocol information alone results in a significant AUC re-
duction (0.9632 using FPROTO). Including complementary port
information in FPROTO+PORTS increases the AUC slightly to
0.9708. However, including frame size information instead
(in FPROTO+SIZE) retains an estimation performance close to
the full feature vector FALL (AUC = 0.9864). This provides a
significant feature size reduction from 76 features (FALL) down
to 4 features (FPROTO+SIZE) with low impact on estimation
performance. Through this, the memory footprint of an HHH
algorithm used for blacklisting can be reduced by 94.7%.

ACKNOWLEDGMENT

This work was supported by funding of the Helmholtz As-
sociation (HGF) through the KASTEL Security Research Labs
(KASTEL) (POF structure 46.23.01: Methods for Engineering
Secure Systems).

REFERENCES

[1] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in data streams,” in Proceedings of the 29th
International Conference on Very Large Data Bases, 2003.

[2] D. A. Popescu, G. Antichi, and A. W. Moore, “Enabling fast hierarchical
heavy hitter detection using programmable data planes,” in Proceedings
of the Symposium on SDN Research, 2017.

[3] R. Ben Basat, X. Chen, G. Einziger, and O. Rottenstreich, “De-
signing heavy-hitter detection algorithms for programmable switches,”
IEEE/ACM Transactions on Networking, 2020.

[4] L. Breiman, “Random forests,” Machine learning, 2001.
[5] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-

ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in ACM CoNEXT ’10, 2010.

[6] D. Kopp, C. Dietzel, and O. Hohlfeld, “Ddos never dies? An IXP perspec-
tive on ddos amplification attacks,” in Passive and Active Measurement,
2021.

