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We develop an analytical approach to the study of one-dimensional free fermions subject to random
projective measurements of local site occupation numbers, based on the Keldysh path-integral formalism
and replica trick. In the limit of rare measurements, γ=J ≪ 1 (where γ is measurement rate per site and J is
hopping constant in the tight-binding model), we derive a nonlinear sigma model (NLSM) as an effective
field theory of the problem. Its replica-symmetric sector is described by a Uð2Þ=Uð1Þ × Uð1Þ ≃ S2 sigma
model with diffusive behavior, and the replica-asymmetric sector is a two-dimensional NLSM defined on
SUðRÞmanifold with the replica limit R → 1. On the Gaussian level, valid in the limit γ=J → 0, this model
predicts a logarithmic behavior for the second cumulant of number of particles in a subsystem and for the
entanglement entropy. However, the one-loop renormalization group analysis allows us to demonstrate that
this logarithmic growth saturates at a finite value ∼ðJ=γÞ2 even for rare measurements, which corresponds
to the area-law phase. This implies the absence of a measurement-induced entanglement phase transition
for free fermions. The crossover between logarithmic growth and saturation, however, happens at
exponentially large scale, ln lcorr ∼ J=γ. This makes this crossover very sharp as a function of the
measurement frequency γ=J, which can be easily confused with a transition from the logarithmic to area
law in finite-size numerical calculations. We have performed a careful numerical analysis, which supports
our analytical predictions.
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I. INTRODUCTION

The problem of measurement-induced entanglement
phase transitions has recently attracted much interest. It
is closely related to the general problem of the dynamics
of open systems in contact with environment, with the
measurement apparatus being a specific realization of such
environment. A lot of interest in this field has been
motivated by ongoing developments in quantum informa-
tion processing, with environment-induced noise being
one of the main obstacles irrespective of specific archi-
tectures [1–3]. Interestingly, measurements can be used as a
source of a controllable noise that governs the properties of
a quantum system, in particular, entanglement.
Quite generally, measurement-induced transitions

are driven by a competition between unitary dynamics,
which favors the spreading of entanglement through the

system, and stochastic nonunitary evolution induced by the
interaction with the measurement apparatus, which tends
to reduce entanglement. Originally explored in quantum
circuits [4–28], measurement-induced entanglement tran-
sitions have also been studied in other systems, such as free
fermionic systems [29–46], Majorana fermions [47,48],
spin systems with Ising-type interaction [49–58], Bose-
Hubbard-type models [59–63], disordered systems in the
context of Anderson [40] or many-body localization
[64,65], and extensions of the Sachdev-Ye-Kitaev model
[66,67]. While most of the efforts were either computa-
tional or analytical, signatures of measurement-induced
phase transitions have also been reported in experimental
studies of systems based on trapped ions [68] and super-
conducting quantum processors [69,70].
An important quantitative measure that is commonly

used to distinguish phases of the system subject to
measurements in the context of measurement-induced
phase transitions is the entanglement entropy that charac-
terizes entanglement between a large subsystem and the
rest of the system. Depending on the scaling of the
entanglement entropy with the subsystem size, the possible
phases include the following.
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(i) Volume-law phase, with the entanglement entropy
proportional to the volume of the subsystem. Such
behavior is characteristic for a typical highly en-
tangled pure many-body state.

(ii) Area-law phase, where entanglement entropy scales
linearly with the area of the boundary of the
subsystem (thus independent of system size for
one-dimensional systems). This behavior is charac-
teristic of weakly entangled states with finite corre-
lation length.

(iii) Intermediate (“critical”) phases with the sublinear
(e.g., power-law or logarithmic, etc.) growth of the
entanglement entropy with the subsystem’s volume.

A major part of the activity in the field was dealing with
random quantum circuits [4–7,9,10,13–17,19,21,23].
For this class of systems, a transition between the area-
law and volume-law phases (with a logarithmic behavior
of the entropy at criticality) was found numerically in
most of the works. This result was also obtained analyti-
cally in certain limiting cases by a mapping onto known
statistical-mechanics models [5,13,15,21]. A similar
behavior was also found for interacting many-body
Hamiltonian models [59–63].
On the contrary, the behavior of noninteracting fermionic

systems (and related Ising models) remains a subject of
debates. Several works reported a transition between the
critical and area-law phases [30,40,41,46,52]. At the same
time, it was argued in Ref. [29] that the area law always
holds in the presence of measurements. Numerical simu-
lations in Ref. [35] also favor the area law but with an
intermediate logarithmic behavior for a small rate of
measurements. For a model where measurements are
replaced by random nonunitary dynamics, an emergent
conformal field theory has been reported [31] with a single
critical (logarithmic) phase.
In several papers, field-theoretical approaches to the

problem of free fermions subjected to continuous monitor-
ing have been proposed. In Ref. [41], a replicated Keldysh
bosonic theory was derived, resulting in an effective
Luttinger-liquid description, which yields a Berezinsky-
Kosterlitz-Thouless-type transition between the area-law
and logarithmic phases. However, the prediction of
Ref. [41] that the “central charge” (a prefactor in front
of the logarithm in the scaling of the entanglement entropy)
is less than unity appears to be inconsistent with the
numerical evidence [30].
A step toward a derivation of a Keldysh nonlinear sigma

model (NLSM) for monitored free fermions was done in
Ref. [39]. This approach yields a field theory that is similar
to the NLSM describing the replica-symmetric sector, as
derived in the present paper. However, the description in
Ref. [39] lacks the replica structure of soft modes that are
relevant for the entanglement entropy. Further, the role of
measurement-induced “heating,” which inevitably happens
in the monitored systems, was not addressed in that work.

In this work, we derive and analyze a replicated Keldysh
NLSM for one-dimensional free fermions under random
local projective measurements. Its replica-symmetric sector
is described by a Uð2Þ=Uð1Þ × Uð1Þ sigma model, and the
replica-asymmetric sector (which is of main interest for the
behavior of entanglement) is a two-dimensional NLSM
with the SUðRÞmanifold subject to the replica limit R → 1.
On the Gaussian level, this field theory yields a logarithmic
behavior for the second cumulant of number of particles
in a subsystem and for the entanglement entropy. How-
ever, the one-loop renormalization-group (RG) analysis
shows that this logarithmic growth is affected by “weak-
localization corrections” and saturates even for arbitrarily
rare measurements. This corresponds to the area-law phase
and thus implies the absence of a measurement-induced
entanglement phase transition for free fermions. For a small
measurement rate, the true thermodynamic limit revealing
the area law requires exponentially large system sizes. We
also perform numerical simulations that confirm these
analytical predictions.
Recently, a related replicated NLSM was proposed for

continuously monitored Majorana fermions in Refs. [27,47].
The replica limit R → 1 was established there as crucial for
taking into account the Born rule for the probabilities of
measurement outcomes, as opposed to the case of “forced
measurements” [27], where the R → 0 limit should be taken.
The sigma-model manifold for the case of monitored
Majorana fermions was found to be the orthogonal group
SOðRÞ, which differs from the special unitary group derived
in the present work. As a consequence, the RG flow for the
NLSM of Refs. [27,47] has the opposite sign of β function
compared to our case. This behavior is reminiscent of the
weak antilocalization RG in two-dimensional disordered
systems with spin-orbit interaction. It yields, for a weak
monitoring of Majorana fermions, a critical phase with the
ln2 l scaling of the entanglement entropy.
Thus, the complex fermions considered here and

Majorana fermions addressed in Refs. [27,47] demonstrate
essentially different types of behavior. This is a result of
different symmetries of the models and, as a consequence,
of associated NLSMs. More specifically, the system studied
in the present work obeys particle number conservation,
which does not hold for Majorana fermion random circuits.
This paper is organized as follows. The model is defined

in Sec. II. In Sec. III, we develop a field-theoretical
approach based on the replica trick and fermionic
Keldysh path integral. In Sec. IV, we analyze the model
at the Gaussian level and obtain results for the density-
correlation function. As discussed in the following sections,
these “mean-field” results are valid at intermediate sizes of
the subsystem, l ≪ lcorr, where lcorr is the scale at which the
quantum correction equals (up to a sign) the leading term.
Section V is devoted to the derivation of Uð2RÞ=UðRÞ ×
UðRÞ NLSM. Its replica-symmetric analysis is relevant
for the dynamics of the density matrix averaged over the
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measurement trajectories. We further focus on the SUðRÞ
replica-asymmetric sector of the theory (describing
particle-number fluctuations and entanglement) and ana-
lyze it by the RG means. Based on the results for the
particle-number cumulant, we discuss the scaling of the
entanglement entropy in Sec. VI. Our analytical findings
are supported by direct numerical simulations in Sec. VII.
Finally, we summarize the results of this work and discuss
its possible implications and generalizations in Sec. VIII.
Some technical aspects of our calculations are presented in
Appendixes A–F.

II. MODEL AND OBSERVABLES

A. Measurement protocol

We study the one-dimensional tight-binding free-
fermion model described by the following Hamiltonian:

Ĥ0 ¼ −J
XL
x¼1

½ψ̂†ðxÞψ̂ðxþ 1Þ þ H:c:�: ð1Þ

During the time interval ½ti; tf� of duration T ¼ jtf − tij, we
randomly pick M uniformly distributed time moments tm,
m ¼ 1;…;M. At each of these times tm, we randomly
choose a site xm ∈ f1;…; Lg (also from a uniform distri-
bution) and perform a projective measurement of the site
occupation number:

n̂ðxmÞ≡ ψ̂†ðxmÞψ̂ðxmÞ:

The outcome of this measurement nm can be either zero
or unity. We are interested in the thermodynamic limit
M;L; T → ∞, keeping the measurement rate per site γ ≡
M=LT finite. The protocol is similar to that in Ref. [71],
where random local projective measurements were con-
sidered for a single-particle (in contrast to the many-body
here) problem in a disordered chain.
We describe the system in terms of a non-normalized

time-dependent density matrix D̂ðtÞ, which is defined as
follows. Initially (t ¼ ti), it coincides with the system’s
density matrix, D̂ðtiÞ≡ ρ̂0. Between two consecutive
measurements at times tm, tmþ1 it undergoes the standard
unitary evolution with the evolution operator

Û0ðtmþ1; tmÞ ¼ exp½−iĤ0ðtmþ1 − tmÞ�;

according to

D̂ðtmþ1Þ ¼ Û0ðtmþ1; tmÞD̂ðtmÞÛ0ðtm; tmþ1Þ: ð2Þ

Ameasurement of the site occupation with a given outcome
nm ¼ 0, 1 changes this matrix discontinuously:

D̂ðtm þ 0Þ ¼ P̂nmðxmÞD̂ðtm − 0ÞP̂nmðxmÞ; ð3Þ

where P̂nm is a projection operator onto the corresponding
eigensubspace of n̂ðxmÞ. These projectors are explicitly
given by

P̂0ðxÞ ¼ 1 − n̂ðxÞ; P̂1ðxÞ ¼ n̂ðxÞ: ð4Þ

The (normalized) density matrix for a given measure-
ment trajectory fxm; tm; nmg can be expressed as

ρ̂ðtÞ ¼ D̂ðtÞ=TrD̂ðtÞ: ð5Þ

The normalization factor TrD̂ðtÞ has its own physical
meaning. Specifically, it provides a generalization of
Born’s rule for a set of consecutive projective measure-
ments; i.e., it gives the probability for the sequence of
measurement outcomes fnmg for a given set of points and
time moments fxm; tmg:

Probðfnmgjfxm; tmgÞ ¼ TrD̂ðfxm; tm; nmgÞ: ð6Þ

For the purposes of this work, we will focus on pure
initial states:

ρ̂0 ¼ jΨ0ihΨ0j:

The purity of the quantum state is maintained both by the
unitary evolution and by measurements for any given
quantum trajectory fxm; tm; nmg.

B. Quantities of interest

The key quantity of interest in the present context is
the entanglement entropy, which is defined as follows.
Consider a subsystem A and the rest of the system Ā, and
introduce a reduced density matrix in the standard way via
the partial trace ρ̂A ¼ TrĀρ̂. The entanglement entropy SE
is given by the usual von Neumann entropy of the reduced
density matrix:

SE ¼ −Trðρ̂A ln ρ̂AÞ: ð7Þ

Let us focus for simplicity on the case when the initial
state jΨ0i is a pure Gaussian state (a Slater determinant).
The projective measurements do not change the Gaussian
property of the state jΨðtÞi, which allows us to relate the
entanglement entropy to the full counting statistics of the
number of particles in the subsystem via the formula by
Klich and Levitov [72] (see also Refs. [73–76]):

SE ¼
X∞
q¼1

2ζð2qÞCð2qÞA ¼ π2

3
Cð2ÞA þ π4

45
Cð4ÞA þ � � � ; ð8Þ

where
CðNÞ
A ¼ ⟪

�X
x∈A

n̂ðxÞ
�

N⟫ ð9Þ
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is the Nth cumulant (as denoted by double angular
brackets) of the number of particles in the subsystem A.
This relation holds for an arbitrary measurement trajectory,
and thus it holds for quantities averaged over trajectories as
well. What makes such an averaging highly nontrivial is
that the Nth cumulant is a nonlinear functional of the
density matrix ρ̂A: it contains terms up to theNth order with
respect to the density matrix. This means that one should be
able to average an arbitrary power of the density matrix
over the measurement trajectories. We are now going to
discuss how to deal with this problem analytically.

III. REPLICATED KELDYSH FIELD THEORY

A. Replica trick and Keldysh action

The problem of averaging the Nth cumulant of number
of particles reduces to the problem of simultaneous
averaging of N copies of the density matrix:

ρ̂N ≡⊗N
r¼1 ρ̂r; ð10Þ

where the overbar denotes the averaging over quantum
trajectories ðxm; tm; nmÞ. The crucial step is then to rewrite
the averaged replicated density matrix in terms of matrices
D̂ using Eq. (5). Performing averaging over the measure-
ment outcomes with the Born rule probabilities given by
Eq. (6), we get

ρ̂N ¼
X

fnm¼0;1g
ð⊗N

r¼1 D̂rÞ=ðTrD̂ÞN−1ðxm;tmÞ: ð11Þ

Here, the overbar with the label ðxm; tmÞ stands for
averaging over positions and times of measurements for
fixed outcomes. In order to perform the averaging within
the field theory, we get rid of denominators by utilizing the
replica trick:

ρ̂N ¼ lim
R→1

X
fnm¼0;1g

Trr¼Nþ1;…;R ⊗R
r¼1 D̂r

ðxm;tmÞ: ð12Þ

Here, the product of first N out of R replicas produces
the numerator in Eq. (11), while the trace over the rest of
replicas, N þ 1;…; R, yields ðTrD̂ÞR−N , which in the limit
R → 1 gives the denominator of Eq. (11), ðTrD̂ÞN−1. Note
that the total number of replicas of D̂ matrices, denoted
as R, is independent of N: the replica limit relevant to this
problem is

R → 1: ð13Þ

The expression on the right-hand side of Eq. (12) is
explicitly defined only for integers R ≥ N, so that for
N > 1 an analytic continuation R → 1 is needed. To calcu-
late the observables inN replicas and to implement the trace
over replicas N þ 1;…; R in Eq. (12), we will introduce the

corresponding sources inN replicas; see Sec. V D for details.
For N ¼ 1, which incorporates only the properties of the
average density matrix, no analytic continuation is required,
as seen from Eq. (11), which does not contain a denominator
in this case. It is worth emphasizing that this replica trick
differs from the usual replica trick used to perform averaging
over quenched disorder, where the replica limit R → 0
should be taken. The limit Eq. (13) in our calculation is a
direct consequence of the Born’s rule, which gives an extra
TrD̂ factor in the numerator.
Remarkably, the average of R copies of matrix D̂ over

random Poissonian statistics of measurement times and
uniform distribution of their location, together with sum-
mation over outcomes, can be performed exactly within
the Keldysh formalism. As detailed in Appendix A, the
averaging yields the following local action:

iS½ψ̄ ;ψ � ¼ i
XR
r¼1

ψ̄ rĜ
−1
0 ψ r þ iγ

Z
d2xLM½ψ̄ ;ψ �; ð14Þ

where we have introduced the short-hand notation
x ¼ ðx; tÞ and

R
d2x ¼Px

R tf
ti dt. The quadratic part in

Eq. (14) describes free fermions:

Ĝ−1
0 ¼ i∂t − Ĥ0 þ iδΛ̂0; Λ̂0ðϵÞ ¼

�
1 2F0ðϵÞ
0 −1

�
K
;

ð15Þ
where Ĥ0 is the Hamiltonian Eq. (1). The term with
infinitesimal δ → þ0 fixes the correct causality properties
of the retarded (advanced) Green’s functions and contains
the information about the initial Keldysh distribution
function F0ðϵÞ ¼ 1 − 2f0ðϵÞ. The additional term in
Eq. (14) involving

iLM½ψ̄ ;ψ � ¼
X
n¼0;1

Y
r

Vn½ψ̄ r;ψ r� − 1; ð16Þ

where

V0;1½ψ̄ ;ψ � ¼
1

4
∓ 1

2
ðψ̄2ψ1 þ ψ̄1ψ2Þ − ψ̄1ψ1ψ̄2ψ2; ð17Þ

results from the measurements. We note that this term is
local in space and time: ðx; tÞ arguments of all fields in
Eqs. (16) and (17) are the same.
It is convenient to rewrite the interaction vertices in the

exponential form (here τ̂x is Pauli matrix acting in the
Keldysh space):

V0;1½ψ̄ r;ψ r� ¼
1

4
expð∓ 2ψ̄ rτ̂xψ rÞ: ð18Þ

This can be done because of the Grassmanian nature of
fields ψ , which terminates the series expansion of the
exponential at the second term. Substituting Eq. (18) in
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Eq. (16), we arrive at

iLM½ψ̄ ;ψ � ¼
2

4R
coshð2ψ̄ τ̂xψÞ − 1: ð19Þ

It is worth emphasizing that the time integration in the
Keldysh action is performed up to time t ¼ tf, which is the
time at which one calculates the observables with a non-
trivial replica structure (such as the entanglement entropy
or the particle-number cumulant). The introduction of this
upper limit in the time integral is an important feature of
the Keldysh formalism for the measurement problem. In the
conventional Keldysh technique, one can continue the
time-integration contour from t ¼ tf to t ¼ þ∞ and this
part of the contour exactly cancels with the backward part
because of the unitarity of quantum-mechanical evolution.
However, in the presence of measurements for R ≠ 1
(when the evolution is manifestly nonunitary owing to
the insertion of projectors associated with the measure-
ment-induced collapse of the wave function), this cancel-
lation does not generically occur. A convenient way to take
this into account is to “switch off” the measurements
directly after the observation time tf, i.e., to put
γðt > tfÞ ¼ 0. Clearly, this does not influence observation
results. At the same time, this allows us to extend the
Keldysh contour up to t ¼ þ∞, since the evolution after
t ¼ tf is now unitary, so that the corresponding forward and
backward contributions cancel out, as usual.
In what follows, when considering correlation functions

with a nontrivial replica structure, we will be interested in
the case of equal times, t ¼ t0 ¼ tf. Indeed, the particle-
number cumulants and the entanglement entropy belong to
this class of observables. Observables with a nontrivial
replica structure and t ≠ t0, such as hn̂ðx; tÞihn̂ðx0; t0Þi,
require simultaneous averaging of two density matrices
taken at different times. Our replica approach described
above would require some modification in order to calcu-
late such quantities. This is beyond the scope of this paper.

B. Generalized Hubbard-Stratonovich transformation

We switch from the Grassmanian integration to the
integration over bosonic modes incorporated in two aux-
iliary 2R × 2R matrices, G and Σ, utilizing the generalized
Hubbard-Stratonovich transformation (see Appendix B
for the detailed derivation). The matrix Gijðx; tÞ ∼
−iψ iðx; tÞψ̄ jðx; tÞ (with indices i, j incorporating both
Keldysh and replica structure) is related to the local
fermionic Green’s function, and Σðx; tÞ to the fermionic
self-energy. These matrices are originally introduced as
Hermitian matrices with a flat integration measure; how-
ever, adjustment of the integration contour over the
eigenvalues of G to the complex plane is required to ensure
the convergence of the integral at infinity.

The resulting action has the form

S½G;Σ� ¼ S0½G;Σ� þ γ

Z
d2xLM½G�; ð20Þ

with

iS0½G;Σ� ¼ Tr½lnði∂t − Ĥ0 þ iΣ̂Þ − iΣ̂ Ĝ�; ð21Þ

iLM½G� ¼ det

�
1

2
− iĜτ̂x

�
þ det

�
1

2
þ iĜτ̂x

�
− 1: ð22Þ

The trace (Tr) is calculated in replica and Keldysh spaces as
well as real space and time, and the infinitesimal δ → þ0
term from Eq. (15) is omitted for brevity. In this action,
G and Σ are assumed to be slow variables. This was used to
derive Eq. (22), which is obtained by decoupling Eq. (19) in
all slow channels, as detailed in Appendix B.

IV. GAUSSIAN APPROXIMATION

We start an analysis of the action given by Eqs. (21)
and (22) by treating it in the Gaussian approximation. This
approximation is controlled by the parameter γ=J ≪ 1,
which corresponds to rare measurements.

A. Saddle-point analysis

We first consider the R ¼ 1 case, where the measurement
action Eq. (22) reduces to a manifestly U(2)-invariant
expression:

iLðinvÞ
M ½G� ¼ 2 det Ĝ −

1

2
: ð23Þ

With this action, we proceed by finding spatially homo-
geneous saddle points of Eq. (20). The saddle-point
equations then read:

Ĝ ¼
Z

∞

−∞

dϵ
2π

Z
π

−π

dk
2π

1

ϵ − ξðkÞ þ iΣ̂
≡ −

i
2
sgnΣ̂; ð24Þ

Σ̂ðxÞ ¼ −2iγ det ĜðxÞ · Ĝ−1ðxÞ; ð25Þ

where ξðkÞ ¼ −2J cos k corresponds to the bare fermionic
spectrum and symbol sgn denotes the matrix sign function.
For the energy integration, the principal value is taken, in
agreement with the regularization procedure described in
Appendix A.
These equations have a manifold of solutions para-

metrized by the 2 × 2 matrix Q̂, which satisfies the non-
linear constraint Q̂2 ¼ 1 as well as TrQ̂ ¼ 0, as follows:

Ĝ ¼ −iQ̂=2; Σ̂ ¼ γQ̂: ð26Þ
This will be the basis for the derivation of the NLSM in
Sec. V. For the purposes of Sec. IV, we need a particular
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solution, which has a form characteristic for Green’s
functions in Keldysh space [cf. Eq. (15)]: it should satisfy
the causality and be consistent with the initial conditions
incorporated in the Keldysh distribution function F0ðϵÞ ¼
1 − 2f0ðϵÞ. As usual, such a saddle point corresponds to
the solution of the self-consistent Born approximation
(SCBA):

Q̂SCBA ¼ Λ̂ ¼
�
1 2ð1 − 2nÞ
0 −1

�
K
; ð27Þ

where n ¼ R ðdk=2πÞf0ðξkÞ∈ ½0; 1� is the average fer-
mionic density, i.e., the filling factor of the band. The
number of particles is the only physical conserved quantity
in the problem, and this filling factor is the only parameter
that keeps any information about the initial state that was
parametrized by the Keldysh distribution function.
The one-particle Green’s functions that correspond to the

SCBA solution Λ̂ are given by

GR=AðkÞ ¼
1

ϵ − ξðkÞ � i=2τ0
; τ0 ≡ 1=2γ;

GKðkÞ ¼ ð1 − 2nÞ½GRðkÞ −GAðkÞ�; ð28Þ

where k ¼ ðk; ϵÞ and τ0 plays the role of the (inelastic)
mean-free time. Physically, this solution describes the
steady state of the fermions heated to infinite temperature.
This should not be a surprise, given that projective
measurements are inelastic processes that heat up the
system (in the sense of fully randomizing its energy). In
order to study the nonequilibrium transient regime (before
the system achieves the steady state), one needs to
introduce matrix fields that can depend on two time indices,
Ĝðx; t; t0Þ; this will be studied elsewhere.
The SCBA solution Eq. (28) can be shown to be exact for

an arbitrary γ=J ratio for R ¼ 1, by using the fermionic
diagram technique and rewriting the “interaction” Eq. (16)
in a form:

iLM½ψ̄ ;ψ � ¼ −ðψ̄ψÞðψ̄ψÞ − 1=2: ð29Þ

At variance with the general form of the vertex [Eq. (18)]
involving the matrix τx, this interaction vertex involves only
the identity matrix in Keldysh space. Since the interaction
line is instantaneous, intersections of these lines are
forbidden by causality, and only “rainbow” diagrams that
are included in SCBA contribute to the Green functions.
The exactness of the SCBA for the systems in the presence
of random dynamical white noise, which are equivalent on
the level of the Keldysh action to our case R ¼ 1, was
previously noted in Ref. [77].
For arbitrary R ≠ 1, one should instead consider the full

form of the measurement-induced action Eq. (22). One can

check (see Appendix C) that Q̂SCBA ¼ Λ̂ remains a saddle
point of the action for a half-filled band, n ¼ 1=2. For this
case, Λ̂ becomes the τz matrix in Keldysh space and the
relation between Q̂ and Σ̂ in Eq. (26) is modified by the
replacement γ → γ=2R−1. We expect that the half-filling
case n ¼ 1=2 is representative for the problem that we
consider; that is, the physics should not qualitatively
depend on n. For n ≠ 1=2 and R ≠ 1, the SCBA solution
Eq. (27) ceases to be an exact saddle point, since the full
action explicitly involves τx for R ≠ 1. For an arbitrary
filling factor, the terms that violate the saddle-point
property of Eq. (27) have coefficients that vanish at
R → 1, so that the SCBA saddle point Λ̂ is restored in
this limit. The saddle-point solution thus depends on the
order of limits R → 1 and δ → 0 [see Eq. (15)], and the
correct order of limits should be the following: first take
the limit R → 1, and only then δ → 0. In this way, Q̂ ¼ Λ̂ is
the correct saddle-point solution yielding the same physics
for any n, as expected on physical grounds.

B. Quadratic fluctuations around the saddle point

We proceed with the Gaussian analysis by performing
a second-order expansion of the full matrix action
Eqs. (20)–(22). We parametrize fluctuations around Λ̂
from Eq. (27) as Σ̂ ¼ γðΛ̂þ δQ̂ΣÞ=2R−1 and Ĝ ¼
−iðΛ̂þ δQ̂GÞ=2, and perform an expansion up to second
order in δQ̂Σ and δQ̂G. In the R → 1 limit (and also for
arbitrary R and n ¼ 1=2), the expansion starts from
quadratic terms. The corresponding contribution to S0
from Eq. (21) reads for R → 1 as (see Appendix C)

iδS0 ¼
1

16τ20

Z
d2x1d2x2Bðx1 − x2Þ

× Tr½δQ̂Σðx1Þð1þ Λ̂ÞδQ̂Σðx2Þð1 − Λ̂Þ�

−
1

4τ0

Z
d2xTr½δQ̂ΣðxÞδQ̂GðxÞ�: ð30Þ

Here, trace (Tr) stands for replica and Keldysh spaces. The
expansion of the measurement part of the action Eq. (22)

contains two terms, δLM ¼ δLð1Þ
M þ δLð2Þ

M , where

iγδLð1Þ
M ¼ −

1

64nτ0
Tr
h�ðΛ̂ − τ̂xÞδQ̂G

�
2
i

−
1

64ð1 − nÞτ0
Tr
h�ðΛ̂þ τ̂xÞδQ̂G

�
2
i
; ð31Þ

iγδLð2Þ
M ¼ 1

64nτ0
Tr2½ðΛ̂ − τ̂xÞδQ̂G�

þ 1

64ð1 − nÞτ0
Tr2½ðΛ̂þ τ̂xÞδQ̂G�: ð32Þ
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In Eq. (30) we introduced the notation BðxÞ for
the elementary block of a diffuson ladder, BðxÞ ¼
GRðxÞGAð−xÞ, whose Fourier transform reads:

B−1ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=τ0 − iωÞ2 þ

�
4J sin

q
2

�
2

s
; ð33Þ

where q ¼ ðq;ωÞ. For the smallest frequencies and
momenta, ωτ0 ≪ 1 and ql0 ≪ 1, the block B acquires
the following “diffusive” form:

B−1ðqÞ ≈ τ−10 − iωþDq2; D≡ v20τ0 ¼ J2=γ: ð34Þ

Here, we introduced the mean square velocity v0 and the
mean-free path l0:

v20 ≡
Z

π

−π

dk
2π

�
∂ξ

∂k

�
2

¼ 2J2; l0 ¼ v0τ0 ¼
J

γ
ffiffiffi
2

p : ð35Þ

The structure of the measurement action, Eqs. (31)
and (32), suggests splitting 2R × 2R matrices into two
sectors in the replica space, “longitudinal” (“replica sym-
metric”) and “transversal” (“replicon”):

δQ̂ðkÞ ¼ 1

R
trRδQ̂; δQ̂ð⊥Þ

rr0 ¼ δQ̂rr0 − δQ̂ðkÞδrr0 : ð36Þ

Such splitting is natural because these modes are orthogo-
nal, and the transversal mode is traceless and does not

contribute to δLð2Þ
M . On the Gaussian level, the theory then

splits into two independent sectors that can be studied
separately. We proceed with this analysis in Sec. IV C,
where we derive the density-correlation functions at the
Gaussian level.

C. Density correlations

Within our formalism, the density operator has a
single replica index and two Keldysh components,
“classical” (denoted without superscript) and “quantum”
(with superscript q):

δρr¼−
1

4
trKðδQ̂G;rrτ̂xÞ; δρðqÞr ¼−

1

4
trKðδQ̂G;rrÞ: ð37Þ

The correlation functions involving “quantum” component
(i.e., retarded and advanced correlation functions) vanish,
since the system is heated to the infinite temperature, and
response functions ∝ 1=T at T ≫ J. Thus, we focus on the
Keldysh component of the density-correlation function,
which is a matrix in the replica space, with the following
structure:

Crr0 ðxÞ ¼ ⟪δρrðx; tÞδρr0 ðx0; t0Þ⟫
¼ C0ðx − x0; t − t0Þ − Creplðx − x0; t; t0Þð1 − δrr0 Þ:

ð38Þ
The replica-symmetric correlation function C0ðxÞ is

determined by the evolution of the average density matrix,
as typically described by the Lindblad equation (cf. a
related problem of dissipative dynamics in number-
conserving open systems [78–80]), and depends only on
the time difference in the steady-state regime:

C0ðxÞ ¼ hfn̂ðxÞ; n̂ð0Þgi=2 − n2: ð39Þ

On the other hand, as was pointed out at the end of
Sec. III A, when considering the off-diagonal density-
correlation function Creplðx − x0; t; t0Þ, we will be interested
in the case of equal times, t ¼ t0 ¼ tf, as is relevant to the
particle-number cumulant, Eq. (9):

Creplðx − x0; t ¼ t0 ¼ tfÞ
≡ Cðx − x0Þ
¼ hfn̂ðx; tfÞ; n̂ðx0; tfÞgi=2 − hn̂ðx; tfihn̂ðx0; tfÞi: ð40Þ

This correlation function is of central interest in the present
paper. As discussed above, for determining this correlation
function, we will stop measurements at t ¼ tf by setting
γðt > tfÞ ¼ 0. This will lead to an “absorbing” boundary
condition at t ¼ tf in the nonlinear sigma-model formal-
ism; see Sec. V.
A key object that naturally arises when calculating

the quadratic fluctuations is the diffuson D, defined as a
ladder series:

D−1ðqÞ≡ B−1ðqÞ − τ−10 ≈Dq2 − iω: ð41Þ

It is given by an average of the product of the retarded and
advancedGreen’s functions,Dðx−x0Þ¼GRðx;x0ÞGAðx0;xÞ
over measurement trajectories. For the same reason that
rendered SCBA exact, only ladder diagrams contribute
to this average for arbitrary γ=J, since intersections of
effective interaction lines are forbidden by causality. This
implies the absence of corrections to the diffusion coef-
ficient. Diffusive character of the associated Lindbladian
dynamics, Eq. (41), was obtained earlier in Ref. [81].
Within the Gaussian approximation, Eqs. (30)–(32), the

replica-symmetric density-correlation function reads:

C0ðqÞ ¼ nð1 − nÞ2ReDðqÞ ≈ nð1 − nÞ 2Dq2

ω2 þD2q4
: ð42Þ

To determine the off-diagonal density correlation func-
tion, one should solve an integral equation which takes into
account the presence of the boundary at t ¼ tf. The result
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for the equal-time density-correlation function reads (see
Appendix D for details):

CðqÞ ≈ nð1 − nÞ ×
�
2ql0 ql0 ≪ 1

1 ql0 ≫ 1:
ð43Þ

The prefactor nð1 − nÞ ensures that correlations are
completely absent for empty or filled bands, when no
dynamics is happening. The large-distance ðx ≫ l0 ∼ J=γÞ
and longtime ðt ≫ τ0 ∼ 1=γÞ asymptotics are dominated by
the infrared behavior, yielding

C0ðx; tÞ ≈ nð1 − nÞ expð−x
2=4DjtjÞffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDjtjp ; ð44Þ

CðxÞ ≈ −
2nð1 − nÞl0

πx2
: ð45Þ

Equation (44) describes the standard diffusive spreading
of the averaged density. In contrast, Eq. (45) makes
manifest the nonlocal effect of measurements. Here and
below, the time argument in the correlation functions refers
to the difference of two times, t ¼ t00 − t0, in the longtime
limit t0 → ∞, when the measurements have already effec-
tively “thermalized” the chain.
It is worth emphasizing that the diffusion coefficient

and the replica-symmetric correlation function C0ðx; tÞ
obtained at the Gaussian level are in fact exact as a
consequence of the structure of the effective interaction
in the replica and time spaces. At the same time, loop
corrections may arise (and do arise) for the off-diagonal
density-correlation functions. In fact, the quantum correc-
tions to CðxÞ are of crucial importance for our analysis, as
discussed below.

D. Fluctuations of number of particles

The second cumulant of number of particles in a
subsystem is directly related to the equal-time correlation
function CðxÞ via the following relation:

Cð2Þl ¼
Z

l

0

dx
Z

l

0

dyCðx− yÞ ¼ 2

π

Z
∞

0

dq
q2

CðqÞð1− cosqlÞ:

ð46Þ

It follows from the structure of the Fourier representation
Eq. (43) that the correlation function CðxÞ includes a δ peak
nð1 − nÞδðxÞ and a negative tail ∝ 1=x2, which is described
by Eq. (45); see Appendix D. The integral over this tail
compensates for the contribution of the δ peak. Indeed, the
integral

R
dxCðxÞ is exactly zero.

The δ peak determines the behavior of the cumulant at
distances l ≪ l0, yielding the “volume law” at such scales:

Cð2Þl ≈ nð1 − nÞl; l ≪ l0: ð47Þ

On the other hand, at distances l ≫ l0, the contribution
from this δ peak is largely compensated by the integral
over the “tail” of CðxÞ. As a result, the linear growth of the
cumulant crosses over to the logarithmic behavior origi-
nating from slow decay ∼1=x2 of the tail:

Cð2Þl ≈
4nð1 − nÞl0

π
ln

l
l0
; l0 ≪ l: ð48Þ

We reiterate that this result holds only on the Gaussian
level, i.e., in the leading order in γ=J ≪ 1. Below, in
Sec. V E, we will demonstrate that the logarithmic growth
saturates at an exponentially large length scale lcorr,
satisfying lnðlcorr=l0Þ ∼ J=γ. This gives rise to the area
law in the thermodynamic limit.
The full analysis of the behavior of correlation function

and cumulant in the Gaussian approximation, including the
crossover between ballistic and diffusive regimes, is per-
formed in Appendix D. The results are summarized in Fig. 1.

V. NONLINEAR SIGMA MODEL

A. Symmetries of the action and NLSM manifold

To derive the effective field theory—the NLSM—it is
instructive to inspect first symmetries of our problem with
respect to rotations in replica and Keldysh spaces. The
vector fields ψ and ψ have 2R components, so that the
group acting in this space is Uð2RÞ, with 4R2 generators.
The saddle point Q̂SCBA ¼ Λ̂ is not rotated by 2R2 of

FIG. 1. Second cumulant of the number of particles, Eq. (46), in
a subsystem of length l in the Gaussian approximation. Inset:
equal-time density-correlation function CðxÞ. The detailed cal-
culation is performed in Appendix D. Dashed curves are
asymptotics for l ≪ l0 and l ≫ l0.
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these generators, which form a subgroup UðRÞ × UðRÞ.
Thus, rotations of Λ̂ yield a symmetric-space manifold
Uð2RÞ=UðRÞ × UðRÞ.
The fermionic action Eqs. (14) and (19) and its matrix

counterpart Eqs. (21) and (22) have important symmetries
which are responsible for soft modes studied on the
Gaussian level in Sec. IV. Out of 2R2 generators forming
the above symmetric space, there is an exact symmetry of
the full action with R2 generators of rotations of the form
R̂Φ ¼ eiΦ̂τ̂x=2 since R̂Φ commutes with τ̂x that enters the
action for R ≠ 1. Here Φ̂ are R × R Hermitian matrices in
replica space, so that matrices Û ¼ eiΦ̂ form a group UðRÞ.
The remaining R2 generators on the coset space are of
the form R̂Θ ¼ eiΘ̂τ̂y=2, with Θ̂ being matrices in replica
space. Out of these generators, there is a single—replica-
symmetric—generator, R̂θ ¼ eiθτ̂y=2, which is an exact
symmetry of the action for R → 1 or, else, for any R at
n ¼ 1=2. As usual, symmetries of the action give rise to
massless modes.
The remaining R2 − 1 replica-asymmetric generators of

the form R̂Θ ¼ eiΘ̂τ̂y=2 (those with traceless Θ̂) are not
symmetries of the action and thus correspond to massive
modes. However, in the quadratic expansion they couple to
Φ̂ modes. Hence, we take them into account and integrate
them out in the Gaussian approximation, which yields a
contribution to the action of massless (Φ̂) modes.
The U(1) replica-symmetric (determinant) mode

det expðiΦ̂Þ combines with R̂θ into a replica-symmetric
Uð2Þ=Uð1Þ × Uð1Þ manifold that has a geometry of the
sphere S2. We will denote the matrix field belonging to this
manifold by Q̂0. The full manifold of matrices correspond-
ing to the symmetry of the action is then obtained by
rotating Q̂0 by matrices expðiΦ̂Þ=det expðiΦ̂Þ that form the
group SUðRÞ.
To derive the NLSM taking into account the above

symmetries, it is convenient to proceed as follows. We
will first consider the Uð2RÞ-invariant part of the action

SðinvÞ ¼ S0 þ γSðinvÞM , which will produce the NLSM
defined on the symmetric space Uð2RÞ=UðRÞ × UðRÞ.
The difference γðSM − SðinvÞM Þ which vanishes at R ¼ 1 will
then be restricted to this manifold and will provide an
additional structure on it. As a result, we will obtain an
SUðRÞ NLSM for the replicon modes Φ̂ and an S2 theory
for the replica-symmetric sector. The former will describe
the correlation function CðxÞ and the latter the correlation
function C0ðx; tÞ.
The presence of the “boundary” at time t ¼ tf is taken

into account by putting γðt > tfÞ ¼ 0; see a discussion at
the end of Sec. III A and in Sec. IV C. It is relevant for the
effective field theory describing the massless Φ̂ modes.
The condition γ ¼ 0 corresponds to D → ∞ at t > tf, thus
leading to a boundary condition Φ̂ðt ¼ tfÞ ¼ 0. This is in

full analogy with boundary conditions arising in a theory of
diffusive disordered systems on boundary with an ideal
metal (D → ∞). This type of boundary condition was also
discussed in a related context of random unitary circuits
in Ref. [82].
Since we are interested in the replica limit R → 1, we

will set R → 1 in numerical factors that arise in the
derivation. At the same time, we will keep R arbitrary in
the dimensionality of corresponding symmetry groups.

B. Field theory restricted
to Uð2RÞ=UðRÞ × UðRÞ manifold

The saddle-point analysis of the matrix action was
already performed in Sec. IV, where it was identified that
the solutions can be parametrized by a single Q̂ matrix
satisfying standard nonlinear constraint Q̂2 ¼ 1 according
to Eq. (26). As explained in Sec. VA, we consider the
manifold spanned by arbitrary Uð2RÞ=UðRÞ × UðRÞ rota-
tions of the saddle point Λ as Q̂ ¼ R̂ Λ̂ R̂−1, restricting
ourselves to a smooth time and spatial dependence R̂ðxÞ.
Performing a gradient expansion of the Tr ln term in the
action Eq. (21) in a standard way (see, e.g., Ref. [83]), we
arrive at the following NLSM action:

iL0½Q̂� ¼ Tr

�
1

2
Λ̂R̂−1

∂tR̂ −
D
8
ð∂xQ̂Þ2

�
; ð49Þ

iLM½Q̂� ¼ det

�
1 − Q̂τ̂x

2

�
þ det

�
1þ Q̂τ̂x

2

�
− 1; ð50Þ

where the trace is now taken over the Keldysh and replica
spaces. The dynamic term [the first term in Eq. (49)] has the
form of a Wess-Zumino term and cannot be written in terms
of a Q̂ matrix itself. Equivalently, it has the meaning of the
Berry phase of the Q̂ðtÞ trajectory on the Uð2RÞ=UðRÞ ×
UðRÞ manifold. We also note a certain similarity of the
measurement-induced part of the action, Eq. (50) to the
disorder-induced action in the NLSM derived in Ref. [84]
for a chiral metal with vacancies. In that work, Poissonian
averaging over infinitely strong pointlike scatterers
(cf. averaging over local projective measurements in the
present paper) also resulted in the appearance of determi-
nants involving the Q̂ matrix in the action.
Note that, at variance with the case of the NLSM for

quenched disorder, the measurements are inelastic and the
system is heated to the infinite temperature. For this reason,
the diffusion coefficientD is expressed in terms of the root-
mean-square velocity averaged over the whole Brillouin
zone, in agreement with Eq. (35).

C. Replica-symmetric sector

To explore the replica-symmetric sector, we can directly
set R ¼ 1. The term Eq. (50) then vanishes, leaving us with
the Uð2Þ=Uð1Þ × Uð1Þ NLSM with the action Eq. (49).
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This NLSM completely reproduces results for the diffuson
DðqÞ and replica-symmetric density-correlation function
C0ðqÞ obtained earlier in Sec. IV. It is worth emphasizing
that the replica-symmetric sector does not contain any
renormalization of diffuson degrees of freedom. All dia-
grams that come from the nonlinear interaction between
diffusons in arbitrary parametrization of the NLSM mani-
fold vanish completely because of the retarded structure of
the diffusons and instantaneous-in-time interaction vertices.
Nevertheless, the theory is not Gaussian: Nonlinear vertices
still can have nontrivial contribution to higher correlation
functions of diffusive modes.
An interesting observation can be made by noting that

for R ¼ 1, the sigma-model manifold is just a two-
dimensional sphere S2. One can then consider a para-
metrization of the manifold by conventional polar and
azimuthal angles, θ and ϕ, as follows:

Q̂ ¼ F̂eiϕτ̂z=2eiθτ̂y=2τ̂ze−iθτ̂y=2e−iϕτ̂z=2F̂; ð51Þ

with matrix

F̂ ¼
�
1 1 − 2n

0 −1

�
:

The sigma-model action Eq. (49) then reduces to

iL0½θ;ϕ� ¼ isð1 − cos θÞ∂tϕ
−Ds2½ð∂xθÞ2 þ sin2 θð∂xϕÞ2�: ð52Þ

This action is formally equivalent to the imaginary-time
action of the quantum spin s ¼ 1=2 chain with isotropic
Heisenberg interaction. The spin components have the form
sx ¼ sin θ cosϕ=2, sy ¼ sin θ sinϕ=2, sz ¼ cos θ=2. The
steady state of such a chain would then correspond to the
ferromagnetic ground state jψi ¼ j↑↑…↑i. On the level of
Q̂ matrix, it corresponds to the north pole ϕ ¼ 0, θ ¼ 0,
which is exactly the SCBA saddle point Q̂ ¼ Λ̂.
The classical Keldysh component of fermionic density,

ρ0 ¼
1

4
trKð1 − Q̂0τ̂xÞ; ð53Þ

can be expressed in this parametrization in terms of spin
variables as a projection of the spin onto a complex vector h
of unit “length” h2x þ h2y þ h2z ¼ 1:

ρ ¼ 1

2
− hŝ; h ¼

0
B@

1 − ð1 − 2nÞ2=2
ið1 − 2nÞ2=2

1 − 2n

1
CA: ð54Þ

Within the spin language, correlation functions of operators
ρ̂ are calculated on top of the ferromagnetic ground state. In
the longtime and long-distance limit, the main contribution

to such correlation functions will come from the lowest-
energy excitations in the Heisenberg ferromagnet,
which are known to be magnons with quadratic dispersion
ω ∼Dq2. This exactly reproduces the diffusive pole calcu-
lated earlier.

D. Replicon modes: SUðRÞ NLSM
In Sec. V C, we discussed properties of the field theory

on the replica-symmetric submanifold Q̂ ¼ Q̂0 ⊗ ÎR, with
Q̂0 being a 2 × 2 matrix in the Keldysh space. The whole
Uð2RÞ=UðRÞ × UðRÞ manifold is then obtained from the
replica-symmetric configuration by arbitrary rotations,

Q̂¼ R̂ΦR̂ΘQ̂0R̂
−1
Θ R̂−1

Φ ; R̂Φ¼eiΦ̂τ̂x=2; R̂Θ¼eiΘ̂τ̂y=2;

ð55Þ

with the replicon modes Θ̂ and Φ̂ being R × R traceless
matrices in the replica space. As discussed in Sec. VA, this
parametrization is chosen in such a way that Φ rotations
are an exact symmetry of measurement action Eq. (50) for
arbitrary R, as they commute with τ̂x. The modes Θ, on the
other hand, are massive and will be integrated out in the
Gaussian approximation, contributing to the effective
action for the massless mode Φ.
To calculate the replica-off-diagonal density-correlation

function, we introduce a generating functional for the
fermion density, with different sources for different
replicas incorporated into a replica-diagonal matrix
ξ̂ ¼ diag½fξrgRr¼1�:

Z½ξ� ¼
�
exp

	
i
Z

d2x
XR
r¼1

ξrðxÞρrðxÞ

�

: ð56Þ

This translates to an additional Lagrangian term:

iLsource½Q̂; ξ� ¼ i
4
Tr½ξ̂ð1 − Q̂τ̂xÞ�: ð57Þ

Expansion of the effective action in Θ modes and
subsequent Gaussian integration is performed in
Appendix E, bringing us to the following SUðRÞ effective
action for Û ¼ exp ðiΦ̂Þ:

iLΦ ¼ −
g½Q̂0�
2

tr

	
1

v0
ð∂Ξt ÛÞ†∂Ξt Û þ v0∂xÛ

†
∂xÛ



; ð58Þ

with tr≡ trR taken in the replica space only. Here, v0 is the
root-mean-square velocity defined in Eq. (35), Ξ̂ ¼ ξ̂ − ξ0
is the replicon density source where ξ0 ¼ trξ̂, and the
“covariant derivative” is defined as

∂
Ξ
t Û ¼ ∂tÛ þ i

2
fÛ; Ξ̂g: ð59Þ
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The coupling constant in the NLSM action Eq. (58)
connects replica-symmetric and replicon modes via its
dependence on the replica-symmetric density Eq. (53):

g½Q̂0� ¼ 2l0ρ0ð1 − ρ0Þ: ð60Þ

On the Gaussian level,

g½Q̂0� ≈ g0 ¼ 2l0nð1 − nÞ; ð61Þ

and the replicon sector decouples from the replica-
symmetric modes.
The resulting action contains a second derivative with

respect to time, and, hence, it has to be supplied with the
boundary conditions at t ¼ tf. As discussed above, the
boundary is implemented by setting γðt > tfÞ ¼ 0, which
results in the boundary condition Φ̂ðt > tfÞ ¼ 0 or, equiv-
alently, Ûðt > tfÞ ¼ Î.
The SUðRÞ symmetry of the action dictates the following

form of the Green’s function for the generators Φ̂:

hΦr1r2ðx; tÞΦr0
1
r0
2
ðx0; t0Þi ¼

	
δr1r02δr2r01 −

1

R
δr1r2δr01r02



×GΦðx − x0; t; t0Þ: ð62Þ

Within the Gaussian approximation, the Green’s function
reads:

GΦðx; t; t0Þ ¼
Z

∞

0

2dω
π

sinωðt − tfÞ sinωðt0 − tfÞ

×
Z

ðdqÞeiqx v0=g0
ω2 þ v20q

2
: ð63Þ

Finally, the off-diagonal density-correlation function can be
obtained by differentiating the generating functional with
respect to sources Ξ̂, yielding

Cðx − x0Þ ¼ lim
t;t0→tf

	hg½Q0�i
v0

δðr − r0Þ

−
1

v20
hg2½Q̂0�∂tΦ̂ðx; tÞ∂tΦ̂ðx0; t0Þi



; ð64Þ

which, within the Gaussian approximation, reproduces the
results obtained in Sec. IV, see Eq. (43):

CðqÞ ≈ g0jqj: ð65Þ

E. Renormalization-group analysis

The dependence of the coupling constant g on Q̂0

provides interaction between replica-symmetric and replicon
modes. This interaction does not renormalize the replica-
symmetric correlation function C0 since the dimensionality

of the replicon subspace is dim SUðRÞ ¼ R2 − 1 → 0. At
the same time, it can yield corrections to the effective action
for Φ fields of the replicon sector. These corrections are,
however, infrared finite (and small for small γ=J), as can be
seen from the structure of replica-diagonal correlation
function C0ðqÞ, Eq. (42). We thus focus on the renormal-
ization of the SUðRÞ action itself.
It is known that the perturbative expansion for the UðRÞ

sigma model in two dimensions exhibits logarithmic
divergencies that can be resummed within the RG frame-
work [85,86]. In addition, we also should include a running
coupling constant Zs describing renormalization of the
source terms in Eq. (58) with Ξ restricted to the boundary
t ¼ tf:

∂
Ξ
t Û ≃ ∂tÛ þ iZs

2
fÛ; Ξ̂g: ð66Þ

The corresponding one-loop RG equations are derived in
Appendix F, and the result reads:

∂g
∂ lnl

¼ −
R
4π

þOð1=gÞ; ð67Þ

∂ lnZs

∂ lnl
¼ 0þOð1=g2Þ: ð68Þ

Here l is the RG length scale and gðlÞ and ZðlÞ are the
associated running couplings. Finally, we can take the limit
R → 1 in Eq. (67), which yields

∂g
∂ lnl

¼ −
1

4π
þOð1=gÞ: ð69Þ

The coupling constant g slowly decreases with increasing
length scale l, which implies an increase of the magnitude
of quantum fluctuations, and the theory reaches the strong-
coupling regime g≲ 1 at a finite length scale l ∼ lcorr,
where

lcorr ∼ l0 exp ð4πg0Þ ð70Þ

is the correlation length.
At this stage, an analogy with the problem of Anderson

localization is useful. It is known that field theories of
Anderson localization are NLSMs [87]. In particular, the
UðRÞ NLSM describes systems with quenched disorder
which belong to the chiral unitary symmetry class AIII. The
crucial difference between the measurement problem and
Anderson localization is that in the latter case the relevant
replica limit is R → 0. In this limit, the perturbative β
function for the UðRÞ NLSM vanishes in all loops [88].
On the other hand, in the replica limit R → 1 relevant to
the measurement problem, the one-loop RG flow given
by Eq. (69) is nontrivial. Interestingly, it is analogous to
the R → 0 flow for the NLSM describing Anderson
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localization in two-dimensional systems with quenched
disorder in the more conventional orthogonal symmetry
class (class AI). There, the coupling constant g has a
meaning of conductance, and the flow corresponds to the
well-known weak-localization phenomenon, leading to a
negative quantum correction to the conductance. Thus, the
length lcorr identified above for the measurement problem
is analogous to the localization length in the problem of
two-dimensional Anderson localization. At this scale, the
dimensionless conductance becomes smaller than unity and
the weak localization crosses over to strong Anderson
localization.
After this short detour, we return to the measurement

problem. On length scales smaller than lcorr, the Gaussian
theory can still be applied to calculate CðqÞ at a momentum
q, but one should replace the bare coupling constant g0 with
the renormalized coupling gðqÞ, and introduce factor Z2ðqÞ
taking into account the source renormalization. To obtain
gðqÞ and ZðqÞ, one should integrate the RG flow equa-
tion (69) from the ultraviolet cutoff given by the mean-free
path l0 up to the infrared length scale determined by
external momentum, l ∼ q−1:

gðqÞ ≈ g0 −
1

4π
ln

1

ql0
; ZðqÞ ≈ 1: ð71Þ

The density-correlation function CðqÞ then takes the form

CðqÞ ¼ Z2ðqÞgðqÞjqj: ð72Þ

The perturbative one-loop RG result Eq. (71) for
q ≫ l−1corr gives rise to a correction to the Gaussian-
approximation result Eq. (48) for the particle-number
cumulant Eq. (46) in a subsystem of length l satisfying
l0 < l < lcorr:

Cð2Þl ¼ 1

π

Z
l−1
0

0

dq
jqj gðqÞð1 − cos qlÞ ≈ 2g0

π
ln

l
l0
−

1

4π
ln2

l
l0
:

ð73Þ

The one-loop correction thus leads to a reduction of the
cumulant.
Let us discuss now the behavior of the cumulant at

largest scales, l > lcorr. In this connection, it is instructive
to recall general relations between the behavior of the
correlator Cðq → 0Þ at t ¼ 0 and that of the cumulant,
which follow from Eq. (46). Specifically, the volume-law,
logarithmic, and area-law scaling of the cumulant with l are
associated with the following types of the limiting behavior
of Cðq → 0Þ at t ¼ 0:

(i) volume law: CðqÞ → const;
(ii) logarithmic law: CðqÞ=jqj → const;
(iii) area law: CðqÞ=jqj → 0.

In analogy with the two-dimensional Anderson localization
(and, more generally, with conventional statistical-
mechanics models), we expect that at l ≫ lcorr the system
is “strongly localized” and exhibits an exponential decay of
correlations. This implies that CðqÞ=jqj ¼ Z2ðqÞgðqÞ → 0
as q → 0, indicating the area law. Furthermore, the
power-law decay of the density-correlation function
∼1=x2 is superseded at x > lcorr by the exponential decay
∼ expð−x=lcorrÞ. Thus, the logarithmic growth Eq. (48) of
the particle-number cumulant obtained within the Gaussian
approximation in Sec. IV eventually saturates at the scale
l ∼ lcorr giving rise to the area-law behavior, with the
saturation value estimated as

Cð2Þl ∼ g20; l ≫ lcorr: ð74Þ

This behavior should be contrasted to results of
Ref. [47], where SOðRÞ NLSM was derived and studied
for the problem of Majorana fermion quantum random
circuit. The sign of the one-loop RG term obtained in
Ref. [47] is opposite to that in our formula (69). Before the
replica limit R → 1 is taken, the coefficient in Ref. [47] is
R − 2, which should be compared to R in our Eq. (67). The
flow of gðqÞ in Ref. [47] thus is of the weak-antilocalization
type, at variance with the localizing behavior manifest in
our Eq. (71). As a result, sign of the ln2 term in Eq. (73)
becomes positive in the Majorana model of Ref. [47], and
the cumulant scales as ln2 l in the large-l limit.

VI. ENTANGLEMENT ENTROPY

Our focus so far has been on the scaling of the second

cumulant of number of particles Cð2Þl with the subsystem
size l. We analyze now its relation to the entanglement
entropy SEðlÞ. As was discussed in Sec. II, for our
measurement protocol, the entanglement entropy can be
expressed as a series over even cumulants, Eq. (8). We thus
have to estimate the behavior of higher cumulants.
At “ballistic” length scales l≲ l0, the system is essen-

tially indistinguishable from the Fermi gas heated to the
infinite temperature. It is then natural to expect the behavior
to follow the corresponding volume law for such small
systems:

SEðlÞ ≈ −½n ln nþ ð1 − nÞ lnð1 − nÞ�l; l ≪ l0: ð75Þ

Although the second cumulant Cð2Þ
l in this region is also

shown to follow the volume law, see Eq. (47), the prefactor
differs (although both prefactors vanish for n ¼ 0 and
n ¼ 1). This means that at ballistic scales, all cumulants are
expected to be parametrically of the same order.
For the diffusive region l0 ≪ l ≪ lcorr, the situation

changes. In this regime, the SUðRÞ NLSM description
from Sec. V holds. In the Gaussian approximation, higher
cumulants are zero. To find them, one should take into
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account the nonlinearity on the NLSM manifold, which
yields an additional smallness in parameter 1=g. Therefore,
we argue that in the diffusive region, the series for the
entropy is dominated by the second cumulant, and the
entanglement entropy is given by

SEðlÞ ≈
π2

3
Cð2Þl ≈

4π

3
nð1 − nÞl0 ln

l
l0
; l0 ≪ l ≪ lcorr:

ð76Þ

Finally, as the system approaches correlation length lcorr,
the role of the quantum fluctuations becomes more and
more prominent. At l ∼ lcorr, the conductance gðlÞ is of
order unity and higher cumulants are of the same order as
the second cumulant. We thus have (up to unknown
numerical coefficients)

SEðlÞ ∼ Cð2Þl ∼ g20; l≳ lcorr; ð77Þ

which is the area-law behavior of the entanglement entropy.
In Sec. VII, we demonstrate numerically that the coefficient

relating SEðlÞ and Cð2Þl remains very close to π2=3 [as in
Eq. (76)] even in the “strong-coupling regime.” Similar
dominance of the second cumulant in the relation between
the entanglement entropy and full counting statistics,
Eq. (8), is also known to hold for disordered systems in
the vicinity of the Anderson metal-insulator transition,
where the conductance (analogous to the coupling constant
g in our case) is of the order of unity [76].

VII. NUMERICAL ANALYSIS

To verify our analytical predictions, we have performed
numerical simulations for system sizes up to L ¼ 2000.
As the system is noninteracting and Gaussian, we are able
to describe it in terms of the single-particle correlation
matrix Gxy ¼ hψ̂†ðxÞψ̂ðyÞi, which fully characterizes the
unitary time evolution together with jumps induced by
random projective measurements. After performing a
sufficient number of measurements for the system to reach
the steady state, we have extracted the pair density-
correlation function,

Cxy ≡Gxyδxy − GxyGyx; ð78Þ

and averaged it over different runs of the simulation:

Cðx − yÞ ¼ Cxy: ð79Þ

To illustrate the measurement-induced dynamics, we
show in Fig. 2 the representative time evolution of the
density profile for L ¼ 200 and several values of γ. For
smaller values of γ, excitations created by rare measure-
ments quickly relax and, as a consequence, the particle
density fluctuates only weakly around its average value

n ¼ 1=2. The front of perturbation created by measurement
moves with maximal group velocity vmax ¼ 2J, which can
be seen as a pattern of tilted lines for γ ¼ 0.01 and 0.1. Note
that the velocity vmax is different from the root-mean-square
velocity v0 ¼

ffiffiffi
2

p
J which defines the dynamic of SUðRÞ

NLSM fields at times t ≫ γ−1; see Eq. (58).
For larger values of the measurement rate, γ ¼ 0.5 and 2,

the pattern changes dramatically. Specifically, we observe
the quantum Zeno effect, which tends to pin the density on
each site to values n ¼ 0, 1, while the unitary evolution
allows for rare “jumps” of pinned electrons between
neighboring sites.
In Fig. 3, we present the numerical results for the equal-

time density correlation function CðqÞ obtained by averag-
ing over ∼50 quantum trajectories for various values of the
dimensionless measurement rate γ=J. In the main panel,
the ratio CðqÞ=g0q̃ is displayed as a function of q̃l0, with
q̃≡ 2 sinðq=2Þ being equal to q in the long-wavelength
limit and correctly taking into account a finite lattice
spacing at large q. In the Gaussian approximation, all
curves in this representation should collapse on a single
curve, see Eq. (D8), which is presented by a dashed line.
The condition for this collapse is qlcorr ≫ 1. Indeed, a very
good collapse is observed for sufficiently large q. With
decreasing γ (and thus increasing lcorr) the numerical data
follow the dashed line down to lower and lower values of q,
as predicted.
We recall that CðqÞ=jqj → const at q → 0, as found in

Gaussian approximation and shown by dashed line, is
responsible for the logarithmic behavior of the fluctuations
of the number of particles. This behavior is, however,
violated at the smallest momenta q and all the curves turn

FIG. 2. Typical time evolution of the density profile for system
size L ¼ 200 at half filling n ¼ 1=2 for various values of
measurement rate γ with J set to unity.

THEORY OF FREE FERMIONS UNDER RANDOM PROJECTIVE … PHYS. REV. X 13, 041046 (2023)

041046-13



down, in consistency with our analytical prediction that,
as a result of the gðqÞ renormalization, CðqÞ=jqj → 0 at
q → 0, implying the area law. For larger γ, the vanishing of
CðqÞ=jqj → 0 is almost reached for our lowest q since the
correlation length lcorr is smaller than the system size
L ¼ 2000. At the same time, for smaller γ, the exponen-
tially large correlation length Eq. (70) strongly exceeds L,
so that the “strong localization” cannot be observed. We
can capture, however, its precursor—the perturbative weak
localization correction, Eq. (72). For the smallest γ, even
the turndown is barely visible, as the mean-free path
becomes of the order of the system size.
In the inset of Fig. 3, we display the weak-localization

correction. Specifically, we show the ratio δCðqÞ=q̃, where
δCðqÞ is the difference between CðqÞ and its Gaussian
approximation. It is seen that δCðqÞ=q̃ is proportional to
ln q̃ and its (negative) slope is independent of γ, in agree-
ment with our analytical prediction Eq. (71).

Finally, we have also calculated numerically the entan-
glement entropy and its dependence on the subsystem size
for systems of size L ¼ 800. Figure 4 demonstrates the
logarithmic behavior of the entanglement entropy for
smaller values of γ alongside the tendency toward satu-
ration upon increasing γ, as predicted by the RG analysis.
Our analytical predictions for the entanglement entropy

were based on keeping only the first term in the Klich-
Levitov formula, Eq. (8). For rare measurements, this is
parametrically justified by g ≫ 1, as higher cumulants are
suppressed by powers of 1=g. It turns out that, even when
the renormalized g becomes of order unity (so that all
cumulants might become important), the entanglement
entropy is still dominated by the second cumulant. To
support this statement, we plot in the inset of Fig. 4 the ratio

SEðlÞ=Cð2Þl of the entanglement entropy and the second
particle-number cumulant as a function of the subsystem
size. It is seen that this ratio saturates at a constant value at
large l, thus demonstrating that the second cumulant and
the entanglement entropy exhibit the same behavior.
Furthermore, for γ=J ≪ 1, the saturation value is close
to π2=3 ≈ 3.29, in full consistency with the prediction
that the right-hand side of Eq. (8) is dominated by the
second cumulant. Remarkably, even for larger values of γ

FIG. 3. Trajectory-averaged equal-time density-correlation
function in the momentum space CðqÞ for several values of
the measurement rate γ=J, as obtained by numerical simulations.
The curves show CðqÞ=g0q̃ as a function of q̃l0 [with q̃≡
2 sinðq=2Þ taking into account a finite lattice spacing]. Dashed
line: limiting expression for γ=J ≪ 1 (Gaussian approximation)
as given by Eq. (D8). The turndown of all curves at small q̃l0 is a
manifestation of the area-law behavior in the thermodynamic
limit. Inset: “weak-localization correction” defined as the differ-
ence between the corresponding curve and the dashed line in the
main plot (without g0 rescaling), in a semilogarithmic plot. The
dashed line corresponds to a logarithmic correction as predicted
by Eq. (71) but with a slope −1=2π (i.e., 2 times larger). For
larger γ, the “localization” becomes strong at the smallest
momenta, so that a saturation of the correction is observed.
Results were obtained for system size L ¼ 2000 at half filling
n ¼ 1=2, averaged over ∼50 measurement trajectories.

FIG. 4. Trajectory-averaged entanglement entropy SEðlÞ as a
function of rescaled subsystem size l̃≡ ðL=πÞ sinðπl=LÞ (to take
into account finite-size effects) for different values of measure-
ment rate γ=J. Dashed line: logarithmic asymptotic, Eq. (76).

Inset: ratio SEðlÞ=Cð2Þl of the entanglement entropy and the
second cumulant of number of particles; dashed line: π2=3 as
given by the first term in the Eq. (8). In the ballistic regime,
l ≪ l0, the ratio is in full agreement with the expected saturation
at −½n ln nþ ð1 − nÞ lnð1 − nÞ�=nð1 − nÞ ¼ 4 ln 2 ≈ 2.77 (at half
filling); see Eq. (75).
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corresponding to the strong-coupling regime, g0 ≲ 1 (for
which the correlation length is of the order of several lattice

spacings), the relation SEðlÞ=Cð2Þl ≈ π2=3 still holds with
good numerical accuracy of several percent.

VIII. CONCLUSIONS AND OUTLOOK

We have studied dynamics of one-dimensional free
fermions on a chain subject to random projective measure-
ments of local site occupation number. Our main focus has
been on the scaling behavior of the second cumulant of
particle number in a subsystem, as well as that of the
entanglement entropy. We have developed an analytical
approach based on the Keldysh formalism and the replica
trick. The replica for this problem has an unconventional
form, R → 1.
In the limit of rare measurements, γ=J ≪ 1, we have

derived an effective field theory of the problem, which is
the NLSM (Sec. V). Its replica-symmetric sector lives on
the Uð2Þ=Uð1Þ × Uð1Þ manifold and describes conven-
tional diffusion. The replica-asymmetric (replicon) sector,
which describes quantities of main interest, is a two-
dimensional NLSM defined on the SUðRÞ manifold.
On the Gaussian level, this model predicts a logarithmic

behavior for the second cumulant of number of particles in
a subsystem and for the entanglement entropy. However,
the one-loop RG analysis demonstrates that the logarithmic
growth of the second cumulant saturates at a finite value
even in the limit of rare measurements. This saturation
corresponds to the area-law phase and implies the absence
of a measurement-induced entanglement phase transition
for free fermions. The crossover between logarithmic
growth and saturation happens at exponentially large scale
lcorr, ln lcorr ∼ J=γ.

Overall, the behavior of the second cumulant Cð2Þl
depending on the subsystem size l can be summarized
as follows:

Cð2Þl ≃ nð1 − nÞ ×

8>><
>>:

l l ≪ l0
4
π l0 ln

l
l0

l0 ≪ l ≪ lcorr

∼l0g0 l≳ lcorr:

ð80Þ

Here, l0 ¼ J=γ
ffiffiffi
2

p
is the mean-free path, lcorr ∼ l0e4πg0 is

the correlation length, and g0 ¼ 2l0nð1 − nÞ ≫ 1. This
scaling of the second cumulant directly translates into
the same scaling of the entanglement entropy SE, implying
the area law in the thermodynamic limit; see Sec. VI.
These findings were supported by numerical analysis of

the equal-time density-correlation function obtained by
means of direct simulation of the system’s time evolution
in Sec. VII. Although exponentially large systems, which
are required for achieving the thermodynamic limit for rare
measurements, are not computationally accessible, avail-
able system sizes were sufficient to clearly demonstrate the

tendency toward “localization” responsible for the area-law
scaling, in consistency with one-loop RG equations. Our
analytical and numerical results are also in agreement with
the numerical analysis performed in Ref. [35].
While our results were obtained for the model of

projective measurements, a conceptually similar theory
can be developed for weak measurements or continuous
monitoring. For this reason, we argue that the problem of
weak measurements will fall in the same universality
class and the long-wavelength limit will be described by
essentially the same SUðRÞ NLSM. In other words, one-
dimensional free fermions with weak measurements are
expected to demonstrate a qualitatively similar behavior—
the absence of the measurement-induced entanglement
phase transition.
Yet another important prediction, directly following from

the present consideration, can be made regarding the
behavior of monitored free fermions in higher-dimensional
systems d > 1. Our derivation can be extended to systems
of an arbitrary dimension d, leading to an analogy between
d-dimensional monitored free fermions and localization
phenomena in (dþ 1)-dimensional disordered systems. It
is well known that disordered systems exhibit Anderson
localization transition above two dimensions. As a conse-
quence, higher-dimensional (d > 1) free-fermion systems
should demonstrate, with increasing measurement rate, a
transition between a “critical phase” with logarithmic law,
SEðlÞ ∼ ld−1 ln l, to an area-law phase, SEðlÞ ∼ ld−1.
The analytical approach developed in the present paper is

not restricted to noninteracting systems and can be gener-
alized to include interactions between fermions. Indeed, the
NLSM for disordered systems can be generalized to include
interactions (and to study the emergent quantum phase
transitions) within the replica and Keldysh formalisms,
cf. Refs. [83,89–92]. Importantly, the interacting NLSM for
Anderson localization inherits the key property of a non-
interacting NLSM: it is a theory of interacting diffusive
modes that emerge from the presence of conserved
quantities—particle number and energy. Based on this
analogy, the NLSM for monitored systems should also
be capable of describing the Goldstone modes of the
interacting problem corresponding to the symmetries of
the model. The interaction between the sigma-model modes
could then be analyzed within the RG approach, similar to
the framework for interacting disordered systems. Thus,
the sigma-model approach to studying the measurement-
induced phases, as developed in this work for noninteract-
ing fermions, is a powerful framework for a unified
description of a wide range of related problems, including
those for monitored interacting particles.
One crucial modification to our theory for studying

interacting models is the need to distinguish between the
statistics of particle-number cumulants and the statistics of
entanglement entropy. Indeed, the presence of interparticle
interactions breaks down the Gaussianity of many-body
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states, rendering direct application of the Klich-Levitov
identity Eq. (8) impossible. As a result, in the interacting
model, the measurement-induced entanglement dynamics
cannot be directly captured by analyzing the particle-
number cumulants. Instead, the entanglement entropy
should be calculated by adopting the twisted boundary
conditions connecting different replicas at t ¼ tf,
cf. Refs. [93–95], which can be straightforwardly incorpo-
rated into the NLSM formalism.
As discussed in Sec. I, numerical modeling of monitored

one-dimensional systems of interacting fermions (or related
interacting models described by a time-independent
Hamiltonian) suggests that a measurement-induced entan-
glement transition takes place in such systems, similarly
to quantum circuits. An important question thus arises
whether or not the entanglement (“information”) transition
is accompanied by the particle-number-fluctuation
(“charge”) transition, and, if yes, whether the two coincide
or remain distinct for realistic interacting fermions.
Furthermore, even if the two transitions occur concurrently,
they might correspond to different types of behavior of the
entanglement entropy and charge fluctuations in the cor-
responding phases (say, volume-to-area vs logarithm-to-
area phase transitions). Essentially, this is a question as to
whether the “charge-information separation” takes place in
this class of systems (and, if yes, what are its implications).
We foresee that it should be possible to describe the
entanglement transition and behavior of charge fluctuations
consistently within the unifying approach of the nonlinear
sigma model.
Incorporation of interactions in our formalism will

produce additional terms in the fermionic Lagrangian,
Eq. (14), of the form

P
rðLint½ψ̄þ

r ;ψþ
r � − Lint½ψ̄−

r ;ψ−
r �Þ,

as interactions are directly included in the unitary evolu-
tion. A preliminary analysis suggests that the terms
generated in the NLSM are of the type ðU−1ÞrrUrr, with
a summation over the replica indices r. Importantly,
these interaction terms in the full action of the monitored
fermions can (assuming their RG relevance) partly break
down the SUðRÞ replica symmetry of our noninteracting
theory. This would introduce a mass to some of the replicon
modes Φ̂, which would correspond to a reduced symmetry
that is expected to be SR × ½Uð1Þ�R−1, with SR being a
discrete group of replica permutations. One may anticipate
that, in the symmetry-broken phase, the charge fluctuations
would behave similarly to Eq. (45). However, the renorm-
alization of the constant g determining the prefactor in this
correlator will be governed by the modified RG involving
the interactions. This may lead, for instance, to the
stabilization of the “delocalized” behavior of charge
fluctuations in 1D. If the measurement rate is sufficiently
large while the interaction is weak, we expect that the effect
of interaction can be studied perturbatively within the same
framework to show the stability of the area-law phase for
both entropy and charge fluctuations.

In this context, it is worth mentioning that, in specific
classes of random quantum circuits involving Haar-random
gates and qudits with a divergent number of states, which
can be thought of as resembling interacting systems with
conserved particle numbers, a so-called “charge sharpening”
transition was predicted [33,34]. Specifically, starting with a
mixed state with no definite “charge,” repeated measure-
ments yield a well-defined value of the charge, but the
needed number of measurements scales differently with the
system size in the charge-fuzzy and charge-sharp phases. It
was found that this transition is distinct from the measure-
ment-induced entanglement transition and occurs within
the volume-law phase, being of the Berezinskii-Kosterlitz-
Thouless type in 1D geometry. It was also argued in
Ref. [34] that charge sharpening can be probed by the
analysis of density-correlation functions analogous to those
studied in our work.
While connections between the physics of charge

fluctuations in our model and that of charge sharpening
in Refs. [33,34] appear to be very suggestive, it should
be emphasized that the models are very different.
Understanding the influence of entanglement and density
correlations on each other’s scaling behaviors in a system
of monitored interacting particles (i.e., as considered in
our work but with “switched on” interaction) remains a
challenging open question. In particular, it is important to
understand the behavior of entanglement and of charge
correlations as functions of measurement rate, interaction
strength, and system size, for various spatial dimension-
alities. The analytical NLSM approach developed in this
work, capable of handling particle fluctuations, entangle-
ment, and interactions, represents a promising framework
for exploring this class of measurement-induced phenom-
ena in interacting systems.
Another challenging direction for further development of

this theory is incorporation of static random potential (also
in combination with interaction between fermions). This
will, in particular, shed light on the interplay between
measurements and Anderson localization (or many-body
localization in the presence of interaction). In connection
with symmetry classification of nonlinear sigma models, it
would also be very interesting to study possible physical
realizations which would fall into different universality
classes and be described by NLSMs with different sym-
metries. Another intriguing question is whether topological
effects may be of relevance in the context of measurement
problems. Finally, investigation of measurements that
correspond to R ≠ 1 (and thus do not satisfy Born’s rules)
is an interesting task; see a comment at the end of
Appendix C.
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APPENDIX A: DERIVATION OF THE KELDYSH
ACTION FOR MEASURED FERMIONS

In this appendix, we present further details of the
derivation of Keldysh action, Sec. III A. Within the replica
approach, we should average R copies of the unnormalized
density matrix D̂ over the measurement trajectories. For a
fixed number of measurements M, this average can be
written explicitly:

ρ̂R ¼
YM
m¼1

�Z
d2xm

LT

X
nm¼0;1

�
⊗R

r¼1 D̂r; ðA1Þ

where x ¼ ðx; tÞ and R d2x ¼PL
x¼1

R tf
ti dt.

For each replica D̂r of the matrix D̂, we introduce
a separate replica of the Keldysh time contour Cr ¼
Cþ
r ∩ C−

r ¼ ð−∞;þ∞Þ ∩ ðþ∞;−∞Þ. The expression for
each replica of D̂ matrix can be written explicitly utilizing
the standard Keldysh-contour time-ordering symbol T C
as follows:

D̂ ¼ T C

�
ρ̂0ÛC

YM
m¼1

P̂þ
nmðxm; tmÞP̂−

nmðxm; tmÞ
�
; ðA2Þ

where superscripts þ and − refer to the forward and
backward branches of the Keldysh contour, respectively,
and ÛC denotes the unitary evolution over the full contour.
Combining Eqs. (A1) and (A2) and performing averaging
over Poisson distribution of the number of measurements
M with the mean value M̄ ¼ γLT, we observe that the
combination of projection operators gets exponentiated.
Finally, introducing the standard fermionic path-integral
representation, we arrive at the following replicated
Keldysh action:

iS½ψ̄ ;ψ � ¼ i
XR
r¼1

ψ̄ rĜ
−1
0 ψ r þ iγ

Z
d2xLM½ψ̄ ;ψ �; ðA3Þ

with the bare free-fermion Green’s function Ĝ0 being 2 × 2
matrix in the Keldysh space. The measurements produce an
additional local contribution to the action with the follow-
ing Lagrangian density:

iLM½ψ̄ ;ψ � ¼
X
n¼0;1

YR
r¼1

Vn½ψ̄ r;ψ r� − 1; ðA4Þ

V0½ψ̄ ;ψ � ¼ ð1 − ψ̄þψþÞð1 − ψ̄−ψ−Þ; ðA5Þ

V1½ψ̄ ;ψ � ¼ ψ̄þψþψ̄−ψ−: ðA6Þ

The measurements thus give rise to an effective local
“interaction” of fermionic fields between different branches
of the Keldysh contour (despite the original problem being
noninteracting one), with the interaction vertices containing
up to 4R fermionic fields.
As a next step, we perform a standard Larkin-

Ovchinnikov rotation [83] defined via the relations (note
opposite signs for ψ and ψ̄)

ψ1;2 ¼ ðψþ � ψ−Þ=
ffiffiffi
2

p
;

ψ̄1;2 ¼ ðψ̄þ ∓ ψ̄−Þ=
ffiffiffi
2

p
: ðA7Þ

In the new basis, the Green function acquires the following
structure in the Keldysh space:

−ihψψ̄i ¼ Ĝ ¼
�
GR GK

GK̄ GA

�
K
; ðA8Þ

where subscripts R;A;K; K̄ stand for retarded, advanced,
Keldysh, and anti-Keldysh components of Green function,
respectively, with the latter being zero in the conventional
Keldysh technique. The inverse of the bare free-fermion
Green function in this basis can be written as

Ĝ−1
0 ¼ i∂t − Ĥ0 þ iδΛ̂0; Λ̂0ðϵÞ ¼

�
1 2F0ðϵÞ
0 −1

�
K
;

ðA9Þ

where the term proportional to infinitesimal δ → þ0 fixes
the correct causality properties of retarded and advanced
Green functions and carries the information about the initial
distribution function f0ðϵÞ via F0ðϵÞ ¼ 1 − 2f0ðϵÞ.
An important technical detail should be noted at this

point. The interaction vertices Vi½ψ̄ ;ψ � consist of multiple
fermionic fields taken at exactly the same point in space
and time, and Green’s functions with coinciding arguments
require special regularization. The general rule that follows
from the derivation of the path-integral representation is
that, since projection operators were normal ordered, the
time (anti)ordering should also reduce to normal ordering
for coinciding temporal arguments. Such a convention is,
however, somewhat inconvenient, in particular, since it
corresponds to a nonzero anti-Keldysh component of the
local Green function. Furthermore, the Keldysh compo-
nent, which is usually continuous in a sense GKðt→þ0Þ¼
GKðt→−0Þ, actually contains a single point discontinuity
GKðt → �0Þ ≠ GKðt≡ 0Þ. Because this discontinuity
affects only a set of measure zero, it is usually discarded.
However, it should be treated carefully when working with
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local-in-time interactions. In the present paper, we adopt an
alternative, “principal-value” regularization:GðregÞðt¼0Þ¼
limt→0½GðtÞþGð−tÞ�=2, which does not suffer from the
above discontinuities and is related to the original Green

function via iĜðregÞ
ij ðt; t0Þ ¼ iĜijðt; t0Þ þ δtt0δijτ̂x=2, where

indices i, j incorporate real-space and replica structure.
Note that δt;t0 is a Kronecker δ symbol δt;t0 equal to unity for
coinciding times and to zero otherwise; it should not be
confused with the Dirac δ function.
Switching between different regularizations requires intro-

duction of counterterms in the action, δS ¼ SðregÞM − SM,
so that arbitrary observable quantities remain unchanged:

Z
Dψ̄Dψ expðiψ̄Ĝ−1

0 ψ þ iγSMÞ

¼
Z

Dψ̄Dψ expðiψ̄ĜðregÞ−1
0 ψ þ iγSðregÞM Þ: ðA10Þ

One can consider a standard diagrammatic expansion in γ to
arbitrary order of perturbation theory, and explicitly build

SðregÞM such that these expansions coincide.
Consider an arbitrary Feynman diagram in the

expansion of the left-hand side of Eq. (A10), and substitute

iG0;ijðt; t0Þ ¼ iGðregÞ
0;ij ðt; t0Þ − δtt0δijτ̂x=2. In order for the

identity Eq. (A10) to be fulfilled, the difference between
these Green functions should be produced by the counter-
terms in the right-hand side. From the structure of dia-
grammatic expansion we then deduce that counterterms are
given by the sum over all partial Wick contractions of
the original action SM, with each contraction replaced by
−δtt0δijτ̂x=2. As expected, only terms local in time, in real
space, and in replica space give nonzero counterterms.
Applying this procedure to the action Eq. (A4) and
performing the rotation Eq. (A7) in Keldysh space, we
find that the regularized action keeps the same product form
Eq. (A4) but with regularized interaction vertices:

VðregÞ
0 ½ψ̄ ;ψ �¼1

4
−
1

2
ðψ̄2ψ1þ ψ̄1ψ2Þ− ψ̄1ψ1ψ̄2ψ2; ðA11Þ

VðregÞ
1 ½ψ̄ ;ψ �¼1

4
þ1

2
ðψ̄1ψ2þ ψ̄2ψ1Þ− ψ̄1ψ1ψ̄2ψ2; ðA12Þ

which is Eq. (17) of the main text. We work with the
regularized action, dropping the superscript “(reg)” for
brevity.

APPENDIX B: GENERALIZED
HUBBARD-STRATONOVICH

TRANSFORMATION

In this appendix, we provide details of derivation of
the generalized Hubbard-Stratonovich transformation

(Sec. III B of the main text) for the 4R-fermion interaction
of the form Eq. (16).
We begin with the following identity valid for arbitrary

positive parameter ϵ > 0:

1 ¼
Z

DĜDΣ̂ exp

�
−

1

2ϵ
TrðĜþ iψψ̄Þ2 − ϵ

2
TrΣ̂2

�
; ðB1Þ

where the integration is performed over 2R × 2R time- and
space-dependent Hermitian matrices Ĝðx; tÞ and Σ̂ðx; tÞ
with a flat integration measure. The Tr symbol here
includes the trace over replica and Keldysh space as well
as integration over time and summation over lattice sites.
In the limit ϵ → þ0, the first term in the exponential in
Eq. (B1) acts as a δ function, which imposes Ĝ ¼ −iψψ̄ .
This property will be used to rewrite the interaction in terms
of the Gmatrix. Performing a shift Σ̂ ↦ Σ̂þ iðĜþ iψψ̄Þ=ϵ,
we arrive at another form of Eq. (B1):

1 ¼
Z

DĜDΣ̂ exp

	
−
ϵ

2
TrΣ̂2 − iTrðΣ̂ ĜÞ − ψ̄ Σ̂ψ



: ðB2Þ

The first term in the exponential in Eq. (B2) is required only
to enforce the convergence of the integral over Σ̂; we will
omit it in what follows for brevity.
Now that we have the identification ψψ̄ ¼ −iĜ, we can

rewrite the interaction in terms of G matrix. Formally
one then can consider an arbitrary decoupling of the
nonlinear interaction SM in bilinears ψψ̄ (which can be
viewed as a single pattern of Wick contractions) and
replace the corresponding pair products of fermionic
operators by Gij. Although this would be mathematically
correct, physically it would correspond to decoupling of the
interaction in a single channel. Indeed, we want to consider
matrix G in what follows as a slow mode. It is thus crucial to
consider decoupling in all possible channels. The pro-
cedure bears similarity with the one discussed in the
context of Anderson localization in the orthogonal sym-
metry class, where slow modes include diffusons and
cooperons, and the quartic interaction coming from aver-
aging over quenched disorder is decoupled in two different
channels simultaneously; see Ref. [96].
To implement this technically, we switch to the Fourier

space and introduce an energy and momentum cutoff Λ
which should be smaller than the size of the Brillouin
zone π, but larger then any other characteristic scale arising
in our problem:

ĜijðqÞ ≃ −iθðΛ − jqjÞ
X
k

ψ iðkþ q=2Þψ̄ jðk − q=2Þ; ðB3Þ

with indices i, j corresponding to the Keldysh and replica
structure of fermionic fields. Considering an arbitrary local
interaction vertex of order 2N that we want to decouple
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using the generalized Hubbard-Stratonovich transforma-
tion, we rewrite it in the momentum representation:

V2N ½ψ̄ ;ψ � ¼
Z

d2x
YN
i¼1

ψ̄biðxÞψaiðxÞ

¼
X

k1 ;…;kN
k0
1
;…;k0

N

δ

�XN
i¼1

ki ¼
XN
i¼1

k0i

�YN
i¼1

ψ̄biðk0iÞψaiðkiÞ:

ðB4Þ

Within the whole 2N-dimensional momentum space, there
is N! sectors where momentums are grouped into N pairs
fkαi ; k0βig with small momentum difference in each pair,
jkαi − k0βi j ≲ Λ. These sectors are nearly nonoverlapping:
the overlap would correspond to more than two momenta
being close to each other, and the phase volume of such
region in momentum space contains an additional small-
ness in parameter Λ ≪ 1. As the long-wavelength fluctua-
tions of matrix G are expected to dominate the physical
behavior of the system, such “pairings” of fermionic fields
into low-momenta bilinears should dominate the original
fermionic path integral.
Introducing for each pair “center-of-mass” and “relative-

motion” momenta defined as Ki ¼ ðkαi þ k0βiÞ=2 and
qi ¼ kαi − k0βi , we see that summation over the center-of-
mass momentum reduces to the corresponding matrix
element of matrix G, see Eq. (B3), which allows us to
rewrite the interaction vertex as

V2N ≈
X

fαi;βig∈P2N

ð−1ÞF
X
jqij<Λ

δ

�XN
i¼1

qi ¼ 0

�YN
i¼1

iGαiβiðqiÞ

¼
Z

d2x

 X
fαi;βig∈P2N

ð−1ÞF
YN
i¼1

iGαiβiðxÞ
!
:

Here the outermost sum runs over the N! sectors (N!

pairings of the set fai; big) denoted as P2N , and the ð−1ÞF
factor accounts for sign changes that arise when Grassmann
fields belonging to each pair are brought together. As the
last step, we note that this expression is formally equivalent
to the result of application of the Wick theorem to the
following Gaussian Grassmann integral:

V2N ½G� ¼
Z

Dψ̄Dψ

det ð−iG−1Þ expðiψ̄G
−1ψÞV2N ½ψ̄ ;ψ �: ðB5Þ

This equation is the main result of the present derivation:
decoupling a given interaction vertex in all possible slow
channels is equivalent to calculating the Grassmann
Gaussian average of this interaction vertex. We reiterate
that the matrix G is assumed to be a slow field in this

derivation; without this restriction, one would formally get
a multiple counting (each term of the form V2N would be
counted N! times).
We are now ready to apply this scheme to the interaction

in our problem. Substituting the exponential form of the
interaction Eq. (19) in Eq. (B5), we are left with Gaussian
integrals over ψ̄ ;ψ, which can be readily calculated. This
finally brings us to the following form of the interaction
rewritten now in terms of matrix G:

iLM½G� ¼ det

�
1

2
þ iĜτ̂x

�
þ det

�
1

2
− iĜτ̂x

�
− 1; ðB6Þ

which is Eq. (22) of the main text.

APPENDIX C: MATRIX FIELD THEORY:
SADDLE POINTS AND GAUSSIAN

FLUCTUATIONS

In this appendix, we provide additional details of the
analysis of saddle points and Gaussian fluctuations in
Secs. IVA and IV B of the main text.
To determine spatially homogeneous saddle points of the

matrix action Eq. (20), we consider a variation of the action
with respect to Σ̂, which yields the following saddle-point
equation:

−iĜ0 þ iP
Z

dϵ
2π

Z
π

−π

dk
2π

ðϵ − ξk þ iΣ̂0Þ−1 ¼ 0: ðC1Þ

This equation can be solved for Ĝ0 in the basis where Σ̂ is
diagonal. Let us write Σ̂0 ¼ R̂λ̂0R̂

−1 with a diagonal
matrix λ̂0; then the solution reads

Ĝ0 ¼ −iQ̂0=2; Q̂0 ≡ R̂ðsgnReλ̂0ÞR̂−1: ðC2Þ

By construction, matrix Q̂0 satisfies the NLSM constraint
Q̂2

0 ¼ 1.
The “quantum” Keldysh component of the fermionic

density on this solution is given by

ρðqÞ0 ¼ −
1

4
TrQ̂0: ðC3Þ

Since eigenvalues of Q̂0 are �1, this quantity has a discrete
set of possible values. On physical grounds, we request
that the quantum component is zero on the saddle point;
i.e., TrQ̂0 ¼ 0.
We focus first on the replica-symmetric saddle points

Q̂0 ¼ ðQ̂0ÞK ⊗ 1̂R. Consider arbitrary fluctuations (includ-
ing those with a nontrivial structure in the replica space)
around this saddle point, Ĝ ¼ −iðQ̂0 þ δQ̂GÞ=2. Properties
of matrix Q̂0 allow us to rewrite the measurement action
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Eq. (22) in the following form convenient for an expansion
in δQ̂G:

iLM½G� ¼ ρR0 det

�
1þ ðQ̂0 − τ̂xÞδQ̂G

4ρ0

�

þ ð1− ρ0ÞR det
�
1þ ðQ̂0 þ τ̂xÞδQ̂G

4ð1− ρ0Þ
�
− 1; ðC4Þ

where we have introduced the “classical” Keldysh compo-
nent of the density defined as

ρ0 ¼
1

4
Trð1 − Q̂0τ̂xÞ: ðC5Þ

To perform the expansion, we use the formula

detð1þ ϵX̂Þ ¼ exp½Tr lnð1þ ϵX̂Þ�

≈ 1þ ϵTrX̂ −
ϵ2

2
ðTrX̂2 − Tr2X̂Þ þOðϵ3Þ:

ðC6Þ

This yields the following results for the terms of zeroth and
first order:

iLð0Þ
M ¼ ρR0 þ ð1 − ρ0ÞR − 1; ðC7Þ

iLð1Þ
M ¼ 1

4
Tr


δQ̂G

h�
ρR−10 þ ð1 − ρ0ÞR−1

�
Q̂0

þ �ð1 − ρ0ÞR−1 − ρR−10

�
τ̂x
i�

; ðC8Þ

and the following two quadratic terms:

iLð2;1Þ
M ¼ −

1

32
Tr


ρR−20

�ðQ̂0 − τ̂xÞδQ̂G

�
2

þ ð1 − ρ0ÞR−2
�ðQ̂0 þ τ̂xÞδQ̂G

�
2
�
; ðC9Þ

iLð2;2Þ
M ¼ ρR−20

32
Tr2½ðQ̂0 − τ̂xÞδQ̂G�

þ ð1 − ρ0ÞR−2
32

Tr2½ðQ̂0 þ τ̂xÞδQ̂G�: ðC10Þ

Equation (C8) allows us to write the second saddle-point
equation, which is obtained by varying the full action
Eq. (20) with respect to G:

− iΣ̂0 þ iγ

�
1

2
½ρR−10 þ ð1 − ρ0ÞR−1�Q̂0

þ 1

2
½ð1 − ρ0ÞR−1 − ρR−10 �τ̂x

�
¼ 0: ðC11Þ

The term proportional to τ̂x vanishes in two cases: (i) in the
replica limit R → 1 for arbitrary density ρ0, and (ii) for half

filling ρ0 ¼ 1=2 and for arbitrary number of replicas R.
The physics that we are interested in is expected to be
independent on ρ0, so that the case ρ0 ¼ 1=2 should be
representative. We thus retain the saddle-point manifold
Σ̂0 ¼ γQ̂0=2R−1.
As the last step, we parametrize fluctuations of Σ as Σ̂ ¼

γRðQ̂0 þ δQ̂ΣÞ with γR ¼ γ=2R−1, and perform a quadratic
expansion of action Eq. (21) in δQΣ. The zeroth-order term
vanishes, and the result for the second-order term reads

iSð2Þ0 ¼ 1

2
Tr
�
γ2RĜδQ̂ΣĜδQ̂Σ − γRδQ̂ΣδQ̂G

�
: ðC12Þ

Here Ĝ is a dressed Green function that has the form

ĜðkÞ ¼ ðϵ − ξk þ iγRQ̂0Þ−1

¼ 1

2
GRðkÞð1þ Q̂0Þ þ

1

2
GAðkÞð1 − Q̂0Þ; ðC13Þ

with SCBA-dressed retarded and advanced Green functions
defined as

G−1
R=AðkÞ ¼ ϵ − ξk � iγR: ðC14Þ

Because of causality properties ofGR=A, only the cross term
proportional to the elementary “diffuson” block BðxÞ ¼
GRðxÞGAð−xÞ survives in the first term of Eq. (C12).
Writing explicitly the space and time integration included
in symbol Tr in Eq. (C12), we obtain

iSð2Þ0 ¼ γ2R
4

Z
d2x1d2x2Bðx1 − x2Þ

× Tr
�
δQ̂Σðx1Þð1þ Q̂0ÞδQ̂Σðx2Þð1 − Q̂0Þ

�
−
γR
2

Z
dxTr

�
δQ̂ΣðxÞδQ̂GðxÞ

�
: ðC15Þ

This is Eq. (30) of the main text.
It is worth noting that, for arbitrary R and n, there are

exact saddle points of the action of the form Q̂0 ¼ �τ̂x
and τ̂z; for n ¼ 1=2 the latter coincides with Λ̂. They
correspond to densities ρ0 ¼ 0, ρ0 ¼ 1, and ρ0 ¼ 1=2,
respectively. We conjecture that these saddle points may
correspond to breaking of the system into domains for the
case of R > 1, i.e., for measurements with probabilities not
satisfying Born’s rules. Indeed, our preliminary numerical
results for such unconventional measurements indicate a
trend toward formation of domains. We relegate a system-
atic investigation of this issue to future work.
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APPENDIX D: CROSSOVER BETWEEN THE
BALLISTIC AND DIFFUSIVE REGIMES IN THE

GAUSSIAN APPROXIMATION

In this appendix, we present details of an exact calcu-
lation of the density-correlation function CðqÞ, Eq. (43),
and the second cumulant Cð2Þl , Eq. (46), within the Gaussian
theory. The result includes the ballistic and diffusive
regimes and a crossover between them. The only
assumption is that the mean-free path is large, l0 ≫ 1; a
relation between l0 and the length scale l can be arbitrary.
The inversion of the quadratic operator that enters the

Gaussian action [Eqs. (30)–(32)] in the presence of an
absorbing boundary in the time domain at t ¼ tf and the
calculation of the density-correlation function Eq. (40) is
equivalent to the solution of the Wiener-Hopf integral
equation. Without loss of generality, we put ti → −∞
and tf ¼ 0, and obtain

Lðt; t0Þ − 1

2τ0

Z
0

−∞
dt00Bðq; jt − t00jÞLðt00; t0Þ ¼ δðt − t0Þ;

ðD1Þ

with Bðq; tÞ being the Fourier transform, with respect to
time, of the “diffuson block,” Eq. (33):

Bðq; tÞ ¼ θðtÞe−t=τ0J0
�
4Jt sin

q
2

�
: ðD2Þ

The replica-off-diagonal density-correlation function is
related to the kernel L via

Creplðq; t; t0Þ
nð1 − nÞ
¼ Bðq; jt − t0jÞ

þ 1

2τ0

Z
0

−∞
dt1dt2Bðq; jt − t1jÞLðt1; t2ÞBðq; jt2 − t0jÞ

−
1

τ0

Z
0

−∞
dt1dt2Lðt1; t2Þ½Bðq; t − t1ÞBðq; t0 − t2Þ

þ Bðq; t1 − tÞBðt2 − t0Þ�: ðD3Þ

As we are interested only in the equal-time density-
correlation function CðqÞ ¼ Creplðq; t ¼ t0 ¼ tf ¼ 0Þ, the
problem can be slightly simplified by introducing an
auxiliary function,

Fðq; tÞ≡ 1

2

Z
0

−∞
Lðt; t0ÞBðq;−t0Þdt0; ðD4Þ

which satisfies the integral equation,

Fðq;tÞ− 1

2τ0

Z
0

−∞
dt0Bðq;jt− t0jÞFðq;t0Þ¼1

2
Bðq;−tÞ; ðD5Þ

and determines the density-correlation function through

CðqÞ ¼ nð1 − nÞ2½1 − Fðq; 0Þ�: ðD6Þ

The integral equation for Fðq; tÞ depends on a single
parameter

u ¼ 2l0 sinðq=2Þ ≈ ql0: ðD7Þ

We have solved Eq. (D5) and calculated CðqÞ numeri-
cally in a broad range of values of u; the result is presented
in Fig. 5. This revealed an interesting property: within
numerical accuracy, the solution CðqÞ coincides with the
solution C̃ðqÞ of the corresponding bulk equation [i.e., the
one with upper limit in Eq. (D5) replaced byþ∞], but with
parameter u being exactly twice larger:

Cðq; uÞ ≃ C̃ðq; 2uÞ ¼ nð1 − nÞc̃ðuÞ; ðD8Þ

c̃ðuÞ ¼
Z

∞

0

2dv
π

Rebðv; 2uÞ − jbðv; 2uÞj2
1 − Rebðv; 2uÞ : ðD9Þ

Here, v ¼ ωτ0 is the dimensionless frequency, and bðv; uÞ
is the dimensionless block of the ladder, Eq. (33):

bðv; uÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ivÞ2 þ 2u2

p : ðD10Þ

While the above simple relation between the bulk and
boundary correlation functions has not been demonstrated
analytically in the whole range of parameters, it is

FIG. 5. Comparison between numerical solution of the Wiener-
Hopf integral equation as given by Eqs. (D5) and (D6) (red curve)
with the “bulk” solution with replacement u ↦ 2u as given by
Eq. (D8) (blue curve). Although the discrepancy is visible, it is of
the order of 1% and is comparable to the numerical error.
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straightforward to see that it correctly reproduces the
asymptotic behavior in both limits of small and large u:

c̃ðuÞ ≈
�
2u u ≪ 1

1 − ln u=2π
ffiffiffi
2

p
u u ≫ 1:

ðD11Þ

Performing the Fourier transformation, we obtain a
universal scaling form for the (equal-time) density-
correlation function in real space,

CðxÞ ¼ nð1 − nÞ
	
δx;0 −

1

l0
c

�
x
l0

�

; ðD12Þ

c

�
y ¼ x

l0

�
¼ 1

π

Z
∞

0

du½1 − c̃ðuÞ� cosðuyÞ; ðD13Þ

with asymptotic behavior:

cðyÞ ≈
�
2=πy2 y ≫ 1

ln2ð1=yÞ=4 ffiffiffi
2

p
π2 y ≪ 1;

ðD14Þ

Substituting this result into Eq. (46), we obtain the
universal scaling form of the second cumulant,

Cð2Þl ¼ nð1 − nÞl0c2
�
l
l0

�
; ðD15Þ

c2

�
y ¼ l

l0

�
¼ 2

π

Z
∞

0

du
u2

c̃ðuÞð1 − cos uyÞ; ðD16Þ

with the asymptotic behavior given by

c2ðyÞ ≈
�
y y ≪ 1

ð4=πÞ ln y y ≫ 1:
ðD17Þ

This scaling function is plotted in Fig. 1 of the main text.

APPENDIX E: DERIVATION OF THE SUðRÞ
NLSM: EFFECTIVE ACTION FOR THE

REPLICON MODES

In this appendix, we present details of the derivation of
the SUðRÞ NLSM action, Sec. V D. As a starting point, we
use Eqs. (49) and (50) and utilize the parametrization
Eq. (55). We then expand the action to quadratic order in
the massive Θ̂ modes (however keeping it exact in Q̂0

and Φ̂) and then integrate over Θ̂. In all prefactors, we take
the limit R → 1.
a. Measurement action. We start with Eq. (50), which is

manifestly independent of R̂Φ because R̂Φ commutes with
τ̂x. To perform the expansion in Θ̂ modes, we use formulas
from Appendix C. Since Θ̂ is traceless in replica space,

we can directly use Eqs. (C8) and (C9), with the replace-
ment QG ↦ QΘ, where

Q̂Θ ¼ R̂ΘQ̂0R̂
−1
Θ

≈ Q̂0 þ iΘ̂½τ̂y; Q̂0�=2 − Θ̂2ðQ̂0 − τ̂yQ̂0τ̂yÞ=4: ðE1Þ
Separating traces in the Keldysh and replica spaces yields:

iLM½Θ̂; Q̂0� ¼ −
tr2KðQ̂0τ̂zÞ

32ρ0ð1 − ρ0Þ
trRΘ̂2: ðE2Þ

At the saddle point Q̂0 ¼ Λ̂, the prefactor, which gives a
mass of Θ̂ mode, is finite and equal to 1=8nð1 − nÞ.
b. Dynamic term. We proceed with the time-derivative

term from Eq. (49), which we denote as Ldyn. The para-

metrization Eq. (55) corresponds to rotation matrices R̂ ¼
R̂ΦR̂ΘR̂0, where matrix R̂0 generates the replica-
symmetric part Q̂0 ¼ R̂0Λ̂R̂−1

0 . The direct substitution
generates the following terms:

iLdyn½Q̂� ¼ iLdyn½Q̂0� þ
1

2
TrðQ̂0R̂

−1
Θ ∂tR̂ΘÞ

þ 1

2
TrðQ̂ΘR̂

−1
Φ ∂tR̂ΦÞ: ðE3Þ

The second term in Eq. (E3) vanishes exactly since Θ̂ is
traceless in replica space. The last term, however, is very
important as it generates interaction between massive mode
Θ̂ and massless Φ̂. Separating explicitly the trace over
Keldysh space, we arrive at

iδLdyn½Θ̂; Φ̂; Q̂0� ¼
1

4
trKðQ̂0τ̂zÞtrRðΘ̂Û−1=2

∂tÛÛ−1=2Þ;
ðE4Þ

with Û ¼ expðiΦ̂Þ.
c. Spatial-gradient term. Next, we consider the spatial-

gradient term from Eq. (49). The derivative of the Q̂ matrix
can be written in the following form:

∂xQ̂ ¼ R̂ΦR̂Θ∂xQ̂0R̂
−1
Θ R̂−1

Φ

þ R̂ΦR̂Θ½R̂−1
Θ ∂xR̂Θ; Q̂0�R̂−1

Θ R̂−1
Φ

þ R̂Φ½R̂−1
Φ ∂xR̂Φ; Q̂Θ�R̂−1

Φ :

Upon squaring this expression, some of the terms vanish
after taking the trace over replicas. Integrating over Θ̂ and
keeping only terms with two gradients (i.e., discarding
terms with higher gradients), we are left with the bare
replica-symmetric term for Q̂0 matrix and the following
term containing gradients of the massless field Φ̂:

iδLgrad½Φ̂; Q̂0� ¼ −Dρ0ð1 − ρ0ÞtrRð∂xÛ−1
∂xÛÞ: ðE5Þ
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d. Density source term. Last but not least—replicon
modes also couple to the density source term defined
by Eq. (57). In our parametrization, it acquires the follow-
ing form:

iLsource½Q̂; ξ̂� ¼ i
4
Tr½ξ̂Φð1 − Q̂Θτ̂xÞ�; ðE6Þ

with the Φ-rotated source ξ̂Φ ¼ R̂−1
Φ ξ̂R̂Φ, and Q̂Θ defined

in Eq. (E1). Expanding Eq. (E6) in Θ, we arrive at the
following expression:

iLsource½Θ̂; Φ̂; Q̂0; ξ̂�

¼ iρ0ξ0 þ
i
8
trKðQ̂0τ̂zÞ

× trR
�
Θ̂ðÛ−1=2Ξ̂Û1=2 þ Û1=2Ξ̂Û−1=2Þ�: ðE7Þ

As expected, the replica-symmetric part of the source
ξ0 ≡ trRξ̂ couples to the replica-symmetric density, while
the replicon part of the source Ξ̂ ¼ ξ̂ − ξ0 couples to the
replicon modes.
e. Gaussian integration. As the final step of the

derivation, we collect all Θ-dependent terms, Eqs. (E2),
(E4), and (E7), and perform Gaussian integration over Θ̂
mode to obtain the effective action for Φ̂ fields. We see that
trKðQ̂0τ̂zÞ factors cancel out, yielding
Z

DΘ exp ½iðγLM þ δLdyn þ δLsourceÞ�

¼ exp

�
ρ0ð1 − ρ0Þ

2γ
trR

	
Û−1

∂tÛ þ i
2
ðΞ̂þ U−1Ξ̂ ÛÞ



2
�

¼ exp
n
−ρ0ð1 − ρ0Þτ0trR

�
∂
Ξ
t Ûð∂Ξt ÛÞ†�o; ðE8Þ

with

∂
Ξ
t Û ¼ ∂tÛ þ i

2
fÛ; Ξ̂g; ðE9Þ

ð∂Ξt ÛÞ† ¼ ∂tÛ
−1 −

i
2
fÛ−1; Ξ̂g: ðE10Þ

Combining Eqs. (E5) and (E8), we arrive at Eq. (58) of the
main text.

APPENDIX F: RENORMALIZATION-GROUP
EQUATIONS FOR SUðRÞ NLSM WITH

BOUNDARY

The renormalized SUðRÞ NLSM can be parametrized by
two running coupling constants, g and Zs, as follows:

iS½Û� ¼ −
g
2

Z
d2xtr½∂μÛ∂μÛ

†�

þ gZs

Z
dxtr½∂tΦ̂ðx; t ¼ 0ÞΞ̂ðxÞ�: ðF1Þ

Here, we use the dimensionless units t ↦ t=τ0 and
x ↦ x=l0, with the absorbing boundary in the time domain
fixed, for simplicity, at tf ¼ 0. Utilizing the background-
field method, for a single RG step, we perform a splitting of
“fast” and “slow” modes as Û ¼ ÛfÛ0, so that interaction
vertices that couple fast and slow modes read:

Lint ¼ −gtr½Ŵμ∂μÛ0Û
†
0�; Ŵμ ≡ −iÛ†

f∂μÛf; ðF2Þ

with the following perturbative expansion:

Ŵμ ≈ ∂μΦ̂f −
i
2
½Φ̂f; ∂μΦ̂f� −

1

6
½Φ̂f; ½Φ̂f; ∂μΦ̂f��: ðF3Þ

a. Bulk renormalization. The coupling constant g is
defined in the bulk (in the time domain). The renormaliza-
tion then comes from the second-order perturbation with
two interaction vertices quadratic in fast modes. Neglecting
the boundary, the effective action reads:

iSð1Þeff ¼
g2

8

Z
dr1dr2⟪trð½Φ̂f; ∂μΦ̂f�∂μÛ0Û

†
0Þr1

× trð½Φ̂f; ∂νΦ̂f�∂νÛ0Û
†
0Þr2⟫:

Performing the Wick contraction, and switching the inte-
gration to the center of mass R ¼ ðr1 þ r2Þ=2 and relative
motion ρ ¼ r1 − r2, we obtain:

iSð1Þeff ≈
g2R
4

Z
dρ(∂μGfðρÞ)2

Z
dRtrð∂μÛ0∂μÛ

†
0Þ

≈
R
8π

ln
Λ
Λ0

Z
dRtrð∂μÛ0∂μÛ

†
0Þ; ðF4Þ

where Λ and Λ0 are the ultraviolet cutoffs before and after
the renormalization step. This gives the RG equation for g:

−
∂g

∂ lnΛ
¼ −

R
4π

þOð1=gÞ: ðF5Þ

b. Boundary renormalization. The renormalization of
the density source Ξ at the boundary t ¼ 0 comes from the
second order of perturbation theory, with one fast field put
at the boundary and a single cubic interaction vertex:

iSð2Þeff ¼ −
i
6
g2Zs

Z
dr1dx2⟪trð½Φ̂f; ½Φ̂f; ∂μΦ̂f��

× ∂tÛ0Û
†
0Þr1 trð∂tΦ̂fΞ̂Þx2⟫: ðF6Þ
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After performing the Wick contraction and introducing
center-of-mass coordinate X ¼ ðx1 þ x2Þ=2 and relative
motion coordinates ρ ¼ ðρ ¼ x1 − x2; t1Þ, this becomes

iSð2Þeff ¼ −g2ZsR
Z

dρ½∂t0Gfð0; t; t0Þ∂t00Gðρ; t; t00Þ�t0→t
t00→0

×
Z

dXtrð∂tΦ̂ Ξ̂Þ: ðF7Þ

Such an integral would be zero without the boundary, as it
would be impossible to satisfy the frequency conservation
laws; however, in the presence of the boundary this term
also contains the logarithmic divergence, yielding

iSð2Þeff ¼ −
ZsR
4π

ln
Λ
Λ0

Z
dXtrð∂tΦ̂ Ξ̂Þ: ðF8Þ

Interestingly, within the chosen parametrization of the
renormalized action, Eq. (F1), this correction is completely
absorbed into the renormalization of g and, thus, within the
one-loop approximation, the renormalization of Zs is absent:

−
d lnZs

d lnΛ
¼ 0þOð1=g2Þ: ðF9Þ
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