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Abstract—The composition theorems of differential
privacy (DP) allow data curators to combine different
algorithms to obtain a new algorithm that continues to
satisfy DP. However, new granularity notions (i.e., neigh-
borhood definitions), data domains, and composition
settings have appeared in the literature that the classical
composition theorems do not cover. For instance, the
original parallel composition theorem does not translate
well to general granularity notions. This complicates
the opportunity of composing DP mechanisms in new
settings and obtaining accurate estimates of the incurred
privacy loss after composition.

To overcome these limitations, we study the com-
posability of DP in a general framework and for any
kind of data domain or neighborhood definition. We
give a general composition theorem in both indepen-
dent and adaptive versions and we provide analogous
composition results for approximate, zero-concentrated,
and Gaussian DP. Besides, we study the hypothesis
needed to obtain the best composition bounds. Our
theorems cover both parallel and sequential composition
settings. Importantly, they also cover every setting in
between, allowing us to compute the final privacy loss
of a composition with greatly improved accuracy.

I. Introduction
Differential privacy (ε-DP) [7] is a well-known privacy

notion in the field of data protection. One advantage of DP
over other privacy notions, such as, for instance, syntactic
notions [20], is that DP possesses the key property of
composability: It is possible to form a new DP mechanism
by composing a finite number of given DP mechanisms.
The DP composition theorems serve as a reliable measure
for any privacy loss suffered in the newly composed DP
mechanism. For these reasons, the advantages of DP com-
position are recognized throughout the privacy community.
For example, composability is key for the construction of
most DP algorithms; further, the privacy protection of
adaptive updates (e.g., in a streaming scenario or model
learning) could not be computed without composition.

*These authors contributed equally.

Currently, DP composition is represented by two results:
sequential composition [9] and parallel composition [17].
Parallel composition is applied when all combined mech-
anisms access mutually disjoint databases, the maximum
loss before combination determines the total privacy loss
after composition. Sequential composition covers any case
when arbitrary DP mechanisms with access to the entire
data are combined. The total privacy loss in sequential
composition is computed as the sum of the losses of each
composed mechanism.

DP and the sequential and parallel composition theo-
rems were originally defined for tabular databases in the
unbounded [12] scenario. Nowadays, however, the literature
works both with different database domains (i.e., classes
of the input databases of a privacy mechanism) and with
different neighborhood definitions (also called granularity
notions [9]), such as bounded DP [12] or edge-DP [11].
Consequently, the mechanisms we compose can be defined
for different domains and granularities. There also can
be alternatives to accessing either the whole database or
disjoint parts of it. Therefore, we need new composition
rules for more general settings.

However, the existing composition theorems may not
extend directly to these general settings. For instance, Li
et al. [16] show that the proof of the parallel composition
theorem [17] does not hold if we change the original
granularity to bounded DP. Since composition for new
domains and new granularity notions may be non-trivial
or even impossible, curators need to understand how
composition results work for each case and when they yield
no significant results. Otherwise, curators risk misapplying
DP composition, for example, by using parallel composition
in a bounded scenario.

To provide a context where all granularities can be com-
posed and where the final privacy loss can be systematically
interpreted and compared with the initial ones, we set up
a general mathematical framework based on the notion of
d-privacy introduced by Chatzikokolakis et al. [3]. Using
this framework we present composition theorems (IV.1



and V.2) for when a mechanism is applied independently
of the others (the independent scenario) or using the output
of a mechanism as input in the following ones (the adaptive
scenario). Our results allow us to obtain new composition
theorems for any domain and granularity notion, both
existing and future, and even allow combining different
domains and granularity notions. Consequently, we improve
the understanding of how different granularity notions
affect composition in DP. Furthermore, our results facilitate
a more accurate calculation of the privacy loss upon any
possible composition of DP mechanisms and showcase
the effect that preprocessing has on the computation. For
instance, if the mechanisms take as input non-necessarily
disjoint subsets of the initial database, it is now possible
to obtain better bounds than the sum obtained using
sequential composition (see Example IV.5).

Besides, we study the settings that are common in the
literature and provide the corresponding privacy estimates
obtained by using our composition theorems. Furthermore,
we study sufficient conditions to obtain the “max εi” bound
when the mechanisms take as input disjoint parts of the
initial database. For the cases where this bound cannot be
achieved, we provide a new variation on composition (see
Section IV-D) that allows us to achieve better results. In
particular, we provide a solution to the open problem of
Li et al. [16] by giving the lowest possible privacy loss for
the composition of bounded DP mechanisms executed on
mutually disjoint databases (Corollary IV.13).

To further showcase our results, we extend our com-
position theorems to other privacy notions based on DP
where the granularity can be changed. These other privacy
notions are approximate DP ((ε, δ)-DP), zero-concentrated
DP (ρ-zCDP) and Gaussian DP (µ-GDP). To the best
of our knowledge, we are the first to define the d-private
counterparts of (ε, δ)-DP, ρ-zCDP, and µ-GDP in order to
gain a more general perspective on these three notions.
Besides, we provide the first statement of the zCDP
composition over disjoint databases. Moreover, we provide
a tighter bound than maxi∈[k] µid for Gaussian DP over
disjoint databases (see Example VI.25).

An overview of the generalized results is given in Figure 1.
Our contributions are as follows:

• We prove the independent composition (IC) and the
adaptive composition (AC) theorems, two new results
that allow for reducing the estimated privacy loss
and designing improved DP mechanisms in general
contexts. Moreover, our theorems make it possible to
mix different granularity mechanisms while controlling
the privacy guarantees offered.

• We study particular cases of previous theorems that
generalize the sequential and parallel composition to
any granularity notion. This allows us to compute the
minimum privacy loss for the bounded case when the
mechanism processes disjoint parts of the database.

• We define (dD, δD)-privacy, d2
D-zCprivacy, and dD-

Gprivacy, dD-private versions of (ε, δ)-DP, ρ-zCDP,
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Independent Composition CD (IV.11)

Adaptive Composition CD (V.5)

Independent Composition (IV.1)

Adaptive Composition (V.2)

Sequential
(II.5 [8])

Independent
(O: II.6 [9], G: IV.3)

Adaptive
(O: II.7 [16], G: V.3)

Disjoint Inputs
as in parallel (II.8 [17])

Independent
BB: (IV.6, CD: IV.12)

Adaptive
BB: (V.4, CD: V.6)

Figure 1: Overview of the theorems proved in this paper,
classified according to whether they are adaptive or independent.
The theorems represented are the generalizations of sequential
composition and the best bound (BB) for disjoint inputs (as in
the parallel setting). In the figure, “O” denotes the original
theorem, “G” our generalized version, and “CD” common
domain. Arrows indicate that a result directly implies the other.

and µ-GDP. Our definitions allow us to generalize
to other domains and to provide general composition
bounds. We also adapt our general composition results
to (dD, δD)-privacy, d2

D-zCprivacy and dD-Gprivacy.
Particularly, we show that the parallel composition
metric bound can be improved in dD-Gprivacy.

The paper is organized as follows: Preliminaries are
explored in Section II, and we formalize the granularities
and the generalization to dD-privacy in Section III. We
present our independent composition theorem in Section IV,
including interesting cases such as a generalization of the
independent sequential composition and the setting where
the mechanisms take as input disjoint parts of the database.
In Section V, we discuss the analogous results for the
adaptive scenario. Then we give the composition results
for (ε, δ)-DP, ρ-zCDP, and µ-GDP in Section VI. Finally,
we discuss post-processing and the reciprocal theorems
(Section VII) and conclude with a brief summary of the
results (Section VIII). All proofs of our statements can be
found in the appendix of the long version of this paper1.

Related Work: Li et al. [16] analyze the composition
theorems in unbounded and bounded DP, and find out that
the parallel composition theorem does not necessarily hold
for bounded DP mechanisms. However, they do not explore
other granularities of the state of the art or attempt to
provide a solution for the bounded problem. McSherry [17]
gives the first distance-based formulation of DP, later
generalized by Chatzikokolakis et al. [3] with the definition
of dD-privacy, which we use to set the general framework
for composition. However, only sequential composition has
been explored for dD-privacy [10]. Therefore, the gener-

1Long version: arXiv:2308.14649
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Symbol Meaning
X Set of possible data records
DX The universe of all databases drawn from X
D Database class

D, D′ A pair of databases
|D| Size of D (number of records)
x Data record (element of X )

mD(x) Multiplicity of x in the multiset D
M A randomized mechanism

R := Range(M) Range of mechanism M
S Measurable subset of R
s Element of R
G Granularity notion/neighborhood definition

D ∼G D′ D and D′ are G-neighboring
dD (or d) Metric over D

dG
D Canonical metric of G over D

U , B Unbounded and bounded granularity (resp.)
D△D′ Symmetric difference ((D ∪ D′)\(D ∩ D′))

[k] Set of indices {1, . . . , k}
If (D, D′) For f = {fi}i∈[k], |{i ∈ [k] | fi(D) ̸= fi(D′)}|

Table I: Summary of the notation used in this paper.

alization of other composition settings, such as parallel,
to other granularities (metrics) is still an open question,
and to the best of our knowledge, there is no work in the
literature, either for DP or for d-privacy, that, in a general
manner, computes an accurate privacy loss bound when
we have other metrics, domains and composition rules.

II. Preliminaries
In this section, we introduce the main concepts relevant

to this work. The main notation used throughout the
manuscript is compiled in Table I.

A. Tabular Databases and Differential Privacy
In the original formulation of DP, the database D is

assumed to be comprised of a finite number n of rows, where
the intuition is that each row contains data related to an
individual, drawn from a universe of data records X [9]. In
this case, the data model is a tabular database, and we refer
to a single data row as a record. We denote the universe
of all the possible tabular databases drawn from X as DX .
In particular, DX contains the empty database ∅ and is
closed under subsets (if D′ ⊆ D ∈ DX , then D′ ∈ DX ) and
under basic math operators: D ∪ D′, D ∩ D′, D\D′ ∈ DX
for all D, D′ ∈ DX . We consider all these operations as
defined for multisets [21] for the rest of the paper.

The first definition of ε-DP with precise formulation2

was introduced by Dwork [7].

Definition II.1 (Differential privacy [7]). A randomized
mechanism M with domain DX is ε-differentially private
(ε-DP) if for all D, D′ ∈ DX differing on at most one
element and all measurable S ⊆ Range(M),

P{M(D) ∈ S} ≤ eε P{M(D′) ∈ S}. (II.1)

An important part of DP is the concept of neighborhood,
also referred to as the granularity notion of DP [9]. In

2For the literature definitions and theorems, we state them as
they are defined in the cited reference but using the notation of this
manuscript.

Definition II.1, two databases D, D′ ∈ DX are neighboring
if and only if they “differ on at most one element”, i.e.,
|D△D′| = |(D ∪ D′)\(D ∩ D′)| ≤ 1. In other words, we
obtain a neighboring database by removing or adding a
single element or row. Assuming each row is linked to a
single individual, we get the usual DP interpretation: DP
aims to protect the participation of each individual in the
original database up to ε.

Two parameters control the privacy of individuals in
the DP definition, namely, the privacy budget ε and the
universe of records X . The former limits the amount of
information that an attacker can extract with access to the
mechanism’s output. The latter encodes what information
is considered public. For example, if X is the set of possible
addresses of a city, we can discover (up to ε) that a person
lives in a particular city, while if X is the set of possible
addresses of a country, we can discover (up to ε) that an
individual lives in the country, but not which exact city.

Furthermore, with the group privacy property of DP [9],
we also protect the participation of n individuals with
the protection degrading linearly with respect to n. More
precisely, we have the following result:

Proposition II.2 ([17]). A mechanism M is ε-DP if
and only if for all D, D′ ∈ DX and all measurable set
S ⊆ Range(M)

P{M(D) ∈ S} ≤ eε|D△D′| P{M(D′) ∈ S}. (II.2)

In this case, d△(D, D′) := |D△D′| can be thought of
as the distance (or metric) between D and D′ in DX . In
this regard, McSherry [17] provides the first statement
of DP from a metric perspective, which stems from the
group privacy property. This laid the foundations of the
generalization to d-privacy [3], which we will explore in
Section III.

B. Differential Privacy: Unbounded vs. Bounded
Nowadays, many neighborhood definitions for DP exist.

A compilation of common granularities is provided in [5].
Among these, unbounded and bounded DP are the most
popular ones [12]. The unbounded notion corresponds to
the original definition presented by Dwork [7].

Definition II.3 (Unbounded). A pair of databases D, D′ ∈
DX are unbounded neighboring if D can be obtained from D′

by either adding or removing one record (i.e., |D△D′| = 1).

Definition II.4 (Bounded). A pair of databases D, D′ ∈
DX are bounded neighboring if D can be obtained from D′

by changing the value of exactly one record (i.e., |D△D′| =
2 and |D| = |D′|).

These two notions of neighborhood lead to different
privacy guarantees. The clearest difference concerns the
privacy of the number of records: the unbounded notion
protects the number of records in the database, while the
bounded notion does not.



C. Introduction to the Composition Theorems
One of the most useful properties of DP mechanisms

relates to composition theorems. Sequential and parallel
composition are considered key components of DP and are
regularly used in the field.

The composition theorems share a common founda-
tion. Simply put, these theorems say that given k εi-DP
mechanisms Mi, the composed mechanism M satisfies ε-
DP, where ε depends on ε1, . . . , εk. In other words, these
theorems estimate the privacy loss (i.e., the final privacy
budget) of the mechanism M composed of Mi. However,
there are different ways to compose a set of mechanisms,
and thus different theorems. We distinguish the following:

Independent vs. adaptive: Composition is indepen-
dent if the outputs of each Mi are independent of each
other. On the other hand, it is adaptive if Mi can use the
outputs of any Mj with j < i as input. More intuitively,
M computes the mechanisms in order (first M1, then
M2, then M3, etc.) and can take the output of previous
mechanisms as input. Note that adaptive composition
is more general than independent composition, i.e., the
independent theorems are cases of adaptive results.

Sequential vs. parallel: Orthogonally, if every Mi

takes as input the whole database D in its computation, the
composition is sequential. Alternatively, the composition is
parallel if each Mi uses only data from a subset Di ⊆ D
that is not used by any other.

The combination of these variations leads to four clear
cases (see Figure 1), which we will refer to as the inde-
pendent/adaptive sequential/parallel composition settings,
due to the lack of consensus3. We will also refer to them by
the corresponding acronyms: ISC, IPC, ASC, and APC. In
the current literature, we frequently find ISC [9], ASC [16],
and IPC [17]; while APC remains heavily unused.

D. The Classic Composition Theorems
The sequential and parallel composition theorems were

initially stated for the original DP definition [7], unbounded
DP, before the introduction of any other granularity.
Nevertheless, we specify it in the following theorems.

The first composition result of DP appeared in [8].

Theorem II.5 (Sequential composition [8]). A mechanism
that permits T adaptive interactions with an [unbounded]
ε-DP mechanism ensures [unbounded] Tε-DP.

The theorem corresponds to the adaptive definition and
includes independent composition as a subcase. Nowadays,
these results are sometimes formulated separately with
precise hypotheses and allow for different privacy budgets.

Theorem II.6 (Independent sequential composition
(ISC) [9]). Let Mi : DX ! Ri be an [unbounded] εi-DP
mechanism for each i ∈ [k]. Consider the mechanism M

3For example, ISC and IPC are referred to as independent and
sequential composition in [13]; and as sequential and adaptive
composition in [5].

with domain D such that M(D) = (M1(D), . . . , Mk(D))
for all D ∈ D. Then M is [unbounded] (

∑k
i=1 εi)-DP.

Theorem II.7 (Adaptive sequential composition
(ASC) [16]). Let M1, . . . , Mk be k mechanisms (that
take auxiliary inputs) that satisfy [unbounded] ε1-DP, . . . ,
εk-DP, respectively, with respect to the input database.
Publishing t = ⟨t1, t2, . . . , tk⟩, where t1 = M1(D),
t2 = M2(t1, D), . . . , tk = Mk(⟨t1, . . . , tk−1⟩, D), satisfies
[unbounded] (

∑k
i=1 εi)-DP.

In search of optimization, the literature has found
circumstances for a better bound than the sequential one.
Databases can be composed of diverse information and most
queries only need to compute values in a proper subset of
data. It is these circumstances which, in fact, provide the
better bound: The parallel composition theorem.

Theorem II.8 (Parallel composition [17]). Let Mi each
provide [unbounded] ε-DP. Let Xi be arbitrary disjoint
subsets of the universe of records X . The sequence of
Mi(Di) provides [unbounded] ε-DP, where Di ⊆ D is
the multiset such that element x ∈ D has multiplicity
mDi

(x) = 1Xi
(x) mD(x).

By abuse of notation, Di is also often denoted as D ∩ Xi.
Nowadays, this formulation has also seen modifications.
For example, Li et al. [16] use a partitioning function p to
define the disjoint subsets in the previous statement, i.e.,
pi(D) = Di for all i and D ∈ DX .

Even though Theorems II.5 to II.7 were initially stated
for the unbounded granularity notion, they can easily
be translated for other granularities [10]. However, in
Theorem II.8, if instead of unbounded, we impose Mi

to be bounded ε-DP, then it is not generally true that the
sequence of Mi(Di) provides bounded ε-DP. Li et al. [16]
show why the proof is not applicable: even if Mi are
bounded ε-DP, M′

i such that M′
i(D) = Mi(Di) =

Mi(D ∩ Xi) is not necessarily bounded ε-DP. This fact is
clear in the following counterexample, which we provide
to complete Li et al.’s claim [16]:

Example II.9 (Parallel composition does not hold for
bounded DP). Let DX be a database universe and Xi

arbitrary disjoint subsets of X . We show that given
k > 1 mutually independent bounded εi-DP mechanisms
Mi : DX ! R, it is not necessarily true that the com-
posed mechanism M : DX ! R such that M(D) =
(M1(D1), . . . , Mk(Dk)) is bounded DP, where Di ⊆ D
is the multiset such that element x ∈ D has multiplicity
mDi(x) = 1Xi(x) mD(x).

To do so, we prove that we can select k > 1 mutually
independent bounded εi-DP mechanisms Mi : DX ! R
such that mechanism M : DX ! R with M(D) =
(M1(D1), . . . , Mk(Dk)) is not bounded ε-DP for any ε ≥ 0.

For all i ∈ [k], we choose Mi : DX ! R such that they
output the number of elements of the input database, i.e.,
Mi(D) = M∗(D) = |D| for all D ∈ DX . It can easily be



checked that this mechanism is bounded 0-DP. Observe
that in this case, M(D) = (M∗(D1), . . . , M∗(Dk)) =
(|D1|, . . . , |Dk|).

Let D, D′ ∈ DX be two bounded-neighboring databases
such that D△D′ = {x, x′} with x ∈ Dj and x′ ∈ D′

l, j ̸= l.
It is clear then that M∗(Dj) = |Dj | ̸= |D′

j | = M∗(D′
j)

(analogously for l), so P{M∗(Dj) = |Dj |} = 1 ̸≤ 0 =
P{M∗(D′

j) = |Dj |}. Note that this is not a contradiction
with M∗ being unbounded DP, since Dj and D′

j are not
bounded-neighboring databases.

Consequently, taking s = (|D1|, . . . , |Dn|) ∈ R we obtain
P{M(D) = s} = 1, but P{M∗(D′

j) = |Dj |} = 0. Therefore
P{M(D) = s} = 1 ̸≤ 0 = eε P{M(D′) = s} for all ε ≥ 0,
so the mechanism M is not bounded DP.

We want to showcase with this example that the
composition results proved for unbounded DP in DX
cannot be trivially generalized to other data domains
or neighborhood definitions. The failure of bounded DP
on satisfying (maxi∈[k] εi)-DP when composed in parallel
opens a new question about how to measure the privacy
of composed mechanisms in general.

The main goal of this work is to answer this question by
generalizing these composition theorems to more general
scenarios, in which the domain of the mechanism is not
necessary DX , and the given granularity notion is not
necessarily unbounded. To achieve so, we introduce new
more-general composition rules that even allow composing
DP mechanisms with different domains and granularity
notions. These results are shown in Sections IV and V.

However, to carry out this extension of properties to
general settings, we first need to define a formal structural
model. Thus, we will begin by generalizing the data domain
and the concept of granularity notions in the next section.

III. Generalizing the Granularity Notion of DP

As mentioned earlier, DP was designed to handle aggre-
gated queries on tabular data. However, in many cases,
mechanisms impose a maximum or minimum number of
elements in the database, are only defined for databases of a
fixed size, or are not defined for the empty database, which
are incompatible conditions if DX is the mechanism domain.
Also, the structure of the data is not necessarily tabular,
such as graph databases [11]. For instance, in a social
network graph, each node is an individual in the database,
while the edges represent the social relationship between
the nodes. This means that information about individuals
is not always encoded in rows or multiset elements.

This motivates the need to generalize DP to different
settings. In this section, we provide a mathematical for-
malization of the granularity notions and the data domain,
establishing a framework in which privacy can always be
measured and compared between different notions.

Databases are collections of data and can be defined
as mathematical objects such as multisets (original case),
sets, numbers, functions, streams, or graphs. A collection

of databases forms a database class4, which we denote by D.
In our setting, we will consider the cases where the domain
of M is a generic class D instead of DX (including the case
where D ⊆ DX ).

Moreover, DP allows many different neighborhood def-
initions [5], each with its own privacy implications and
interpretability. We generalize the definition of granularity
notion G as follows.

Definition III.1 (G-neighborhood). Given a database
class D, we define the G-neighborhood relation as a binary
symmetric relation ∼G between elements in D. We say that
D, D′ ∈ D are G-neighboring if D ∼G D′.

We will use calligraphic letters to denote certain gran-
ularity notions (e.g., U for unbounded, B for bounded).
With Definition III.1, we can establish a general framework
for DP similar to that in [12]. That is, a mechanism M
with domain D is G ε-DP (ε ≥ 0) if for all G-neighboring
D, D′ ∈ D and all measurable S ⊆ Range(M),

P{M(D) ∈ S} ≤ eε P{M(D′) ∈ S}.

Note that, given a data domain D, we can construct [3]
a canonical metric dG

D for each granularity G over D by
defining the distance between two databases dG

D(D, D′) as
the minimum number of neighboring databases in D you
need to cross to obtain D′ from D (with dG

D(D, D′) = ∞ if
it is not possible). In particular, note that dG

D(D, D′) = 0
if and only if D = D′, and dG

D(D, D′) = 1 if and only if
D ∼G D′ (and D ̸= D′). See Proposition A.1 (in the long
version) for more details and the proof of well-definition.

Then, from the group property of DP (Proposition II.2),
M is G ε-DP if and only if for all D, D′ ∈ D and all
measurable S ⊆ Range(M),

P{M(D) ∈ S} ≤ eεdG
D (D,D′) P{M(D′) ∈ S}.

This property motivates using metrics to measure privacy
protection. As mentioned, this idea first appeared in [17]
with dU

DX
(D, D′) = |D△D′| (note that dU

DX
= d△

DX
, but

not generally over D). Later, a formal generalization called
dD-privacy [3] was introduced. We consider the variant [3]
modeled by an extended pseudometric dD : D2 ! [0, ∞],
i.e., a metric in which the distance between two different
databases can also be 0 and ∞. To simplify the terminology,
we will simply refer to dD as metrics. Note that having a
metric dD implies that (D, dD) is a (pseudo)metric space,
which we will call privacy space.

Definition III.2 (dD-privacy [3]). Let (D, dD) be a privacy
space. Then, a randomized mechanism M with domain
D is dD-private if for all D, D′ ∈ D and all measurable
S ⊆ Range(M),

P{M(D) ∈ S} ≤ edD(D,D′) P{M(D′) ∈ S}. (III.1)
4We define it as a mathematical class instead of a set because a

collection of sets does not need to be a well-defined set [15]. We denote
the usual inclusion of classes by D′ ⊆ D.



Observe that the metric absorbs the privacy budget (ε),
i.e., dD can be written as dD = εd′

D where d′
D is also a

metric. We will also denote it simply as d when possible.
Additionally, we obtain the following result:

Theorem III.3. Let G be a granularity notion over the
database class D. Then, a mechanism M with domain D is
εdG

D-private if and only if it is G ε-DP.

Given any granularity notion we can obtain a metric,
but that not all metrics (even up to ε) are the canonical
metric for a granularity notion. Therefore, the notion of dD-
privacy is more general than G ε-DP. Besides, note that the
restriction of dG

D to the subclass D′ ⊆ D is not always dG
D′

(see Remark A.2 in the long version).
To understand the real privacy implications of a dD-

privacy, we need to look at the domain and the distance.
The domain, D, encodes what information we consider

public knowledge and what we want to protect up to dD.
The larger the domain, the greater the privacy, but it also
comes with the cost of greater sensitivities and harder-
to-achieve privacy protection. The distance, dD, encodes
how hard it is to distinguish any pair of databases, and
therefore what information we are protecting.

Additionally, it is important to select domains with
compatible metrics. For example, information may be
disclosed if dD(D, D′) = ∞. Therefore, connected privacy
spaces (i.e., dD(D, D′) < ∞ for all D, D′ ∈ D) are
preferable because the change across connected components
is not guaranteed to be protected by a DP mechanism. For
example, when D is totally disconnected, we can end up
with nonsensical privacy guarantees like in the following
example.

Example III.4. Consider D := {D ∈ DX | |D| = N},
the class of tabular databases of size N , and choose the
unbounded granularity notion. It is clear that unbounded-
neighboring databases always differ by one element. There-
fore, there are no unbounded-neighboring databases in D
(i.e., the privacy space is totally disconnected).

This privacy space would imply, by reductio ad absurdum,
that any mechanism is unbounded ε-DP for all ε ≥ 0
since for all the neighbors (none) the definition holds. In
particular, the identity mechanism (such that M(D) = D)
defined over D (which does not provide any protection) is
unbounded 0-DP.

Note that choosing DX as the domain does not lead to
the same problem, but as we mentioned before, relaxing the
domain so that it is defined for subsets D of DX and other
database types is usually more convenient, coherent, and
necessary. Following the same line, the bounded granularity
defines a connected privacy space over D := {D ∈ DX |
|D| = N}, but defines a disconnected one over DX .

A. Relationship between Metrics
So far, we have described a mathematical model to

understand any metric and granularity notion. This will

be necessary for the following sections to define general
properties and theorems. However, we need to understand
the real privacy implications of metrics given their formal
definition.

The notion of dD-privacy allows us to compare the privacy
level between metrics over the same domain, which also
helps to extend composability notions proven for one to
others. Consider two metrics, d1 and d2, over D such that
d1 ≤ d2 (pointwise). In this case, we can say that d1 offers
more protection than d2 because any mechanism M : D !
R that satisfies d1-privacy also satisfies d2-privacy [3].

In particular, given two canonical metrics dG1
D and dG2

D
such that

k = distD(G1, G2) := max
D,D′∈D
D∼G2 D′

dG1
D (D, D′) < ∞,

we obtain dG1
D ≤ kdG2

D (see Proposition A.3 in the long
version). Therefore, if M : D ! R is G1 ε-DP, then M is
G2 kε-DP. This fact allows us to compare different granu-
larity notions over the same domain, e.g., all information
protected by G1 must also be protected by G2, while not
necessarily the other way around.

From this result, we can deduce the well-known fact that
unbounded ε-DP implies bounded 2ε-DP in DX [16] since
distDX (U , B) = 2. However, distDX (B, U) = ∞ because
dB
DX

(D, D′) = ∞ for all D ∼U D′. Note that the privacy-
level comparison between two granularity notions directly
depends on which class we compare them in. While this
result holds in DX , we saw in Example III.4 that this is
not the case for all database classes.

If the diameter of (D, d1), diam(D, d1) := max d1, is
bounded, we can always compare it to the other metrics
over D. For example, the free-lunch granularity notion
FL [12] is defined such that all pairs of databases are free-
lunch neighboring, i.e., dFL

D (D, D′) = 1 for all D ̸= D′.
Therefore, dFL

D ≤ dG
D verifies for any canonical metric dG

D,
and thus free-lunch DP implies all others.

B. Changing the Privacy Space
It is also interesting to understand how queries or other

transformations can produce a transition from one privacy
space to another and how this change can be reflected in
our overall privacy.

Definition III.5 (Sensitivity [3]). Let (D1, d1) and (D2, d2)
be two privacy spaces and let f : D1 ! D2 be a determin-
istic map. We define the sensitivity of f with respect to
d1 and d2 as the smallest value ∆f ∈ [0, ∞] such that
d2(f(D), f(D′)) ≤ ∆f d1(D, D′) holds for all D, D′ ∈ D1
with d1(D, D′) < ∞.

Proposition III.6 (Preprocessing [3]). Let (D1, d1) and
(D2, d2) be two privacy spaces and let f be a deterministic
map with sensitivity ∆f < ∞ with respect to d1 and d2, and
let M : D2 ! R2 be a d2-private mechanism. Then M ◦ f
satisfies (∆f)d1-privacy.



In the case where the metrics are the canonical metrics
of granularities G1 and G2, we obtain that the sensitivity
is ∆f := maxD∼G1 D′ d2(f(D), f(D′)). If we then choose
f = id: D ! D, we obtain that ∆id = distD(G1, G2).

Remark III.7. The reciprocal of Proposition III.6 is not
true. For example, consider (D1, d1) = (D2, d2) = (R, dFL),
the free-lunch metric over R. Take M : R ! R such as
M(x) = x + Z where Z ∼ Lap( 1

ε ). We can easily verify
that this mechanism is not free-lunch DP by selecting two
numbers x << y. In other words, the sensitivity of the
identity map over the real numbers is infinite. However,
if we take f : R ! R such that f(x) = 1

1+ex , then ∆f =
∥f(x) − f(y)∥1 ≤ 1. Therefore, M ◦ f corresponds to a
Laplace mechanism, and is free-lunch ε-DP. In conclusion,
there exist M and f such that M ◦ f is (ε∆f)dFL

R -private
but M is not ε′dFL

R -private for any ε′ > 0.

We can also apply multiple preprocessing functions to a
mechanism, obtaining the following bound:

Proposition III.8 (Sensitivity of the composition). Let
(D1, d1), (D2, d2) and (D3, d3) be privacy spaces and let
f : D1 ! D2 and g : D2 ! D3 be two deterministic maps.
Then ∆(g ◦ f) ≤ ∆f ∆g.

IV. The Independent Composition Theorem

Now that we have a general framework for DP in
arbitrary privacy spaces, we can start to explore how we
can extend the properties of DP from (DX , dU

DX
) to the

other privacy spaces. In this section, we focus this analysis
on the independent composition. To this end, we present a
theorem that models all possible independent compositions
of mechanisms over arbitrary privacy spaces. To begin, we
first need to understand composability, in its more general
form.

A. Composing Mechanisms
Assuming the role of the curator, we have a database D ∈

D and we want to publish certain extracted information
s ∈ R. However, we cannot publish s directly because it
would compromise privacy. Therefore, we want an attacker
with access only to the output s̃ of our mechanism to be
unable to distinguish aspects of D from other databases
of D. Besides, the information we need to extract can be
obtained as a function of some query answers. That is, s =
h(s1, . . . , sk) where h is an arbitrary deterministic function
and si = fi(D) is the output of an arbitrary query (where
fi can even be the identity). Thus, by trying to get every
s̃i (private output of si) and computing s̃ = h(s̃1, . . . , s̃k),
we make it possible to discretize our problem. To do this,
we use k di-private mechanisms M∗

i : Di ! Ri such that
M∗

i (fi(D)) = s̃i. Therefore, the question arises whether
the composition of the mechanisms M such that M(D) =
(M∗

1(f1(D)), . . . , M∗
k(fk(D))) for all D ∈ D is dD-private,

and what privacy dD implies. To answer this question,
we state and prove the independent/adaptive composition

theorems (IV.1 and V.2). Note that Mi := M∗
i ◦ fi defines

a mechanism over D for all i ∈ [k].
In Section IV-D, we will explore the scenario where,

instead of imposing M∗
i to be di-private, we directly impose

Mi to be di-private. Since each Mi is defined over the
same domain as M, we call this scenario common domain.
This change is significant because it allows us to prove
alternative theorems (IV.11 and V.5) to our composition
results (Theorems IV.1 and V.2, respectively), and it
ensures that the composed mechanism does not completely
lose the privacy guarantee, as it happens in Example II.9.
As a result, we can provide tighter bounds on the privacy
loss for cases such as bounded DP, which are not covered
outside the common domain.

B. Independent Composition
In this section, we introduce our generalized version

of independent composition. We will explore its adaptive
counterpart in Section V. Note that adaptive composition
includes independent composition, but we present the
results for the independent case first to simplify the
notation.

Formally, independent composition refers to the case
where the mechanisms M1, . . . , Mk are mutually indepen-
dent, i.e., M1(D), . . . , Mk(D) are mutually independent
random elements for all D ∈ D. In other words, the
output of each of these mechanisms does not depend on
the others. The independent-composed mechanism M :=
(M1, . . . , Mk)ind is then defined as the mechanism with
domain D such that M(D) = (M1(D), . . . , Mk(D)) for
all D ∈ D.

With this definition, we can state the independent
composition (IC) theorem. Since the theorem does not
impose any condition on the privacy metric of the initial
Mi, our results can be used for any privacy space and any
possible independent composition strategy.

Theorem IV.1 (IC theorem). Let D be a database class
and, for all i ∈ [k], let (Di, di) be a privacy space, and let
fi : D ! Di be a deterministic map. For all i ∈ [k], let
M∗

i : Di ! Ri be mutually independent di-private mecha-
nisms. Then mechanism M = (M∗

1 ◦ f1, . . . , M∗
k ◦ fk)ind is

dD-private with

dD(D, D′) :=
k∑

i=1
di(fi(D), fi(D′)) for all D, D′ ∈ D.

It is important to note that the IC theorem (IV.1)
provides the privacy level of the resulting mechanism by
construction. This means that we cannot generally impose
the privacy level of the composed mechanism M, but we
can compute it as we see in the following example.

Example IV.2. Let X = X1 ∪ X2 be a set of locations in
R2 of two districts i ∈ [2], each associated with hospital i in
location li, and consider D = DX , consisting of databases
of locations from ambulances in both districts. Assume



that the maximum Euclidean distance between any two
points in X1 and X2 in the districts is equal and finite,
diam(X1) = diam(X2) = L. Our goal is to compute
the number of locations in each district and determine
the closest ambulance to each hospital. To do so, we
will compose the following d-private mechanisms: A dU

D -
private mechanism M∗

a : D ! N that outputs the noisy
count of records in D ∈ D, and a dEu

X -private mechanism
M∗

b : X ! X , with dEu
X the Euclidean distance over X ,

that given x ∈ X outputs a perturbed version of it.
For all i ∈ [2] and D ∈ D, let pi(D) = D ∩ Xi

be the subset of locations of D in district i, and let
fi(D) = arg minx∈pi(D){∥x−li∥2} be the closest ambulance
to hospital i. Thus, we can obtain the wanted information
through the composed mechanism M such that M(D) =
(M∗

a(p1(D)), M∗
a(p2(D)), M∗

b(f1(D)), M∗
b(f2(D))).

Now using the IC theorem (IV.1), we can compute the
privacy that M provides. For all D, D′ ∈ D, we have
a protection of dD(D, D′) :=

∑2
i=1(dU

D (pi(D), pi(D′)) +
dEu

X (fi(D), fi(D′))) ≤ (dU
D +2d∞

D )(D, D′) ≤ dU
D (D, D′)+2L

with d∞
D (D, D′) = maxx∈D,x′∈D′ dEu

X (x, x′) the maximum
distance.

Note that in the IC theorem (IV.1), we can end up with
extreme cases where dD(D, D′) = ∞ for certain D, D′ ∈ D,
which does not provide privacy between these databases.
However, we can still obtain reasonable dD in general cases
where dD possesses good privacy properties.

For Di = D and fi = id, we obtain a result reminiscent
of the sequential composition theorem:

Theorem IV.3 (Generalized ISC). Let {(D, di)}i∈[k] be a
set of privacy spaces. For all i ∈ [k], let Mi : D ! Ri be
mutually independent di-private mechanisms. Then M =
(M1, . . . , Mk)ind is (

∑k
i=1 di)-private.

Note that by choosing di = εid, we obtain that M
is εd-private with ε =

∑k
i=1 εi (first proven in [10]).

Furthermore, by selecting d as dG
D, we obtain the sequential

composition theorem for every granularity: If Mi : D ! Ri

are mutually independent G εi-DP mechanisms, then
M = (M1, . . . , Mk)ind is G (

∑k
i=1 εi)-DP. This shows

that sequential composition works as expected for every
granularity.

On the other hand, the setting in which the mechanisms
take as input disjoint subsets of the initial database (as in
parallel composition) does not generally yield analogous
results to Theorem II.8. We can model this setting by taking
fi in the IC theorem (IV.1) so they define a partitioning
function. More formally, we define a k-partitioning function
p = {p1, . . . , pk} as a function where pi : D ! pi(D) =: Di

such that pi(D) ⊆ D with pi(D) ∩ pj(D) ̸= ∅ for i ≠
j5. Note, therefore, that the domains Di of Mi might be
different in this setting by construction. Let us see an
example of a partitioning function, based on that of [16].

5We do not require that D =
⋃k

i=1 pi(D), i.e., our partition can
be non-exhaustive.

Example IV.4 (Partitioning function for D ⊆ DX ). Let
D ⊆ DX . A partition {Xi}i∈[k] of X , extends naturally
as a partition of the elements D ∈ D, i.e., pi(D) ⊆ D
is the multiset such that element x ∈ D has multiplicity
mpi(D)(x) = 1Xi

(x) mD(x). In this case, the partitioning
function p uses only x to compute the value of p(x), and
therefore the result is independent of the other records.

In this setting, the IC theorem (IV.1) yields that M
is dD-private with dD(D, D′) =

∑k
i=1 di(pi(D), pi(D′)) ≤

Ip(D, D′)(maxi∈[k] ∆pi)di(D, D′) for all D, D′ ∈ D, where
Ip(D, D′) := #{i | pi(D) ̸= pi(D′)}. This fact is coherent
with what we know: Assuming a partitioning function
of Example IV.4, if we select εid

U
Di

mechanisms then
dD ≤ (maxi∈[k] εi)dU

D , since ∆pi = εi and Ip(D, D′) = 1
for all D ∼U D′. If we select di = εid

B
Di

, there ex-
ist D, D′ ∈ D, as we saw in Example II.9, such that
di(D, D′) = dB

Di
(pi(D), pi(D′)) = ∞ for some i and

therefore dD(D, D′) = ∞. In general, we have no better
expression for dD unless we add extra conditions. In
Sections IV-C and IV-D, we will explore conditions to
achieve the best bound in this setting.

Furthermore, between accessing the whole database
(Theorem IV.3) or a partition of it, the IC theorem (IV.1)
allows considering intermediate composition strategies that
provide tighter, more-precise bounds, such as shown in the
following example:

Example IV.5. We continue with the scenario presented
in Example IV.2, but now we have k > 3 hospitals and each
ambulance has at least three associated hospital locations.
The universe of records in this case is X ′ = (X , [k]≤3)
and D = DX ′ , where [k]≤3 denotes the subsets of at
least three elements of [k]. We consider the analogous
M∗

a mechanism. We want to know the number of available
ambulances for each hospital, so we consider M such that
M(D) = (M∗

a(f1(D)), . . . , M∗
a(fk(D))) where fi(D) is

the subdatabase of D ∈ D of ambulances assigned to
hospital i. Since each ambulance only collaborates with at
most three hospitals, If (D, D′) ≤ 3dU

D (D, D′). Applying
then the IC theorem (IV.1), we obtain that M is dD-private
with dD(D, D′) =

∑k
i=1 dU

D (fi(D), fi(D′)) ≤ 3dU
D (D, D′) <

kdU
D (D, D′).

In particular, the last example showcases this interme-
diate setting. Function f = {fi}i∈[k] does not define a
partition, so we cannot apply Theorem II.8, but a single
change to database D affects at most three databases in
{fi(D)}i∈[k], hence the final budget is dD ≤ 3dU

D instead of
kdU

D given by the sequential counterpart (Theorem IV.3).
C. A Better Bound for Disjoint Inputs

Following the discussion in Section IV-B, considering as
input disjoint subsets of the initial database, we explore
the possibility to obtain the best possible bound. For this
section, we assume that mechanisms Mi are di-private,
with di “proportional” to a single metric type (e.g., di =
εid

△
Di

) or over a fixed granularity (i.e., di = εid
G
Di

).



Theorem II.8 tells us that if Mi are εid
△
DX

-private,
then the composed mechanism M = (M1, . . . , Mk)ind
is (maxi∈[k] εi)d△

DX
-private. This privacy bound is the best

possible bound we can get in this setting. Note that in
the case where mechanisms Mi satisfy the same privacy
guarantee (εd△

DX
-privacy) for all i ∈ [k], then M also

satisfies it. Thus, the composition does not degrade the
privacy level at all. However, as we mentioned before, the
best bound cannot be obtained for all metrics. Therefore
we explore in this section which additional conditions the
partition must satisfy (with respect to the metric) to ensure
that we obtain the best-case bound, the maximum privacy
budget of Mi.

The first case we consider is a metric-type d∗ that is
well-defined over D and Di for all i ∈ [k]6. We can give a
sufficient condition for obtaining the best bound: We say
that metric d∗ commutes with the partition given by p if,
for all D, D′ ∈ D,

k∑
i=1

d∗
Di

(pi(D), pi(D′)) = d∗
D

( k⋃
i=1

pi(D),
k⋃

i=1
pi(D′)

)
≤ d∗

D(D, D′).

By the IC theorem (IV.1), if d∗ commutes with p
and Mi are εid

∗
Di

-private, then M is (maxi∈[k] εi)d∗
D-

private. For example, d△ commutes with all partitions p
of Example IV.4 (see Proposition A.4 in the long version),
which relates to the original result of McSherry [17].

Secondly, we can also focus on a fixed granularity notion
G, and given di = εid

G
Di

for all i ∈ [k], we study when we ob-
tain that M is εdG

D-private with ε = maxi∈[k] εi. Recall that
different domains define different canonical metrics, so the
previous case does not apply, and checking commutativity
is not an option. In this case, the corresponding equation
translates to

∑k
i=1 dG

Di
(pi(D), pi(D′)) = dG

D(D, D′). This
equation can be hard to check in general, but it holds if
the partition verifies:

• dG
D-compatibility: For all G-neighboring D, D′ ∈ D,

there exists at most one j ∈ [k] such that pi(D) =
pi(D′) for all i ̸= j, i.e., Ip(D, D′) = 1 for all D ∼G D′;
and

• G is also well-defined over Di and the sensitivity
of pi with respect to dG

D and dG
Di

is ∆pi ≤ 1 (i.e.,
dG
Di

(pi(D), pi(D′)) ≤ 1 if dG
D(D, D′) = 1).

Under these conditions, we obtain the desired result
(where M∗

i can have different domains):

Theorem IV.6 (IC best bound for disjoint inputs). Let
D be a database class and G a granularity over D. Let p be
a dG

D-compatible k-partitioning function such that ∆pi ≤ 1.
For all i ∈ [k], let M∗

i : Di ! Ri be mutually independent
εid

G
Di

-private mechanisms. Then mechanism M = (M∗
1 ◦

p1, . . . , M∗
k ◦ pk)ind is εdG

D-private with ε = maxi∈[k] εi.
6This means that metrics d∗

D and d∗
Di

are well-defined metrics and
that d∗(D, D′) is constant for all domains containing D, D′ ∈ D.
Examples include d△, which is well-defined for all D ⊆ DX .

As discussed, all partitions p of Example IV.4 are
dU
D -compatible since the addition/removal of one record

can only affect the partition this record belongs to, so
Ip(D, D′) = 1 for all D ∼U D′, and additionally ∆pi ≤ 1.
Therefore, Theorem IV.6 can be applied to obtain Theo-
rem II.8.

Even though Theorem IV.6 is stated for any granularity,
dG
D-compatibility is a strict condition. For example, no

partitioning function of Example IV.4 (with k > 1) is
dB
DX

-compatible (see Proposition A.5 in the long version).
Nevertheless, we can construct compatible partitioning
functions to certain bounded metrics dB

D , as shown in the
following example:

Example IV.7 (A dB
D-compatible partition). Consider

a database D with ordered elements, i.e., every element
(n, x) ∈ D consists of a record value x ∈ X and a unique
identifier n ∈ [|D|]. Let Dord

X denote the class of all such
databases.

Let p be a k-partitioning function of N, which induces
a partition of the elements of D ⊆ Dord

X that divides the
databases only taking the order into account, i.e., such that
p(n, x) = p(n, y) for all x, y ∈ X . Then p is dB

D-compatible
and verifies ∆pi ≤ 1 (see proof in Proposition A.6 in the
long version). Therefore, we can obtain the best bound for
bounded in this case using Theorem IV.6.

D. Common-Domain Setting
The common-domain setting relates to the perspective

in which Mi = M∗
i ◦ fi are di-private instead of M∗

i ,
i.e., Mi and M have the same “common” domain D.
This change provides new composition rules that allow
us to obtain better privacy bounds. Importantly, when we
impose the privacy constraints in M∗

i , in the case where
di(D, D′) are well-defined and finite, we can still end up
with dD(D, D′) = ∞, as we saw in Example II.9. However,
if Mi are di-private, we can bound the privacy loss by
at least dD(D, D′) =

∑k
i=1 di(D, D′) < ∞, avoiding this

problem.
In this scenario, while Mi can protect any database

of D ∈ D, the computation of Mi depends exclusively
on the information of contained fi(D) and not the total
information of D. The exclusive dependence of Mi on
specific information improves the privacy guarantee and
gives better privacy-loss bounds. To be able to analyze
the composition in this setting, we present a coherent
formalization of “depending exclusively on fi(D)” under
the notion of dependency:

Definition IV.8 (Dependency). Let M : D ! R be a
randomized mechanism, and let f be a deterministic map
with domain D. We say that M is f-dependent if there
exists M∗ : f(D) ! R such that M = M∗ ◦ f .

This definition implies that P{M∗(f(D)) ∈ S} =
P{M(D) ∈ S} for all measurable S ⊆ R. Since M∗(f(D))
depends exclusively on f(D), consequently M(D) depends



exclusively on the information in f(D) for all D ∈ D (i.e.,
only data in f(D) affects the output of M(D)).

Example IV.9 (Dependency). Let us revisit the scenario
of Example IV.2. For i ∈ [2], we define Mi : DX ! N such
that it outputs the noisy participants count from district i
in D, i.e., Mi(D) =

∑
x∈Xi

mD(x) + z with z ∼ Lap( 1
εi

)
(note it is the Laplace mechanism). Mechanisms Mi are
pi-dependent, since there exists M∗

i (D) = |D| + z such
that Mi = M∗

i ◦ pi. This means that, even though M
takes as input the whole database D, it just needs to see
the information contained in subset pi(D) to know how
many locations belong to district i.

Under this definition, we arrive at the following result:

Proposition IV.10 (Minimum privacy). Let (D, dD) be
a privacy space, let f be a deterministic map with domain
D, and let M : D ! R be a dD-private mechanism. If M
is f -dependent, then M is df

D-private* with

df
D(D, D′) := min

D̃,D̃′∈D
f(D̃)=f(D)

f(D̃′)=f(D′)

dD(D̃, D̃′).

Note that df
D is not necessarily a metric7 (thus we call

it d-privacy*). However, it gives an accurate value for
the distance between the probability distributions of the
output given two input databases. Since df

D ≤ dD, having
the dependency constraint in a mechanism can imply more
privacy. This way, the privacy loss is chosen as the minimum
with respect to the dependent data f(D), and not D. In
particular, if f(D) = f(D′) for a pair D, D′ ∈ D, then
df
D(D, D′) = 0. Furthermore, it is possible to find metrics

d in-between these, i.e., df
D ≤ d ≤ dD.

Applying Proposition IV.10 to the IC theorem (IV.1),
we obtain:

Theorem IV.11 (IC theorem for common domain). For
i ∈ [k], let (D, di) be a privacy space, and let fi be a deter-
ministic map over D. For all i ∈ [k], let Mi : D ! Ri be
mutually independent mechanisms satisfying di-privacy and
fi-dependency. Then mechanism M = (M1, . . . , Mk)ind is
dD-private* with dD :=

∑k
i=1 dfi

i .

We can also bound the result with

dD(D, D′) =
k∑

i=1
dfi

i (D, D′) ≤
∑

i : fi(D) ̸=fi(D′)

di(D, D′),

which are not metrics, but are better bounds than
∑k

i=1 di

given by the IC theorem (IV.1). Translating this result
to the case of granularities, if we take Mi to be G εi-
DP (i.e., εid

G
D-private), we obtain that M is G ε-DP (i.e.,

εdG
D-private) with

ε = max
D∼GD′

∑
i : fi(D)̸=fi(D′)

εi.

7It does not generally fulfill the triangle inequality.

Theorem IV.11 allows us to obtain the corresponding
cases, corollaries, and examples to those we obtained from
the IC theorem (IV.1) for this new setting. In some cases,
such as taking fi = id for all i ∈ [k], correspond to the
same result (Theorem IV.3), since did

D = dD. In others,
however, the change of setting leads to a different scenario
and results, such as when trying to find the best bound
for disjoint inputs (i.e., the counterpart of Section IV-C).

The corresponding question of Section IV-C translates
as follows: Given k mechanisms Mi : D ! R that are
di-private with di = εid for a metric d over D and pi-
dependent with p an arbitrary partitioning function, we
are interested in studying the conditions such that M =
(M1, . . . , Mk)ind is dD-private with dD = (maxi∈[k] εi)d.

The natural approach is to check when metric d verifies
k∑

i=1
dpi(D, D′) = d(D, D′) (IV.1)

for all D, D′ ∈ D, since then dD = maxi∈[k] εid follows from
Theorem IV.11.

Equation (IV.1) can be hard to check directly, but we can
give sufficient conditions for it when d = dG

D, the canonical
distance of a granularity notion. Here, it is sufficient to ask
that the partition is dG

D-compatible.

Theorem IV.12 (IC best bound for disjoint inputs
(common domain)). Let D be a database class and G a
granularity over D. Let p be a dG

D-compatible k-partitioning
function. For all i ∈ [k], let Mi : D ! Ri be mutually
independent mechanisms satisfying εid

G
D-privacy and pi-

dependency. Then mechanism M = (M1, . . . , Mk)ind is
εdG

D-private with ε = maxi∈[k] εi.

Note that in this case, it is not necessary to impose
“∆pi ≤ 1”, which was necessary for our previous the-
orem (IV.6). Theorem IV.12 is therefore also a conse-
quence of preprocessing (Proposition III.6) applied to
Theorem IV.6.

E. A Better Composition for the Bounded Case over
Disjoint Databases

The strict conditions necessary to obtain the maxi∈[k] εi

bound in Theorems IV.6 and IV.12 cannot be achieved in
the bounded case for partitions of Example IV.4, because
they are not dB

D-compatible in general. This is also true for
other granularities, especially those based on the bounded
notion. However, even if Theorems IV.6 and IV.12 do not
apply, we can still compute the best-case bound when
considering a partition of the database.

In this subsection, we briefly discuss how we can bound
the minimum privacy budget consumed when taking a
partition of the databases using Theorem IV.11. We thus
provide a solution to the problem posed by Li et al. [16],
obtaining a tight bound for composition over disjoint
databases in bounded DP (when taking a partition of
Example IV.4), which was previously missing.



Corollary IV.13. Let p be a k-partitioning function of
Example IV.4. For all i ∈ [k], let Mi : D ! Ri be mutually
independent mechanisms satisfying bounded εi-DP and pi-
dependent. Then mechanism M = (M1, . . . , Mk)ind with
domain D is bounded ε-DP with ε = maxi,j∈[k]; i ̸=j(εi + εj).

Note that this result is stated for common domain,
and that the non–common-domain counterpart cannot be
defined as we prove in Example II.9.

Also, note that returning to the DP formulation increases
the tightness of the bound with respect to the direct
statement using dB

D-privacy. In this case, the best bound
is

∑k
i=1 εid

B,pi

D . To showcase the improvement we add the
following example:

Example IV.14. We continue from Example IV.9 but
considering k > 2 districts instead of two. We already
showed that Mi are pi-dependent. Besides, Mi are εid

B
DX

-
private because they are Laplace mechanisms. Applying
Corollary IV.13, we have that M = (M1, . . . , Mn)ind is
εdB

DX
-private for ε = maxi,j∈[k]; i ̸=j(εi + εj). Particularly,

given D ∼B D′ with D△D′ = {x, x′}, D and D′ are indis-
tinguishable up to εi if x and x′ are in the same district i,
and up to εi +εj if they are in different districts i ̸= j. Note
that this is a much better bound than applying sequential
composition directly, which would give us that D ∼B D′ are
indistinguishable up to

∑k
i=1 εi > maxi,j∈[k]; i̸=j(εi + εj).

We conclude this section with a small result obtained
by applying Proposition IV.10 to bounded DP in DX .

Corollary IV.15. Let DX be a database universe, Y ⊊ X
and f : DX ! DY such that f(D) = D ∩ Y. Let M : DX !
R be a dB

DX
-private mechanism that is f -dependent. Then,

M is dDX -private* with

dDX (D, D′) := min{dB
DX

(D, D′), |f(D)△f(D′)|}
≤ min{dB

DX
(D, D′), dU

DX
(D, D′)}.

V. The Adaptive Composition Theorem

In the previous section, we elaborated on composability
when we apply mechanisms that work independently from
each other, obtaining the IC theorem (IV.1). However,
the question remains open on how composition works in
the adaptive scenario, where each mechanism can also
take as input the output of the previous mechanisms. In
this section, we discuss adaptive composition, which is a
generalization of independent composition, and provide the
adaptive counterparts to the theorems of Section IV.

To be precise, we formalize the adaptive-composed
mechanism as follows:

Definition V.1 (Adaptive-composed mechanism). For
i ∈ [k], let Ri := R1 × · · · × Ri−1 (where R1 =
∅), and let Mi : Ri × D ! Ri be randomized mech-
anisms. We define the adaptive-composed mechanism
M := (M1, . . . , Mk)adapt as the mechanism with do-
main D such that M(D) = (N1(D), . . . , Nk(D)) for all

D ∈ D, where Ni(D) are defined recursively as Ni(D) =
Mi(N1(D), . . . , Ni−1(D), D) for i ∈ [k] (where N1 = M1).

In other words, given D ∈ D, M first draws D1 following
the distribution of M1(D); then, M draws Di following the
distribution of Mi(D1, . . . , Di−1, D) for each i = 2, . . . , k
in order. At the end, M outputs M(D) = (D1, . . . , Dk).

Note that adaptive-composed mechanisms are more
general than independent-composed mechanisms, corre-
sponding to the case where Mi are mutually independent
and, in particular, constant over Ri.

We directly define the adaptive composition (AC) theo-
rem. Similar to the independent results, this result does
not impose any conditions on the privacy level of the initial
mechanisms Mi.

Theorem V.2 (AC theorem). Let D be a database class,
and, for all i ∈ [k], let (Di, di) be a privacy space, fi : D !
Di a deterministic map and f∗

i = idRi
× fi (with f∗

1 = f1).
For i ∈ [k], let M∗

i : Ri × Di ! Ri be a mechanism
such that M∗

i (si, ·) : Di ! Ri satisfies di-privacy for any
si ∈ Ri.

Then mechanism M = (M∗
1 ◦ f∗

1 , . . . , M∗
k ◦ f∗

k )adapt is
dD-private with

dD(D, D′) :=
k∑

i=1
di(fi(D), fi(D′)) for all D, D′ ∈ D.

Observe that the expression of dD does not change with
respect to the IC theorem (IV.1). Therefore using adaptive
composition, which is more general than independent
composition, does not affect the privacy bound of the
resulting mechanism; or, alternatively, no improvement is
gained by considering mechanisms M1, . . . , Mk mutually
independent.

Analogously to the independent case, particular compo-
sition rules can be derived from Theorem V.2, as well as
translated to the common domain. The same consequences
are extracted from these adaptive results. We present such
results, which also generalize their respective independent
cases.

First, if we impose fi = id and D = Di for all i ∈ [k],
we obtain a generalization of the sequential setting as
expected:

Theorem V.3 (Generalized ASC). Let {(D, di)}i∈[k] be a
set of privacy spaces. For i ∈ [k], let Mi : Ri × D ! Ri be
a mechanism such that Mk(si, ·) : D ! Ri is di-private for
all si ∈ Ri. Then M = (M1, . . . , Mk)adapt is (

∑k
i=1 di)-

private.

Second, if we study what happens when we apply
adaptive composition over disjoint subsets of the input,
we obtain the analogous adaptive counterpart of Theo-
rem IV.6:

Theorem V.4 (AC best bound for disjoint inputs). Let
D be a database class and G a granularity over D. Let p be
a dG

D-compatible k-partitioning function such that ∆pi ≤ 1,



and p∗
i = idRi

×pi (with p∗
1 = p1). For i ∈ [k], let M∗

i : Ri×
Di ! Ri be a mechanism such that M∗

i (si, ·) : Di ! Ri

satisfies εid
G
Di

-privacy for any si ∈ Ri. Then mechanism
M = (M∗

1 ◦ p∗
1, . . . , M∗

k ◦ p∗
k)adapt is εdG

D-private with ε =
maxi∈[k] εi.

Note that we cannot get around the problem that M∗
i

being d-privacy does not imply that Mi = M∗
i ◦ fi is d-

private in the adaptive setting. Therefore, we show the
common-domain results that show what happens if we
impose Mi to be di-private directly (i.e., the counterparts
to Theorems IV.11 and IV.12):

Theorem V.5 (AC theorem for common domain). For
i ∈ [k], let (D, di) be a privacy space, and let fi be a
deterministic map over D. For i ∈ [k], let Mi : Ri×D ! Ri

be a mechanism such that Mk(si, ·) : D ! Ri satisfies
di-privacy and fi-dependency for any si ∈ Ri. Then
mechanism M = (M1, . . . , Mk)adapt is dD-private* with
dD :=

∑k
i=1 dfi

i .

Theorem V.6 (AC best bound for disjoint inputs (common
domain)). Let D be a database class and G a granularity
over D. Let p be a dG

D-compatible k-partitioning function.
For i ∈ [k], let Mi : Ri × D ! Ri be a mechanism
such that Mk(si, ·) : D ! Ri satisfies εid

G
D-privacy and

pi-dependency for any si ∈ Ri. Then mechanism M =
(M1, . . . , Mk)adapt is εdG

D-private with ε = maxi∈[k] εi.

Observe that, since all results are a consequence of the
AC theorem (V.2), which has the same bound as its IC
counterpart, none of the results degrade their bound with
respect to their IC versions.

VI. Extending to Other DP-Based Notions
Given that composability is not an exclusive property of

ε-DP, but also of other DP-based notions, it is interesting
to understand how composition extends to other DP-based
notions. In this section, we present dD-privacy formulations
of approximate DP [8], zero-concentrated DP [1], and
Gaussian DP [6], and study the corresponding adaptive
composition theorems. Note that since each notion has its
own group property, each extension behaves differently than
that of dD-privacy, although similar patterns are present.

A. Extending to Approximate DP
Approximate DP [8], also known as (ε, δ)-DP, is an

important and popular extension of DP. In this section,
we introduce an adapted version of dD-privacy for the
approximate scenario, (dD, δD)-privacy, which generalizes
(ε, δ)-DP in the same way that dD-privacy generalizes ε-
DP. Afterward, we present the composition results for this
notion.

From the original definition of (ε, δ)-DP [8, 9], defined for
unbounded neighboring databases, we present the definition
of approximate DP for any granularity:

Definition VI.1 (G (ε, δ)-DP). Let ε, δ ≥ 0. A randomized
mechanism M with domain DX is G (ε, δ)-DP if for all

measurable S ⊆ Range(M) and for all G-neighboring
D, D′ ∈ DX ,

P{M(D) ∈ S} ≤ eε P{M(D′) ∈ S} + δ.

Different privacy interpretations of δ can be found in [2, 4,
9, 18]. Note that having δ ≥ 1 is meaningless and provides
no privacy since any mechanism, including one that releases
the raw data, is G (ε, δ)-DP for δ ≥ 1.

Our definition of (dD, δD)-privacy is formulated so that
Theorem VI.3 verifies, which is analogous to Theorem III.3
for the pure-DP case. The construction of dD-privacy from
ε-DP uses the fact that the privacy budget ε scales linearly
with respect to distance dD.

Definition VI.2 ((dD, δD)-privacy). Let dD be a met-
ric over D and δD : D2 ! [0, ∞]. Then, a randomized
mechanism M with domain D is (dD, δD)-private if for
all D, D′ ∈ D and all measurable S ⊆ Range(M),

P{M(D) ∈ S} ≤ edD(D,D′) P{M(D′) ∈ S} + δD(D, D′).

Analogously to (ε, δ)-DP, if δD(D, D′) ≥ 1, the indis-
tinguishability (up to ε) between D, D′ ∈ D is no longer
guaranteed. Moreover, we recover dD-privacy when δD = 0.

Note that δD does not need to be a metric. Furthermore,
in (ε, δ)-DP, δ does not scale linearly under group privacy,
but rather ends up as δ eεn−1

eε−1 (which can be larger than 1).
Parameter δD scales in the same way, which is shown in
our next result, where we denote as [d]ε : D2 ! [0, ∞] the
function such that [d]ε(D, D′) = 1

eε−1 (eεd(D,D′) − 1).

Theorem VI.3. Let G be a granularity notion over the
database class D. Then, a mechanism M with domain D is
(εdG

D, δ[dG
D]ε)-private if and only if it is G (ε, δ)-DP.

However, please note that δ[dG
D]ε can scale to numbers

greater than 1. This can lead to weak privacy models since
such values result in no privacy, as we said before. For
instance with δ = 10−5 and ε = 1 we have δ[dB

D ]ε(D, D′) >
1 for all D, D′ ∈ D such that dB

D(D, D′) ≥ 13. Therefore a
(dB

D , 10−5[dB
D ]1)-private mechanism can allow an attacker

to likely distinguish outputs of two databases in which we
have changed more than thirteen records.

We now present the AC result for (dD, δD)-privacy.

Theorem VI.4 (Approximate AC theorem). Let D be
a database class, and, for all i ∈ [k], let (D, di) be a
privacy space and δi : D2 ! [0, ∞]. Let fi : D ! Di be
a deterministic map and f∗

i = idRi
× fi (with f∗

1 = f1).
For i ∈ [k], let M∗

i : Ri ×Di ! Ri be a mechanism such
that M∗

i (si, ·) : Di ! Ri satisfies (di, δi)-privacy for any
si ∈ Ri.

Then mechanism M = (M∗
1 ◦ f∗

1 , . . . , M∗
k ◦ f∗

k )adapt is
(dD, δD)-private with

dD(D, D′) :=
k∑

i=1
di(fi(D), fi(D′)) and



δD(D, D′) :=
k∑

i=1
δi(fi(D), fi(D′)) for all D, D′ ∈ D.

Note that from this result here, we are able to derive all
the results so far in this paper. In addition, Theorem VI.4
can be used to define the approximate variations of all our
main composition results, where the same consequences
can be extracted as in Section IV:

Theorem VI.5 (Generalized approximate ASC). Let D be
a database class, and, for all i ∈ [k], let (D, di) be a privacy
space and δi : D2 ! [0, ∞]. For i ∈ [k], let Mi : Ri × D !
Ri be a mechanism such that Mk(si, ·) : D ! Ri is (di, δi)-
private for any si ∈ Ri. Then M = (M1, . . . , Mk)adapt is
(
∑k

i=1 di,
∑k

i=1 δi)-private.

It is important to remark that
∑k

i=1 di < ∞ if and
only if di < ∞, but we can still end up with no privacy
guarantee if

∑k
i=1 δi ≥ 1, which can happen even if all δi <

1. This fact motivates further the search for tighter bounds
and the introduction of the approximate counterpart of
Theorem IV.6:

Theorem VI.6 (Approximate best bound for disjoint
inputs). Let D be a database class and G a granularity over
D. Let p be a dG

D-compatible k-partitioning function such
that ∆pi ≤ 1, and p∗

i = idRi
× pi (with p∗

1 = p1). For
i ∈ [k], let M∗

i : Ri × Di ! Ri be a mechanism such that
M∗

i (si, ·) : Di ! Ri satisfies (εid
G
Di

, δi[dG
Di

]εi
)-privacy for

any si ∈ Ri. Then mechanism M = (M∗
1 ◦ p∗

1, . . . , M∗
k ◦

p∗
k)adapt is (εdG

D, δ[dG
D]ε)-private with ε = maxi∈[k] εi and

δ = maxi∈[k] δi.

Furthermore, the common-domain setting imposing M∗
i ◦

fi to be (di, δi)-private also leads to interesting composition
results for this DP variation:

Theorem VI.7 (Approximate AC theorem for common
domain). For i ∈ [k], let (D, di) be a privacy space,
δi : D2 ! [0, ∞], and let fi be a deterministic map over
D. For i ∈ [k], let Mi : Ri × D ! Ri be a mechanism
such that Mk(si, ·) : D ! Ri satisfies (di, δi)-privacy
and fi-dependency for any si ∈ Ri. Then mechanism
M = (M1, . . . , Mk)ind is (

∑k
i=1 dfi

i ,
∑k

i=1 δfi

i )-private*
with

δf
i (D, D′) := min

D̃,D̃′∈D
di(D̃,D̃′)=df

i
(D,D′)

δi(D̃, D̃′).

Example VI.8. We continue from Example IV.5, where
we want to know the number of available ambulances
for each hospital. However, we instead consider M =
(M1, . . . , Mk)ind such that Mi = M∗

a ◦ fi are bounded
(1, 10−5)-DP (i.e., (dB

D , δ0[dB
D ]1)-private with δ0 = 10−5).

By construction, for all i ∈ [k], mechanism Mi outputs
the perturbed number of ambulances linked to i and is
fi-dependent (where fi(D) is the subdatabase of D ∈ D of
ambulances assigned to hospital i).

Applying Theorem VI.7, we obtain that mechanism M
is (

∑k
i=1(dB

D)fi ,
∑k

i=1(δ0[dB
D ]1)fi)-private*. Note that under

the bounded metric, we have that If (D, D′) ≤ 6 for all
D ∼B D′. Therefore, we can bound the privacy parameters
as follows:

∑k
i=1(dB

D)fi(D, D′) ≤
∑

i∈If (D,D′) dB
D(D, D′) ≤

6dB
D(D, D′) and, analogously,

∑k
i=1(δ0[dB

D ]1)fi(D, D′) ≤
δ0

∑
i∈If (D,D′)[dB

D ]1(D, D′) ≤ 6δ0[dB
D ]1(D, D′).

In conclusion, M is (6dB
D , 6δ0[dB

D ]1)-private (i.e., bounded
(6, 6 · 10−5)-DP).

The approximate variant of Theorem V.6 can also be
enunciated (see Theorem A.13 in the long version).

B. Extending to Zero-Concentrated DP
Another common adaptation of DP is zero-concentrated

DP (zCDP) [1]. This privacy metric is based on a bound
on the Rényi divergence:

Definition VI.9 (Rényi divergence [1, 22]). Given two
probability distributions P and Q defined over R, the Rényi
divergence of order α ∈ (1, ∞) is defined as

Dα(P ∥Q) := 1
α − 1 ln

∫
R

pαq1−α dµ

where p and q are the densities of P and Q with respect to
measure µ8, respectively. For order α = ∞, it is defined as

D∞(P ∥Q) := lim
α!∞

Dα(P ∥Q) = ln sup
S meas.

P (S)
Q(S)

The previous integral notation will be useful to represent
both continuous and discrete cases, i.e., if P and Q are
continuous, the integral equals

∫
R p(s)αq(s)1−α ds with p

and q the corresponding density functions, and if P and
Q are discrete, it equals

∑
s∈R p(s)αq(s)1−α with p and q

the corresponding probability mass functions.
Note that the Rényi divergence is not a metric for α ∈

(1, ∞), since it does not satisfy the symmetry property and
the triangle inequality. It does, however, satisfy the weaker
triangle inequality [1]: For all probability distributions P ,
Q and R, and all α, k ≥ 1, we have

Dα(P ∥R) ≤ kα

kα − 1D kα−1
k−1

(P ∥Q) + Dkα(Q∥R).

In the subsequent results, we denote Dα(M(D)∥M(D′))
as the Rényi divergence of the distributions of M(D) and
M(D′). Observe that the case α = ∞ can be used to define
dD-privacy (and DP), i.e., M with domain D is dD-private
if and only if for all D, D′ ∈ D

D∞(M(D)∥M(D′)) ≤ d(D, D′).

We can state now the definition of zero-concentrated
DP [1] directly extended for any possible granularity G.

Definition VI.10 (Zero-concentrated DP). Let ρ ≥ 0.
A randomized mechanism M with domain DX is G ρ-
zero-concentrated DP (G ρ-zCDP) if, for all G-neighboring
D, D′ ∈ D and all α ∈ (1, ∞):

Dα(M(D)∥M(D′)) ≤ ρα.

8Measure µ always exists in this case and its choice does not affect
the results [22].



The extension to metric zCDP is not trivial, since the
bound of the Rényi divergence does not scale linearly for
group privacy, but instead quadratically (i.e., Dα(M(D)∥
M(D′)) ≤ (dG

D(D, D′))2ρα). In this case, bounding the
divergence by a metric would be too restrictive with
regard to the original notion. In particular, known zCDP
mechanisms, such as the Gaussian mechanism, would not
satisfy a linear privacy degradation. Therefore, knowing
that the Rényi divergence scales quadratically, we define
the following notion:

Definition VI.11 (d2
D-zCprivacy). Let (D, dD) be a privacy

space. Then, a randomized mechanism M with domain D
is d2

D-zCprivacy if for all D, D′ ∈ D and all α ∈ (1, ∞),

Dα(M(D)∥M(D′)) ≤ d2
D(D, D′)α (VI.1)

where d2
D(D, D′) := (dD(D, D′))2.

With this definition, we obtain once again the analogous
to Theorem III.3 for zCDP:

Theorem VI.12. Let G be a granularity notion over the
database class D. Then, a mechanism M with domain D is
ρ(dG

D)2-private if and only if it is G ρ-zCDP.

We now present the AC theorem for d2
D-zCprivacy:

Theorem VI.13 (Zero-concentrated AC theorem). Let
D be a database class, and, for all i ∈ [k], let (Di, di) be
a privacy space, and fi : D ! Di a deterministic map and
f∗

i = idRi
× fi (with f∗

1 = f1).
For i ∈ [k], let M∗

i : Ri × Di ! Ri be a mechanism
such that M∗

i (si, ·) : Di ! Ri satisfies d2
i -zCprivacy for

any si ∈ Ri.
Then mechanism M = (M∗

1 ◦ f∗
1 , . . . , M∗

k ◦ f∗
k )adapt is

d2
D-zCprivate with

d2
D(D, D′) :=

k∑
i=1

d2
i (fi(D), fi(D′)) for all D, D′ ∈ D.

As in the previous cases, Theorem VI.13 can be used to
formulate the corresponding corollaries.

Theorem VI.14 (Zero-concentrated AC theorem for
common domain). For i ∈ [k], let (D, di) be a pri-
vacy space, and let fi be a deterministic map over D.
For i ∈ [k], let Mi : Ri × D ! Ri be a mechanism
such that Mk(si, ·) : D ! Ri satisfies d2

i -zCprivacy
and fi-dependency for any si ∈ Ri. Then mechanism
M = (M1, . . . , Mk)adapt is d2

D-zCprivate* with d2
D :=∑k

i=1(dfi

i )2.

Theorem VI.15 (Generalized zero-concentrated ASC).
Let D be a database class, and, for all i ∈ [k], let (D, di)
be a privacy space. For i ∈ [k], let Mi : Ri × D ! Ri be a
mechanism such that Mk(si, ·) : D ! Ri is d2

i -zCprivate for
any si ∈ Ri. Then M = (M1, . . . , Mk)adapt is (

∑k
i=1 d2

i )-
zCprivate.

When di = ρi(dU
D )2 we recover the original composition

bound
∑k

i=1 ρi established for unbounded zCDP in [1],
which generalizes to all granularities. However, to the
best of our knowledge, no analysis on the privacy loss
has previously been performed for zCDP when mechanism
Mi input disjoint subsets. Therefore, we give the two first
results about how zCDP degrades when composed, similar
to parallel composition:

Theorem VI.16 (Zero-concentrated best bound for dis-
joint inputs). Let D be a database class and G a granularity
over D. Let p be a dG

D-compatible k-partitioning function
such that ∆pi ≤ 1, and p∗

i = idRi
× pi (with p∗

1 = p1). For
i ∈ [k], let M∗

i : Ri × Di ! Ri be a mechanism such that
M∗

i (si, ·) : Di ! Ri satisfies ρi(dG
Di

)2-zCprivacy for any
si ∈ Ri. Then mechanism M = (M∗

1◦p∗
1, . . . , M∗

k◦p∗
k)adapt

is ρ(dG
D)2-zCprivate with ρ = maxi∈[k] ρi.

For the common-domain setting, we find the analogous
theorem (see Theorem A.15 in the long version).

C. Extending to Gaussian DP
Finally, we extend our results to Gaussian DP (GDP) [6].

GDP uses the hypothesis testing interpretation of DP to
bound the privacy loss. This way, we understand that an
attacker is trying to solve a hypothesis testing problem for
two neighboring databases D and D′ as [6]{

H0 : The input database is D,
H1 : The input database is D′.

Specifically, given an output s, an attacker will use
a rejection rule ϕ to decide whether D or D′ was the
initial database. The difficulty in distinguishing between
the two hypotheses is then described by the optimal trade-
off between the type I error (i.e., rejecting H0 when it
is true) and the type II error (i.e., failing to reject H0
when it is false). If P and Q are the distribution functions
of M(D) and M(D′) respectively, then the type I and
type II errors are defined respectively as αϕ := EP [ϕ] and
βϕ := 1 − EQ[ϕ], given a rejection rule 0 ≤ ϕ ≤ 1. This
motivates the definition of trade-off function [6].

Definition VI.17 (Trade-off function [6]). Let P and Q be
two probability distributions on the same measurable space.
A trade-off function is defined as T (P, Q) : [0, 1] ! [0, 1]
such that

T (P, Q)(α) = inf
ϕ

{βϕ | αϕ ≤ α},

where the infimum is taken over all (measurable) rejection
rules ϕ.

A trade-off function T (P, Q)(α) represents the minimum
achievable type II error β for a given level of type I error
α. Note that the minimum βϕ can be achieved by the
likelihood-ratio test, since it is the test with the highest
power (i.e., lowest type II error for a prespecified type I
error α) according to the Neyman–Pearson lemma [14].



The larger the trade-off function, the harder it is to
distinguish between the two hypotheses. This idea of “hard
to distinguish” leads us to the definition of Gaussian DP
(GDP) [6], which we directly define for any neighborhood
notion:

Definition VI.18 (Gaussian DP). Let µ ≥ 0. A mecha-
nism M with domain D is said to be G µ-GDP if, for all
G-neighboring D, D′ ∈ D,

T (M(D), M(D′))(α) ≥ T (N (0, 1), N (µ, 1))(α)

for all α ∈ [0, 1]. We denote Gµ := T (N (0, 1), N (µ, 1)).

First, note that T (M(D), M(D′)) is the trade-off func-
tion of the distribution of M(D) and M(D′) (by abuse
of notation). GDP establishes that distinguishing between
M(D) and M(D′) is at least as hard as distinguishing
between the normal distributions N (0, 1) and N (µ, 1). By
the Neyman–Pearson lemma, we can explicitly express Gµ

as Gµ(α) = Φ(Φ−1(1 − α) − µ) for all α ∈ [0, 1], where Φ is
the distribution function of N (0, 1). Note that this trade-
off function decreases with respect to µ, i.e., Gµ ≤ Gµ′ if
µ ≥ µ′.

GDP satisfies a group privacy property that establishes
that privacy degrades linearly with respect to the number
of changes between the two databases [6]. Consequently,
we use this property to define the dD-privacy adaptation
of GDP:

Definition VI.19 (dD-Gaussian privacy). Let dD : D2 !
[0, ∞] be a metric. A mechanism M with domain D is said
to be dD-Gprivate if, for all D, D′ ∈ D,

T (M(D), M(D′)) ≥ GdD(D,D′),

where G∞(α) := limµ!∞ Gµ(α) = 0.

Our definition of dD-Gprivacy generalizes the original
notion of Gaussian DP:

Theorem VI.20. Let G be a granularity notion over the
database class D. Then, a mechanism M with domain D is
µdG

D-Gprivate if and only if it is G µ-GDP.

We can now present the AC theorem for dD-Gprivacy.

Theorem VI.21 (Gaussian AC theorem). Let D be a
database class and, for all i ∈ [k], let (Di, di) be a privacy
space, and fi : D ! Di a deterministic map and f∗

i =
idRi

× fi (with f∗
1 = f1).

For i ∈ [k], let M∗
i : Ri × Di ! Ri be a mechanism

such that M∗
i (si, ·) : Di ! Ri satisfies di-Gprivacy for any

si ∈ Ri. Then mechanism M = (M∗
1◦f∗

1 , . . . , M∗
k◦f∗

k )adapt
is dD-Gprivate with

dD(D, D′) :=

√√√√ k∑
i=1

di(fi(D), fi(D′))2 for all D, D′ ∈ D.

Note that unlike the AC theorem (V.2), dD is not the sum
of the distances (i.e., the ℓ1-norm), but actually the sum

of the squares of the distances (i.e., the ℓ2-norm). Recall
that ∥(d1, . . . , dk)∥2 ≤ ∥(d1, . . . , dk)∥1. In this case, we can
notice improvements in GDP to the composition results.
We also see the same improvements in the common-domain
counterpart.

Theorem VI.22 (Gaussian AC theorem for common
domain). For i ∈ [k], let (D, di) be a privacy space, and let
fi be a deterministic map over D. For i ∈ [k], let Mi : Ri ×
D ! Ri be a mechanism such that Mk(si, ·) : D ! Ri

satisfies di-Gprivacy and fi-dependency for any si ∈ Ri.
Then mechanism M = (M1, . . . , Mk)adapt is dD-Gprivate*
with dD :=

√∑k
i=1(dfi

i )2 .

As in the previous subsections, we recover the generalized
ASC results when fi = id:

Theorem VI.23 (Generalized Gaussian ASC). Let D be
a database class, and d a metric defined in D. For i ∈
[k], let M∗

i : Ri × Di ! Ri be a mechanism such that
M∗

i (si, ·) : D ! Ri satisfies di-DP for any si ∈ Ri. Then
mechanism M = (M∗

1, . . . , M∗
k)adapt is dD-Gprivate with

with dD =
√

d2
1 + · · · + d2

k .

Choosing di = µid
G
D, we obtain from this theorem the

already-known [6] sequential bound ∥(µ1, . . . , µk)∥2.
For d-Gprivacy, as for the other notions, it is interesting

to find cases where we can obtain better bounds than the
sequential one using our result. We explore these cases in
the following corollaries. For example, we can also obtain
the best bound for when f defines a partitioning function:

Theorem VI.24. Let D be a database class, and let p
be k-partitioning function of D in Di and p∗

i = idRi
× pi

(with p∗
1 = p1). Let d∗ be well-defined over D and Di. For

i ∈ [k], let M∗
i : Ri × Di ! Ri be a mechanism such

that M∗
i (si, ·) : Di ! Ri satisfies µid

∗
Di

-Gprivacy. If d∗

commutes with p then mechanism M = (M∗
1 ◦p∗

1, . . . , M∗
k ◦

p∗
k)adapt is d̃D-Gprivate with

d̃D :=

√√√√ k∑
i=1

(µid∗
Di

(pi(D), pi(D′)))2 ≤ max
i∈[k]

µid
∗
D(D, D′).

(VI.2)

Note that the inequality is in fact an equality when
d∗
Di

(pi(D), pi(D′)) = 0 for all but one i ∈ [k]. Therefore
in some cases, the Gaussian AC theorem (VI.21) can give
us a tighter bound than maxi∈[k] µid

∗
D. We see this in the

following example:

Example VI.25. Let D ⊆ DX , let Di = DXi
where

{Xi}i∈[k] defines a partition, and consider d△, which
commutes with the previous partition (see Proposition A.4
in the long version). If Mi : Di ! Ri are d△

Di
-Gprivate, then

mechanism M = (M1, . . . , Mk)adapt is d̃D-Gprivate with
d̃D ≤ d△

D . For instance, if D = D′\{xi, xj} with xi ∈ Xi

and xj ∈ Xj (i ̸= j), we have that d△
D (D, D′) = 2, while

d̃D(D, D′) =
√

d△
Di

(pi(D), pi(D′))2 + d△
Dj

(pj(D), pj(D′))2



=
√

|{xi}|2 + |{xj}|2 =
√

1 + 1 =
√

2 < 2.

The Gaussian version of Theorem V.4 also holds.
However, in this case, a compatible partition implies
dG
Di

(pi(D), pi(D′)) = 0 for all but one i ∈ [k], so the
inequality in Equation (VI.2) becomes an equality and
the AC theorem does not provide a tighter bound.

Theorem VI.26 (Gaussian best bound for disjoint inputs).
Let D be a database class and G a granularity over D. Let p be
a dG

D-compatible k-partitioning function such that ∆pi ≤ 1,
and p∗

i = idRi
×pi (with p∗

1 = p1). For i ∈ [k], let M∗
i : Ri×

Di ! Ri be a mechanism such that M∗
i (si, ·) : Di ! Ri

satisfies µid
G
Di

-Gprivacy for any si ∈ Ri. Then mechanism
M = (M∗

1 ◦ p∗
1, . . . , M∗

k ◦ p∗
k)adapt is µdG

D-Gprivate with
µ = maxi∈[k] µi.

The common-domain setting of this theorem for GDP is
analogous (see Theorem A.17 in the long version).

VII. Post-Processing and Reciprocal Results
Finally, we study post-processing in the privacy notions

we have introduced that leads to reciprocal results. All the
dD-privacy adaptations of DP notions we introduced, as
well as dD-privacy, are robust to post-processing:

Theorem VII.1 (Post-processing). The privacy notions
of dD-privacy, (dD, δD)-privacy, d2

D-zCprivacy and dD-
Gprivacy are robust to post-processing.

Moreover, we obtain reciprocal results for the com-
position theorems for common domain for any privacy
notion P that is robust to post-processing. More precisely,
Theorem IV.11 has a reciprocal result.

Theorem VII.2 (Reciprocal to the IC theorem (common
domain)). Let P be a privacy notion that is robust to
post-processing. For all i ∈ [k], let Mi : D ! Ri be
mutually independent randomized mechanisms. Let M =
(M1, . . . , Mk)ind be a mechanism that satisfies P. Then
Mi must satisfy P for all i ∈ [k].

Even though it is not useful in constructing new mech-
anisms, this result makes it clear that we cannot obtain
a P mechanism by independently composing mechanisms
that do not satisfy P, and can serve as a first check to
ensure whether a mechanism satisfies P or not. For instance,
Example II.9 fails because Mi = M∗

i ◦ fi do not satisfy P.
Also, for the adaptive case, we have the following result:

Theorem VII.3 (“Reciprocal” to the AC theorem (com-
mon domain)). Let P be a privacy notion that is robust
to post-processing. Let Mi : Ri × D ! Ri for i ∈ [k] be
randomized mechanisms. Let M = (M1, . . . , Mk)adapt be a
mechanism satisfying P. Recall that by definition M(D) =
(N1(D), . . . , Nk(D)) for all D ∈ D, where Ni(D) are defined
recursively as Ni(D) = Mi(Ni−1(D), . . . , N1(D), D) for
i ∈ [k]. Then Ni must satisfy P for all i ∈ [k].

Note that this result tells us that all Ni satisfy P, but
this is not the exact reciprocal of Theorem V.5. Given the

same hypotheses, it is not necessarily true that Mi(si, ·)
satisfy P for all si ∈ Ri.

Furthermore, no result for M∗
i can be generally stated.

For example, in Remark III.7, we provide a case where
M∗

i ◦ fi is free-lunch DP while M∗
i is not.

VIII. Conclusions

In this paper, we study the composability properties of
DP in the new settings of the literature, including new
granularities and data domains. We show that compos-
ability can be defined independently of the neighborhood
definition. Our results can be used to directly obtain specific
composition rules when new granularity notions (or metrics)
are proposed, without having to prove these same rules for
each case.

Moreover, our IC and AC theorems (IV.1 and V.2) are
defined for dD-privacy. The notion of dD-privacy not only
generalizes the original DP setting, but also provides more
precise information about the protection given. Therefore,
we facilitate the computation of the final privacy guarantee
of any composed mechanism over any desired data domain
and even under mixed privacy requirements, which was not
previously defined. In particular, we prove the existence of
a significantly better bound to the privacy loss for bounded
DP when the composed mechanisms are applied to disjoint
databases (Corollary IV.13).

Besides, we study particularly interesting composition
settings in the literature such as the case in which each com-
posed mechanism inputs the whole database or just disjoint
subsets, and we compare them with the original sequential
and parallel composition results. Since the original parallel
composition theorem [17] does not generalize to all metrics,
we also investigate the additional hypotheses necessary to
obtain the best possible privacy loss when we work over
a partitioned database. We provide the hypotheses under
which we obtain the best bound and conclude that these
conditions are easily satisfied for some metrics, such as d△;
while others metrics only work for specific partitions, such
as the bounded metric.

Furthermore, we extend our results to other DP-
based privacy notions: namely, approximate DP, zero-
concentrated DP, and Gaussian DP. To this end, we present
dD-privacy variants that simultaneously include both the
original definition and their group privacy property. Also,
we provide the corresponding composition theorems for
each of these notions.

Finally, we discuss reciprocal versions of the composition,
which can be used to check when a mechanism fails to
guarantee DP.

Future work: In this paper, we limit ourselves to some
DP-based notions that can be directly expressed with a
metric. Extending our composition theorems to other DP-
based semantic privacy notions, such as Rényi DP [19] or
f -DP [6], could be interesting future work. Moreover, it will
be interesting to explore the advanced composition versions



of the presented theorems for such semantic notions that
allow advanced composition.
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