KIT | KIT-Bibliothek | Impressum | Datenschutz

Open Data-Driven Automation of Residential Distribution Grid Modeling with Minimal Data Requirements

Weber, Moritz ORCID iD icon 1; Janecke, Luc; Çakmak, Hüseyin K. ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

In the present paper, we introduce a new method for the automated generation of residential distribution grid models based on novel building load estimation methods and a two-stage optimization for the generation of the 20 kV and 400 V grid topologies. Using the introduced load estimation methods, various open or proprietary data sources can be utilized to estimate the load of residential buildings. These data sources include available building footprints from OpenStreetMap, 3D building data from OSM Buildings, and the number of electricity meters per address provided by the respective distribution system operator (DSO).
For the evaluation of the introduced methods, we compare the resulting grid models by utilizing different available data sources for a specific suburban residential area and the real grid topology provided by the DSO. This evaluation yields two key findings: First, the automated 20 kV network generation methodology works well when compared to the real network. Second, the utilization of public 3D building data for load estimation significantly increases the resulting model accuracy compared to 2D data and enables results similar to models based on DSO-supplied meter data. ... mehr


Download
Originalveröffentlichung
DOI: 10.48550/arXiv.2312.06552
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 11.12.2023
Sprache Englisch
Identifikator KITopen-ID: 1000165562
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Verlag arxiv
Schlagwörter model generation, open data, open-source software, optimization, distribution grid, grid capacity analysis
Nachgewiesen in arXiv
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page