Check for
Updates

BAzAAR: Anonymous Resource Sharing

Christoph Coijanovic
Daniel Schadt

firstname.lastname@Xkit.edu
Karlsruhe Institute of Technology
Germany

ABSTRACT

In areas such as manufacturing or logistics, it is beneficial for ev-
eryone to share access capacity with others. Increased efficiency
increases profits, lowers prices for consumers, and reduces envi-
ronmental impact. However, in order to share a resource such as
manufacturing capacity, suitable partners must be found. Ideally, a
centralized exchange is used to find partners, but this comes with
privacy risks. Since participants in the exchange are competitors,
they can use information about someone else’s capacity to their
disadvantage, e.g., by undercutting the prices of an already poorly
performing competitor to drive it out of business. In this paper, we
show that such an exchange can be set up without compromising
the privacy of its participants. We formalize privacy goals in the
context of resource sharing via an indistinguishability game. We
also propose BAZAAR, a protocol that allows participants to find
suitable matches while satisfying our formal privacy goals.

CCS CONCEPTS

+ Security and privacy — Pseudonymity, anonymity and
untraceability; Privacy-preserving protocols; Security require-
ments.

KEYWORDS
resource sharing, anonymous communication

ACM Reference Format:

Christoph Coijanovic, Daniel Schadt, Christiane Weis, and Thorsten Strufe.
2023. BazaAR: Anonymous Resource Sharing. In Proceedings of the 21st
Workshop on Privacy in the Electronic Society (WPES ’23), November 26,
2023, Copenhagen, Denmark. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3603216.3624957

1 INTRODUCTION

In most situations where a limited resource is shared by multiple
parties, the resource is unevenly distributed. Consider manufactur-
ing: Each company has a fixed capacity, defined by, e.g., the number
of workers or assembly lines. At the same time, the demand for
the company’s goods fluctuates, depending on, for example, the
economiic situation or the life cycle of its product. As a result, some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPES 23, November 26, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0235-8/23/11...$15.00
https://doi.org/10.1145/3603216.3624957

Christiane Weis
firstname.lastname@neclab.eu
NEC Laboratories Europe
Germany

135

Thorsten Strufe
firstname.lastname@kit.edu
Karlsruhe Institute of Technology
Germany

companies may have less to produce than they can handle, while
others may have more. If companies could share their infrastructure,
overall efficiency would improve, resulting in less environmental
impact and lower prices for consumers. Note that this sharing of
manufacturing capacity can be observed in the real world, such as
between Toyota and Fuji Heavy Industries (FHI), where the latter
manufactured cars for the former.! Other examples include dis-
tributed power grids (excess electricity stored in batteries can be
sold to consumers) and logistics (several companies can share space
on a container ship).

However, participating in a marketplace to find other parties
with whom to share resources carries significant privacy risks: If
a party can be linked to its current resource usage, others can use
this information to its detriment. For example, energy consumption
can be used to learn sensitive private information about users, such
as what TV program they are watching [14]. Even if parties cannot
be directly linked to their usage of the resource, the distribution
of usage values can still reveal sensitive information. On the one
hand, values from the distribution can be linked back to participants
with background knowledge: If Alice has the largest photovoltaic
system in her neighborhood, she is likely to have the most power to
spare and can be easily identified. On the other hand, even without
background knowledge, the distribution of usage values can reveal
sensitive information: If a manufacturing company learns that some
competitor is doing much worse than the others, it might lower
prices to try to drive them out of business.

In this paper, we approach this challenging problem in two steps.
First, we formalize privacy in resource sharing using an indistin-
guishability game. We propose two notions of privacy, one that
formalizes that participants should not be linkable to their resource
usage, and one that formalizes that the distribution of resource
usage values should be hidden. The formal goals allow us to then
propose BAZAAR, a resource sharing protocol that provably achieves
these goals.

For optimal matching, all participants provide their resource
usage information to a central third party. Since we assume that the
third party is honest-but-curious, we need to disassociate partici-
pants from their information and obfuscate the information itself.
To do this, participants generate tokens, which together represent
how much of the resource they have to spare or need. The tokens
are sent to the third party through an anonymous channel, which
ensures that the third party cannot tell how many tokens it receives
from whom. The third party matches tokens indicating a deficit
with tokens indicating a surplus and publishes the result. Finally,
token holders are given the ability to anonymously contact the

!https://global.toyota/en/newsroom/corporate/25607796.html — Accessed October 21,
2023

https://doi.org/10.1145/3603216.3624957
https://doi.org/10.1145/3603216.3624957
https://doi.org/10.1145/3603216.3624957
https://global.toyota/en/newsroom/corporate/25607796.html
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603216.3624957&domain=pdf&date_stamp=2023-11-26

WPES °23, November 26, 2023, Copenhagen, Denmark

party with whom they have been matched via a temporary shared
address.

In summary, this paper formalizes privacy in resource sharing
and proposes BAzAAR, which allows resource sharing with central
matching without revealing the link between participants and their
resource usage, nor the distribution of resource usage values.

2 RELATED WORK

Resource sharing can be expressed as a linear programming prob-
lem, where an objective function (total usage) is to be maximized
while respecting a set of constraints (the surplus/deficit of the par-
ties involved). There is a line of work [13, 6] that aims to solve
these linear programming problems in a privacy-preserving man-
ner. However, these protocols are based on outsourcing, where a
client has access to the entire problem instance but does not have
the computational resources to solve it [10]. In our setting, there is
no client with a global view of all constraints, which makes these
solutions inapplicable.

Matching. Another line of research [5, 8] aims to make match-
ing algorithms private. The goal of these algorithms is to match
each participant with another eligible participant. This ‘one to one’
matching however makes these protocol not optimal for our use-
case. We want to be able to match a party to several others who, in
sum, can satisfy the first party’s needs.

Ride-Sharing. Privacy preserving ride-sharing (7, 12, 1] is a spe-
cific but related problem to our work. There, drivers and passengers
are matched to form optimal routes. However, these protocols focus
on hiding the exact location of passengers from the system, which
may be applicable to some use cases of our system (e.g., logistics),
but not others.

3 MODEL & GOALS
3.1 Setting and Adversary

We assume a set of agents Ag = {ay, ..., ar} acting on behalf of an
entity. All entities are interested in a common resource. For brevity,
we define a resource usage function that maps agents to ‘their’ usage
of the resource:

RU(a:Ag) — Z

If agent a’s resource usage is negative (RU(a) < 0), we say that a
has a deficit of the resource (i.e., wants more than it has). If the
resource usage of agent a is positive (RU(a) > 0), we say that a has
a surplus of the resource (i.e., has more than it uses). Surplus and
deficit agents are matched by an honest but curious third party P.

Applied to our introductory example of Toyota and FHI, the
setting works as follows: Toyota and FHI are both entities that
each send an agent to find a match on their behalf. The common
resource in this case is car manufacturing capacity. Agents from
other automakers can participate at the same time. Since Toyota
cars are produced in an FHI plant, Toyota’s agent reports a deficit,
while FHI’s agent reports a surplus. The actual resource use could
be expressed as the number of cars produced per day.

136

Christoph Coijanovic, Daniel Schadt, Christiane Weis, & Thorsten Strufe

3.2 Privacy Goals

To allow for a rigorous privacy analysis, we need to formalize
BAzAAR’s privacy goals. As mentioned in the introduction, we
informally aim to achieve the following two goals:

(1) Agent-Usage Unlinkability (AUL). Given the set of participat-
ing agents and the distribution of usage values, it should not
be possible to link agents to their resource usage.

(2) Usage Unobservability. (UO). Given the view of the third party
P, it should not be possible to determine the real distribution
of resource usage values.

We formalize both goals using a common indistinguishability
game, similar to formalization approaches for message confiden-
tiality [2] and anonymous communication [9].

Privacy Game. The game is played between a challenger C and
an adversary A. The adversary constructs a challenge Ch = (So, S1)
consisting of two scenarios. Each scenario contains tuples (a, RU(a),
d) that define the challenge agent a, their usage RU(a), and the data
d € {0,1}* to be exchanged with their match(es) (e.g., out-of-band
contact information). The challenger randomly selects a scenario
and internally executes the matching protocol (BAZAAR in our case)
on the contained input data. The adversary receives any protocol
output and has to decide which of its scenarios was chosen by the
challenger. Specifically, the game proceeds as follows:

(1) C draws a challenge coin b € {0, 1} uniformly at random.
(2) A submits a challenge Ch = (Sp, S1).
(3) C executes the protocol with input S;, and sends any protocol
output A would be able to observe in a ‘real’ run to A.
(4) A processes the received information and returns its guess
b’ €{0,1}.
Steps 1 and 2 can be repeated multiple times to allow A to adapt its
behavior based on the observed output. A wins the game if b = b’.

Agent-Usage Unlinkability (AUL). If a protocol reveals any in-
formation that depends on the input, A can use it to identify the
chosen scenario and win the game above. If we only want to test
whether the protocol reveals the link between agents and their
usage, we must ensure that the adversary can only submit chal-
lenges where all other information is identical in both scenarios
(and therefore cannot be used to distinguish).

To ensure that the adversary obeys this restriction, we extend
step 2 of the game as follows:

2. A submits a challenge Ch = (Sy, S1). C checks if
(@) [Sol =51
(b) Let (a, RU(a), d) be the ith tuple in Sy, then (a’, RU(a), d)
must be the ith tuple in S; for alli € {0,...,|So| — 1}
(c) Require

V(a,RU(a),dg), (b, RU(D),dp) € Sp:a# b

¥(a, RU(a),dqa) € So : (a,RU(a)’,d) € S
If any of theses checks fail, C rejects the challenge and in-
structs (A to submit a new one.

The protocol achieves Agent-Usage Unlinkability, if there exists
no probabilistic poly-time adversary who can win this restricted
game with a non-negligible advantage over random guessing.

BAzAAR: Anonymous Resource Sharing

Usage Unobservability (UO). Similarly, for Usage Unobservability,
the challenger must ensure that the scenarios differ only in their
distribution of resource usage values. Thus, the following conditions
must hold in step 2:

@) [Sol = 151

(b) Let (a, RU(a), d) be the ith tuple in Sy, then (a, RU(a)’, d)

must be the ith tuple in S for all i € {0,...,[So| — 1}

(c) Require Y(a, RU(a),dq,), (b,RU(b),dp) € Sp:a# b

(d) Require

Z {RU(a)
Z {RU(a)

Without restriction (d), the adversary could trivially distinguish
scenarios based on the ration of surplus to deficit.

RU(a)>0

(a RU(a),d) € S
RU(a) <0 0} =2 {RU(“)

RU(a)>0

(a,RU(a),d) € Sl;
RU(a)<0

(4. RU(a),d) € S(} -y {RU(a)

(a,RU(a),d) € Sl;

4 DESIGN

Consider the following naive resource sharing protocol: All agents
send their resource usage value along with an identifier (e.g., an
email address) directly to the third party %, which runs the match-
ing algorithm and publishes the results. Agents can look up the
identifiers of their new partners and contact them. We observe
three main challenges in making the naive protocol anonymous:

(1) Agents need to send their values to # such that # does not
learn which value is from whom.

(2) Values have to be obscured such that £ does not learn the
distribution of real values.

(3) Identifiers have to be anonymous such that cannot de-
termine who it has matched to whom while still allowing
agents to contact each other.

BAzAAR solves these challenges as follows:

Unlinking Agents and Values. BAZAAR relies on an anonymous
communication channel Chgpop to unlink agents from the infor-
mation they send to #. Formally, we need Chgpopn to achieve Kuhn
et al’s notion of Sender Unobservability (SO) against a corrupted
receiver [9]. Informally, achieving SO means that no information
about senders is revealed (to corrupted receivers in our case). Note
that we also need Chgpop to have an anonymous reply feature, where
the receiver can send a message back to the sender without learning
their identity. Chgnon is used for all communication between agents
and P, and can be implemented against a corrupted recipient by
Tor [3] or Loopix [11]. Note that while Tor achieves this protection
if the adversary is only able to corrupt receivers, it does not achieve
it against other adversaries such as global passive observers.

Obscuring Values. Instead of sending their usage values directly
to P, agents generate tokens. Each token is of either ‘surplus’ or
‘deficit’ type and corresponds to a unit of the resource (e.g., shipping
containers, Wh of energy). The sum of the tokens an agent sends
to P corresponds to its usage value. The privacy of Chgpon ensures
that # cannot determine how many tokens an agent has sent.

Anonymous Identifiers and Agent Contact. To allow anonymous
contact between agents after a match, agents attach a random
ephemeral public key to each token. The output of P is a list of
pairs of these public keys, indicating which token has been matched
to which. Matched agents derive a common identifier from their

137

WPES ’23, November 26, 2023, Copenhagen, Denmark

public keys. To exchange messages, both agents send a tuple of
this identifier and their message via Chgpnon to P. P matches the
identifier and uses the reply function of Chgpopn to send each agent
the other agent’s message.

Figure 1 visualizes the resulting protocol.

5 PROTOCOL

We will now describe our BAzZAAR protocol in more detail. Each
BAZAAR run consists of three phases: Token Accumulation, Token
Matching, and Agent Coordination.

Token Accumulation. The goal of the token accumulation phase
is for all agents to submit their usage information to #. Let agent
a have usage RU(a). After the start of a new run is announced by
P, a generates exactly RU(a) tokens. For each token ¢, a does the
following:?

(pky, skr) «— KEYGEN(IA)

+
type; «—

sig; « SIGN(sky, pk;: || type)
t «— (pk:, types, sigy)

if RU(a) > 0

else

Agents may need to generate many tokens, each with a new
key pair. To reduce the computational overhead of key generation,
it can be optimized based on the encryption scheme used. For
example, if ElGamal encryption [4] is used, agents only need to
generate a single cyclic group G of order g with generator g. Then,
for each token, the agent chooses a uniformly random integer
x € {1,...,q — 1} as the secret key and computes the public key
(G, g, q,g°) with a single exponentiation.

After the tokens are generated, a sends each token individually
via Chgnon to P. P collects all incoming tokens, verifies the signa-
tures they contain (using the token’s public key), and stores them
for later use. Recall that we consider a local adversary at . To
protect against a global adversary, dummy tokens would need to
be introduced to fix the number of tokens each agent sends.

Token Matching. The goal of the token matching phase is for
P to find a partner for each token and publish the results. First,
P divides the tokens into two lists, each sorted lexicographically
by its tokens’ public keys: S = {50, 5,1, .. } contains all tokens
of type ‘surplus’ (+) and D = {t40,t41,...} contains all tokens
of type ‘deficit’ (-). Then P zips the lists S and D into a new list
R = {(ts0,t40), (£s,1,t41), - - - }. R is sent to all agents.

Agent Coordination. In the agent coordination phase the two
agents belonging to any matched token pair will exchange a mes-
sage with each other. If multiple messages have to be exchanged,
this phase can be repeated. Assume agent a with token t, = (pk;,, +,
sigy,) and agent b with token #, = (pks,,-,sig;,) have been
matched. To send message m to b, a proceeds as follows:

(1) Verify that sig;, is valid. If not, abort.

(2) cq « Enc(pke,, m)

(3) addr < H(pk;, || pks,) where H(-) is a hash function.

2We use “a || b” to denote the concatenation of a and b

WPES °23, November 26, 2023, Copenhagen, Denmark

}
Bob
°

} Carol

Alice

Dave { @

1. Token Accumulation

Christoph Coijanovic, Daniel Schadt, Christiane Weis, & Thorsten Strufe

P
®—0
®—©6
®—0
®—oO

2. Token Matching

3. Agent Coordination

Figure 1: Protocol phases of BAzaAR. Arrows indicate communication over an anonymous channel. In the first phase, agents
send tokens representing their resource usage to the third party . In the second phase, ¥ matches tokens indicating a surplus
with those indicating a deficit. In the third phase, agents whose tokens have been matched exchange messages with each other.

(4) sig, <« SIGN(skg, addr || c4)

(5) Send packet p, := (addr, cq, sig,) through Chgpon to P
After collecting all incoming packets, # iterates through them.
For every found pair p = (addr, ¢, sig), p’ = (addr,¢’, sig’) with
matching addresses, it uses Chgpnon’s anonymous reply feature to
send (¢, sig’) to the sender of p and (¢, sig) to the sender of p’.
Upon receiving a reply, the agents verify that the signature is valid
using the matching agent’s public key, and use their secret keys to
decrypt the ciphertext revealing the matched agent’s message.

6 SECURITY ANALYSIS

In this section, we argue that BAzZAAR does indeed achieve the
privacy goals defined in Section 3.2. Recall that we consider an
honest but curious # as the adversary.

THEOREM 1. BAzAAR achieves AUL.

PrOOF. (Sketch) To break AUL, A must be able to distinguish
between two scenarios that differ only in which agent has which
usage. Assume the existence of such a A. A can be used by an
adversary B to break the assumed SO protection of Chgpop. For a
description of SO refer to Appendix A. 8 must provide A with the
observations that # can make in both the token accumulation and
agent coordination phases.

Let (a, RU(a), d) be the ith tuple in A’s scenario 0. If A’s chal-
lenge is not valid for AUL, B rejects it. Otherwise, the ith tuple of
A’s scenario 1 is by definition a’, RU(a), d.

B first constructs a SO challenge corresponding to the token
accumulation phase. From the ith tuples of A’s challenge, B derives
RU(a) communications for each scenario as follows:

Scenario 1

(', t1,P)

Scenario 0

(a.t1,P)

(@ tru@)»P) (@ trya), P)

The messages 11, . . ., try(q) are constructed by B as a real agent
in BAzaAR would construct a token: For each ¢, a new key pair
is chosen, a type is determined based on the sign of RU(a), and
a signature is generated over the public key and type using the
secret key. The communications derived from all tuples of ‘A are
concatenated and submitted to C as a SO challenge. C selects a
scenario at random, executes the contained communication, and
sends to B the observations that a corrupted receiver £ can make.
B forwards these observations to A.

To provide the observations for the agent coordination phase, 8
derives another SO challenge from the challenge of A. The second
challenge is derived analogously to the first, but instead of tokens,
d is used as the message for communication.

A’s observations match those it could make by interacting with
the real protocol, since 1) B generates the messages as the agents
would, and 2) in the real protocol, P also receives all communica-
tions through Chgnon, which is simulated by C. If A can distinguish
based on B’s output, B can in turn determine which scenario was
chosen by the SO challenger. O

THEOREM 2. BAzAAR achieves UO.

PROOF. (Sketch) We show that any information # can observe
is independent of the distribution of usage values. Due to the re-
striction of UO that the sums of positive and negative usage values
must be identical in both scenarios, P receives the same number
of surplus and deficit tokens in both scenarios. As described in
Section 5, the tokens are generated independently. What differs
based on the distribution of values is who sends how many tokens.
However, this information is hidden by the assumed SO of Chgpon.
By the same logic, it can be argued that the observations in the
agent coordination phase are independent of the distribution of
usage values. O

7 CONCLUSION

In this paper, we have introduced BAzAAR, which allows resource
sharing with matching by an honest-but-curious third party with
strong privacy. We have formalized the privacy goals of Agent-
Usage Unlinkability and Resource Usage Unobservability based on
a common indistinguishability game and have shown that BAzaAR
achieves both. Our formal privacy goals not only enable the anal-
ysis of BAZAAR, but can also be used by future protocols to allow
fair comparisons of the privacy protection of different approaches.
Finally, future work includes the consideration of stronger adver-
saries, alternative ways to obfuscate usage values, multi-resource
scenarios, and an empirical evaluation of the proposed protocol.

Acknowledgements. This work has been funded by the Helmholtz
Association through the KASTEL Security Research Labs (HGF
Topic 46.23), and by funding of the German Research Foundation
(DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s
Excellence Strategy — EXC 2050/1 - Project ID 390696704 — Cluster
of Excellence “Centre for Tactile Internet with Human-in-the-Loop”
(CeTI) of Technische Universitit Dresden.

138

BAzAAR: Anonymous Resource Sharing

REFERENCES

[11]
[12]

U. Aivodji et al. 2018. Sride: a privacy-preserving ridesharing system. ACM
WISEC.

Mihir Bellare et al. 1998. Relations among notions of security for public-key
encryption schemes. In IJACR Cryptology ePrint Archive.

Roger Dingledine et al. 2004. Tor: the second-generation onion router. In
USENIX Security.

Taher Elgamal. 1984. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Annual International Cryptology Conference.
Philippe Golle. 2006. A private stable matching algorithm. In Financial Cryp-
tography.

Yuan Hong and Jaideep Vaidya. 2014. An inference-proof approach to privacy-
preserving horizontally partitioned linear programs. Optimization Letters.
Junxin Huang, Yuchuan Luo, Ming Xu, Bowen Hu, and Jian Long. 2022. Pshare:
privacy-preserving ride-sharing system with minimum-detouring route. Ap-
plied Sciences.

Andreas Klinger and Ulrike Meyer. 2023. Privacy-preserving fully online match-
ing with deadlines. ACM CODASPY.

Christiane Kuhn et al. 2018. On privacy notions in anonymous communication.
PoPETS.

Peeter Laud and Alisa Pankova. 2013. On the (im)possibility of privately out-
sourcing linear programming. ACM CCSW.

Ania M. Piotrowska et al. 2017. The loopix anonymity system. USENIX Security.
Sara Ramezanian et al. 2022. Lightweight privacy-preserving ride-sharing
protocols for autonomous cars. ACM CSCS.

Jaideep Vaidya. 2009. Privacy-preserving linear programming. In ACM SIGAPP.
Liehuang Zhu et al. 2017. Privacy protection using a rechargeable battery for
energy consumption in smart grids. IEEE Network.

A KUHN ET AL’S SENDER UNOBSERVABILITY

Kuhn et al. define a set of privacy notions for anonymous com-
munication [9]. One of these notions is Sender Unobservability,
abbreviated as SO, which intuitively expresses that the communica-
tion protocol may disclose information about active receivers and
messages, but has to hide all information about senders.

139

WPES ’23, November 26, 2023, Copenhagen, Denmark

Sender Unobservability is formalized via an indistinguishability
game played between a challenger C and an adversary A. Each
communication is expressed as a tuple (s, r, m, aux), where s is the
sender, r the receiver, m the message, and aux optional auxiliary
information such as session identifiers. The lack of a communication
is denoted with the symbol ‘¢’. Communications are grouped into
batches, which in turn are grouped into scenarios.

The SO game proceeds as follows:

(1) C draws a coin b € {0, 1} uniformly at random.

(2) A submits a challenge Ch = (Sp, S1) consisting of two sce-

narios.

(3) Let ry, ; be the ith batch of scenario Sp, containing communi-

cations Tbij € {(Sb,ij» Th,i js Mb,i,j» AUXpj j), o} C checks if
forallb e {0,1},ie {1,...,k},je{1,...,1}:

r1,ij = (S1,,j: 70,i,j» Mo i,j» AUX0,i,)
€Ty,

This check ensures that communications between scenarios
only differ in their senders and that there are no ‘empty’
communications in either scenario.

(4) C simulates the protocol to be tested IT with the communi-
cations from Sj,.

(5) Any protocol output II(Sp) during this simulation is for-
warded to A.

(6) A processes the received information and returns its guess
b’ € {0, 1} for b.

A wins if b’ = b. II achieves SO if there exists no probabilistic

polynomial time adversary who can win the game defined above
with a non-negligible advantage over random guessing.

	Abstract
	1 Introduction
	2 Related Work
	3 Model & Goals
	3.1 Setting and Adversary
	3.2 Privacy Goals

	4 Design
	5 Protocol
	6 Security Analysis
	7 Conclusion
	A Kuhn et al.'s Sender Unobservability

