KIT | KIT-Bibliothek | Impressum | Datenschutz

Stability of solitary wave solutions in the Lugiato–Lefever equation

Bengel, Lukas 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We analyze the spectral and dynamical stability of solitary wave solutions to the Lugiato-Lefever equation (LLE) on R. Our interest lies in solutions that arise through bifurcations from the phase-shifted bright soliton of the nonlinear Schrödinger equation (NLS). These solutions are highly nonlinear, localized, far-from-equilibrium waves, and are the physical relevant solutions to model Kerr frequency combs. We show that bifurcating solitary waves are spectrally stable when the phase angle satisfies θ(0,π), while unstable waves are found for angles θ(π,2π). Furthermore, we establish orbital asymptotical stability of spectrally stable solitary waves against localized perturbations. Our analysis exploits the Lyapunov-Schmidt reduction method, the instability index count developed for linear Hamiltonian systems, and resolvent estimates.

Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000165621
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 22 S.
Serie CRC 1173 Preprint ; 2023/25
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter stability, bifurcation theory, Lugiato-Lefever equation
Relationen in KITopen

Volltext §
DOI: 10.5445/IR/1000165621
Veröffentlicht am 15.12.2023
Seitenaufrufe: 89
seit 15.12.2023
Downloads: 55
seit 28.12.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page