
How to Raise a Robot — A Case for Neuro-Symbolic AI in
Constrained Task Planning for Humanoid Assistive Robots

Niklas Hemken
niklas.hemken@student.kit.edu

KIT
Karlsruhe, Germany

Florian Jacob
florian.jacob@kit.edu

KIT
Karlsruhe, Germany

Fabian Peller-Konrad
fabian.peller-konrad@kit.edu

KIT
Karlsruhe, Germany

Rainer Kartmann
rainer.kartmann@kit.edu

KIT
Karlsruhe, Germany

Tamim Asfour
asfour@kit.edu

KIT
Karlsruhe, Germany

Hannes Hartenstein
hannes.hartenstein@kit.edu

KIT
Karlsruhe, Germany

ABSTRACT
Humanoid robots will be able to assist humans in their daily life, in
particular due to their versatile action capabilities. However, while
these robots need a certain degree of autonomy to learn and explore,
they also should respect various constraints, for access control
and beyond. We explore the novel field of incorporating privacy,
security, and access control constraints with robot task planning
approaches. We report preliminary results on the classical symbolic
approach, deep-learned neural networks, and modern ideas using
large language models as knowledge base. From analyzing their
trade-offs, we conclude that a hybrid approach is necessary, and
thereby present a new use case for the emerging field of neuro-
symbolic artificial intelligence.

CCS CONCEPTS
• Security and privacy→ Access control; • Computer systems
organization → Robotics; • Computing methodologies →
Neural networks; Robotic planning.

KEYWORDS
Humanoid Robots, Robot Task Planning, Activity-Centric Access
Control, Deep Learning based Access Control, Large Language
Models, Neuro-Symbolic Access Control

1 INTRODUCTION
With an intensifying labor shortage in the care sector, assistive
humanoid robots will most likely become a necessity in the future
of our aging society. These robots will need to invade the most
private spaces of humans they care for, thus safety, security and
privacy issues in this field are of utmost importance. The potential
of humanoid robots to assist humans lies in the ability to learn
whatever is needed for assistance. However, ‘whatever is needed’
has to be restricted to safeguard safety, security, and privacy poli-
cies and preferences. The challenge for classical approaches, i.e.,
based on symbols and logical formulas, to ensure constraints lies in
the task universality of humanoid robots. Their wide range of tasks
and deployment favors approaches in which the robot is granted
increased sovereignty and should learn its authorizations in the
field. Learning promises scalability of problem complexity up to
task universality, while keeping manual specification complexity
manageable for humans. However, learning changes the nature of

Personal Room
Please clean the

table!Dishes: Not
personal, owned
by the care home

Newspaper:
Personally owned,
can be moved

Diary: Very
personal, should
not be moved

Figure 1: An assistive robot is tasked to clean the table in the per-
sonal room of a care home resident. The challenge is to integrate an
abstract “do not move private objects” policy as specific constraints
into robot task planning. While privacy has a common understand-
ing, it is a subjective preference that needs ad-hoc assessment by the
robot. On the table are care home-owned dishes, thus not personal.
The newspaper is personally-owned but contains no private infor-
mation. The diary is personal and private.

access control from certain enforcement to probable observance.
Future use cases of assistive robots in care home will require com-
plex systems of requirements regarding safety, security and a lot of
personalized requirements when directly interacting with patients.
While some of these requirements are prescribed in policy docu-
ments like the official instructions for human care-home workers
accessible to the robot via manual translation or machine learning,
some requirements are purely based on “common sense” and a
common understanding of social norms not compiled in a machine-
readable way. An example of such norm is what objects a human
considers as private belongings and what objects can inoffensively
be interacted with. In this tech report, we investigate how symbolic
and neural methods to robot task planning can ensure symbolic and
neural constraints beyond access control, and how constraints from
policy documents and social norms can be inferred and observed
using large language models. We discuss the inherent trade-offs,
and propose neuro-symbolic hybrid methods as vision to bring
assisted living with humanoid robots into practice.

As toy example illustrated in Fig. 1, a robot is tasked to clean a
table in a personal room, for which the robot now needs a plan. It
considers whether it is allowed to move objects on the table, i.e., the
authorization to move an object is a precondition of the action for
moving that object. We assume constraints that formalize policies
like “do not move personal items”, which allow, e.g., the removal

1

ar
X

iv
:2

31
2.

08
82

0v
1

 [
cs

.R
O

]
 1

4
D

ec
 2

02
3

https://orcid.org/0009-0001-3620-3462
https://orcid.org/0000-0002-5739-8852
https://orcid.org/0000-0001-8120-933X
https://orcid.org/0000-0002-8891-9366
https://orcid.org/0000-0003-4879-7680
https://orcid.org/0000-0003-3441-3180

Niklas Hemken et al.

of care home owned dishes, but disallow moving a diary. To put
user-instructed policies like that in concrete terms, the robot needs
a kind of policy information database or knowledge base to decide
whether an action with an object is actually constrained by a policy.

2 RELATEDWORK
In a first attempt to tackle this problem of balancing sovereignty
and ‘obedience’, we proposed a joint modeling framework for robot
task planning and access control [1]. By directly incorporating
access control into task planning, robots are unable to even “think
about” forbidden behavior. This tech report is an extended version
of our poster abstract [6]. While the fit between the notion of an
activity in Activity-Centric Access Control (ACAC) [5] and task
planning was shown in theory, we now report on preliminary
practical insights. Recently, machine-learning-based approaches
to assist or even completely perform access decisions have been
proposed, as seen with Machine-Learning- and Deep-Learning-
based Access Control (MLBAC/DLBAC) [11].

3 PROBLEM STATEMENT AND DEFINITIONS
We describe the problem as follows. A prompt is an instruction
given by a user to perform a task to reach a certain goal. A signal-
based prompt is, e.g., a user-written text or a microphone recording.
A symbol-based prompt is formalized and refers to abstract sym-
bols, like subjects, objects, and locations with attributes. A plan is a
sequence of actions to be performed by the robot to fulfill the task
and reach the goal based on its current initial state. A symbol-based
plan is a sequence of abstract actions with their pre- and postcondi-
tions (effects) that is converted to a signal-based plan in the form of
actuator commands needed for execution. Planning is the problem
of finding such a sequence of actions. Symbolic planning does so by
reshaping logical formulas, and needs a symbol-based prompt as
input to output a symbolic plan. Symbolic planning can be imple-
mented either with classical search algorithms or symbolic artificial
intelligence, but always uses a localist data representation where
one symbol is represented in one discrete variable in information
processing. Neural planning is the forward pass through a deep
neural network that learned to plan, and can either use a symbol-
or signal-based prompt, to either create a symbol- or signal-based
plan. End-to-end planning infers a signal-based plan from a signal-
based prompt. Neural information processing usually operates on
a distributed data representation where one specific representation
of a symbol in the respective feature space is mapped to not one
single neuron, but a continuous activation pattern of many neurons.
The distributed data representation is the key that allowed deep
neural networks to advance past symbolic methods in terms of
generalizing from their learning material and flexibility. We say
that policies are abstract ideas of what is allowed and what is off
limits, from individual user preferences over administrative instruc-
tion documents to non-written social norms. We define constraints
as machine-executable representations of policies that have to be
considered by the planner to produce plans that adhere to the con-
straints. A symbolic constraint is a constraint in form of, e.g., a
predicate-logical formula, as in classical access control. A neural
constraint is a constraint in form of a deep neural network.

Symbolic
Environment

Symbolic
Environment

Modeling

Constraints

Designing
Constraint
Policies

Symbolic
PlanSymbolic Planning

ensuring
Constraints

Signal-based
Prompt

Actor

Signal-based
Plan

Movement
Control

R
untim

e
Training

Tim
e

D
evelopm

ent
Tim

e

Symbolic
Prompt

Natural
Language
Processing

Domain Description

Performing a
Domain
Analysis

Manual

Manual

Automatic

Robot
executing

Task

Figure 2: Workflow of designing a robot task planner using symbolic
planning and symbolic constraints. We differentiate between three
phases: In the development phase, the rules for the constraints are
designed and the modeling for the symbolic planner is done. The
training phase consists of the incorporation of such constraints into
the planner. During runtime, the plan is generated and executed.

Solving planning problems under constraints represents a classi-
cal topic. But when scaling up the complexity of tasks, constraints,
and environments to task universality in human-inhabited private
spaces, classical methods might not deliver the performance re-
quired for real-world use like humanoid robots in assisted living
scenarios. In particular, there might be an unacceptable overhead in
manual specification of constraints as well as an equally unaccept-
able overhead in computing costs. As we will indicate in Section 4,
however, neural planning struggles to actually ensure safety, se-
curity, and privacy constraints in its generated plans. Constrained
task-universal planning requires a hybrid method, for which we
see large language models, due to their proficiency in a broad range
of tasks and internalized “common sense”, and neuro-symbolic ar-
tificial intelligence, due to bridging the gap between localist and
distributed data representation, as most promising research direc-
tions (c.f. Section 5).

4 ANALYSIS OF STANDARD METHODS
4.1 Constraint-Ensuring Symbolic Planning
In symbolic planning, a planner finds a symbolic plan by search-
ing through possible robot actions, trying to find transitions that
transform the current state of the robot and its environment to
the goal state inferred from the user prompt. In practice, the de-
facto standard for this is the Planning Domain Definition Language
(PDDL) [7], which we used in the following. In our case, the initial
state is the current state of the robot and its environment, the goal
state is the goal that the prompt described as target, and the tran-
sition rules are the actions the robot is capable of. The symbolic
planner will then try to find a plan, i.e., a sequence of transitions
that transforms the initial state into the goal state. Each action has
preconditions that need to hold in order for it to be executed. Typical
preconditions are that the robot has to be at a table and empty-
handed to grab an item, or that an item has to be unobstructed to
be grabbed. Incorporating safety, security, and privacy constraints
in form of preconditions is a natural approach to generate plans
that are aware of such constraints, as shown in Listing 1.

2

How to Raise a Robot — A Case for Neuro-Symbolic AI in Constrained Task Planning

1 (: a c t i on c l e a n _ f r om_ t a b l e
2 :parameters
3 (? r obo t − robo t
4 ? t a b l e − l o c a t i o n
5 ? ob j − on_ t a b l e
6 ? remove − l o c a t i o n)
7 :precondi t ion (and
8 (non_per sona l ? ob j)
9 (a t ? r obo t ? t a b l e)
10 (a t ? ob j ? t a b l e)
11 (remove_ loc ? remove)
12)
13 : e f f e c t (and
14 (not (a t ? ob j ? t a b l e))
15 (a t ? ob j ? remove)
16))
17 . . .
18 (: i n i t
19 (a t r obo t s t a r t)
20 (a t newspaper t a b l e)
21 (a t d i a r y t a b l e)
22 (a t d i s h e s t a b l e)
23 (non_per sona l d i s h e s)
24 (non_per sona l newspaper)
25 (p e r s on a l d i a r y)
26 (remove_ loc remove))
27 (: goa l
28 (f o r a l l (? ob j − on_ t a b l e) (or
29 (and (non_per sona l ? ob j) (a t ? ob j remove))
30 (and (p e r s on a l ? ob j) (a t ? ob j t a b l e))
31))))

Listing 1: Excerpt from our PDDL domain description

Since the abstraction of a PDDL transition corresponds toACAC’s
main abstraction of an activity, these two concepts can be easily
combined. This workflow is illustrated in Fig. 2. We identify three
different phases when designing such planner. Only during runtime
we automatically generate plans, while during development and
training time, manual work needs to be done. We were able to map1
the preconditions of ACAC directly into the preconditions of PDDL,
as well as the resulting conditions of an activity, which could be
represented as effect in PDDL.

However, ACAC’s contextual conditions and current conditions,
which are checked during the execution of an action, are not di-
rectly translatable. Contextual conditions require PDDL extensions
to query external data. Current conditions require PDDL extensions
that allow temporal planning and durative, interruptible actions.
While it is possible to incorporate toy examples of ACAC into PDDL,
we question the scalability up to the humanoid robots in a care
home use case without requiring an equally complex manual spec-
ification. Every possible action, every possible object and every
ACAC policy needs to be considered, inherently prohibiting such
systems from being task-universal. While symbolic artificial intelli-
gence can learn incrementally in the field and can thereby reduce
manual specification complexity while still being understandable
and tunable by humans, adapting symbolic artificial intelligence to
a broad range of situations is still a ‘very manual’ process.

By relaxation from constraint-ensuring to constraint-observing
planning, recent developments in the field of machine-learning
based access control can be employed. Feasibility of access decisions
performed by machine learning methods such as neural networks

1Full artifacts available: https://github.com/kit-dsn/how-to-raise-a-robot-beyond-ac

Training Data

Collection of
Data on
Planning

Constraints
Training of
Constraint

Model

Neural Network
Parameters

End-to-End
Learning of

Neural Planner

Signal-based
Plan

Neural Planning
observing

Constraints

Robot
executing

Task
Signal-based

Prompt

Actor

R
untim

e
Training

Tim
e

D
evelopm

ent
Tim

e

Automatic

Automatic

Manual
Training Data

Collection of
Data on

Constraints

Figure 3: Workflow of designing a neural planner that satisfies neu-
ral constraints. The development phase now consists only of data
collection. The training phase includes the actual training of the
deep neural network, while the neural constraints are being fed into
the training of the planner. During runtime, a forward pass through
the network is performed.

was, e.g., shown by Nobi et al. [12]. However, current systems show
quite large error margins, reaching a precision of about 0.9. Nobi
et al. propose the Deep Learning Based Access Control model, where
a neural network directly performs access decisions. Such systems
are mostly trained on access logs and further user and resource
metadata. To combine symbolic planning with a learned access
control model, the planner queries the learned model in addition or
instead of symbolic constraint formulas, and uses a learned heuristic
function that classifies branches of the state space as dead ends if a
constraint is violated.

4.2 Constraint-Observing Neural Planning
Deep-learned neural planners promise to be scalable to complex
deployments, and are the natural counterpart to deep-learning
based access control. When combining a neural constraint model
with a neural planner, one gets a workflow as illustrated in Fig. 3.
Again we identify three different phases. Compared to symbolic
planning with symbolic constraints, i.e., classical access control,
we can now perform the training phase automatically. Only the
development needs manual work, which improves scalability.

However, incremental learning without catastrophic forgetting
is still an unsolved problem in deep neural networks. Therefore,
changes in the policy make retraining of the neural planner and
neural constraints necessary. Still, ways to tackle policy changes in
a manageable way have been shown regarding DLBAC administra-
tion [11]. The main idea is to retrain the networks in small steps,
only using training data that represents the update that should be
introduced. This intends to only change the neural networks to
incorporate the new data from the update, but this cannot be guaran-
teed. One could also consider incorporating neural constraints into
the reward calculation of reinforcement-learning based planners.

We can also combine neural planning with symbolic activity
control. Analogously to the previous paragraph, but unconven-
tionally for Generative Adversarial Network (GANs), one might
use symbolic constraints as discriminators to train the end-to-end
learning-based neural planners. It is challenging to provide a dis-
tributed representation of constraints, since symbolic constraints

3

https://github.com/kit-dsn/how-to-raise-a-robot-beyond-ac

Niklas Hemken et al.

are localist representations. As approximation, a first step can be
realized by using the differentiable loss function provided by ex-
isting deep learning based constraint systems, which can be used
to train the network. Although this approach might not be as scal-
able to complex deployments due to manual policy engineering
as learning neural constraints, it is more efficient to administrate
since the symbolic constraints do not need to be retrained after
a change. For our running example, we now need to incorporate
policies on what are personal items again, which makes the whole
process inherently more complex. Even though the neural plan-
ner learns its behavior, extensive policy engineering needs to be
done. Once the training of the end-to-end learning-based planner is
finished, this approach behaves similarly to using a deep-learning
based activity control system: Given a prompt, the robot performs
a forward pass through the neural planning network and receives
a plan that probably observes the desired constraints.

5 ANALYSIS OF UPCOMING METHODS
While symbolic and neural constraints are quite different compared
to each other, the process of integrating any type of constraints
in either symbolic or neural planning is similar. Therefore, one is
not limited to choosing only one combination. We instead argue
for a hybrid approach to combine the best of both worlds: one
can use neural planning and neural constraints for versatility and
universality, but ensure critical policies as symbolic constraints
during runtime. For critical situations with limited universality, one
can also fall back to symbolic planning to find an accurate solution
slowly. Neural systems could also serve as recommendation engine
for new policies that enhance the existing logical solution.

Recently, Large Language Models (LLMs) became a popular
method for artificial intelligence. Especially the model ChatGPT
by OpenAI [13] caught the attention of the general public, due
to its seemingly close resemblance of human conversation while
also being able to give symbolic answers, like solving a task in a
programming language or even PDDL. Due to their proficiency in
processing and generating both signal- and symbol-based input
and output, they are a natural building block for hybrid systems.

Neuro-symbolic artificial intelligence stands for the combina-
tion of symbolic and neural approaches to solve problems, and
promises the “best of both worlds”, i.e., combining the advantages
of both symbolic and neural methods. Thus, the popularity of neuro-
symbolic methods has risen in recent years [14], and those methods
promise to bring together the flexibility of neural planning with
guaranteeing constraint satisfaction of symbolic planning. We dis-
cuss LLMs using our toy example next, and then generalize to
discuss neuro-symbolic methods to constraint-ensuring universal
task planning in the following.

5.1 LLMs as Planner and Knowledge Base
While LLMs represent a break-through for dialogues with humans,
LLMs are capable of solving many kinds of problems given the right
prompt. Due to this versatility, LLMs are foundational models, from
which a problem-specific model is derived through priming. The
LLM can act on the priming because of the breadth and sheer size
of its training data, which includes descriptions of planning prob-
lems, but also allows the models to generalize knowledge between

Symbolic
Plan

Neuro-simulated
Symbolic Planning

Robot
executing

Task
Audio-Visual

Prompt

Actor

R
untim

e
Training

Tim
e

D
evelopm

ent
Tim

e

Automatic

Automatic

Manual
Prompt describing

Constraints

Data on
Constraints

Prompt describing
Planning

Data on
Planning

LLM Training

Training Data

Large Language
Data Collection

LLM Foundation Model

LLM Priming

LLM primed as
Symbolic Planner

Figure 4: Workflow of designing a robot task planner using a multi-
modal large language model as foundation model. In the develop-
ment phase, the prompts for priming are manually engineered.

domains – for an LLM, solving a planning problem like the classical
wolf, goat and cabbage river crossing problem in English is of no
fundamental difference than solving it in another natural language,
or in a formal planning language like PDDL.

We now describe an experiment with priming LLMs to behave
like symbolic planers to solve constrained planing problems. We
can see such a workflow illustrated in Fig. 4. With recent advances
in multimodal large language model, we envision the model to
operate not only on textual information, but also on audio-visual
user prompts. We tested the primed LLM approach1 by formulat-
ing our running example as natural-language prompt, and used
ChatGPT 4 as constraint-observing neural planner to generate
natural-language plans, shown in Listing 2. Specifically, lines 1 and
12 reduce ChatGPT to a constraint-observing neural planner by
making it emulate a constraint-ensuring symbolic planner. Lines
2-8 simulate sensors and memory, lines 9-11 instruct ChatGPT with
a goal and constraints. We obtain a plan that reaches the goal of
cleaning the table, while not interacting with the most personal
item on the table, the diary. This experiment shows that we can use
a GPT-based LLM to do neural planning while observing neural
constraints inferred from natural-language prompts.

One interesting effect of using LLMs for constraint-observing
planning is their performance on problems that require knowledge
of common sense. Our toy example delivered an insight into such
behavior. We tasked the LLM-based planner with only handling
objects that are not considered private. From experience and in-
tuition, humans know that a diary is a very private object and
dirty dishes are not, but machines need to encode such information
somehow. When using LLMs as planner, such information does
not need to be given explicitly to the planner, because the LLM
can infer it from its training data. Since it is trained on extensive
textual data that encodes a lot of human interaction, such social
norms are known. When asked whether a diary is private, a yes has
a higher probability than a no. The LLM therefore not only acts as
a symbolic planner, but also as knowledge base for common sense
and object attribution for the simulated planner. This integrated
knowledge is of tremendous value for systems deployed in real
world applications, because such social norms will no longer need
to be encoded directly, if a system should obey to them. Especially
humanoid assistive robots act in very sensitive environments and

4

How to Raise a Robot — A Case for Neuro-Symbolic AI in Constrained Task Planning

1 Suppose you are a symbolic planning system that generates plans for task−
universal assistive and humanoid robots based on a domain description
that is provided below.

2 Domain:
3 − Care home that uses robots to care for their residents. The care home has lots

of personal rooms for the residents, common spaces like a dining area,
and administrative spaces like a kitchen or offices

4 − Personal room of a resident, that has a table inside
5 − on the table are the following things:
6 − newspaper that was paid for by the resident
7 − dirty dishes that are owned by the care home and are cleaned by the care

home
8 − a diary that most certainly contains very private information
9 Goal: Remove as many objects from the table as possible
10 Constraints: Do not interact with objects that you would consider personal.
11 Possible actions: Move, analyze an object, take an object, place an object
12 Put out the plan in terms of a sequence of actions the robot performs. Put out

the action you used and the object you interacted with or where the
object was placed. You can only use the actions from the list above. Put
out a list of actions and objects that the plan consists of. Summarize the
reasoning for the overall plan as a single text paragraph. The plan must
be conform with all given constraints.

13 # Exemplary output from ChatGPT 4
14 Plan Sequence:
15 1. Analyze object: newspaper
16 2. Analyze object: dirty dishes
17 3. Analyze object: diary
18 4. Take object: dirty dishes
19 5. Move to: kitchen or designated cleaning area
20 6. Place object: dirty dishes in cleaning area or dishwashing station
21 Reasoning:
22 Given the constraints and the goal, the robot needs to first distinguish between

objects that are personal and objects that belong to the care home.
Analyzing each object ensures the robot can determine its nature and
importance. The newspaper, although bought by the resident, could be
seen as potentially non−intrusive. However, it was paid for by the
resident which could imply some personal value, so it's left untouched.
The diary is most certainly private, so it's not touched. The dirty dishes
belong to the care home and must be cleaned, so they are the only
objects removed from the table, in line with the constraints set.

Listing 2: A prompt to simulate a symbolic planner for a basic domain
description, and the ChatGPT 4 answer. Shared chat transcript at:
https://chat.openai.com/share/77d31c8a-239c-4d57-a96c-f70078f88503

will need to follow a very complex set of rules. While some of these
rules will be available in the form of certain documents, some rules
will only exist in the form of social norms, for which no single “ISO
norm” document exists. LLMs provide a solution to encoding such
norms, without extensive work on building a symbolic version of
them. Thus, LLMs serve as knowledge bases for such systems.

In our experiments, the dishes were always moved to the kitchen,
while the newspaper and diary were always considered too per-
sonal to interact with. However, with ChatGPT 3.5, the newspaper
was sometimes interacted with and sometimes not, showing proba-
bilistic instabilities not present with a (non-probabilistic) symbolic
planner. These instabilities stem from the fact that the LLM only
simulated a symbolic planner, using neural methods. The LLM
chose among the predicted text continuations with the highest
probability, and if two alternatives have no clear winner, the solu-
tion will vary. In contrast to actual symbolic planning, there are
no guarantees on stability, correctness, or other properties of the
solution. In contrast, systems built to perform robot task planning
usually have guarantees regarding the validity and correctness

1 A farmer with a pig, a goat, and a cabbage must cross a river by boat. The boat
can carry only the farmer and a single item. If left unattended together,
the goat or the pig would eat the cabbage. How can they cross the river
without anything being eaten?

2 # Exemplary output from ChatGPT 4
3 The puzzle you've described is a classic river crossing problem, though it's

typically presented with a wolf, a goat, and a cabbage. The solution to
this problem, where the pig or the goat would eat the cabbage if left
unattended, is as follows:

4 1. The farmer takes the goat (or pig, it doesn't matter which) across the river
first and leaves it on the other side.

5 2. The farmer then goes back alone to the original side.
6 3. He takes the cabbage across the river next.
7 4. After leaving the cabbage on the other side, he takes the goat (or pig) that

was left there during the first trip back with him to the original side.
8 5. He leaves the goat (or pig) on the original side and takes the pig (or goat, the

one he hasn't taken across yet) to the other side.
9 6. The farmer leaves the pig (or goat) with the cabbage on the other side and

goes back to the original side to get the goat (or pig).
10 7. Finally, he takes the goat (or pig) across the river.
11 Now, all three items − the pig, the goat, and the cabbage − are safely on the

other side of the river. At no point were the cabbage and the animals
left unattended together, so nothing was eaten.

Listing 3: A river crossing puzzle as stated inWikipedia [15], but with
the wolf replaced by a pig. The ChatGPT 4 solution leaves either
of the herbivores alone with the cabbage. Shared chat transcript:
https://chat.openai.com/share/b9eef797-a4ad-4b50-a9d1-3cc294e744f6

of produced plans, but LLMs instructed to behave like symbolic
planners cannot provide guarantees on stability, correctness, or
other properties of the solution. Planning-primed LLMs produce
outputs that sound like a plan, but that are not necessarily a correct
or even valid plan. For example, Listing 3 shows a prompt for a
variation of the river-crossing problem usually formulated using
a wolf, a goat, and a cabbage, which is a common way to test the
limits of LLMs (c.f., e.g., Gerhard Paaß in [4]). Here, the wolf is
replaced with a pig, and the constraints are stated accordingly that
neither of the animals can be left unattended with the cabbage.
While ChatGPT 4 confirms this fact, its plan does not ensure this
constraint, as it leaves one of the animals alone with the cabbage,
due to missing symbolic understanding of the problem. Instead, it
provides a solution similar to the regular solution with the wolf, due
to its prevalence in the training data. This example demonstrates
that while likelihood-based text completion can simulate symbolic
reasoning, it is currently no replacement for it.

While LLMs worked well for showcasing versatile planning be-
havior based on the knowledge of social norms in our toy example,
the river-crossing problem example confirms the need for symbolic
reasoning to get correct solutions. The emerging field of neuro-
symbolic artificial intelligence acts as a promising direction to com-
bine versatility and correctness, which we look into next.

5.2 Integration of Neural and Symbolic AI
The term neuro-symbolic AI directly describes systems that combine
symbolic with neural approaches. The above-mentioned hybrid sys-
tems would fall into this category. Neuro-symbolic AI systems are
differentiated on the extent of the integration of symbolic data rep-
resentation in the neural process. Kautz [9] differentiates between
six different types of neuro-symbolic integration (c.f. Table 1). This
classification ranges from standard deep learning or large language

5

https://chat.openai.com/share/77d31c8a-239c-4d57-a96c-f70078f88503
https://chat.openai.com/share/b9eef797-a4ad-4b50-a9d1-3cc294e744f6

Niklas Hemken et al.

Lvl Description based on
Garcez et al.[3]

Example for Constrained
Robot Task Planning

1 Standard neural networks
deep-learned for using
symbolic input and output

Learned neural network plan-
ner that produces symbolic
plans from symbolic prompts

2 Aneural network is loosely
coupled with a symbolic
problem solver

A LLM is used as knowledge
base for a symbolic constraint
system

3 A neural network focus-
ing on one task is interact-
ing with a symbolic system
performing a complemen-
tary task

A neural planner produces
symbolic plans, which are ver-
ified post-planning to ensure
symbolic security and privacy
constraints trough a symbolic
constraint system

4 Symbolic knowledge is
given into the training set
of a neural network

The training data is generated
by a simulator based on sym-
bolic domain and constraint
representations

5 Symbolic logic is mapped
onto an embedding which
acts as a soft-constraint on
the network’s loss function

The loss function of a neural
planner has an embedded sym-
bolic constraint system, penal-
izing illegal plans and empha-
sizing legal ones

6 True symbolic reasoning
inside a neural engine

A neural planner runs com-
pletely on a symbolic repre-
sentation of the domain and
its constraints

Table 1: Levels of neuro-symbolic integration according to Kautz [9]
and their respective realization for robot-task planning.

models, where the input and output can be symbolic, but the inner
workings are not, to type six integration, where full symbolic rea-
soning should be possible within the neural engine. We especially
want to emphasize how the integration of symbolic reasoning into
the training process happens on each level. For our analysis, we con-
sider each level and give an example mapping for our constrained
task planning scenario.

Our first experiment using a symbolic planner and PDDL from
Section 4.1 has no neural reasoning at all, i.e., provides no neuro-
symbolic integration, and therefore one could say it is a “level
zero” system. The same is true for our end-to-end learned neural
planner architecture from Section 4.2, as no symbolic representation
is involved.

Kautz’ categorization starts with level one, which is classical
deep learning trained on symbolic input to produce symbolic output.
Since there is no symbolic reasoning inside the system, the data
representation is purely distributed inside the neural engine. The
integration of constraint satisfaction may be possible by only using
valid plans as training data, hoping to not generate invalid ones.
The LLM system from Section 5.1 would fall in this category, if we
prompted it with symbolic inputs to produce symbolic outputs, e.g.
in PDDL.

On level two, there are loosely coupled systems. This loose
coupling is given if a symbolic problem solver uses a neural sys-
tem as some kind of sub-routine, as stated by Kautz [9]. In our
constrained task planning case, this level could be reached with
a symbolic planer like in our first experiment, enhanced to use a
LLM as knowledge base. The sub-routine would allow the symbolic
planner to check an item for its level of privacy and the societal
knowledge encoded in the LLM. It is important to note that the
training process of both parts is completely decoupled, i.e., the
symbolic part has no influence on the training of the neural part
and vice-versa.

The third level is, e.g., the “do not cross the red line” approach.
We again have a distinct neural and symbolic system. On this level,
the output of one is given as input to the other one. While on level
two, the data flow was primarily handled by one of the systems,
with the other one being just a sub-routine, it is now handled by
both systems. A typical example is the pipeline of a neural computer
vision system which produces the symbolic input for a symbolic
planner, whose symbolic output is translated to motor signals by
another neural system. In our scenario, an example would be a
pipeline that feeds the symbolic plans of an LLM-based planner to
a symbolic constraint enforcement system, as seen with Yang et
al.’s LLM coupled with a linear temporal logic constraint enforce-
ment [16]. An important distinction of level three in contrast to
level two is that now both systems take part in a joint training
procedure. Kautz mentions a feedback loop that flows back from
the symbolic system to optimize the training of the neural system.

Level four represents systems where symbolic knowledge is
put into the neural system by encoding it into synthetic training
data. This approach essentially means to use symbolic knowledge
on the problem domain, but also general symbolic knowledge of
physics or mathematics applied to the domain, to generate valid
and invalid solutions to many problem instances. Note that finding
a problem instance for a given, randomly-generated solution, i.e.,
to generate a domain in which a given plan does not violate any
constraints, might be much faster than the other way around, i.e.,
actual symbolic planning. An exemplary system on this level would
be a neural constraint enforcement machine trained on synthetic
decisions logs. The training data would consist of access requests
and corresponding access decisions, generated from a set of sym-
bolic constraints that formalize the access policy. Analogously, a
neural task planner could be trained with synthetic pairs of tasks
and suitable plans. It is important to note the difference to a training
on real world access logs here: All synthetic training samples have
symbolic knowledge inherently encoded. This is not necessarily the
case on real world data, where the inherent logic might be overlaid
by pertubations, or not be present at all. Symbolically generated,
synthetic training data further deepens the integration of the sym-
bolic reasoning into the training process of the neural system. On
level three, it was a feedback loop back into the training, now it is
directly embedded.

On level five, one looks at systems where symbolic logic is di-
rectly mapped onto the loss function of the neural system. This
level is especially challenging because the distributed data repre-
sentation of a symbolic system is typically not differentiable. In
our planning example, this approach would mean that for exam-
ple a symbolic constraint enforcement is directly mapped into the

6

How to Raise a Robot — A Case for Neuro-Symbolic AI in Constrained Task Planning

loss function of the neural planner. Plans that are valid would be
emphasized by it and plans that are not valid would be penalized.
Since the symbolic logic is directly in the loss function of the neural
system, we cannot distinguish the symbolic part in the training
process anymore, it has become part of it.

The last step is further strengthening this integration of sym-
bolic logic into the neural system. Such systems are described by
level six neuro-symbolic systems, representing the deepest neuro-
symbolic integration. On this level, a real distinction of neural and
symbolic parts is almost impossible: The symbolic knowledge is
deeply encoded in the whole neural system. Systems on this level
might be compared to human brains, bridging the gap between
automatic and instinctive part of the brain and the slow and logi-
cal part, according to Kahnemanns notion of Systems 1 and 2 [8].
State of the art neural systems correspond to the System 1 fast and
instinctive part, and are not able to bridge the gap to also think
slow and logical. This behavior is exemplarily demonstrated in List-
ing 3, where ChatGPT “reads over” the peculiarities of the specific
problem instance, and instead provides a solution similar to the
one for the common instance presumably more prevalent in its
training data. Our example for this level is a neural planner that
runs completely on a symbolic representation and its constraints.
The vagueness of this example is because such system do not exist
currently, and it is still unclear how they could look like in prac-
tice, or whether they are feasible at all. However, such level six
systems would be learned symbolic reasoning machines. Due to
their capability of “thinking, fast and slow” both in the neural and
symbolic world, they would be a game-changer for constrained task
planning. One would be able to completely explain the machines
and guarantee their behavior, neither of which is currently possible
using black-box deep-learned neural methods.

6 CHALLENGES AHEAD
6.1 Neuro-Symbolic Integration of Constraint

Satisfaction and Task Planning
On current systems, we observe that task planning for real-world
robots scales best to complex situations using neural planners,
while in the access control community, symbolic approaches are
most prevalent to strictly enforce security and privacy constraints.
Therefore, we see the challenge of neuro-symbolic integration for
constrained robot task planning in integrating a neural planner
with a symbolic constraint system. While deepening the integra-
tion of the symbolic and neural spheres is still an open research
problem, we present goals and challenges for deep neuro-symbolic
integration for constrained robot task planning in the remainder of
this section.

Deep-learned neural planning requires a distributed represen-
tation of plans instead of a localist representation as a list of task
actions. With end-to-end learning-based robot task planners, we
get this distributed representation of plans for free. With the fea-
ture space being the sensor data, we can directly perform neural
operations on plan-level, which is encoded by the internal weights
of the neural network that represents the planner. To interact with
a neural planner, constraints need a distributed representation as
well. Recent developments in deep learning based access control
promise comparable approaches to the distributed representation

of end-to-end learning based robot planners. The deep neural net-
works that perform access decisions encode distributed constraints
in their internal weights, and provide a feature space on which such
constraints can be learned. However, satisfaction of constraints in
distributed representation can still not be guaranteed, as seen in
the sections above.

Thus the integration of constraint-ensuring neural task planning
and comes down to the following challenges that can be considered
variations of the well-known signal-to-symbol gap challenges:

• How can a distributed representation of planning work
together with a distributed representation of constraints?

• How can symbolic algorithms reason on a suitable dis-
tributed data representations?

• How to learn symbolic knowledge on distributed feature
spaces?

In this paper, we described approaches up to level two in the
previous sections. As a research community, we can currently build
neuro-symbolic systems up to level three and four. For level three,
we can use existing systems and plug them together, level four can
be realized using synthetic training data generated from symbolic
knowledge on planning and constraints. Obviously, the leap to level
five is the challenges, however, it would also bring humanoid as-
sistive robots on a new level that might be necessary for practical
task-universal usage in the real world. Existing neural constraint
enforcement systems such as DLBAC [12] show that the integration
of such systems into the loss function of planners appears on the
horizon of current research. Controlled text generation of LLMs
is also a current research topic, addressing the question of how to
make a LLM produce text of a specific kind, as seen with Dathari
et al. [2] or Keskar et al. [10]. Such imposing of constraints are a
promising fit for imposing constraints on planners to use LLMs in
some form, as knowledge base or even directly as planner. While
these controllers also are neural networks as of today and there-
fore are level four systems at most, an approach with symbolic
controllers would be a level five neuro-symbolic AI.

A type six neuro-symbolic system that utilizes truly symbolic
reasoning inside a neural engine would make many problems of
constraining task-universal robots disappear, and thereby represent
a major break-through for secure, private, but task-universal hu-
manoid assistive robots in the real world. Such a highly-integrated
neuro-symbolic system would be as task-universal, flexible and fast
as today’s neural planners, but still able to guarantee that learned
constraints would be met as today’s symbolic planners. A truly
neuro-symbolic system would easily be able to scale in the dimen-
sion of task and constraint complexity, because those could be
learned and would not need to be manually designed. However,
while we seem to have major parts for functioning level five neuro-
symbolic systems, level six still presents a grand challenge that is
possibly much farther off in the future, if achievable at all.

However, a deep level six neuro-symbolic integration might not
be necessary for acceptable trade-offs regarding constrained task
planning. Pure symbolic problem solving always comes with the ad-
vantage of guaranteeing certain behavior, which neural approaches
cannot provide. For example, one could think of high-level sym-
bolic planners that provide a general idea, and only fine-grained
planning is done using neural systems. The same idea can be used

7

Niklas Hemken et al.

for constraints that are imposed or observed by such planning sys-
tems. The integration of symbolic reasoning might also be done
by imposing symbolic red lines to the neural planning system. The
neural planner would then be constrained by a symbolic system
that encodes rules of high importance. Aspects with a lower secu-
rity level can however be constrained by a neural planning system,
because errors do not have such an impact there.

6.2 Next Steps
In this paper, we argued that neuro-symbolic hybrid approaches
are necessary to bring constrained task-universal planning to real-
world problem complexity. We listed many variations of possible
hybrid approaches, which still need to prove their feasibility in
real robot experiments. Feasibility especially means how well the
different approaches cope with practical task and policy complexity
in e.g. our assistive humanoid robot in care homes scenario. A
practical feasibility analysis could also determine necessary and
sufficient levels of neuro-symbolic integration for the scenario,
finding out what type of neuro-symbolic integration would fit best.
While deploying neuro-symbolic systems on real robots might be an
extensive challenge, simulating such situations with the necessary
degree of realism using information gathered from care homes
seems feasible.

In the space of possible neuro-symbolic approaches, we see LLMs
as most promising building block due to their inherent knowledge
on social norms and ability to work with multi-modal, layered
instructions - we imagine a LLM that is primed to behave like a hu-
manoid assistive robot in a care home using documents and norms
for human trainees, that use input from the robot’s camera, other
sensors and memory to perform a task given as voice command in
natural language. However, further research into guaranteeing valid
plans or even correct plans when using LLMs is necessary – we see
a promising direction in building upon advances in controlling LLM
output as a way to make LLM-based planners adhere to constraints.
In addition, performance of LLM-based planning in comparison to
standard symbolic and neural planning systems in terms of speed
and correctness is yet to be evaluated. Specific to LLMs used as
knowledge base for planners, the general performance of inferring
social norms also has to be evaluated.

Orthogonal to testing the feasibility of current ideas for hybrid
approaches, neuro-symbolic AI advances as a field of itself. Any
progress in this field, especially in the integration of a neural engine
and a symbolic constraint system, would be directly applicable in
constrained task planning for humanoid assistive robots.

7 CONCLUSION
We discussed combinations of symbolic and neural constrained task
planning approaches. We highlighted their trade-offs and showed
their benefits and shortcomings. While neural planners scale better
to complex deployments in terms of required manual specification,
they introduce an error margin and hinder administrability. The
usage of neural systems such as LLMs as knowledge base for ac-
cess decisions presents a direct way of incorporating social norms
into such access decisions. Designing symbolic planning systems,
however, requires more manual tasks than neural planning sys-
tems. While neural systems seem have in advantage when scaling

problem complexity up to task universality, to actually teach them
security, they do not only challenge us to quantify what we mean
with security, but also to make that notion differentiable. In order to
create deployable systems one should, therefore, strive for hybrid
designs to combine best of both worlds: neural planning with neural
constraints leads to probable observance of policies, critical poli-
cies will be safeguarded by symbolic constraints. Neuro-symbolic
AI promises to advance this field of constrained task planning of
assistive humanoid robots.

ACKNOWLEDGMENTS
We like to thank Jan Niehues for his valuable comments, in par-
ticular for his hints on controlled text generation and controller
architectures. This work has been supported by the project “Stay
young with robots” (JuBot). The JuBot project was made possible
by funding from the Carl Zeiss Foundation.

REFERENCES
[1] Saskia Bayreuther, Florian Jacob, Markus Grotz, Rainer Kartmann, Fabian Peller-

Konrad, Fabian Paus, Hannes Hartenstein, and Tamim Asfour. 2022. BlueSky:
Combining Task Planning and Activity-Centric Access Control for Assistive
Humanoid Robots. In Proceedings of the 27th ACM Symposium on Access Control
Models and Technologies (SACMAT ’22). ACM, New York, 185–194. https://doi.
org/10.1145/3532105.3535018

[2] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero
Molino, Jason Yosinski, and Rosanne Liu. 2020. Plug and Play Language Models:
A Simple Approach to Controlled Text Generation. arXiv:1912.02164 [cs.CL]

[3] Artur d’Avila Garcez and Luis C. Lamb. 2023. Neurosymbolic AI: The 3rd wave.
Artificial Intelligence Review (2023). https://doi.org/10.1007/s10462-023-10448-w

[4] Arne Grävemeyer. 2023. Chatbots reinlegen – Wie man KI-Sprachgeneratoren
entlarvt. c’t 16 (2023), 116–119. https://www.heise.de/select/ct/2023/16/
2313010292321745772 (“Fooling Chatbots - How to Expose AI Speech Gen-
erators.”).

[5] Maanak Gupta and Ravi Sandhu. 2021. Towards Activity-Centric Access Control
for Smart Collaborative Ecosystems. In Proceedings of the 26th ACM Symposium on
Access Control Models and Technologies (SACMAT ’21). ACM, New York, 155–164.
https://doi.org/10.1145/3450569.3463559

[6] Niklas Hemken, Florian Jacob, Fabian Peller-Konrad, Rainer Kartmann, Tamim
Asfour, and Hannes Hartenstein. 2023. Poster: How to Raise a Robot - Beyond
Access Control Constraints in Assistive Humanoid Robots. In Proceedings of
the 28th ACM Symposium on Access Control Models and Technologies (Trento,
Italy) (SACMAT ’23). Association for Computing Machinery, New York, NY, USA,
55–57. https://doi.org/10.1145/3589608.3595078

[7] Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. 1998. PDDL – The Planning Domain Definition
Language. Technical Report. Yale Center for Computational Vision and Control.

[8] Daniel Kahneman. 2011. Thinking, Fast and Slow. Farrar, Straus and Giroux, New
York.

[9] Henry A. Kautz. 2022. The third AI summer: AAAI Robert S. EngelmoreMemorial
Lecture. AI Magazine 43, 1 (2022), 105–125. https://doi.org/10.1002/aaai.12036

[10] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and
Richard Socher. 2019. CTRL: A Conditional Transformer Language Model for
Controllable Generation. arXiv:1909.05858 [cs.CL]

[11] Mohammad Nur Nobi, Ram Krishnan, Yufei Huang, and Ravi Sandhu. 2022.
Administration of Machine Learning Based Access Control. In ESORICS 2022.
Springer, Cham, 189–210. https://doi.org/10.1007/978-3-031-17146-8_10

[12] Mohammad Nur Nobi, Ram Krishnan, Yufei Huang, Mehrnoosh Shakarami, and
Ravi Sandhu. 2022. Toward Deep Learning Based Access Control. In Proceedings
of the Twelfth ACM Conference on Data and Application Security and Privacy
(CODASPY ’22). ACM, New York, 143–154. https://doi.org/10.1145/3508398.
3511497

[13] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[14] Amit Sheth, Kaushik Roy, and Manas Gaur. 2023. Neurosymbolic AI – Why,

What, and How. arXiv:2305.00813 [cs.AI]
[15] Wikipedia contributors. 2023. River crossing puzzle. https://en.wikipedia.org/w/

index.php?title=River_crossing_puzzle&oldid=1150277959
[16] Ziyi Yang, Shreyas S. Raman, Ankit Shah, and Stefanie Tellex. 2023. Plug

in the Safety Chip: Enforcing Constraints for LLM-driven Robot Agents.
arXiv:2309.09919 [cs.RO]

8

https://doi.org/10.1145/3532105.3535018
https://doi.org/10.1145/3532105.3535018
https://arxiv.org/abs/1912.02164
https://doi.org/10.1007/s10462-023-10448-w
https://www.heise.de/select/ct/2023/16/2313010292321745772
https://www.heise.de/select/ct/2023/16/2313010292321745772
https://doi.org/10.1145/3450569.3463559
https://doi.org/10.1145/3589608.3595078
https://doi.org/10.1002/aaai.12036
https://arxiv.org/abs/1909.05858
https://doi.org/10.1007/978-3-031-17146-8_10
https://doi.org/10.1145/3508398.3511497
https://doi.org/10.1145/3508398.3511497
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.00813
https://en.wikipedia.org/w/index.php?title=River_crossing_puzzle&oldid=1150277959
https://en.wikipedia.org/w/index.php?title=River_crossing_puzzle&oldid=1150277959
https://arxiv.org/abs/2309.09919

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement and Definitions
	4 Analysis of Standard Methods
	4.1 Constraint-Ensuring Symbolic Planning
	4.2 Constraint-Observing Neural Planning

	5 Analysis of Upcoming Methods
	5.1 LLMs as Planner and Knowledge Base
	5.2 Integration of Neural and Symbolic AI

	6 Challenges Ahead
	6.1 Neuro-Symbolic Integration of Constraint Satisfaction and Task Planning
	6.2 Next Steps

	7 Conclusion
	Acknowledgments
	References

