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Abstract

Summary: In this dissertation we present efficient algorithms addressing three different
geometric objects: triangles, cones and peaks. We devise a novel, parallel divide-and-
conquer algorithm to construct Delaunay triangulations in shared and distributed
memory. We present the first implementation of an optimal O(n log n)-time sweepline
algorithm to construct the Yao graph—a cone-based geometric spanner. Furthermore,
we address the problem of efficiently calculating the isolation of mountain peaks by
presenting a novel sweep-plane algorithm.

Three different geometric objects are at the center of this dissertation: triangles, cones and
peaks. In computational geometry, triangles are the most basic shape for planar subdivisions.
Particularly, Delaunay triangulations (DTs) are a widely used for manifold applications in
engineering, geographic information systems, telecommunication networks etc. We present
two novel parallel algorithms to construct the Delaunay triangulation of a given point set.
Yao graphs are geometric spanners that connect each point of a given set to its nearest
neighbor in each of k cones drawn around it. They are used to aid the construction of
Euclidean minimum spanning trees or in wireless networks for topology control and routing.
We present the first implementation of an optimal O(n log n)-time sweepline algorithm to
construct Yao graphs. One metric to quantify the importance of a mountain peak is its
isolation. Isolation measures the distance between a peak and the closest point of higher
elevation. Computing this metric from high-resolution digital elevation models (DEMs)
requires efficient algorithms. We present a novel sweep-plane algorithm that can calculate
the isolation of all peaks on Earth in mere minutes.

In the following, we provide more details on our contributions:

Delaunay Triangulations. We present a novel divide-and-conquer (D&C) algorithm that
lends itself equally well to shared- and distributed-memory parallelism. While previous
D&C algorithms generally suffer from a complex—often sequential—merge or divide step, we
reduce the merging of two partial triangulations to re-triangulating a small subset of their
vertices—the border vertices—using the same parallel algorithm and combining the three
triangulations via parallel hash table lookups. The input point division should yield roughly
equal-sized partitions for good load balancing and also result in a small number of border
vertices for fast merging. As a further refinement of our algorithm, we devise a data-sensitive
divide-step that partitions the input based upon information gained from triangulating a
small sample of the input points.

We present a second algorithm specifically designed for application in network generators.
Network generators are used to create massive synthetic graphs for algorithm development,
testing and benchmarking as well as network analysis. We develop a communication-free
Delaunay graph generator that exploits the structure of DTs of uniformly distributed points
to minimize the number of redundantly generated points on distributed processing elements.
The resulting generator has a near optimal scaling behavior and allows the analysis of
Delaunay graphs on an unprecedented scale.

△ ∨ ∧



vi

Yao Graphs. An optimal O(n log n)-time algorithm to construct the Yao graph for a
given point set has been proposed by Chang et al. in 1990. Due to its complexity and
the numerous required geometric predicates and constructions it has—to the best of our
knowledge—never been implemented. Instead, algorithms with a quadratic complexity are
used in popular packages to construct Yao graphs. We present the first implementation
of Chang et al.’s optimal Yao graph algorithm. We develop and tune the data structures
required to achieve the O(n log n)-time bound and detail algorithmic adaptions necessary to
take the original algorithm from theory to practice. Additionally, we propose a new, easy to
implement Yao graph construction algorithm based on a uniform grid data structure that
outperforms Chang et al.’s algorithm for medium-sized inputs.

Mountain Isolation. With the availability of worldwide digital elevation model (DEM),
the isolation of all mountain peaks on Earth can be computed by algorithms. Hitherto,
algorithms with a worst-case time bound that is quadratic in the DEM size are used for this,
which scale poorly to high-resolution DEMs. We present a novel sweep-plane algorithm that
runs in time O(n log n + pTNN) where n is the number of sample points in the DEM, p the
number of considered peaks and TNN the time for a two-dimensional nearest neighbor query
in an appropriate geometric search tree. We refine this algorithm to a two-level approach
that has high locality and good parallel scalability. Our algorithmic improvements allow for
the use of higher-precision computations to increase the accuracy of the computed isolations.
We reduce the time needed to calculate the isolation of every peak on Earth from hours to
minutes.
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1 Introduction
In the physical world around us, triangles, cones and peaks can be found everywhere.
Triangles have already been studied by Euclid in 300 BC in his treatise Elements [Euc56].
In civil engineering, they are often labeled as “the strongest shape” for their rigidity and
are used to construct bridges, roofs, and other structures. Triangles are the basic building
block to model complex three-dimensional objects. These objects can be visualized and
animated in computer graphics or used for simulations in computer-aided engineering. In
computational geometry, they are the most basic shape to represent planar subdivisions.

Euclid also already studied another geometrical shape: cones. Cones have manifold
applications in engineering and construction, including optical lenses, aerodynamic air- and
spacecraft design or flow management in fluid mechanics. In computational geometry, they
are used to define the class of cone-based spanning graphs. Cones are also found in nature in
the form of volcanoes, hills and mountains.

The high-point of these terrain forms—their peaks—have fascinated humans since the
beginning of time. Many cultures consider them the home of the gods, e.g., the Greek Mount
Olympus or the Tibetan Mount Kailash. Whereas people went to the mountains for religious
reasons for millennia, it was not until the 18th century that the first mountaineers started to
climb mountain peaks for sport. Today, hiking and mountaineering are popular sports and
mountain peaks around the world are climbed by thousands of people every year.

In this dissertation we present geometric algorithms addressing each of these three objects.
We devise a novel algorithm to compute the Delaunay triangulation of a point set in arbitrary
dimension. Furthermore, we provide the first implementation of an optimal algorithm to
construct the Yao graph—a cone-based spanner—of a point set in the plane. Finally, we
design a new algorithm to compute the topographic isolation of mountain peaks in digital
elevation models.

1.1 Overview & Contributions

This dissertation addresses geometric algorithms to compute Delaunay triangulations, Yao
graphs and the topographic isolation. In the following we will briefly define each addressed
problem and present the contributions of this dissertation.

Delaunay Triangulations (Chapter 2). Given a two-dimensional point set P = {p1, ..., pn},
a triangulation T (P) is a subdivision of the convex hull of P into triangles, such that the set
of the vertices of T (P) coincides with P and any two triangles of T intersect in a common
edge or not at all. The union of all triangles in T (P) is the convex hull of point set P.
A triangulation is called Delaunay triangulation DT (P) if it satisfies the empty circle property:
for any triangle t ∈ DT (P) the circumcircle of t does not contain any point of P in its
interior [Del34], refer to Figure 1.1a for an example. These definitions can be generalized
to higher dimensions. Delaunay triangulations are the most widely used triangulations in
computational geometry and computer graphics [CDS12]. They are used for the surface
reconstruction of complex objects, to compute Voronoi diagrams, to solve partial differential
equations and many other applications [KKŽ05].

△ ∨ ∧



2 1.1 Overview & Contributions

(a) Delaunay triangulation with
exemplary empty circumcir-
cle in green.

(b) Yao graph for ten points and
k = 5 cones. The five cones
are illustrated as red dashed
lines around four example
points.

(c) Illustration of a mountain’s
isolation (red) and promi-
nence (blue).

Figure 1.1 Examples of the three geometric objects addressed in this dissertation.

Contribution. In this dissertation we present a novel, parallel, divide-and-conquer (D&C)
algorithm to compute the Delaunay triangulation (DT) of a point set in arbitrary dimension.
Whereas previous D&C algorithms suffered from either a sequential divide or merge step, all
operations of our algorithm are fully parallelized. We combine two partial triangulations
by recursively re-triangulating a small subset of their vertices—the border vertices—and
combining the three triangulations using parallel hash table operations. Our algorithm can
use shared-memory or distributed-memory parallelism. The algorithm requires equally-sized
partitions for good load balancing and benefits from small border triangulation sizes. We
propose multiple partitioning schemes ranging from recursive median splitting to more
advanced techniques based on partitioning the triangulation of a small sample of the input
points. Our implementation outperforms its competitors on shared-memory machines and
scales to up to 2048 cores on distributed-memory ones. Furthermore, we present a new DT
construction algorithm specifically designed for uniformly distributed random points stemming
from network generators. The results were published in the proceedings of ALENEX, IPDPS
and Euro-Par [FS17; FSW19a; Fun+18], in the Journal of Parallel Distributed Computing
[Fun+19] as well as in accompanying technical reports [FSW19b; Fun+17].

Yao Graphs (Chapter 3). Given a set P = {p1, ..., pn} of points in two-dimensional
Euclidean space and an integer parameter k > 1, the Yao graph Yk = (P, E) is a directed
graph, connecting every point p ∈ P with its nearest neighbor in each of k equiangular cones
with apex at p [Yao82], refer to Figure 1.1b for an example. Yao graphs are a cone-based
geometric spanner [Dam18]. A t-spanner is a weighted graph, where for any pair of vertices
there exists a t-path between them, which is a path with weight at most t times their spatial
distance. The parameter t is known as the stretch factor of the spanner and can be bounded
for Yao graphs with k ≥ 4 cones [Bar+15]. Yao graphs were originally introduced to construct
Euclidean minimum spanning trees [Yao82], but have since been applied to, e.g., wireless
networks for topology control and routing [Si+14; SVZ07]. Yao graphs can be generalized to
higher dimensions [DGM09], however we focus on two-dimensional graphs in this dissertation.

Contribution. An optimal O(n log n)-time construction algorithm for Yao graphs was first
presented by Chang et al. [CHT90] in 1990. However, due to its intricate nature and its
reliance on many geometric primitives, the algorithm has never been implemented and
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algorithms with an inferior O
(
n2)-time bound are used in practice, e.g., in CGAL’s cone-

based spanners package [NS07; STP22]. We present the first implementation of Chang
et al.’s algorithm and take their algorithm from theory to practice. We engineer the data
structures required to achieve the O(n log n)-time bound and provide detailed descriptions of
all operations of the algorithm that are missing in the original paper. Despite the algorithm’s
complexity, we show that it outperforms the state-of-the-art for large inputs. For medium-
sized inputs, we propose a new Yao graph construction algorithm based on a uniform grid
data structure, that scales better than competing algorithms. The results were published in
the proceedings of SEA [FS23b] and in the accompanying technical report [FS23a].

Topographic Isolation (Chapter 4). In order to measure the “significance” of a mountain,
two established metrics are the topographic prominence and topographic isolation of its
peak [Gri04]. The isolation specifies the horizontal distance between a peak and the closet
point of higher elevation, called isolation limit point (ILP). Peaks with high isolation dominate
their surroundings and provide a nice all-round view from the top. Prominence measures the
minimum difference in elevation between a peak and the lowest point on a path to reach
higher ground. Figure 1.1c visualizes these definitions. Whereas both measures had to be
determined by the meticulous inspection of topographic maps in the past, with the advent of
digital elevation models (DEMs) they can now be computed algorithmically.

Contribution. In this dissertation we present a novel sweep-plane algorithm to compute the
topographic isolation of mountain peaks in DEMs. Our algorithm is highly parallelizable and
can calculate the isolation of all peaks on Earth in 4 min, as opposed to ≈10 h required by
prior algorithms [KdF17]. We furthermore adapt known geometric search trees to spherical
and ellipsoidal surfaces. The results were published in the proceedings of ESA [FHS23a] and
the accompanying technical report [FHS23b].

Proximity problems. All problems considered in this dissertation address some form of
proximity problem. The nearest neighbor graph (NNG), connecting each point p of a given
point set P with its nearest neighbor in P\{p}, is a special case of the Yao graph Yk with k = 1.
For k ≥ 1, the NNG is a subgraph of Yk [Rah+15]. Furthermore, the NNG is a subgraph of
the Euclidean minimum spanning tree (EMST) which is also a subgraph of Yk [Yao82]. As
the EMST is a subgraph of the Delaunay triangulation (DT) as well [dBer+08, Section 9.6],
the following inclusions hold:

NNG ⊆ EMST ⊂

{
DT

Yk

.

For the relationship between DTs and Yao graphs, it holds that DT ∩ Yk ⊇ EMST . Be-
yond this, relationship results have only been established for specialized versions of both
graphs [Bon+10], with the general case still being an open question.

There is no formal relation between any of these graphs with the topographic isolation of
a mountain. However, the ILP is defined as the closest point of higher elevation to a given
peak. Thus, we can define a topographic isolation graph (TIG) with the peaks and ILPs as
vertices and edges between peaks and their respective ILP. This graph could be interpreted
as a NNG with the additional restriction that for an edge e = (p, i) the ILP i must be of
higher elevation than peak p.

△ ∨ ∧



4 1.2 Challenges of Geometric Algorithms

1.2 Challenges of Geometric Algorithms

Computational geometry is a branch of computer science that studies algorithms to solve
geometric problems [dBer+08]. The studied problems stem from a wide range of applications,
including computer graphics, geographic information systems, robotics, computer-aided
design and many more. Concrete problems include point location and nearest neighbor
searches, line segment intersection, convex hulls, Voronoi diagrams, triangulations, etc. The
design of geometric algorithm not only focuses on efficiency in terms of time and space usage,
but also on the robustness and the treatment of degenerate cases.

Robustness. Robustness needs to address the limited precision of floating-point arithmetic
in computers [She97]. For instance, consider the three nearly collinear points p, q and r

pictured in Figure 1.2a. Due to the limited precision of floating-point arithmetic, a test
designed to determine the orientation of r with respect to the line through p and q—either
left, right or collinear—might return an incorrect result. Such tests are called predicates
and are basic building block of many geometric algorithms. Figure 1.2 shows examples of
predicates used in geometric algorithms, such as the aforementioned orient predicate to
determine the orientation of a point with respect to a line, the in-circle predicate to test
whether a point lies inside the circumcircle of a triangle, and the intersects predicate to
test whether two line segments intersect. In order to ensure robustness, predicates need to be
designed such that they always return the correct result. This can be achieved by using exact
arithmetic, provided by libraries, such as the GNU Multiple Precision Arithmetic Library
(GMP) in conjunction with the GNU Multiple Precision Floating-Point Reliably Library
(MPFR) [Fou+07] or the Library of Efficient Data types and Algorithms (LEDA) [MN89].
However, exact arithmetic comes at a significant computational cost. Alternatively, predicates
can be designed to use adaptive precision arithmetic, where the precision is increased until
the result is guaranteed to be correct [DP02; She97]. Predicates are often designed such
that they need to compute the sign of a determinant or polynomial. For adaptive precision
predicates, an error bound on the sign of the predicate is calculated in conjunction with the
sign itself. If the error is too large to guarantee the correctness of the result, the precision is
increased and the test is repeated. The more precise evaluation of the predicate should take
advantage of previous results in order to speed up the computation [She97].

When designing geometric algorithms, the choice of geometric primitives can have a
significant impact on the robustness and performance of the algorithm. The DT algorithm
presented in Chapter 2 requires merely two geometric predicates: orient and in-circle.
The Yao graph construction algorithm not only requires the intersects predicate, but also

p

q

r

(a) Orient predicate.

ab

c
p

(b) In-circle predicate.

a

bp

q

x

(c) Intersects predicate
or construction.

Figure 1.2 Examples of predicates used in geometric algorithms.
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needs to actually compute the intersection point of the two line segments. Such constructions
necessarily need to use exact arithmetic to ensure robustness, as the required precision is not
known at construction time. We examine the computational impact of these constructions in
Chapter 3. The computation of the topographic isolation requires only a distance comparison
predicate. However, computing the geodesic distance between points along Earth’s surface is
computationally expensive. Therefore, our adaptive predicates presented in Chapter 4 use
increasingly accurate approximations of Earth to speed up the computation depending on
the distance between the input points.

Degeneracies. Degeneracies are special cases of the input for geometric problems that
require special treatment [dBer+08]. The kind of degeneracies that need to be addressed
depend on the geometric problem and even the algorithm used. For instance, collinear points
need to be handled correctly in convex hull algorithms, whereas four cocircular points require
consistent tie-breaking rules in DT algorithms. In the theoretical design of a geometric
algorithm, degeneracies are often ignored by assuming a general position of the input. Real-
world data, however, is often far from being in general position. Degeneracies can either be
addressed by general mechanisms such as a small perturbation of the input [dBer+08] or by
integrating their handling into the algorithm itself. In Chapter 3 we lift the general position
assumption of Chang et al.’s Yao graph construction algorithm, by correctly addressing
degenerate cases in the algorithm.

1.3 Techniques & Data Structures

There are well-established algorithmic design patterns and data structures that can give rise
to efficient and elegant algorithms. In the following we will briefly introduce the techniques
and data structures relevant to the algorithms presented in this dissertation.

1.3.1 Data Structures
Data structures are fundamental building blocks of algorithms. Often, the choice of data
structure has a significant impact on the theoretical complexity and practical performance
of an algorithm. In the following we review data structures that are common to several
algorithms presented in this dissertation. Figure 1.3 shows examples of the data structures
discussed in this section.

We differentiate between abstract data types (ADTs) and concrete data structures.
An ADT defines the operations and behavior on data from a user’s viewpoint. A concrete
data structure implements an ADT and defines the internal representation of the data and
the algorithms used for the ADT’s operations.

Hash Tables. Hash tables are one way to implement the dictionary ADT, which stores a set
of n elements E and supports the operations insert, delete and find [San+19, Chapter 4].
Each element e ∈ E is associated with a key k(e) ∈ U, for some key universe U. If |U| ∼ n,
the dictionary can be implemented as an array of size |U|. However, often |U| ≫ n, which
would lead to a prohibitively large array and a waste of memory, due to many unused entries.
A hash table is a data structure that stores the elements of E in an array of size m ∼ n,
where each element e is stored at index h(k(e)) for a hash function h : U→ [0..m− 1]. For
brevity, we use h(e) instead of h(k(e)). Elements e1, e2 ∈ E, e1 ̸= e2, might be stored at the
same index h(e1) = h(e2), which is called a collision. There are two main approaches to
resolve collisions: closed and open addressing. In closed addressing, each array slot i is the

△ ∨ ∧



6 1.3 Techniques & Data Structures

x h(x) d(x)

1st 21 5 0
2nd 3 3 0
3rd 51 3 1
4th 48 0 0
5th 16 0 1
6th 6 6 0
7th 99 3 4
8th 50 2 0
9th 36 4 4
10th 14 14 0

48

0

16

1

50

2

3

3

51

4

21

5

6

6

99

7

36

8

⊥
9

⊥
10

⊥
11

⊥
12

⊥
13

14

14

⊥
15

(a) Linear probing hash table.
3

614

51 9936 16

2150 48

(b) Min-heap.
21

9948163

50

6

3614

51

(c) Red-black tree.

Figure 1.3 Examples of the data structures discussed in Section 1.3.1. The elements arrive in the
order shown in the table on the left. The hash function is given by h(x) = x mod 16
and d(x) denotes the distance between h(x) and x’s final position in the hash table.
The red-black tree stores elements not only in the leaves, but also in the inner nodes.

start of a linked list that stores all elements e with the same hash value h(e) = i, a method
called chaining. In open addressing, each array slot stores exactly one element e. If the
array slot at h(e) is already occupied, e is stored in the next free slot of the array. There are
several strategies to find the next free slot, including linear probing, quadratic probing and
double hashing [Cor+09, Chapter 11].

The performance of hash tables depends on the choice of the hash function h, the
load factor α = n/m of the array and the collision resolution strategy. With a careful
implementation and suitable h, both open and closed addressing hash tables can achieve
expected O(1) time for all operations. Both kind of hash tables can be parallelized, though
the state-of-the-art shared-memory parallel hash table uses linear probing and carefully
designed atomic operations [MSD16].

In this dissertation. Parallel hash tables are at the core of our D&C DT construction
algorithms presented in Chapter 2. They enable us to efficiently merge partial triangulations
in parallel. Our Yao graph construction algorithm uses a hash table to cache expensive
geometric constructions (Chapter 3).

Priority Queues. A priority queue (PQ) is an ADT that stores a set of n elements E and
supports the operations insert, top and pop [San+19, Chapter 6]. An element e ∈ E is
inserted into the PQ with an associated priority p(e) ∈ R. The top operation returns the
element e ∈ E with the highest priority p(e) or ⊥ if the PQ is empty. For a non-empty PQ,
pop removes the highest priority element from the queue. An addressable PQ additionally
supports the operations remove and update to remove an arbitrary element or change its
priority. PQs are often implemented as binary heaps, which are binary trees that satisfy
the heap property: for any node v in the tree, the priority of v is larger than the priority
of its children. With binary heaps, the top operation takes O(1) time, whereas all other
operations take O(log n) time. However, PQs can be implemented in many ways, e.g., as
pairing heaps, binomial heaps or Fibonacci heaps [San+19, Chapter 6].
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In this dissertation. Priority queues are a key component of sweepline algorithms, which are
discussed in more detail in Section 1.3.2. Sweepline algorithms use a PQ to store the elements
that should be processed by the algorithm in the order in which they are swept over—called
events. For our Yao graph construction algorithm in Chapter 3, we present a two-part
priority queue that separates input elements and dynamically created events into an array
and an addressable binary heap, respectively, thus reducing the cost of insert and remove
operations on the heap. In our sweep-plane algorithm to compute mountain isolations, all
events are known prior to execution, thus a sorted array can serve as PQ (Chapter 4).

Search Trees. A search tree is an ADT that stores a set of n elements E and supports the
operations insert, delete and find [San+19, Chapter 7]. Again, each element e ∈ E is
associated with a key k(e). The find operation requires a key k and returns the element
e = arg minx∈E (k(x) ≥ k), i.e., the element e with the smallest key k(e) ≥ k. These
operations could be implemented using a sorted array, yielding O(log n)-time queries and
O(n)-time insertions and deletions. However, by using a tree data structure an (amortized)
O(log n)-time bound can be achieved for all operations. The elements of E are stored in
the leaves of the tree and each inner node v stores a key kv and two pointers to its left and
right child. For every element el of the left subtree k(el) ≤ kv whereas for all er of the right
subtree k(er) > kv. At each node v, the find operation needs to compare the search key k

with kv and descent into the left or right subtree accordingly until the leaf with element e is
found. To insert an element e, first the appropriate leaf for its key k(e) is found using the
find operation. Then, the leaf is replaced by an inner node with e as its left child and the
original leaf as its right child. The time complexity of all tree operations therefore depends on
the height of the tree. With a naive insert implementation, the tree could degenerate into a
linked list and the find operation would take Θ(n) time. Numerous data structures have
been proposed that ensure a balanced tree of logarithmic height after insertions and removals,
including AVL trees [AL62], red-black trees [GS78], and B-trees [BM70]. The schemes vary
in the strictness of their balancing criteria and the required overhead for rebalancing the tree
in terms of time and space.

In this dissertation. The block-wise triangulation data structure for our D&C DT construc-
tion algorithm employs a balanced binary search tree to efficiently navigate to individual
blocks of the triangulation (Chapter 2). Our Yao graph construction algorithm uses a
balanced binary search tree to represent the current state of the sweepline (Chapter 3).
As the comparison of keys requires the evaluation of an expensive geometric predicate, we
present several optimizations of the tree operations specific to our algorithm.

Geometric Search Trees. In geometric search trees, the key of an element e represents
its coordinates in a D-dimensional (Euclidean) space, k(e) ∈ RD [dBer+08, Chapter 5].
We therefore refer to the elements of the tree as points. Since the semantics of the find
operation are not well-defined for higher dimensions, it is replaced by the range operation
that reports all points within a given query range and the nearest operation that reports
the point closest to a given query point. Various geometric search trees have been proposed
in the literature, including k-D trees [Ben75], quad-trees [FB74], range trees [Ben79], and
R-trees [Gut84]. All of these data structures recursively partition the input space into smaller
subspaces in order to answer queries efficiently. Nevertheless, while range queries can be
answered in O(log n) worst-case time, nearest neighbor queries require O(n) time in the
worst case—even in balanced trees—and only achieve a O(log n)-time bound on average.

△ ∨ ∧



8 1.3 Techniques & Data Structures

NE SE SW NW

(a) Quad-tree.

lx1

l
y
2

lx4

l
y
3

lx5

lx6

lx1

ly3

lx6lx5

ly2

lx4

(b) k-D tree.

Figure 1.4 Two-dimensional examples of the geometric search trees discussed in Section 1.3.1.
The quad-tree is unbalanced even if all input points are known a priori. The depicted
k-D tree stores the splitting line as well as the splitting element in each inner node.

Quad-trees recursively partition the input space into four quadrants. The inner nodes
store pointers to their four children and leaves store the subset of input points that lie within
their quadrant. As the splitting into quadrants does not take the distribution of the input
points into account, the tree can become unbalanced if the input points are not sufficiently
uniformly distributed, as shown in Figure 1.4a. In fact, the size and depth of a quad-tree
cannot be bounded in terms of the number of input points but only regarding the minimum
distance between any two points and the size of the input space [dBer+08, Lemma 14.1].
The technique can be generalized to D > 2 dimensions, where the input space is recursively
partitioned into 2D hypercubes at each inner node the tree. These generalized trees are
referred to as oct-trees in three dimensions [Mea82] and hyperoct-trees for D > 3 [PY85].
However, they suffer from the curse of dimensionality, as the number of hypercubes grows
exponentially with the dimensionality D [KM17].

In k-D trees, the input space is recursively partitioned into two half-spaces. Each node
stores a splitting hyperplane and pointers to its two children. The dimension of the hyperplane
is chosen in a cyclic manner among the k dimensions of the input space. The median point of
the input regarding the splitting dimension is chosen as the splitting element and partitions
the input into two equally-sized subsets. If all input points are known at construction time,
this results in a balanced tree with logarithmic height. However, if the input points are
inserted one-by-one, the tree can degenerate and rebalancing could require the reorganization
of large parts of the tree [Sam90, Chapter 2]. For high-dimensional spaces, k-D trees also
suffer from the curse of dimensionality, with an efficiency no better than exhaustive search if
the number of elements n is not n≫ 2k [TOG17, Chapter 39].

In this dissertation. Our sample-based load balancing strategies for DT construction use a
static k-D tree for input point distribution (Section 2.5). The sweep-plane data structure for
the topographic isolation algorithm employs a dynamic k-D tree with the top-most levels
pre-built in a quad-tree-like manner (Chapter 4).
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1.3.2 Techniques
The two main design principles used for the algorithms in this dissertation are divide-and-
conquer and sweepline algorithms. In the following we will briefly introduce these techniques
and their application to geometric problems. Both techniques are illustrated in Figure 1.5
for a two-dimensional convex hull algorithm.

Divide-and-Conquer Algorithms. Divide-and-conquer (D&C) is a fundamental paradigm
in algorithm design. Already Gauss used a D&C algorithm to compute the coefficients of
a finite Fourier series in 1805 [HJB85]. John von Neumann was the first to develop and
properly analyze a D&C algorithm specifically for a computer—merge sort in 1945 [ORe13].

In a D&C algorithm, a problem is recursively divided into smaller subproblems until a
base case is reached that can be solved directly [Smi85]. The solutions to the subproblems
are then combined to solve the original problem. The D&C paradigm can lead to efficient
and elegant algorithms and has been applied to manifold problems, e.g., sorting, matrix
multiplication and fast Fourier transform. In computational geometry, D&C algorithms have
been proposed for a wide range of problems. Bentley [Ben80] presents a general framework
for geometric D&C algorithms that can be applied to range searching, closest pair and all
nearest neighbor problems. Prior to the recursive calls in a D&C algorithm, the current
state of the algorithm needs to be stored on a stack. Therefore, the extra space required
by the algorithm depends on the depth of the recursion tree. Bose et al. [Bos+07] present
space-efficient geometric D&C algorithms with O(1) extra space for the closet pair and
bichromatic closest pair problems. Aggarwal et al. [ACG88] are the first to propose a D&C
algorithm to compute the Delaunay triangulation.

The divide-and-conquer paradigm lends itself well to the design of parallel algorithms,
as the subproblems can be solved independently. However, for an efficient parallelization,
the combination of the subproblems also needs to be parallelized. Otherwise, it becomes
a sequential bottleneck, especially in the upper parts of the recursion tree, where the
subproblems might be large.

In this dissertation. In Chapter 2, we present a novel D&C algorithm to compute the
DT where all operations are fully parallelized. Our DT algorithm for network generators
also follows the D&C paradigm on a global scale. As the algorithm produces a distributed
triangulation it can avoid the ascent of the recursion tree by computing the final local DT
directly on the bottom of the tree. The multi-pass algorithm to compute the topographic
isolation proposed in Chapter 4 can also be considered a D&C algorithm in the wider sense:
the data is already divided in the form of the tiles of the DEM, and the conquer step generates
a global view on the mountain peaks relevant to each tile for further processing.

Sweepline Algorithms. Many geometric problems can be solved efficiently using a sweepline
approach [dBer+08, Chapter 2]. The technique employs a conceptual line that sweeps over the
input space and processes the input elements in the order in which they are swept. A sweepline
data structure stores all elements that are currently active in some sense with respect to
the sweepline. This approach effectively reduces the dimensionality of the problem. For
two-dimensional problems the sweepline data structure is often a one-dimensional (geometric)
search tree. For D > 2 dimensions, the sweep-plane data structure is D − 1-dimensional.

A sweepline algorithm uses two main components: the event queue and the sweepline
data structure. An event could be an input point, the beginning or end of a line segment,
an intersection, etc. The event queue stores all events in the order in which they are swept

△ ∨ ∧
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(a) Divide-and-conquer algorithm. (b) Sweepline algorithm.

Figure 1.5 Illustration of a D&C and a sweepline algorithm to construct the convex hull of a
two-dimensional point set. For the D&C algorithm, the dashed edges are determined
during the merging of the left and right subproblems. For the sweepline algorithm,
the dashed edges are added by the currently processed input point.

over by the sweepline. Often the sweepline moves either along the x or y axis, but it could
also follow an arbitrary direction or a circular path. If all events are known prior to the
execution of the algorithm, the event queue can be implemented as a sorted array. Otherwise,
if events are dynamically created and/or removed during the execution, an (addressable)
PQ is used. The sweepline data structures stores currently active events, e.g., line segments
that currently intersect the sweepline, input points within a specific range or unfinished cells.
The processing of an event may involve queries to the sweepline data structure, insertion or
removal of elements from it, and/or the creation of new events.

The sweepline paradigm originates in the scanline algorithm for rendering images in
computer graphics [Wyl+67]. Shamos and Hoey [SH76] were the first to combine the scanline
technique with efficient data structures to address geometric problems. They present a
O(n log n)-time sweepline algorithm to check for intersections of n line segments using a
balanced binary search tree. A similar O((n + k) log n)-time sweepline algorithm to report
all k intersections of n given line segments is presented by Bentley and Ottmann [BO79]. Since
its inception, the sweepline paradigm as been applied to compute Voronoi diagrams [For87],
Delaunay triangulations [Žal05] and convex hulls [Bor19]. The technique has been generalized
to higher dimensions [AGP90], e.g., it is applied to three-dimensional DT and convex hull
construction by Sinclair [Sin16].

In this dissertation. We implement a sweepline algorithm to construct Yao graphs in
Chapter 3, which was originally proposed by Chang et al. [CHT90] but has not been
implemented before. In Chapter 4, we use the sweepline paradigm to design a novel sweep-
plane algorithm to compute the topographic isolation of mountain peaks in DEMs.
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2 Parallel Construction of Delaunay
Triangulations

Summary: Computing the Delaunay triangulation (DT) of a given point set in RD is
one of the fundamental operations in computational geometry. We present a novel
divide-and-conquer (D&C) algorithm that lends itself equally well to shared- and
distributed-memory parallelism. While previous D&C algorithms generally suffer from
a complex—often sequential—merge or divide step, we reduce the merging of two
partial triangulations to re-triangulating a small subset of their vertices—the border
vertices—using the same parallel algorithm and combining the three triangulations via
parallel hash table lookups. The algorithm is sensitive to the quality of the input point
partitioning in the divide step. The input point division should yield roughly equal-
sized partitions for good load balancing and also result in a small number of border
vertices for fast merging. We present an advanced divide-step based on partitioning
the triangulation of a small sample of the input points. Additionally, we present a
specialized DT construction algorithm for network generator applications, that exploits
the uniform distribution of the generated points.

Attribution: This chapter is based on three publications [FS17; FSW19a; Fun+19].
The author of this dissertation was the main author and contributor of [FS17; FSW19a],
on the parallel DT construction algorithm and the sample-based partitioning scheme.
The Sections 2.4 and 2.5 are mainly based on these publications or the corresponding
technical report [FSW19b]. Both sections also contain further results, in particular
the analysis in Section 2.4.1.2 and the point assignment strategies in Section 2.5.1.
Vincent Winkler provided the implementation of the sample-based partitioning scheme
and performed experiments for his Bachelor thesis [Win18]. Peter Sanders provided
editing for both publications. Sebastian Lamm is the main author and contributor of
the network generator KaGen. His Master thesis [Lam17] lead to the two publica-
tions [Fun+18; Fun+19], with contributions from Ulrich Meyer, Manuel Penschuck,
Peter Sanders, Christian Schulz, Darren Strash and Moritz von Looz. The author of
this dissertation contributed the Delaunay network generator, which is one among
several classes of graph generators implemented in KaGen. The description of the DT
construction algorithm in Section 2.6.2 is largely based on [Fun+17; Fun+19].

2.1 Introduction

A triangulation T (P) of a given point set P in Euclidean space R2 is the subdivision of
P’s convex hull into triangles. A Delaunay triangulation DT (P) of P requires that no
point of P is inside the circumcircle of any triangle in DT (P) [Del34]. The DT is the dual
graph of the Voronoi diagram V D(P) [Vor08] and has numerous applications in computer
graphics, data visualization, terrain modeling, pattern recognition and as mesh for the finite
element method [CDS12; KKŽ05]. Figure 2.1 illustrates these three subdivisions. Delaunay
triangulations can be generalized to D-dimensional space [Del34]. Computing the DT of a

△ TRIANGLES
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(a) T (P). (b) DT (P). (c) V D(P).

Figure 2.1 Non-Delaunay and Delaunay triangulation as well as a Voronoi diagram of a point
set P ∈ R2. The red point in Figure (a) violates the Delaunay criterion. In Figure (b),
the circumcircles of the flipped triangles do not contain any other point of P.

point set is thus one of the fundamental operations in computational geometry. Therefore,
many algorithms to efficiently compute the DT have been proposed as surveyed by Su and
Drysdale [SD95] and well implemented codes exist [HS15; She96]. With ever-increasing input
sizes, research interest has shifted from sequential algorithms towards parallel ones [Bat+10;
Ble+99; CG12; CMS98; FLP14; KKŽ05], with shared-memory parallelism for algorithms in
two dimensions receiving most of the attention. Distributed-memory algorithms however—as
studied by Cignoni et al. [CMS98] and Lee et al. [LPP01]—are required to cope with massive
triangulations exceeding the memory limitations of a single machine.

In this chapter we present a novel divide-and-conquer (D&C) DT construction algorithm
for arbitrary dimension that lends itself equally well to shared- and distributed-memory
parallelism and thus hybrid parallelization. Previous D&C DT algorithms suffer from a
complex—often sequential—divide or merge step [CMS98; LPP01]. We reduce the merging of
two partial triangulations to re-triangulating a small subset of their vertices—so-called border
vertices—using the same parallel algorithm and combining the three triangulations via hash
table lookups. All steps required for the merging—identification of relevant vertices, triangu-
lation and combining the partial DTs—are performed in parallel. Only minor modifications
are required to adapt our algorithm from a shared-memory machine to a message-based
distributed-memory cluster.

The division of the input points in the divide-step needs to address a twofold sensitivity
to the point distribution: the partitions need to be approximately equal-sized for good load
balancing, while the number of border vertices needs to be minimized for fast merging. This
requires partitions that have many internal Delaunay edges but only few external ones, i.e.,
a graph partitioning of the DT graph. We therefore propose a sample-based divide-step that
approximates this graph partitioning by triangulating and partitioning a small sample of the
input points, and divides the original input point set based upon it.

Additionally, we address Delaunay triangulations for network generators. Network
generators provide large-scale synthetic graph instances with controllable parameters, e.g.,
for the design and analysis of scalable algorithms. Lamm [Lam17] presents a novel technique
to generate graphs on a massive scale. By making use of pseudorandomization and divide-
and-conquer schemes, their generators follow a communication-free paradigm. We present
a Delaunay graph generator that makes use of their technique and exploits the structure
of DTs of uniformly distributed points. The resulting generator has a near optimal scaling
behavior and allows the analysis of Delaunay graphs on an unprecedented scale.
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Outline. This chapter is structured as follows: we present the problem definition and
a survey of related work in Sections 2.2 and 2.3. Subsequently, our novel D&C DT con-
struction algorithm is described in Section 2.4. Section 2.5 introduces and evaluates our
advanced sample-based divide-step. Lastly, a special DT construction algorithm for uniformly
distributed input points, as used in network generators, is presented in Section 2.6.

2.2 Definitions

D-simplices are a generalization of triangles (D = 2) to D-dimensional space. A D-simplex s

is a D-dimensional polytope, i.e., the convex hull of D + 1 points. The convex hull of a
subset of size m + 1 of these D + 1 points is called an m-face of s. Specifically, the 0-faces
are the vertices of s and the (D − 1)-faces are its facets.

▶ Definition 1 (Triangulation). Given a D-dimensional point set P = {p1, p2, ..., pn} with
pi ∈ RD for all i ∈ [1..n], a triangulation T (P) is a subdivision of the convex hull of P into
D-simplices, such that the set of the vertices of T (P) coincides with P and any two simplices
of T intersect in a common D − 1 facet or not at all. The union of all simplices in T (P) is
the convex hull of point set P.

▶ Definition 2 (Delaunay Triangulation [Del34]). A Delaunay triangulation DT (P) is a
triangulation of P such that no point of P is inside the circumhypersphere of any simplex
in DT (P).

The DT of n points contains O(n⌈ D
2 ⌉) simplices [Sei95] and can be computed in O(n log n)

time for D = 2 [For87] and O(n⌈ D
2 ⌉) time for D ≥ 3 [CDS12]. In the plane, the DT maximizes

the minimum angle found in any triangle of DT (P), however it does neither minimize the
maximum angle nor the edge length [ETW92]. A DT is the supergraph of the Euclidean
minimum spanning tree (EMST) [GR69], relative neighborhood graph (RNG) [Tou80], nearest
neighbor graph (NNG) [EPY97] and Gabriel graph [GS69] of the same point set [dBer+08].
DTs are geometric spanners. A t-spanner is a weighted graph, where for any pair of vertices
there exists a t-path between them, which is a path with weight at most t times their spatial
distance. The parameter t is known as the stretch factor of the spanner. Upper bounds on
the stretch factor of DTs have been the subject of extensive research. Currently, the best
known bound for planar DTs is t < 1.83 [TSJ19].

▶ Theorem 3 (Uniqueness of DTs [Del34]). If the points of P are in general position, i.e.,
no D + 2 points lie on a common D-hypersphere, DT (P) is unique.

▶ Definition 4 (Locally Delaunay [CDS12; Del34; Joe91]). Let f be a facet of triangulation
DT (P). Facet f is said to be locally Delaunay if and only if

a) f is only part of one simplex s ∈ DT (P), or
b) f is shared by simplices s1 and s2 of DT (P) and has an open circumhypersphere containing

no vertex of simplices s1 or s2.

▶ Lemma 5 (Delaunay Lemma [CDS12; Del34]). Let T (P) be triangulation of point set P.
The following statements are equivalent:

a) T is Delaunay;
b) every simplex of T is Delaunay;
c) every facet of T is Delaunay;
d) every facet of T is locally Delaunay.

△ TRIANGLES
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Table 2.1 Properties of DT construction algorithms in this dissertation and reviewed related
work. The speedup given is the maximum reported by the authors for uniformly
distributed points.

Algorithm 3-D d-D Shar. mem. Dist. mem. Speedup

incremental insertion

Kohout et al. [KKŽ05] ✓ ✗ ✓ ✗ 3.7 (4 PEs)
Batista et al. [Bat+10] ✓ ✗ ✓ ✗ 7 (8 PEs)
Lo [Lo12] ✓ ✗ ✓ ✗ 10 (12 PEs)

divide-and-conquer

Aggarwal et al. [ACG88] ✗ ✗ ✓ ✗ theory
Cignoni et al. [Cig+93; CMS98] ✓ ✓ ✗ ✓ 3.4 (16 PEs)
Chen [Che10] ✓ ✗ ✗ ✓ 4.5 (8 PEs)
Lee et al. [LPP01] ✗ ✗ ✗ ✓ 12 (32 PEs)
Fuetterling et al. [FLP14] ✗ ✗ ✓ ✗ 13 (16 PEs)

Chen and Gotsman [CG12] ✗ ✗ ✓ ✗ 7.5 (8 PEs)

in this dissertation ✓ ✓ ✓ ✓ 260 (2048 PEs)

Notation. We refer to the set of vertices of simplex s by vertices(s); the individual i-th
vertex is denoted verticesi(s). We employ a similar notation for the set of neighboring
simplices of s—neighbors(s)—and an individual neighbor i—neighborsi(s).

2.3 Related Work

A survey of parallel DT construction algorithms in two and three dimensions for shared
memory is given by Kohout et al. [KKŽ05]. The proposed algorithms are either based on
parallel incremental insertion or a D&C approach.

Incremental Insertion Algorithms. Parallel incremental insertion algorithms are generally
bootstrapped with a sequentially obtained initial triangulation of a subset of the input
points. Subsequently, the rest of the points can be inserted in parallel by identifying the
surrounding simplex for each point, removing it and re-triangulating the resulting cavity
with the inserted point and the facets of the surrounding simplices [Bat+10; CS96; KKŽ05].
The Delaunay property of the re-triangulated region is ensured by performing local flips
[Joe91; KKŽ05]. To avoid simultaneous access to the same simplex during re-triangulation,
locks need to be employed. Various locking strategies are studied in [Bat+10; KKŽ05]. The
algorithm of Batista et al. is the basis for the parallel DT construction algorithm found
in the Computational Geometry Algorithms Library (CGAL) [HS15]. This potential for
contention renders parallel incremental insertion very sensitive to the input point distribution
and limits the attainable speedup. Moreover, it requires fine-grained communication, which is
prohibitive in the distributed-memory setting. To avoid communication, Lo [Lo12] partitions
the input points into zones. Each zone is further subdivided into cells. Neighboring zones
exchange the points of their adjacent cells, in order to be able to construct the triangulation
without synchronization. They report a speedup of ≈ 10 for 12 cores with shared memory for
uniformly distributed points, however, no comparison with other implementations is made.
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Divide-and-conquer Algorithms. A parallel D&C algorithm for DTs was first proposed
by Aggarwal et al. [ACG88]. The input points are partitioned along a vertical line into
blocks, which are triangulated in parallel. These partial triangulations are stitched together
in an expensive merge step, which can only be performed by one processing element, thus
limiting speedup. As non-Delaunay simplices might be introduced to the triangulation during
stitching, corrective steps are required to restore the Delaunay property. In the worst case,
the necessary corrections can spread throughout the entire triangulation [KKŽ05]. The
authors do not address load balancing or prescribe how to determine the location of the
splitting line.

A different approach is pursued by Cignoni et al. for three- and arbitrary-dimensional
DTs [Cig+93; CMS98]. They divide the input by cutting (hyper)-planes and firstly construct
the simplices of the triangulation crossing those planes. The algorithm continues to build
the triangulation in the divided regions in parallel, no further merging is necessary. However,
their division step is expensive and sequential and thus limits scalability. The authors
mention that the regions should be of roughly equal cardinality for load balancing, but do
not go into the details of the partitioning.

Chen [Che10] improves on Cignoni et al.’s work by calculating the affected zone, comprising
the set of simplices that are indeterminate, i.e., a point outside the convex hull of the sub-
triangulation may still influence them. The merging of two partial triangulations can then
be reduced to merging the affected zones. Using a distributed-memory setting, they report
speedups of up to 4.5 for clusters of 8 processing elements (PEs) and uniformly distributed
points. Further studies on distributed-memory machines are presented by Lee et al. [LPP01].
They partition the input according to paths of Delaunay edges obtained from a lower convex
hull projection [Ble+99]. The individual partitions can then be triangulated without further
merging. They report a speedup of ≈ 12 for a machine with 32 PEs and a uniform distribution
of input points. Both, Chen [Che10] and Lee et al. [LPP01] explicitly require splitting along
the median of the input points for load balancing.

To the best of our knowledge no algorithm has been shown to scale well to clusters with
hundreds of PEs. Table 2.1 provides an overview of the discussed literature and compares
some properties of the proposed algorithms.

Further Related Work. Chen and Gotsman [CG12] propose an entirely different approach
compared to the previously discussed algorithms to compute the DT. They localize the
computation of the DT by computing the Delaunay neighbors for each point individually.
This affords for almost linear speedup. It remains to be seen whether their approach
generalizes to three and higher dimensions.

Fuetterling et al. [FLP14] present a novel data structure for D&C-based DT algorithms,
the linear floating point quad-tree (LFQT) based on the Morton codes of the input point
coordinates. The geometrical structure of the quad-tree allows for efficient subdivision of the
input during the recursive descent and its numerical structure minimizes the need for exact
arithmetic. Although their data structure should generalize to arbitrary dimension, they only
report—very favorable—results for single threaded as well as multithreaded performance for
computing the DT in two dimensions.

The subject of input partitioning has received more attention in the meshing community
than for DT construction algorithms. A mesh of a point set P is a triangulation of every
point in P and possibly more—so-called Steiner points—to refine the triangulation [CDS12].
Chrisochoides [Chr06] surveys algorithms for parallel mesh generation and differentiates
between continuous domain decomposition—using quad- or oct-trees—and discrete domain

△ TRIANGLES
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decomposition using an initial coarse mesh that is partitioned into submeshes, trying to
minimize the surface-to-volume ratio of the submeshes. Chrisochoides and Nave [CN00]
propose an algorithm that meshes the subproblems via incremental insertion using the
Bowyer-Watson algorithm [Bow81; Wat81].

Cao et al. [Cao+14] present an algorithm that uses a general-purpose graphics processing
unit (GPGPU) to accelerate the construction of DTs for large point sets. Their algorithm
constructs a near-Delaunay triangulation on the GPGPU using an incremental insertion
algorithm and subsequently repairs non-Delaunay simplices on the CPU using a star splaying
approach [She05].

Recently, machine learning techniques have been applied to the problem of DT con-
struction. Sharp and Ovsjanikov [SO20] present neural networks to construct a general
triangulation from a set of points. Their approach seems to be adaptable to produce triangu-
lations fulfilling the Delaunay criterion. Rakotosaona et al. [Rak+21] use machine learning to
reconstruct two-dimensional Delaunay surface elements from three-dimensional point clouds.
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2.4 Parallel Divide-and-Conquer Algorithms

In this section we present our novel DT construction algorithm. We first describe the shared-
memory algorithm in Section 2.4.1. The modifications necessary to adapt our algorithm to
a distributed-memory setting are presented in Section 2.4.2. Section 2.4.3 highlights some
technical details of our implementation. We evaluate our algorithms in Section 2.4.4.

2.4.1 Shared-Memory Algorithm

The main novelty of our D&C DT algorithm is its fully parallelizable merge step. The
merging of two partial triangulations relies on re-triangulating a small subset of border points
of both triangulations with the same parallel DT algorithm. Border points are vertices of
simplices that might violate the Delaunay property for some point of the other partition
and hence need to be re-triangulated for a valid DT of the combined point set. All steps
necessary to identify these points and to combine the two partial triangulations with their
border triangulation are fully parallelized.

2.4.1.1 Algorithm

This section describes the operations of our D&C DT algorithm in detail. All line numbers
given in the following refer to Algorithm 2.1. Figure 2.2 gives a two-dimensional example
execution of our algorithm.

Partitioning. Given the set of input points P = {p1, ..., pn} and a recursion level r, if the
number of points is below a certain threshold or a recursion depth of log P for P processors has
been reached, an efficient sequential DT algorithm is used to solve the base case. Otherwise,
our recursive divide-and-conquer algorithm is employed. Firstly, the splitting dimension k is
determined following one of various schemes:

constant, predetermined splitting dimension—similar to Aggarwal et al. [ACG88];
cyclic choice of the splitting dimension—similar to k-D trees [Ben75]; or
the dimension with largest extend of the bounding box of the input points.

The input points are then partitioned across the selected dimension k according to the median
point. More sophisticated partitioning schemes are presented in Section 2.5. Both partitions
are recursively triangulated in parallel, yielding triangulations T1 and T2 (Line 5).

P1 P2

(a) partitioning

T1 T2B

(b) partial DTs

TB

(c) border DT

T

(d) final DT

Figure 2.2 Example of a two-dimensional triangulation. Infinite simplices are omitted for clarity.

△ TRIANGLES
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Algorithm 2.1 Delaunay(P, r): shared-memory parallel D&C algorithm.

Input: Points P = {p1, ..., pn} with pi ∈ RD, recursion level r

Output: Delaunay triangulation T

1: if n < N ∨ r = log P then ▷ for P processors
2: return sequentialDelaunay(P) ▷ base case
3: k ← splittingDimension(P)
4:
(
P1 P2

)
=
(
{p1, ..., ps} {ps+1, ..., pn}

)
← divide(P, k) ▷ partition points in dim. k

5: T =
(
T1 T2

)
←
(
Delaunay(P1, r + 1) Delaunay(P2, r + 1)

)
▷ in parallel

Border triangulation:
6: B← ∅ ▷ empty set of border simplices
7: Q← convexHull(T1) ∪ convexHull(T2) ▷ initialize work queue with convex hull
8: parfor si,x ∈ Q do ▷ simplex originating from triangulation Ti

9: mark(si,x) ▷ only process each simplex once
10: if circumsphere(si,x) ∩ boundingBox(Tj) ̸= ∅, with i ̸= j then
11: B ∪= {si,x} ▷ circumsphere intersects other partition ⇒ si,x is a border simplex
12: for si,y ∈ neighbors(si,x) ∧ ¬marked(si,y) do ▷ process all neighbors
13: mark(si,y); Q ∪= {si,y}
14: TB ← Delaunay(vertices(B), r + 1) ▷ triangulate points of border simplices
Merging:
15: T ← (T1 ∪ T2) \B; Q← ∅ ▷ merge partial triangulations stripped from border
16: parfor sb ∈ TB do ▷ merge simplices from border triangulation
17: if vertices(sb) ̸⊂ P1 ∧ vertices(sb) ̸⊂ P2 then
18: T ∪= {sb}; Q ∪= {sb} ▷ sb spans both partitions
19: else
20: if ∃s ∈ B : vertices(s) = vertices(sb) then
21: T ∪= {sb}; Q ∪= {sb} ▷ sb replaces border simplex

Neighborhood update:
22: parfor sx ∈ Q do ▷ update neighbors of inserted simplices
23: mark(sx) ▷ only process each simplex once
24: for d ∈ [1..D + 1] do
25: if neighborsd(sx) ̸∈ T then ▷ neighbor not in triangulation anymore
26: C ← {sc : fd(sx) = fd(sc)} ▷ candidates with same facet hash
27: for sc ∈ C do
28: if | vertices(sx) ∩ vertices(sc)| = D then
29: neighborsd(sx)← sc ▷ sc is neighbor of sx

30: if ¬marked(sc) then
31: mark(sc); Q ∪= {sc} ▷ process sc if not already marked
32: return T
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Figure 2.3 Placement of infinite vertices (red) for each face of the bounding box of the input
points P, with an offset larger than the diameter of P.

Border Detection. Subsequently, the search for the border simplices B of both triangulations
starts from the convex hull of T1 and T2. To identify the convex hull of a triangulation
efficiently, Shewchuk [She96] introduces a vertex at infinity that forms an infinite simplex
with every facet of the convex hull. We extend this concept by introducing a vertex at infinity
for each face of the axis-aligned bounding box of point set P. The infinite vertices are placed
at a multiple of P’s diameter outside the bounding box, as shown in Figure 2.3. This allows
for meaningful intersection tests of infinite simplices with another partition’s bounding box.

The search employs a parallel work queue initialized with the infinite simplices of T1
and T2 (Line 7). A simplex s belongs to the border of triangulation Ti if its circumsphere
intersects with the bounding box of the other triangulation Tj , i ̸= j, i.e., s might still be
influenced by a point in partition j. In that case, s is added to B and all its neighbors are
enqueued for processing. A lock-free marking scheme is used to ensure every simplex is
processed at most once (Lines 10–13). After completion of the algorithm, all simplices of T1
and T2 not in B are completely inside their respective partition and are hence not susceptible
to change due to points of the other partition—refer to Section 2.4.1.2. The same criterion is
used by Isenburg et al. [Ise+06] and later Wu et al. [WGG11] to define finalized triangles of
a partition in a streaming computation setting, by Chen [Che10] to determine the affected
zone and by Lo [Lo12] to determine cells of a zone to be exchanged with neighboring zones.
The vertices of all border simplices are collected and recursively triangulated using our D&C
algorithm, yielding border triangulation TB (Line 14).

Merging. The combined triangulation T is composed of simplices from the partial trian-
gulations T1 and T2 as well as the border triangulation TB. Non-border simplices of T1
and T2 can be immediately added to T , as no point of the other partition can lie within
their circumsphere. The border simplices B are discarded, since they potentially violate the
Delaunay property for some point of the opposite partition. For a simplex sB ∈ TB to be
added to T , one of two conditions needs to be fulfilled (Lines 17–20):

a) sB consists of vertices from both partitions, or
b) sB is contained within one partition but replaces a previously found border simplex.

The first condition treats simplices crossing the border of T1 and T2, which could not have
been found before. As sB fulfills the Delaunay property with respect to the border point set, it
also fulfills it with respect to both partition point sets [Che10]. The second condition re-adds
simplices of the border that have been confirmed to not only fulfill the Delaunay property
with respect to their own partition but also with respect to the border point set and hence
the other partition [Lo12]. If all vertices of sB are fully contained in one partition but no
simplex with equal vertices has been previously found in the respective partial triangulation,

△ TRIANGLES
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sB is discarded, as it must violate the Delaunay property for a point of that partition not
belonging to the border point set, following the uniqueness of the DT for a point set in
general position [Del34]. Refer to Section 2.4.1.2 for further analysis of these operations.

Simplices with equal vertices can be efficiently found by using a hash table of the discarded
border simplices. The lookup key is a simplex hash hs(s)—the exclusive or of a vertex hash
hv(·) of each vertex of s,

hs(s) :=
⊕

i<D+1
hv(verticesi(s)).

For a suitable hv(·), hs(·) is efficiently computable, commutative and contributions of
individual vertices can be easily extracted. The latter two properties are important for the
subsequent neighborhood update. Refer to Section 2.4.3 for details about the choice of hv(·).

Neighborhood Update. Finally, the neighborhood-relations of the newly inserted simplices
need to be established and the relations of some of the previously existing simplices need to
be updated. For each neighbor d ∈ [1..D + 1] of a simplex s it is determined whether the
currently designated neighbor is valid—i.e., is not some placeholder value and still part of
triangulation T—or needs updating. In the latter case, the simplex sn ∈ T is determined
that shares the facet opposite of verticesd(s) with s. Simplex sn is set as the new neighbor
and enqueued for updating itself (Lines 25–31). To efficiently find candidates for neighboring
simplices of a given simplex s we employ a facet hash—denoted fi(s) for the facet opposite
the i-th vertex. The facet hash must be independent of the order of vertices in s and should
be efficiently computable from hs(s). Thus, we exploit the commutativity of hs(s) and the
involutionarity of exclusive or and let

fi(s) := hs(s)⊕ hv(verticesi(s)).

As only simplices of T1 and T2 neighboring the border simplices B as well as simplices added
to T from TB need to update their neighborhood, we can efficiently maintain a facet lookup
table during border detection and merging. The convex hull of T is composed of the convex
hull of T1 and T2 without the simplices belonging to the border plus the simplices of the
convex hull of TB that have been added to T . The necessary data structures can also be
efficiently maintained during merging.

2.4.1.2 Analysis
In the following we prove the correctness of our presented algorithm. Furthermore, we analyze
its scaling behavior and compare it to that of sequential algorithms. Our proof of correctness
partially relies on reducing Algorithm 2.1 to the Bowyer-Watson incremental insertion
algorithm (BW algorithm) [Bow81; Wat81]. We will briefly outline the BW algorithm in
the following, refer to [CDS12, Section 3.3] for details. The BW algorithm proceeds in three
steps to insert a new vertex v into an existing DT T :

1. Point location: find simplex s ∈ T with v inside s and remove s from T .
2. Cavity search: check all sn ∈ neighbors(s) whether sn’s circumsphere contains v. If so,

delete sn and recursively process all neighbors of sn. This step results in a star-shaped
polyhedral cavity in T .

3. Re-triangulation: for each facet xy of the cavity add simplex s∗ = {x, y, v} to T .
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Correctness. We show that our D&C algorithm produces a valid DT for a point set
P in general position. In the following we consider point sets P1 ∪ P2 = P, the set of
border simplices B and triangulation T obtained by merging T1, T2 and TB according to
Algorithm 2.1. Furthermore, let DT (P) denote the true Delaunay triangulation of point
set P. Moreover, let i, j ∈ {1, 2} and i ̸= j. Geometric arguments are given for arbitrary
dimensions but purely combinatorial arguments are presented for two dimensions for brevity.

▶ Corollary 6. Given the partitioned point sets P1 and P2, T1 and T2 are valid DTs for
their respective point set. TB is a valid DT for the points of vertices(B).

▶ Lemma 7. B contains all simplices of Ti whose circumsphere intersects the bounding box
of triangulation Tj.

Proof. The border detection algorithm is equivalent to the depth-first cavity search of the
BW algorithm, with imaginary points inserted on the separation (hyper)-plane between Ti

and Tj . ◀

▶ Lemma 8. For i ∈ {1, 2}, ∀s ∈ Ti \B : s ∈ DT (P), i.e., all non-border simplices of Ti

belong to DT (P).

Proof. Following Lemma 7, B contains all simplices of Ti whose circumsphere intersects
the bounding box of Tj . No point of Tj can be closer to any point in Ti than the imaginary
points on the separation (hyper)-plane between Ti and Tj , therefore no simplex in Ti \B
would be affected by the cavity search step of the BW algorithm for any point in Tj . Thus,
Ti \B is the unique DT of Pi \ vertices(B). ◀

▶ Lemma 9. For all simplices s ∈ TB,

a) if vertices(s) ⊂ Pi and there exists no simplex s′ ∈ Ti with vertices(s) = vertices(s′) then
s ̸∈ DT (P);

b) with s as above, if there is a simplex s′ with vertices(s) = vertices(s′) then s ∈ DT (P);
c) if vertices(s) ̸⊂ Pi and vertices(s) ̸⊂ Pj, then s ∈ DT (P).

Proof. a) Let vertices(s) = {v1, v2, v3} ⊂ Pi. As there is no simplex s′ ∈ Ti with vertices
{v1, v2, v3}, there must be, due to Definition 1 and Corollary 6, simplices s1 and s2
in Ti with vertices(s1) = {va, vb, vx} and vertices(s2) = {va, vc, vx} for some vx ∈ Pi \
{v1, v2, v3} and va ̸= vb ̸= vc ∈ {v1, v2, v3}, as shown in Figure 2.4a. As Ti is the unique
DT for point set Pi and vertices(TB) ∩Pi ⊂ Pi, s must violate the Delaunay property
for some point p ∈ Pi \ vertices(TB) and therefore cannot be in DT (P), since s1 and s2
are valid simplices of DT (Pi).

b) Simplex s with vertices(s) = {v1, v2, v3} ⊂ Pi fulfills the Delaunay property for point set
Pi and point set Pi ∪ vertices(B) ⊃ Pi, as s ∈ Ti and s ∈ TB (Corollary 6). Assume s

would violate the Delaunay property for some point p̂ ∈ Pj\vertices(B). The circumsphere
of any simplex s∗ ∈ Tj with p̂ ∈ vertices(s∗) cannot intersect the bounding box of Ti, as
otherwise s∗ would be in B and p̂ in vertices(B) (Lemma 7). Furthermore, s∗ cannot
belong to the convex hull of Tj , as all simplices of the convex hull are in B. Consider
vertices(s∗) = {vx, vy, p̂} with vx, vy ∈ Pj and vx, vy ∈ vertices(B), i.e., p̂ is the point of
s∗ farthest removed from Tj ’s border, as vx and vy also belong to some border simplex.
As vertices(s) ∈ Pi, the circumsphere of s would need to intersect Tj ’s bounding box in
order for s to violate the Delaunay criterion for p̂, therefore it would also need to violate
the Delaunay property for vx and/or vy, refer to Figure 2.4b. Thus, s would not be in
TB (Corollary 6). Ergo, p̂ cannot exist and s ∈ DT (P).

△ TRIANGLES
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v1

v2

v3

s s1

s2

vx

(a) Lemma 9 a): simplex s (red, dashed)
violates the DT criterion for vx and
cannot be in DT (P)

.

p̂

v1

v2

v3

s

s∗

vx

vy

(b) Lemma 9 b): the circumcircle of sim-
plex s (red) needs to contain vy in or-
der for it to contain p̂.

Figure 2.4 Illustrations for the proof of Lemma 9.

c) Consider simplex s with vertices(s) = {v1, v2, v3} partitioned into two disjunct blocks
vertices(s) = vi ∪ vj with vi ⊂ Pi and vj ⊂ Pj . As s contains vertices from both
partitions, s cannot be in either Ti or Tj . By Corollary 6, s fulfills the Delaunay property
in TB. Following Lemma 7, s cannot violate the Delaunay property in Pi \ vertices(B)
as all simplices that would be affected by any point from Tj , in particular from vj , are
in B. The same holds for Pj \ vertices(B). Following the same uniqueness argument as
above, there are no simplices s1, s2 ∈ DT (vertices(B)) with vertices(s1) = {va, vb, vx}
and vertices(s2) = {va, vc, vx} for some vx ∈ vertices(B) \ {v1, v2, v3} and va ≠ vb ≠ vc ∈
{v1, v2, v3}, therefore, s ∈ DT (vertices(B)) and thus s ∈ DT (P), as there can be no
simplices s′

1, s′
2 ∈ DT (P), analogously.

◀

▶ Theorem 10. For a given point set P, the triangulation T (P) computed by Algorithm 2.1
is the Delaunay triangulation DT (P) of P.

Proof. The theorem follows from Corollary 6 and Lemmas 7–9. ◀

Runtime Analysis. We now analyze the runtime of our algorithm. Let TP (n) denote the
time required to process n input points with P processing elements (PEs):

TP (n) =

(
P1 P2

)︷ ︸︸ ︷
O
( n

P

)
+

(
T1 T2

)︷ ︸︸ ︷
2T P

2

(n

2

)
+

border simplices B︷ ︸︸ ︷
O
(
|DT (n)|

P

)
+

border DT TB︷ ︸︸ ︷
TP (|vertices(B)|) +

merging &
neighbor update︷ ︸︸ ︷
O
(
|TB |
P

)
,

with |·| denoting the number of simplices in the triangulation. Recall, that the triangulation
size is bounded by O(n⌈ D

2 ⌉) [Sei95]. Thus, TP (n) can be simplified to

TP (n) = O
(

n⌈ D
2 ⌉

P

)
+ 2T P

2

(n

2

)
+ TP (αn) , (2.1)

with α ∈ [0, 1] denoting the fraction of border vertices.
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We will analyze Equation (2.1) in the work-span model [SV82]. In this model, work is
defined as the total number of operations performed by the algorithm and span as the longest
chain of dependent operations. Alternatively, work can be defined as T1(n), i.e., the time the
algorithm takes with a single PE, and span as T∞(n), i.e., the time the algorithm takes with
an infinite number of PEs.

Work. To derive a bound for the work T1(n), let us first, conservatively, assume that half
of the vertices belong to the border, i.e., α = 1

2 . This allows us to solve the recurrence with
the Master Theorem [BHS80], yielding

T1(n) = O
(

n⌈ D
2 ⌉
)

+ 3T1

(n

2

)
with ccrit = log2 3 ≈ 1.58†

∈

Θ
(
nlog2 3) for D = 2

Θ
(

n⌈ D
2 ⌉
)

for D ≥ 3.

For D ≥ 3, this work bound matches the bound for sequential algorithms [CDS12], however
for D = 2, it is worse than the sequential bound of O(n log n) [For87].

Bounding T1(n) for arbitrary α is more involved and requires the use of the Akra-Bazzi
theorem [AB98]. It states that the asymptotic behavior of a recurrence of the form

T (n) = g(n) +
k∑

i=1
aiT (bin) ,

with ai ∈ (0,∞) and bi ∈ (0, 1) for i ∈ [1..k], is bounded by

T (n) ∈ Θ
(

np

(
1 +

∫ n

1

g(u)
up+1 du

))
,

with p being the unique solution of the equation
∑k

i=1 aib
p
i = 1. Applying this theorem to

Equation (2.1) yields

T1(n) ∈ Θ
(

np

(
1 +

∫ n

1

u⌈ D
2 ⌉

up+1 du

))

= Θ
(

1
⌈D

2 ⌉ − p
n⌈ D

2 ⌉ +
⌈D

2 ⌉ − p− 1
⌈D

2 ⌉ − p
np

)
∈

Θ
(

n⌈ D
2 ⌉
)

for p ≤ ⌈D
2 ⌉

Θ(np) for p > ⌈D
2 ⌉

with 2
( 1

2
)p + αp = 1. As a closed-form expression for p is elusive, we resort to numerical

methods to determine p for varying values of α. Figure 2.5 shows the resulting p for α ∈ [0, 1].
We call a value of α critical for a given dimension D, if the resulting p is equal to ⌈D

2 ⌉. As
shown in Table 2.2, for two dimensions, the critical value for α is zero, meaning that we
can not achieve the work bound of the sequential algorithm. However, for three and four
dimensions, the critical value for α is 1√

2 , resulting in the same work bound as the sequential
algorithm if less than 70 % of the vertices belong to the border. Except for worst-case inputs,
the fraction of border vertices is usually much smaller than this. Table 2.2 also shows the
resulting p for different values of α. Setting α = 1

2 , results in p = log2 3, validating our
previous analysis with the Master Theorem.

† For recurrences of the form T (n) = g(n) + aT ( n
b ), ccrit is defined as logb a [BHS80].
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Table 2.2 Critical α for different dimensions D and resulting p for varying α.

D Critical α

2 0.0
3 1√

2 ≈ 0.7
4 1√

2 ≈ 0.7
5 ≈ 0.9

α p

1 ∞
1/2 log2 3 ≈ 1.58
1/4 log2

(
1 +
√

2
)
≈ 1.27

1/10 ≈ 1.12

0

2

4

6

8

10

D

0.0 0.2 0.4 0.6 0.8 1.0
α

0

1

2

3

4

5
p

Figure 2.5 Plot of 2
( 1

2

)p + αp = 1 for α ∈ [0, 1] and resulting p. The right axis shows the
critical α for different dimensions D.

Span. Equation (2.1) has two base cases:

TP (n = N) = TSeq(N) TP =1(n) = TSeq(n)

for some fixed N . In order to bound the span T∞(n), only the first base case is relevant, as
P =∞. We need to consider

n

2a
= N nαb = N

a = log2
n

N
b = logα−1

n

N

with T∞(n) = max (a, b). Thus, for α ≤ 1
2 , the span is bounded by log2 n and by logα−1 n

otherwise. In practice, the span is dominated by the first recursive descent which usually
terminates in the second base case, while the second descent terminates in the first base case
after only a few levels of recursion, if any, for most inputs. Therefore, in practice, the span is
bounded by log2 P .

2.4.2 Distributed-Memory Algorithm
The previously presented divide-and-conquer algorithm can be applied to a distributed-
memory model with explicit message-based communication. The general idea of the approach
remains unchanged, only slight modifications are required to account for the incomplete
information each processing element (PE) has about the input points and hence the resulting
global triangulation.

Each of the P PEs holds a portion of the input points, P = {P1 ∪ ... ∪ PP } with
Pi = {pi,1, ..., pi,ni

}. In the following, we assume that a PE i belongs to exactly one partition
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Algorithm 2.2 Delaunay(P, C): distributed-memory parallel D&C algorithm.
Input: Point set P = {p1, ..., pn}, PEs of partition C
Output: local view T of Delaunay triangulation DT (

⋃
j∈C P@j)

1: if Σj∈Cn@j < N ∨ |C| = 1 then ▷ base case
2: return DelaunayBase(P, C)
3: S ← localVertexStatistics(P) ▷ local min, max and median
4: Sall ← allReduce(S, C) ▷ global min, max and median
5: k ← splittingDimension(Sall)
6: p = median(Sk) ≥ median(Sall,k) ▷ PE’s side of splitting plane in dim. k

7: C′ ← {j : p@j = p ∀j ∈ C} ▷ set of all PEs on same side of splitting plane
8: T ← Delaunay(P, C′) ▷ triangulate own partition
9: B← borderSimplices(T, C, C′) ▷ simplices across splitting plane

10: B← sparseAllToAll(B, C′) ▷ receive border simplices from neighboring PEs
11: CB ← {j : B@j ̸= ∅ ∀j ∈ C} ▷ PEs with non-empty border
12: if B ̸= ∅ then ▷ PE belongs to border
13: TB ← Delaunay(vertices(B), CB) ▷ triangulate border vertices
14: T ← merge(T, TB , B, P, C′) ▷ merge triangulations and update neighborhood
15: return T

in each partitioning step, i.e., all its points Pi are either on one side of the splitting plane
or the other. This holds naturally for e.g., geospatial data read from pre-tiled files. Data
not adhering to this assumption require one additional all-to-all communication in the first
recursive descent to move the input points to their respective PE.

Algorithm 2.2 presents the modified D&C algorithm from the viewpoint of PE i, with
x@j denoting the value of x at PE j. A partition of nodes is represented by set C, e.g.,
at recursion level zero C = {1, ..., P}. At a given recursion level, if the number of input
points in the current partition C lies below a certain threshold or there is only one PE left in
the partition, the base case Algorithm 2.6—described at the end of this section—is invoked
to compute the Delaunay triangulation of the points of C. In the recursive case, the local
minimum, maximum and median of the input points are computed. These statistics are
gathered by all PEs of the partition to compute the global values. The splitting dimension is
determined according to the global statistics, following the same schemes as for the shared-
memory implementation. The partition C is reduced to C′, containing only PEs on the
same side of the splitting plane as PE i. The recursive call with partition C′ yields PE i’s
local view T on the triangulation of the points in

⋃
j∈C′ Pj—denoted DT (C′). It holds that

T = {s ∈ DT (C′) : | vertices(s) ∩Pi| ≥ 1}, i.e., PE i stores every simplex of DT (C′) that
contains at least one vertex from the input points of PE i.

Subsequently, the border simplices of the local triangulation T are determined. Algo-
rithm 2.3 follows the same principle as described in the previous section. A simplex is added
to the local border simplex set B if its circumsphere intersects with the bounding box of the
other partition C \C′, which can be computed without additional communication. Since
PE i only has a local view T on DT (C′) and the border detection algorithm starts its search
from the convex hull of DT (C′), there might be a simplex ŝ ∈ T which belongs to the border
of DT (C′) but is only reachable from the convex hull of DT (C′) via a simplex ŝ′ of the
convex hull only stored at PE j. That is the case if vertices(ŝ) contains only one vertex from
Pi and vertices(ŝ′) is fully contained in Pj and hence ŝ′ ̸∈ T . As ŝ and ŝ′ are neighbors,
at least one vertex of ŝ is in Pj and therefore ŝ ∈ T at PE j. Thus, ŝ will be identified

△ TRIANGLES
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Algorithm 2.3 borderSimplices(T, C, C′): border simplex detection.
Input: Triangulation T , PEs of partition C and sub-partition C′

Output: border simplices B
1: B̄ ← boundingBox(C)− boundingBox(C′) ▷ compute bounds of other partition
2: Q← convexHull(T ) ▷ initialize work queue
3: B = ∅
4: parfor s ∈ Q do
5: mark(s) ▷ only process each simplex once
6: if circumsphere(s) ∩ B̄ ̸= ∅ then
7: B ∪ {s} ▷ circumsphere intersects other partition
8: for sn ∈ neighbors(s) do ▷ process all neighbors
9: if ¬marked(sn) then

10: mark(sn); Q ∪ {sn}
11: return B

Algorithm 2.4 merge(T, TB , B, P, C): merge border simplices into T .
Input: Triangulation T , border triangulation TB

border simplices B, points P, PEs of partition C
Output: merged triangulation T

1: T ← T \B ▷ strip border simplices
2: Q← ∅ ▷ work queue for neighbor updates
3: parfor sB,x ∈ TB do
4: if ∃k : verticesk(sB,x) ∈ P then ▷ simplex touches own points
5: if ∃k, l : verticesk(sB,x) ∈ C ∧ verticesl(sB,x) ̸∈ C) then
6: T ∪ {sB,x} Q ∪ {sB,x} ▷ simplex spans both partitions
7: else
8: if ∃s ∈ B : vertices(s) = vertices(sB,x) then
9: T ∪ {sB,x} Q ∪ {sB,x} ▷ previously stripped simplex

10: updateNeighbors(T, Q, C)
11: return T

as border simplex by PE j. To ensure every PE is aware of all of its border simplices, a
sparse all-to-all communication within partition C′ is required, yielding the updated set
B = (∪j∈C′B@j) ∩ T .

Only PEs with nonempty set B need to participate in the border triangulation. The
border triangulation follows the same algorithm as the main triangulation with the reduced
PE set CB . The merging of T and TB is extended by the additional condition that a simplex
sB ∈ TB is only considered for addition to T if at least one of its vertices lies in Pi. The
further conditions are the same as in the shared-memory case, as seen in Algorithm 2.4.

The determination of the neighborhood relations of the newly inserted simplices is also
identical to the shared-memory case. However, as each PE only possesses a partial view on
the triangulation DT (C), not all neighbors of simplex s ∈ T can be determined by PE i alone.
Particularly, if vertices(s) contains only one vertex from Pi, at least one of the neighbors
of s will not be stored at PE i. Therefore, each PE keeps track of all the updates it performs.
In a sparse all-to-all communication, information about the updates to a simplex s is sent to
every PE that contains s in its local triangulation and can then perform the updates locally,
as seen in Algorithm 2.5.



2.4.2 Distributed-Memory Algorithm 27

Algorithm 2.5 updateNeighbors(T, Q, C): update neighbor relations of simplices in T .
Input: Triangulation T , work queue Q, PEs of partition C
Output: updated triangulation T

1: U← ∅ ▷ list of performed updates
2: parfor sx ∈ Q do
3: mark(sx) ▷ only process each simplex once
4: for k ∈ [1..D + 1] do ▷ process all neighbors
5: sy ← neighborsk(sx)
6: if sy =∞∨ sy ̸∈ T then ▷ sy not valid neighbor
7: sy ←∞ ▷ update needed, reset
8: C ← {sc : fk(sx) = fk(sc)} ▷ candidates with same facet hash
9: for sc ∈ C do

10: if | vertices(sx) ∩ vertices(sc)| = D ∧ verticesk(sx) ̸∈ sc then
11: sy ← sc ▷ sc is neighbor of sx

12: if ¬marked(sc) then
13: mark(sc); Q ∪ {sc} ▷ also update neighbors of sc

14: U ∪
{(

sx k sc

)}
▷ keep track of update

15: U← allGather(U, C) ▷ exchange neighbor updates
16: parfor

(
sx k n

)
∈ U do

17: if sx ∈ T then neighborsk(sx)← n ▷ apply updates from other PEs
18: return T

Algorithm 2.6 DelaunayBase(P, C): base case for distributed DT algorithm.
Input: Point subset P = {p1, ..., pn}, PEs of partition C
Output: Delaunay triangulation T of P

1: if |C| = 1 then ▷ base case
2: return Delaunay(P) ▷ shared-memory DT algorithm
3: if PE i = min C then
4: P′ ← gather(P, C) ▷ gather points from neighbors
5: T ′ ← Delaunay(P′) broadcast(T ′) ▷ shared-memory DT algorithm
6: else ▷ all other PEs
7: send(P) receive(T ′)
8: T ← {s ∈ T ′ : | vertices(s) ∩P| ≥ 1} ▷ filter simplices
9: return T

△ TRIANGLES
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Distributed Base Case: Algorithm 2.6 details the treatment of the base case in the
distributed setting. If there is only PE i left in partition C the points Pi are triangulated
on PE i using a sequential or shared-memory parallel algorithm. By setting the base case
threshold N in Algorithm 2.2 greater than maxj∈{1,...,P } |Pj |, |C| will always be one in the
first recursive descent and each PE will triangulate its own input points locally. Only in the
recursive calls of delaunay(. . . ) for border triangulations can C contain more than one PE.
In that case, the PE in C with the lowest index is chosen as master and receives the input
points of all other PEs in C. The master triangulates the gathered points and broadcasts
the simplices among the PEs of the partition. The PEs then discard all simplices with no
vertex in their respective input point sets.

2.4.3 Implementation Details
This section highlights some aspects of our implementation of the previously proposed
algorithms.1 While our algorithms are implemented for arbitrary dimension, we have only
included base case algorithms for two- and three-dimensional DTs at the moment.

The input points P = {p1, ..., pn} with pi ∈ RD are stored in an array with their D

coordinates. A partition of points consists of a list of indices into this array. To ensure
globally unique point indices in the distributed setting, each PE i stores the global offset
ov,i of its point array; ov,i = Σj<i|Pj |. In addition to the main point array, an auxiliary
hash table of points is stored at each PE, that holds the vertices of simplices not entirely
contained in Pi and points received in Algorithm 2.6. In shared memory, the data structure
of Fuetterling et al. [FLP14] seems to be applicable to speedup division of the input points.
However, due to unavailability of source code its inclusion remains for future work.

Our triangulation data structure is extended from Shewchuk [She96]. Simplices are
stored in an array, where each simplex s consists of an ID, the D + 1 indices of its points in
the point array—vertices(s)—and D + 1 indices to its neighboring simplices—neighbors(s).
The vertices of a simplex are sorted by index; neighbors are stored such that neighbor i

intersects s at the facet opposite vertex i. In the distributed case, a PE i sets the upper
log P bits of its simplex IDs to i to obtain globally unique identifiers.2 Our triangulation
data structure furthermore stores the indices of the simplices of its convex hull, as these serve
as starting point for the border detection algorithm. To allow fast merging of two partial
triangulations, simplices are stored in blocks. A base case triangulation results in a single
block of simplices with consecutive, globally unique IDs. When merging T1 and T2 into a
combined triangulation T , T stores two pointers to the data blocks of T1 and T2, along with
their respective minimum and maximum simplex ID in a binary search tree. After k merge
steps, this allows for random access to a simplex in O(log k) time; scanning is still in O(1).

The vertex hash function hv(·) required for the simplex and facet hash function needs
to minimize the expected number of collisions while being efficiently computable. In our
experiments we found that setting hv(v) equal to the point index rotated by its lowest byte
value to suit our needs. That is,

hv(v) := v ≪ lsb(v).3

Whether our algorithm would benefit from a more sophisticated hash function, i.e., a
provable universal hash function, remains for future work. Concurrent hash table operations

1 Source code available at https://github.com/dfunke/ParDeTria.
2 Simplex ID offset os,i = i · 28w−log P , w = machine word size.
3 ≪ bit rotation, lsb least significant byte.

https://github.com/dfunke/ParDeTria
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are at the heart of the merging and neighborhood update algorithms. The efficient, growable,
concurrent hash table by Maier et al. [MSD16] is used in our implementation. We extended
their implementation to multisets for facet hash lookups during neighborhood updates.

Intel’s Threading Building Blocks (TBB) library4 is used for shared-memory parallelization.
Particularly, its concurrent work queue is employed in the border simplex detection and
neighborhood update algorithms.

Geometric algorithms need to address the limited floating-point precision of current
hardware. Our proposed D&C scheme relies on combinatorial computations on hash values
except for the detection of the border simplices of two partial triangulations. We use the fast
sphere-box overlap test of Larsson et al. [LAL07] to determine if the (hyper)-circumsphere of
a given simplex intersects with the bounding box of the opposite partial triangulation. The
test does not suffer from floating-point inaccuracies like the orient- and in-sphere-tests
required by the base case algorithm [She97].

2.4.4 Evaluation
Batista et al. [Bat+10] propose three input point distributions to evaluate the performance
of their DT algorithm: N points distributed uniformly

a) in the unit cube;
b) on the surface of an ellipsoid; and
c) on skewed lines.

Additionally, Lee et al. [LPP01] suggest normally distributed input points around

d) the center of the unit cube; and
e) several points within the unit cube—called “bubbles”.

All experiments are performed in three-dimensional space, Figure 2.6 gives two-dimensional
examples of the studied input point sets. Points along skewed lines are among the worst-case
inputs for DT construction algorithms, as they generate triangulations with a quadratic num-
ber of simplices [Bat+10]. The bubble distribution can result in a large border triangulation
if the dense parts of the bubbles are cut and poses a challenge for load balancing [LPP01].

We furthermore test our algorithm with two real-world datasets from materials science,
where Voronoi analysis is used in simulation studies of liquids, glasses and solids to ex-
plore their atomic structure, e.g., the characteristic arrangement of near neighbors of an
atom [Stu12]. Amorphous Copper-Zirconium (CuZr) alloys are used as benchmark compound
in the field [Wan+04]; we evaluate two 50/50 Copper/Zirconium system consisting of four
million and 100 million atoms.

Table 2.3 gives an overview of all evaluated point sets, along with the size of their
resulting triangulation and required runtime of our algorithm. It shows that the ellipsoid and
particularly the skewed lines distribution result in a large number of simplices and require a
long time to compute, as further discussed in Section 2.4.4.1.

The shared-memory algorithm was evaluated on a machine with dual Intel Xeon E5-2683
16-core processors and 512 GiB of main memory. We use the sequential Delaunay triangulation
algorithm of CGAL 4.7 as base case in Algorithm 2.1 and compare our implementation to the
parallel DT construction algorithm of CGAL [HS15]. In both cases, CGAL is configured to

4 https://www.threadingbuildingblocks.org/ (accessed 08-12-2023)

△ TRIANGLES
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(a) Uniform in unit cube. (b) Surface of ellipsoid. (c) On skewed lines.

(d) Normal around center. (e) Bubbles.

Figure 2.6 Two-dimensional examples of our synthetic input distributions for n = 1000 points.
Note that lines cannot be skewed in two dimensions.

Table 2.3 Evaluated point sets and their resulting triangulations. Shared-memory runtimes are
reported for 32 cores, distributed-memory runtimes for 2048 cores with 4 cores per
MPI process.

Distribution Points Simplices Runtime

shared memory

uniform 50 000 000 360 542 380 64 s
normal 50 000 000 361 877 812 83 s
bubble 50 000 000 361 638 812 70 s
ellipsoid 500 000 84 408 498 169 s
lines 10 000 122 396 140 292 s

CuZr 4 000 000 28 927 267 8 s
CuZr 100 000 000 634 926 984 148 s

distributed memory

uniform 2 048 000 000 22 112 081 080 92 s
normal 204 800 000 5 861 711 093 50 s



2.4.4 Evaluation 31

1 2 4 8 16 32
cores

0

1

2

3

4

5

sp
ee

du
p

Absolute Speedup Distributions
bubble
ellipsoid
lines
normal
uniform

Algorithms
D&C
CGAL

(a) Absolute speedup over sequential CGAL.

1 2 4 8 16 32
cores

0

1

10

100

t C
G

A
L /

t D
&

C

Relative Speedup Distributions
bubble
ellipsoid
lines
normal
uniform

(b) Relative speedup over parallel CGAL.

Figure 2.7 Speedup of our shared-memory D&C algorithm and CGAL’s parallel DT implemen-
tation for various point distributions.

use exact predicates for orient and in-sphere computations.5 In preliminary experiments,
the cyclic choice of splitting dimension proved to be the best partitioning scheme and was
therefore used for all experiments.

The distributed-memory experiments were conducted on InstitutsCluster II at the Stein-
buch Centre for Computing at Karlsruhe Institute of Technology. The cluster contains 480
compute nodes with dual Intel Xeon E5-2670 8-core processors and 64 GiB of main memory,
connected by an InfiniBand 4X QDR interconnect. A single job may use up to 128 nodes
(≡ 2048 cores). OpenMPI version 1.8.6 was used as message passing library.

2.4.4.1 Shared-memory Algorithm
Figure 2.7 shows the performance of our algorithm in comparison to CGAL’s sequential and
parallel DT algorithms for the aforementioned input distributions. The uniform, normal
and bubble distribution show good scaling behavior. The bubble distribution has few points
near the border of a partition and thus a low number of vertices in the border triangulation.
CGAL’s parallel incremental insertion encounters low congestion in its locking, since the
vertices of one bubble are mostly handled by a single thread due to spatial sorting [Bat+10].
Uniformly distributed points have larger—but compact and even—border triangulations,
resulting in good load balancing between the partitions. In contrast, normally distributed
points result in larger border triangulations around the center, yet they profit from small
cuts in the outer regions. When using only a single socket of our test machine, our algorithm
performs on par with CGAL’s implementation. For multiple sockets, however, we clearly
outperform CGAL. Our algorithm adapts well to the NUMA setting, as—except for the
final merge step—the entire algorithm operates exclusively on socket-local data. Contrarily,
CGAL’s incremental insertion algorithm requires continuous communication between threads
of the two sockets.

The ellipsoid and skewed line distributions are specifically tailored to be hard inputs for
both implementations. The former is hard due to its large convex hull, the latter due to the
quadratic number of simplices in the input size. Both parallel implementations fall below
the throughput of the sequential reference. Our implementation’s performance degrades less
than CGAL for the ellipsoid, as only the simplices of the convex hull whose circumspheres

5 CGAL::Exact_predicates_inexact_constructions_kernel

△ TRIANGLES
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Figure 2.8 Structure of an amorphous CuZr alloy. Copper atoms are depicted in red, Zirconium
atoms in blue.

intersect the splitting plane contribute to the border triangulation, while CGAL suffers from
high congestion on the inner simplices of the ellipsoid. Congestion on the inner simplices also
leads to CGAL’s bad performance for skewed lines. Our implementation suffers even more,
due to almost all simplices intersecting the splitting plane for at least one cutting dimension,
resulting in large border triangulations.

Figure 2.8 shows the fairly regular structure of the atoms of a CuZr alloy. This results
in compact and even cuts between the partitions of the triangulation similar to uniformly
distributed points. The scaling behavior is therefore also comparable to this point distribution.

2.4.4.2 Distributed-memory Algorithm
Figure 2.9 shows the weak scaling behavior of our distributed-memory implementation. In
the experiment each core processes one million input points for the uniform distribution
and 100k points for the normal distribution, due to memory limitations at the central nodes
described below. We show the behavior for different configurations of hybrid parallelization,
ranging from one thread per MPI process—i.e., one process per core with sequential base
case—to eight cores per MPI process—i.e., one process per socket with our shared-memory
parallel D&C algorithm as base case in Algorithm 2.6. We would have expected one process
per socket to yield the best results, as this configuration is NUMA aware and requires the
least inter-process communication. Nevertheless, for uniformly distributed points, two cores
per process show the best performance with a speedup of ≈ 260 for 2048 cores.6 For the
normal distribution, we attain a more modest speedup of 18 for 2048 cores due to the lack of
load balancing in our current implementation. PEs close to the center of the distribution
have a much higher workload than others, preventing larger speedup gains. We address this
shortcoming in Section 2.5. If the input points are not pre-partitioned, we observe a runtime
overhead for the additional all-to-all communication of 10 % to 15 % on average.

With increasing number of PEs and input size the recursion depth increases. Thus, more
border triangulations are required to produce the global triangulation. Furthermore, each
PE needs to store more simplices that are only partially contained in its original input point
set. This increases memory consumption per PE. In the uniformly distributed setting, our
measurements show that while the total number of processed points grows by three orders

6 We attribute the outlier for 1024 cores to some other activity in the cluster.
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Figure 2.9 Throughput and memory overhead of our distributed-memory algorithm in a weak
scaling experiment.

of magnitude going from one to 2048 PEs, memory consumption per core only increases
by a factor of 2.2 and about 9 % of the input points need to be re-triangulated in a border
triangulation. For the normal distribution, the memory increase exceeds a factor of 30. This
is due to the large number of points processed by the central PEs. Furthermore, PEs close to
the center also have to store many simplices only partially contained in their original point
set. Again, load balancing would mitigate this issue. For both distributions, the benefit of
hybrid parallelization is apparent, as more threads per MPI process result in fewer processes,
leading to reduced recursion depth in the distributed algorithm.

2.4.5 Conclusions
In this section we presented a novel divide-and-conquer algorithm for computing the Delaunay
triangulation in arbitrary dimension, that reduces the merging of two subproblems to re-
triangulating a small subset of their vertices and using efficient hash table operations to
combine the three triangulations into one. All steps of the merging are parallelized. We
are able to perform on par with or better than CGAL’s parallel three-dimensional DT
implementation in shared memory and show good scalability for our approach in distributed
memory up to 2048 cores and two billion input points.

Our experiments show that more advanced load balancing and work division strategies,
aiming at smaller border sizes, are required to yield a more robust algorithm, capable of
processing large realistic inputs from a variety of fields. We will develop such strategies in
the next section.

Many real-world inputs require periodic boundary conditions, which need to be handled
efficiently by our algorithm and remain for future work. The DT construction algorithm
presented in Section 2.6 is capable of handling periodic boundary conditions, however it is
not designed for general point sets but only for uniformly distributed points as produced by
our network generator.

△ TRIANGLES
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2.5 Sample-based Load Balancing Strategies

As seen in the previous section, the divide-step of our D&C DT algorithm needs to address a
twofold sensitivity to the point distribution: the partitions need to be approximately equal-
sized for good load balancing, while the number of border vertices needs to be minimized
for fast merging. This requires partitions that have many internal Delaunay edges but only
few external ones, i.e., a graph partitioning of the DT graph. In this section we propose a
novel divide-step that approximates this graph partitioning by triangulating and partitioning
a small sample of the input points, and divides the original input point set based upon it.
This results in more complexly shaped partitions than simple axis-aligned bounding boxes,
for which we present fast intersection tests. We compare our new divide-step against the
partitioning schemes presented in Section 2.4.1.1.

2.5.1 Sample-based Partitioning

The underlying idea of our partitioning scheme is derived from sample sort [FM70]: gain
insight into the input distribution from a (small) sample of the input. This sample is then
used to partition the input points into k partitions. For this we need to generalize the original
algorithm, Algorithm 2.1, to work with an arbitrary number of partitions. Algorithm 2.7
shows the adapted algorithm, with changes highlighted by red line numbers. The partitioning
procedure in Line 3 is described in Algorithm 2.8. A sample PS of η(n) points is taken from
the input point set P of size n and triangulated to obtain DT (PS). A similar approach can
be found in Delaunay hierarchies [Dev02], where the sample triangulation is used to speed
up point location queries.

We transform the sample DT into a graph G = (V, E, ω), with V being equal to the
sample point set PS and E containing all edges of DT (PS). The resulting graph is then
partitioned into k blocks using a graph partitioning algorithm.

The choice of the weight function ω influences the quality of the resulting partitioning. As
mentioned above, the D&C algorithm is sensitive to the balance of the blocks as well as the
size of the border triangulation. The former is ensured by the imbalance parameter ϵ of the
graph partitioning, which guarantees that for all partitions i: |Vi| ≤ (1 + ϵ)⌈ |V |

k ⌉. The latter
needs to be addressed by the edge weight function ω of the graph. In order to minimize the
size of the border triangulation, dense regions of the input points should not be cut by the
partitioning. Sparse regions of the input points result in long Delaunay edges in the sample
triangulation. As graph partitioning tries to minimize the weight of the cut edges, edge
weights need to be inversely related to the Euclidean length of the edge. Table 2.4 provides
an overview of the edge weight functions considered, which are evaluated in Section 2.5.2.1.

Table 2.4 Possible choices for the edge weight ω, with d(v, w) = ||v−w||
d∗ denoting the normalized

Euclidean distance of points v and w, with d∗ being the length of the maximum
diagonal of the input space.

Weight ω(e = (v, w))

constant 1
inverse 1

d(v,w)
logarithmic − log d(v, w)
linear 1− d(v, w)
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Algorithm 2.7 Delaunay(P): shared-memory parallel D&C algorithm adapted to an arbitrary
number of partitions. Red line numbers indicate differences to the original
Algorithm 2.1.

Input: Points P = {p1, ..., pn} with pi ∈ RD

Output: Delaunay triangulation T (P)
1: if n < N then
2: return sequentialDelaunay(P) ▷ base case
3:
(
P1 . . . Pk

)
← partitionPoints(P, k) ▷ partition points into k partitions

4:
(
T1 . . . Tk

)
←
(
Delaunay(P1) . . . Delaunay(Pk)

)
▷ parallel triangulation

Border triangulation:
5: B← ∅ ▷ empty set of border simplices
6: Q←

⋃
1≤i≤k convexHull(Ti) ▷ initialize work queue with convex hull

7: parfor si,x ∈ Q do ▷ simplex originating from triangulation Ti

8: mark(si,x) ▷ process each simplex only once
9: if intersects (circumsphere(si,x), Tj) , with i ̸= j then

10: B ∪= {si,x} ▷ circumsphere intersects other partition ⇒ si,x is border simplex
11: for si,y ∈ neighbors(si,x) ∧ ¬marked(si,y) do ▷ process all neighbors
12: mark(si,y); Q ∪= {si,y}
13: TB ← Delaunay(vertices(B)) ▷ triangulate points of border simplices
Merging:
14: T ←

(⋃
1≤i≤k Tk

)
\B; Q← ∅ ▷ merge partial triangulations, strip border

15: parfor sb ∈ TB do ▷ merge simplices from border triangulation
16: if vertices(sb) ̸⊂ Pi ∀1 ≤ i ≤ k then
17: T ∪= {sb}; Q ∪= {sb} ▷ sb spans multiple partitions
18: else
19: if ∃s ∈ B : vertices(s) = vertices(sb) then
20: T ∪= {sb}; Q ∪= {sb} ▷ sb replaces border simplex

Neighborhood update:
21: parfor sx ∈ Q do ▷ update neighbors of inserted simplices
22: mark(sx) ▷ only process each simplex once
23: for d ∈ [1..D + 1] do
24: if neighborsd(sx) ̸∈ T then ▷ neighbor not in triangulation anymore
25: C ← {sc : fd(sx) = fd(sc)} ▷ candidates with same facet hash
26: for sc ∈ C do
27: if | vertices(sx) ∩ vertices(sc)| = D then
28: neighborsd(sx)← sc ▷ sc is neighbor of sx

29: if ¬marked(sc) then
30: mark(sc); Q ∪= {sc} ▷ process sc if not already marked
31: return T

△ TRIANGLES
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Algorithm 2.8 partitionPoints(P, k): partition input into k partitions.

Input: Points P = {p1, ..., pn} with pi ∈ RD, number of partitions k

Output: partitioning
(
P1 . . . Pk

)
1: PS ← choose η(n) from P uniformly at random ▷ η(n) sample size
2: T ← Delaunay(PS)
3: G = (V, E, ω) with V = PS , E = T and weight function ω

4:
(
V1 . . . Vk

)
← partition(G) ▷ partition graph

5:
(
P1 . . . Pk

)
← extendPartitioning(P, PS ,

(
V1 . . . Vk

)
)

6: return
(
P1 . . . Pk

)

Algorithm 2.9 extendPartitioning(P, PS ,
(
V1 . . . Vk

)
): nearest sample point assignment.

Input: Points P, sample points PS , sample partitioning
(
V1 . . . Vk

)
Output: partitioning

(
P1 . . . Pk

)
1:
(
P1 . . . Pk

)
←
(
∅ . . . ∅

)
2: parfor p ∈ P do
3: vn ← arg minv∈PS

||p− v|| ▷ find the nearest sample point to p

4: Pi ∪= {p} with i ∈ [1..k] : vn ∈ Vi ▷ assign p to vn’s partition
5: return

(
P1 . . . Pk

)

Algorithm 2.10 extendPartitioning(P, PS ,
(
V1 . . . Vk

)
): nearest partition center assignment.

Input: Points P, sample points PS , sample partitioning
(
V1 . . . Vk

)
Output: partitioning

(
P1 . . . Pk

)
1: C← ∅ ▷ initialize set of centroids
2: parfor i ∈ [1..k] do

3: C ∪=
{∑

p∈Vi
p

|Vi|

}
▷ compute centroid of Vi

4:
(
P1 . . . Pk

)
←
(
∅ . . . ∅

)
5: parfor p ∈ P do
6: ci ← arg minc∈C ||p− c|| ▷ find the nearest centroid to p

7: Pi ∪= {p} ▷ assign p to ci’s partition
8: return

(
P1 . . . Pk

)
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(a) Nearest sample point assignment. (b) Nearest partition center assignment.

Figure 2.10 Extension of the partitioning of the sample points to the entire input point set.
Sample points are colored according to their partition, all other input points are
black. The partition centroids are marked by colored squares.

Given the partitions of the sample vertices (V1 . . . Vk), the partitioning needs to be
extended to encompass all input points. We propose two different variants to extend the
partitioning: 1. nearest sample point assignment (NSA) and 2. nearest partition center
assignment (NCA).

1. Nearest Sample Point Assignment. Each input point is assigned to the partition of
its nearest sample point, refer to Figure 2.10a and Algorithm 2.9. Consider the dual of
the Delaunay triangulation of the sample point set DT (PS)—its Voronoi diagram V D(PS).
Each point pS,i of the sample point set PS is assigned to a partition Vj , with j ∈ [1..k], by
the graph partitioning of DT (PS). The Voronoi cell of pS,i in V D(PS) defines the subspace
Ri of RD where any point p ∈ Ri is closer to pS,i than to any other sample point. The union
of the Voronoi cells of all points in partition Vj therefore defines the subspace of the input
space associated with partition j. Thus, in order to extend the partitioning to the entire
input point set, each point p ∈ P is assigned to the partition of the Voronoi cell in V D(PS)
containing it, i.e., the partition of its nearest sample point.

2. Nearest Partition Center Assignment. As can be seen in Figure 2.10a, the borders
of a partition can be irregular and jagged using NSA. In order to obtain a more regular
partitioning, we propose to assign each input point to the partition of its nearest partition
center, refer to Figure 2.10b and Algorithm 2.10. The partition center Ci is defined as the
centroid of all points assigned to partition Vi, given by

Ci =
∑

p∈Vi
p

|Vi|
, with p ∈ RD.

Each partition center Ci defines a Voronoi cell Ri in RD, where all input points p ∈ Ri are
closer to Ci than to any other partition center. This leads to smoother borders between
partitions as can be seen in Figure 2.10b.

△ TRIANGLES
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(a) Cyclic median. (b) Direct k-way. (c) Recursive bisection.

Figure 2.11 Example of a two-dimensional partitioning with four partitions for 10 000 points and
a sample size of 1000. Cyclic median splitting corresponds to the original partitioning
scheme presented in Section 2.4.1.1. Direct k-way and recursive bisection use our
new sample-based partitioning strategy with NSA.

Parallelization. All steps in Algorithm 2.8 can be efficiently parallelized. Sanders et al.
[San+18] present an efficient parallel random sampling algorithm. The triangulation of
the sample point set PS could be computed in parallel using our DT algorithm recursively.
However, as the sample is small, a fast sequential algorithm is typically more efficient. Graph
conversion is trivially done in parallel and Akhremtsev et al. [ASS18] present a state-of-the-art
parallel graph partitioning algorithm. The parallelization of the assignment of input points
to their respective partitions is explicitly given in Algorithms 2.9 and 2.10.

2.5.1.1 Recursive Bisection & Direct k-way Partitioning
Two possible strategies exist to obtain k partitions from a graph: direct k-way partitioning
and recursive bisection. For the latter, the graph is recursively partitioned into k′ = 2
partitions log k times. In the graph partitioning community, Simon and Teng [ST97] prove
that recursive bisection can lead to arbitrarily bad partitions and Kernighan and Lin [KL70]
confirm the superiority of direct k-way partitioning experimentally. However, recursive
bisection is still widely—and successfully—used in practice (e.g., in METIS [KK98] and for
initial partitioning in KaHIP [SS13]). Other problem domains also apply recursive bisection
successfully. In hypergraph partitioning, it can lead to better partitionings in the presence
of large hyperedges, i.e., edges with many vertices [Akh+17]. We therefore consider both
strategies to obtain k partitions for our DT algorithm.

The partitioning schemes described in Section 2.4.1.1 can be seen as recursive bisection:
the input is recursively split along the median. The splitting dimension is chosen in a cyclic
fashion, similar to k-D trees. Figure 2.11a shows an example.

Similarly, Algorithm 2.8 can be applied log k times, at each step i drawing a new sample
point set PS,i, triangulating and partitioning PS,i, and assigning the remaining input points
to their respective partition. As in the original scheme, this leads to k − 1 merge steps,
entailing k−1 border triangulations. In the sample-based approach however, the partitioning
avoids cutting dense regions of the input, which would otherwise lead to large and expensive
border triangulations; refer to Figure 2.11c.

Using direct k-way partitioning, only one partitioning and one merge step is required
with our generalized algorithm (Algorithm 2.7). The single border point set will be larger,
with points spread throughout the entire input area. This, however, allows for efficient paral-
lelization of the border triangulation step using our DT algorithm recursively. Figure 2.11b
depicts an example partitioning.
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(a) Bounding box. (b) Grid-based. (c) Exact.

Figure 2.12 Partition boundary determination strategies. The path through the AABB tree
to test for intersection with the circle in the upper left is marked by the colored
squares. The tested points for the exact strategy are highlighted in red.

For a fair comparison, we also implemented a variant of the original cyclic partitioning
scheme, where all leaf nodes of the recursive bisection tree are merged in a single k-way
merge step. This allows us to determine whether any runtime gains are due to the k-way
merging or due to our more sophisticated data-sensitive partitioning.

2.5.1.2 Geometric Primitives
Our D&C algorithm mostly relies on combinatorial computations on hash values except
for the base case computations and the detection of the border simplices. The original
partitioning schemes always result in partitions defined by axis-aligned bounding boxes.
Therefore, the test whether the circumhypersphere of a simplex intersects another partition
(Line 9 in Algorithm 2.7) can be performed using the fast box-sphere overlap test of Larsson
et al. [LAL07]. However, using the more advanced partitioning algorithms presented in this
section, this is no longer true. Therefore, the geometric primitives to determine the border
simplices need to be adapted to the more complexly shaped partitions. The primitives need
to balance the computational cost of the intersection test itself with the associated cost
for including non-essential points in the border triangulation. We propose three different
intersection tests with varying accuracies and computational demands.

Bounding Box Intersection Test. A crude approximation uses the bounding box of each
partition and the fast intersection test of Larsson et al. [LAL07] to determine the simplices
that belong to the border of a partition. While computationally cheap, the bounding box
can overestimate the extent of a partition. Figure 2.12a provides an example.

Grid-based Intersection Test. To improve accuracy while still keeping the determination
of the border simplices geometrically simple and computationally cheap, we use a uniform
grid combined with an AABB tree [vdBer97]. For each partition Pk it is determined
which cells of the uniform grid G are occupied by points from that partition, i.e., Ck =
{c ∈ G : ∃p ∈ Pk : p ∈ c}. To accelerate the intersection tests we build an AABB tree on top
of each set Ck, depicted in Figure 2.12b. The AABB tree is built once for every partition k

and contains the occupied grid cells Ck as leaves and recursively more coarse-grained bounding
boxes as inner nodes. The root node of the tree corresponds to the bounding box of the
entire partition, as used in the bounding box intersection test. The grid-based intersection

△ TRIANGLES
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test allows for a more accurate test whether a given simplex s of partition i intersects with
partition j using log |Cj | box-sphere intersection tests [LAL07].

Exact Intersection Test. In order to only add the absolutely necessary points to the border
triangulation an even more computationally expensive test is required. For a given simplex s

of partition i we use the AABB intersection test from the previous approach to determine
the set C′

j ⊆ Cj of cells intersected by the circumhypersphere of s in partition j. For all
points contained in these cells an adaptive precision in-sphere-test [She97] is performed to
determine whether s violates the Delaunay property and thus its vertices need to be added
to the border triangulation.

2.5.1.3 Implementation Notes
We integrated the sample-based divide-step into our original implementation of the D&C
algorithm, which is available as open source.7 We use KaHIP [SS13] and its parallel
version [ASS18] as graph partitioning tool. The triangulation of the sample point set is
computed sequentially using CGAL [HS15] with exact predicates.8 The closest sample point
for a given input point, e.g., in Line 4 of Algorithm 2.9, can be found via the Voronoi
diagram of the sample triangulation. However, using the lightweight k-D tree implementation
nanoflann9 proved to be more efficient.

2.5.2 Evaluation
We use the same input point distributions as in Section 2.4.4 to evaluate our sample-based
divide-step. Recall that we use n points distributed uniformly

a) in the unit cube;
b) on the surface of an ellipsoid; and
c) on skewed lines [Bat+10];

7 https://github.com/dfunke/ParDeTria
8 CGAL::Exact_predicates_inexact_constructions_kernel
9 https://github.com/jlblancoc/nanoflann (accessed 08-12-2023)

Table 2.5 Input point sets and their resulting triangulations. Running times are reported for
k = t = 16, parallel KaHIP, η(n) =

√
n, grid-based intersection test with cG = 1 and

logarithmic edge weights.

Dataset Points Simplices simplices
point Runtime

uniform 50 000 000 386 662 755 7.73 164.6 s
normal 50 000 000 390 705 843 7.81 162.6 s
ellipsoid 500 000 23 725 276 4.74 88.6 s
lines 10 000 71 540 362 7154.04 213.3 s
bubbles 50 000 000 340 201 778 6.80 65.9 s
malicious 50 000 000 143 053 859 2.86 63.9 s

Gaia DR2 50 000 000 359 151 427 7.18 206.9 s

https://github.com/dfunke/ParDeTria
https://github.com/jlblancoc/nanoflann
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(i) Random bubbles. (ii) Malicious bubbles.

Figure 2.13 Two-dimensional examples of the two variants of bubble distribution for n = 1000
points. For the malicious bubbles distribution, the cuts of the cyclic median
partitioner are shown.
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Figure 2.14 Aitoff projection of a random sample of 25 000 sources from the Gaia DR2 dataset.

as well as n normally distributed input points around

d) the center of the unit cube; and
e) several “bubble” centers within the unit cube [LPP01].

As illustrated in Figure 2.13, we study two variants of distribution e) with the bubble centers:

i) distributed uniformly at random in the unit cube;
ii) along the axes of the cycle partitioner cuts—called “malicious” distribution.

The malicious bubble distribution is designed as worst-case input for the cyclic median
splitting scheme, as the dense bubble centers have to be cut on every level of the partitioning.

Voronoi tessellations are used in astronomy to analyze voids in galactic surveys in order
to understand the factors that influence the expansion of the universe [Sut+15]. We therefore
test our algorithm with the Gaia DR2 catalog [Gai18] that contains celestial positions and
the apparent brightness for approximately 1.7 billion stars. Additionally, for 1.3 billion
of those stars, parallaxes and proper motions are available, enabling the computation of
three-dimensional coordinates. As Figure 2.14 shows, the data exhibits clear structure, which
can be exploited by our partitioning strategy. We use a random sample of the stars to
evaluate our algorithm. All experiments are performed in three-dimensional space (D = 3).
Table 2.5 gives an overview of all input point sets, along with the size of their resulting
triangulation.

The algorithm was evaluated on a machine with dual Intel Xeon E5-2683 16-core processors
and 512 GiB of main memory. The machine is running Ubuntu 18.04, with GCC version 7.2
and CGAL version 4.11.

△ TRIANGLES
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Table 2.6 Parameters of our algorithm configuration and conducted experiments.

Parameter Values

Algorithmic parameters

sample size η(n) 1 %, 2 %, log n,
√

n

KaHIP configuration strong, eco, fast, parallel
edge weight ω(e) constant, inverse, log, linear†)

geometric primitive bbox, exact, grid with cell sizes cG = [ 1
2 , 1, 2]

Experimental parameters

partitions k 1, 2, 4, . . . , 64
threads t t = k

points n [1, 5, 10, 25, 50] · 106‡)

distribution see Table 2.5
†) see Table 2.4 for details ‡) unless otherwise stated in Table 2.5

2.5.2.1 Parameter Studies
Table 2.6 lists the configuration parameters of our algorithm and the parameter choices of
our conducted experiments. In the following we examine the configuration parameters and
determine robust choices for all inputs. The parameter choice influences the quality of the
partitioning with respect to partition size deviation and number of points in the border
triangulation. As inferior partitioning quality will result in higher execution time, we use it
as indicator for our parameter tuning. Even though choices for the parameters are correlated,
we present each parameter individually for clarity. We use the uniform, normal, ellipsoid and
random bubble distribution for our parameter tuning and compare against the originally
proposed cyclic median partitioning scheme for reference. In all plots, k-way partitioning
schemes are pictured on the left and recursive-bisection ones on the right.

2.5.2.2 Sample Size
The main goal of our divide-step is to approximate a good partitioning of the final triangulation
of DT (P). Clearly, a larger sample size η(n) yields a better approximation at the cost of an
increased runtime for the sample triangulation. On the other hand, a higher partitioning
quality results in better load balancing between partitions and smaller border triangulations.
Figure 2.15 shows the total triangulation time for various choices of η(n) for a fixed choice
of edge weight and KaHIP configuration. The runtime of our k-way strategies shows little
dependence on the sample size, as only a single sample triangulation is performed. For
recursive bisection the higher runtime for larger sample triangulations clearly outweighs any
benefit gained from a better partitioning. We therefore choose η(n) =

√
n as default for all

subsequent experiments, which is a robust choice for all tested data sets and algorithms.

2.5.2.3 Partitioner Configuration
Numerous configuration parameters balance quality and runtime in graph partitioning [SS13].
KaHIP defines several presets of its parameters, each providing a good trade-off for a given
runtime or quality requirement; these are, with increasing focus on runtime: strong, eco
and fast [SS11]. Additionally, a set of parameters specifically tuned for social and web graphs
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Figure 2.15 Sample size experiments with k = t = 16, logarithmic edge weights, grid-based
intersection test with cG = 1 and parallel KaHIP.
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Figure 2.16 KaHIP configuration experiments with k = t = 16, logarithmic edge weights, grid-
based intersection test with cG = 1 and η(n) =
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is provided. The shared-memory parallel version of KaHIP builds upon these configuration
presets and extends them with parallel algorithms. The configuration identified as parallel
in our experiments corresponds to fastsocialmultitry_parallel in [ASS18]. In all
experiments, we set the imbalance parameter for KaHIP to ϵ = 5 %. Figure 2.16 shows the
total triangulation time for the various KaHIP presets for a fixed choice of edge weight and
sample size. In general, the time taken by the graph partitioning algorithm is very small
compared to the DT computations. This can be seen by the little runtime variation for
distributions that do not have an exploitable underlying structure, such as uniform and
normal distribution. For the random bubble distribution, the influence of the choice of KaHIP
configuration is more pronounced, as the quality of the partitioning has a larger influence
on the overall runtime of the algorithm. For nearest sample point assignment (NSA), the
parallel preset is the best choice, whereas it is the worst choice for nearest partition center
assignment (NCA), which benefits most from the ECO configuration. Overall distributions
and partitioning schemes, the parallel configuration presents a balanced choice and will be
the default for all subsequent experiments.

2.5.2.4 Edge Weights

As discussed in Section 2.5.1, sparse regions of the input points—which are desirable as
partition borders—result in long Delaunay edges in the sample triangulation. Since graph
partitioning minimizes the weight of the cut edges, the edge weight needs to be inversely
related to the Euclidean length of the edge, refer to Table 2.4. Figure 2.17 shows the
total triangulation time for the various proposed edge weights for a fixed choice of KaHIP
configuration and sample size. As dense regions of the input point set are reflected by many
short edges in the sample triangulation, even constant edge weights result in a sensible
partitioning. However, for input distributions with an exploitable structure, such as random
bubbles, logarithmic edge weights are the best choice for NSA, due to the increased incentive
to cut through long—ergo cheap—Delaunay edges. Again, they are the worst choice for
NCA, which benefits most from linear edge weights. However, as logarithmic edge weights
are a balanced choice over all inputs, we set them as default for all subsequent experiments.

2.5.2.5 Geometric Primitive

The geometric primitive used to determine the border simplices influences both the number
of simplices in the border (accuracy) and the runtime required for the primitive itself. The
intersection tests introduced in Section 2.5.1.2 each provide their own trade-off between
accuracy and runtime. The grid-based intersection test requires the grid cell size as further
configuration parameter, which introduces a trade-off between runtime—mainly memory
allocation for the grid data structure—and accuracy. Figure 2.18 shows the total triangulation
time for the bounding box, exact and grid-based intersection test, the latter for various
choices of cell size cG . The bounding box test produces very large border triangulation and
suffers from the resulting runtime penalty. On the contrary, the exact test produces the
smallest border triangulation, the test itself, however, is rather expensive. The grid-based test
provides a good trade-off between the two strategies. The finer grid better approximates the
exact test. The impact of the finer grid on the runtime becomes apparent for the recursive
bisection strategies, which need to allocate memory repeatedly. We use the grid-based
intersection test with cG = 1 as default for all subsequent experiments.

△ TRIANGLES
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Figure 2.17 Edge weights experiments with k = t = 16, parallel KaHIP, grid-based intersection
test with cG = 1 and η(n) =
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Figure 2.18 Intersection test experiments with k = t = 16, logarithmic edge weights, parallel
KaHIP and η(n) =

√
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2.5.2.6 Partitioning Quality
Given a graph partitioning

(
V1 . . . Vk

)
, its quality is defined by the weight of its cut,∑

e∈C ω(e) for C := {e = (u, v), e ∈ E and u ∈ Vi, v ∈ Vj with i ̸= j}. As mentioned in
Section 2.5.1, the balance of the graph partitioning is ensured by the imbalance parameter ϵ,
|Vi| ≤ (1 + ϵ)⌈ |V |

k ⌉ for all i ≤ k. When the partitioning of the sample triangulation is
extended to the entire input set, this guarantee no longer holds. We therefore study two
quality measures:

the deviation from the ideal partition size, and
the coefficient of variation of the partition sizes.

Deviation from the Ideal Partition Size. The deviation from the ideal partition size is
given by pi/N

k − 1, for k partitions with N points in total and partition sizes pi, i ≤ k,
and is shown in Figure 2.19 for a fixed choice of KaHIP configuration, edge weights and
two different sample sizes. Our sample-based approach with NSA produces almost equally
sized partitions with little variance for the random bubble distribution and Gaia data sets.
It clearly outperforms the cyclic median partitioning scheme for inputs with exploitable
structure. NCA produces partitions of similar size, but with a higher variance for those
inputs, but compares more favorable for less structured data sets. We attribute this to the
more fine-grained representation of the sample triangulation by NSA. This can be mitigated
by using recursive bisection with NCA, which exhibits less variance than when used with
direct k-way partitioning. For both strategies, the larger sample size of 0.01n results in
less variance compared to

√
n. Considering the uniform distribution, the cyclic median

partitioning scheme produces perfectly balanced partitions with smooth cuts between them,
whereas our new divide-step suffers from the jagged border between the partitions.

Coefficient of Variation. The coefficient of variation cv of the partition sizes pi = |Pi|,
i ≤ k, is given by

cv = σ

µ
=

√∑
i≤k

(pi−µ)2

k−1∑
i≤k

pi

k

.

Figure 2.20 shows cv for a fixed choice of KaHIP configuration, edge weights and two different
sample sizes. For all distributions, our sample-based partitioning scheme with NSA robustly
achieves a cv of ≈6 % and ≈12 % for sample sizes

√
n and 0.01n, respectively.10 Both lie above

the chosen imbalance of the graph partitioning of ϵ = 5 %, as expected. The larger sample
size not only decreases the average imbalance but also its spread for various random seeds.
Moreover, the deficits of the original cyclic median partitioning scheme become apparent:
whereas it works exceptionally well for uniformly distributed points, it produces inferior
partitions in the presence of an underlying structure in the input, as found for instance in the
random bubble distribution. The results with NCA vary: for unstructured input it performs
on par with NSA, but produces significantly more unbalanced partitions for inputs with
structure. Moreover, whereas NSA achieves approximately the same balance for recursive
bisection and direct k-way partitioning, NCA shows no clear trend, which partitioning scheme
is preferable.

10 We attribute the outlier for the ellipsoid distribution to the small input size.



2.5.2 Evaluation 49

1.00.1 5.02.50.5

number of points ×107

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
p i (N
k
)
−

1

random bubbles

1.00.1 5.02.50.5

number of points ×107

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

p i (N
k
)
−

1

uniform

1.00.1 5.02.50.5

number of points ×107

−0.2

−0.1

0.0

0.1

0.2

p i (N
k
)
−

1

normal

2.50.1 1.0 5.00.5

number of points ×105

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

p i (N
k
)
−

1

ellipsoid

1.00.1 5.02.50.5

number of points ×107

−6

−4

−2

0

2

4

6

p i (N
k
)
−

1

Gaia

1.00.1 5.02.50.5

number of points ×107

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

p i (N
k
)
−

1

random bubbles

1.00.1 5.02.50.5

number of points ×107

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

p i (N
k
)
−

1

uniform

1.00.1 5.02.50.5

number of points ×107

−0.2

−0.1

0.0

0.1

0.2

p i (N
k
)
−

1

normal

2.50.1 1.0 5.00.5

number of points ×105

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

p i (N
k
)
−

1

ellipsoid

1.00.1 5.02.50.5

number of points ×107

−6

−4

−2

0

2

4

6

p i (N
k
)
−

1

Gaia

rb. NCA
rb. med.

k-way NSA rb. NSA k-way NCA

(a) Sample size η(n) = 0.01n.

Figure 2.19 Deviation from the ideal partition size for k = t = 16, parallel KaHIP, logarithmic
edge weights and grid-based intersection test with cG = 1.
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Figure 2.19 (cont.) Deviation from the ideal partition size for k = t = 16, parallel KaHIP,
logarithmic edge weights and grid-based intersection test with cG = 1.
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(a) Sample size η(n) = 0.01n.

Figure 2.20 Coefficient of variation of the partition sizes for k = t = 16, parallel KaHIP,
logarithmic edge weights and grid-based intersection test with cG = 1.
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Figure 2.20 (cont.) Coefficient of variation of the partition sizes for k = t = 16, parallel KaHIP,
logarithmic edge weights and grid-based intersection test with cG = 1.
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(a) Sample size η(n) = 0.01n.

Figure 2.21 Overtriangulation factor for k = t = 16, parallel KaHIP, logarithmic edge weights
and grid-based intersection test with cG = 1.

△ TRIANGLES



54 2.5 Sample-based Load Balancing Strategies

1.00.1 5.02.50.5

number of points ×107

1.025

1.050

1.075

1.100

1.125

1.150

1.175

ov
er

tr
ia

ng
ul

at
io

n

random bubbles

1.00.1 5.02.50.5

number of points ×107

1.05

1.10

1.15

1.20

1.25

1.30

ov
er

tr
ia

ng
ul

at
io

n

uniform

1.00.1 5.02.50.5

number of points ×107

1.05

1.10

1.15

1.20

1.25

1.30

1.35

ov
er

tr
ia

ng
ul

at
io

n

normal

2.50.1 1.0 5.00.5

number of points ×105

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ov
er

tr
ia

ng
ul

at
io

n

ellipsoid

1.00.1 5.02.50.5

number of points ×107

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

ov
er

tr
ia

ng
ul

at
io

n

Gaia

1.00.1 5.02.50.5

number of points ×107

1.025

1.050

1.075

1.100

1.125

1.150

1.175

ov
er

tr
ia

ng
ul

at
io

n

random bubbles

1.00.1 5.02.50.5

number of points ×107

1.05

1.10

1.15

1.20

1.25

1.30

ov
er

tr
ia

ng
ul

at
io

n

uniform

1.00.1 5.02.50.5

number of points ×107

1.05

1.10

1.15

1.20

1.25

1.30

1.35

ov
er

tr
ia

ng
ul

at
io

n
normal

2.50.1 1.0 5.00.5

number of points ×105

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ov
er

tr
ia

ng
ul

at
io

n

ellipsoid

1.00.1 5.02.50.5

number of points ×107

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

ov
er

tr
ia

ng
ul

at
io

n

Gaia

rb. NCA
rb. med.
k-way NSA
rb. NSA
k-way NCA

rb. NCA
rb. med.

k-way NSA rb. NSA k-way NCA

(b) Sample size η(n) =
√

n.

Figure 2.21 (cont.) Overtriangulation factor for k = t = 16, parallel KaHIP, logarithmic edge
weights and grid-based intersection test with cG = 1.
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Overtriangulation. In total, our recursive algorithm triangulates more than the number of
input points due to the triangulation of the sample points, and the triangulation(s) of the
border point set(s). We quantify this in the overtriangulation factor oDT , given by

oDT := |P|+
∑
|PS |+

∑
| vertices(B)|

|P| .

B is the set of border simplices, refer to Line 13 of Algorithm 2.7. For direct k-way
partitioning, only one sample and one border triangulation are necessary; for recursive
bisectioning there are a total of k − 1 of each. Figure 2.21 shows the overtriangulation factor
for a fixed choice of KaHIP configuration, edge weight and two different sample sizes. The
smaller sample size of η(n) =

√
n results in a lower overtriangulation factor for all recursive

bisection schemes, as expected. For direct k-way partitioning, the effects of larger sample DT
and more fine-grained representation of the underlying input structure—and thus reduction
of the border triangulation size—approximately balance. For the random bubble distribution,
the overtriangulation factor of our sample-based partitioning with NSA is on par or below
that of the original cyclic median partitioning scheme, whereas NCA requires more points to
be triangulated. The ellipsoid distribution is specifically tailored to be a hard input. Due to
its large convex hull, almost all points are part of the border triangulation, therefore the
oversampling factor is bound by the maximum recursion depth. For the normally distributed
input point set, the central dense region needs to be cut multiple times for recursive bisection
schemes in order to ensure balance between the partition sizes. Thus, more points are part
of the border point set. For the uniform distribution, our new divide-step suffers from the
jagged border between the partitions compared to the smooth cut produced by the cyclic
median partitioning scheme. This results in more circumhyperspheres intersecting another
partition and thus the inclusion of more points in the border triangulation, particularly for
recursive bisection. Our experiments with the exact intersection test primitive confirm this
notion.

2.5.2.7 Runtime Evaluation

We conclude our experiments with a study of the runtime of Algorithm 2.7 with the new
sample-based divide step against the originally proposed cyclic median division strategy, its
k-way variant as well as the parallel incremental insertion algorithm of CGAL. Figure 2.22
shows the total triangulation time for a fixed choice of KaHIP configuration, edge weights
and sample size.

Direct k-way partitioning with NSA performs best on the random bubbles distribution,
with a speedup of up to 50 % over the median partitioning schemes. Considering the k-way
median partitioner, a small fraction of this speedup can be attributed to the k-way merging,
however the larger fraction is due to the data sensitivity of the sample-based scheme. CGAL’s
parallel incremental insertion algorithm requires locking to avoid race conditions. It therefore
suffers from high contention in the bubble centers, resulting in a high variance of its runtime
and a 350 % speedup for our approach compared to it. For uniformly distributed points, our
new divide-step falls behind the cyclic partitioning scheme as there is no structure to exploit
in the input data and due to the higher overtriangulation factor of oDT = 1.10 for k-way
NCA partitioning compared to oDT = 1.05 for cyclic median partitioning. As discussed
in the previous section, the higher overtriangulation factor is caused by the jagged border
between the partitions, resulting in a larger border triangulation and consequently also in
higher merging times, as seen in Figure 2.24.
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Figure 2.22 Runtime evaluation for k = t = 16, parallel KaHIP, η(n) =
√

n, grid-based intersec-
tion test with cG = 1 and logarithmic edge weights.
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are tested with the maximum number of points given in Table 2.5 points.
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Of particular interest is the scaling behavior of our algorithm with an increasing number
of threads. Figure 2.23 shows a strong scaling experiment for a fixed choice of KaHIP
configuration, edge weights and sample size. The absolute speedup of an algorithm A over
the sequential CGAL algorithm is given by SpeedupA(t) := TCGAL

TA(t) for t threads.
In the presence of exploitable input structure—such as for the random bubble distribution—

direct k-way partitioning, with both NSA and NCA, scales well on one physical processor
(up to 16 cores). It clearly outperforms the original cyclic partitioning scheme and the
parallel DT algorithm of CGAL. Nevertheless, NSA does not scale well to two sockets (t > 16
threads) and hyper-threading (t > 32 threads). The overtriangulation factor of 1.19 for 64
threads compared to 1.015 for 16 suggests that the jagged border produced by NSA results
in prohibitively large border triangulations. NCA produces smoother borders and does not
suffer from this effect.

Considering our real-world dataset, both direct k-way partitioning schemes also exhibit
the best scaling behavior. As illustrated in Figure 2.14, the dataset comprises a large dense
ring accompanied by several smaller isolated regions. This can be exploited to reduce border
triangulation sizes and achieve a speedup, compared to the slowdown for the cyclic partitioning
scheme and CGAL’s parallel algorithm. The former is due to large border triangulations in
the central ring, whereas the latter suffers from contention in the central region. Interestingly,
whereas NCA compares poorly to NSA on the random bubbles distribution, it performs
equally well on the Gaia data set.

The performance for normally distributed points can be attributed to the high overtrian-
gulation factor, refer to Figure 2.21 and its discussion in the previous section.

Clearly, direct k-way partitioning outperforms recursive bisection in every configuration.
Following the theoretical considerations in Section 2.5.1.1 regarding the number of merge-
steps required, this is to be expected. A measure to level the playing field would be to only
allow for η(n) total number of sample points on all levels, i.e., adjust the sample size on each
level of the recursion according the expected halving of the input size. Additionally, the
recursive ascent could be omitted by performing a k-way merge step at the bottom of the
recursion tree.

Figure 2.24 shows a breakdown of the algorithm runtime for a fixed choice of KaHIP
configuration, edge weights and sample size. The sample-based partitioning requires 30 % to
50 % more runtime than the cyclic scheme. For favorable inputs with an exploitable structure,
this additional runtime is more than mitigated by faster merging.
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Figure 2.24 Runtime breakdown for k = t = 16, parallel KaHIP, η(n) =
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n, grid-based
intersection test with cG = 1 and logarithmic edge weights.
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2.5.3 Conclusions
In this section, we presented a novel data-sensitive divide-step for our parallel D&C DT
algorithm. The input is partitioned according to the graph partitioning of a Delaunay
triangulation of a small input point sample. The partitioning scheme robustly delivers
well-balanced partitions for all tested input point distributions. For input distributions
exhibiting an exploitable underlying structure, it further leads to small border triangulations
and fast merging. On favorable inputs, we achieve a speedup of almost a factor of two over
our previous partitioning schemes and over the parallel DT algorithm of CGAL. These inputs
include synthetically generated data sets as well as the Gaia DR2 star catalog. For uniformly
distributed input points, the more complex divide-step incurs an overall runtime penalty
compared to the original approach, opening up two lanes of future work: i) smoothing the
border between the partitions to reduce the overtriangulation factor, and/or ii) an adaptive
strategy that chooses between the classical partitioning scheme and our new approach based
on easily computed properties of the chosen sample point set, before computing its DT.
Furthermore, building on the idea of Lee et al. [LPP01], the partition borders could be traced
with Delaunay edges to avoid merging all together. The sample-based divide step can also
be integrated into our distributed-memory algorithm, where the improved load balancing
and border size reduces the required communication volume for favorable inputs.
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2.6 Random Delaunay Graph Generation

The design and analysis of graph algorithms for massive data sets requires large graph
instances for benchmarking and testing. Real-world datasets are scarce and often not
publicly available. Furthermore, they only represent current needs and do not reflect future
requirements of graph processing. Network generators solve this problem to some extent.
They provide synthetic instances based on random network models. These models are able
to accurately describe a wide variety of different real-world scenarios: from ad-hoc wireless
networks to protein-protein interactions [CSN09; MP10]. A substantial amount of work has
been contributed to understanding the properties and behavior of these models. In theory,
network generators allow us to build instances of arbitrary size with controllable parameters.
This makes them an indispensable tool for the systematic evaluation of algorithms on a
massive scale. For example, the well known Graph 500 benchmark [Mur+10], uses the
R-MAT graph generator [CF06] to build instances of up to 242 vertices and 246 edges.

Even though generators like R-MAT scale well, the generated instances are limited to
a specific family of graphs [CF06]. Many other important network models still fall short
when it comes to offering a scalable network generator and in turn to make them a viable
replacement for R-MAT. These shortcomings can often be attributed to the apparently
sequential nature of the underlying model or prohibitive hardware requirements.

Lamm [Lam17] presents scalable network generators using a communication-free paradigm,
i.e., the generators require no communication between PEs [SS16]. Each PE is assigned a
disjoint set of local vertices. It then is responsible for generating all incident edges for this set
of vertices. This is a common setting in distributed computation [Lum+07]. Expanding on
the work of Lamm [Lam17], in [Fun+19] we present network generators for a wide range of
graph models, including the classic Erdős-Rényi models G(n, m) and G(n, p) [ER59; Gil59]
and different spatial network models including random geometric graphs (RGGs) [Jia04],
random hyperbolic graphs (RHGs) [Kri+10] and random Delaunay graphs (RDGs). The
latter was contributed by the author of this dissertation and is the focus of this section.

2.6.1 Preliminaries

In this section we introduce the concept of periodic boundary conditions for Delaunay
triangulations and briefly review the communication-free random sampling algorithm of
Sanders et al. [San+18] used in our generator.

Periodic Boundary Conditions. For the RDG generator, we are concerned with Delaunay
graphs defined by points sampled uniformly at random from the d-dimensional unit cube
[0, 1)d for d ∈ {2, 3}. We view this as a good model for meshes as they are frequently used in
scientific computing. Indeed, these simulations frequently use periodic boundary conditions,
in order to make small simulations representative for a large simulated system (e.g., [Stu12]).
This can also be viewed as replacing the infinite Euclidean space by a d-dimensional torus.
We adopt these periodic boundary conditions, i.e., we implicitly compute the Delaunay
triangulation of a point set where for every point p in the unit cube, also the points p + o
with o ∈ {−1, 0, 1}d are in the point set. Two points in the unit cube are connected in the
output, if any of their copies are connected. For a scalable distributed graph generator,
periodic boundary conditions have the advantage that we avoid the need to compute some
very long Delaunay edges that appear at the convex hull of random point sets.

△ TRIANGLES
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Communication-free Distributed Random Sampling. To generate random vertices on
distributed PEs, random sampling is a fundamental building block. Sanders et al. [San+18]
propose a set of simple divide-and-conquer algorithms to sample n elements from a (fi-
nite) universe N on P PEs. Their algorithms follow the observation that by splitting the
current universe into equal sized subsets, the number of samples in each subset follows a
hypergeometric distribution. Based on this observation, they develop a D&C algorithm to
determine the number of samples for each PE. In particular, each PE first determines its
local interval of the input universe and then recursively generates a set of hypergeometric
random variates. At each level of the recursion, it follows the remaining subset of the
universe that contains its local interval. Hypergeometric random variates are synchronized
without the need for communication by making use of pseudorandomization via (high quality)
hash functions. To be more specific, for each subtree of the recursion, a unique seed value
is computed (independent of the rank of the PE). Afterwards, a hash value for this seed
is computed and used to initialize the pseudorandom number generator (PRNG) for the
random variates. Therefore, PEs that follow the same recursion subtrees generate the same
random variates, while variates in different subtrees are independent of each other. Once the
remaining subset is smaller than a given threshold, a linear time sequential algorithm [Vit87]
is used to determine the local samples. They continue to show that their algorithm runs in
time O(n/P + log P ) with high probability (w.h.p.)11 if the maximum universe size per PE
is O(N/P) [San+18].

2.6.2 RDG Generator

Generating random Delaunay graphs can be separated into two main steps: 1) generating a
random point set and 2) computing its Delaunay triangulation (DT). The point generation
algorithm follows largely the one proposed by Lamm [Lam17] for random geometric graphs.
It is restated in the following for completeness. The DT construction algorithm is proposed
by the author of this dissertation and is specifically tailored to benefit from the uniform
distribution of the generated points.

11 i.e., with probability of at least 1− P −c for any constant c

c

k

(a) Chunks and cells. (b) Generated points. (c) Generated RDG.

Figure 2.25 Illustration of the RDG generator. The PE’s chunk is marked by bold, black lines,
the cells by thinner ones. Cells of neighboring chunks are marked by gray lines.
For the generated DT, only edges with at least one endpoint in the PE’s chunk
(solid lines) are stored locally. As there are circumcircles not fully contained in the
bounding box of the generated cells (red), another layer of neighboring cells must
be generated and the DT re-triangulated.
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Point Generation. Each PE generates a random local point set using the communication-
free sampling algorithm described in Section 2.6.1. The generator uses the notion of chunks.
A chunk represents a rectangular section of the unit cube. We partition the unit cube into P

disjoint chunks and assign one of them to each PE. There is one caveat with this approach, in
that the possible values for P are limited to powers of d. To alleviate this issue, we generate
more than P chunks and distribute them evenly between PEs. Specifically, we generate
k = 2db ≥ P chunks, with b ≥ 1, and distribute them to the PEs in a locality-aware way by
using a Z-order curve [Mor66]. Each PE is then responsible for generating the vertices in its
assigned chunks, using a divide-and-conquer approach. Each chunk is further subdivided
into cells of side length c. We set c to the mean distance of the (d + 1)th-nearest neighbor
for n vertices distributed uniformly in the unit d-hypercube [BC08],

c ≈ d

√
d + 1

n
, resulting in nc ≈

n

d + 1 cells. (2.2)

Therefore, for a vertex v in a particular cell, all its Delaunay neighbors are, in expectation,
in the same cell or in one of its 3d − 1 neighboring cells, refer to Figure 2.25a. For small
values of n, we generate at least k = 2db cells, ensuring that a cell is always contained in one
chunk and therefore assigned to a single PE. For large n we limit the number of cells nc to a
configurable maximum, in order to limit the memory consumption of the cell data structure.

The probability for a vertex to be assigned to an individual cell p is the ratio of the
area of the cell to the area of the whole unit cube. Thus, we can generate k = 2db

binomial random variates to compute the number of vertices within each of the chunks. The
binomial distribution is parameterized using the number of remaining vertices n and the
aforementioned chunk assignment probability p. The variates are generated by exploiting
pseudorandomization via hash functions seeded on the current recursion subtree. Therefore,
we generate the same variates on different PEs that follow the same recursion to a particular
chunk. In turn, we require no communication for generating local vertices. Note that the
resulting recursion tree has at most ⌈log k⌉ levels and size (2dk − 1)/2d − 1. Once a PE is
left with a single chunk, we compute additional binomial random variates to get the number
of vertices in each cell of side length c.

As we want each PE to generate all incident Delaunay edges for its local vertices, we
have to generate cells adjacent to the PE’s chunk(s). Because of our choice for the cell side
length c, this means, in expectation, we have to generate all cells directly adjacent to the
chunk(s) of a PE. Due to the communication-free design of our algorithm, the generation of
these cells is done through re-computations using the same divide-and-conquer algorithms as
for the local cells. We therefore repeat the vertex generation process for the neighboring cells,
as shown in Figure 2.25b. Note that for sufficiently large graphs, each chunk consists of many
cells so that redundantly generating border layers of cells becomes a negligible overhead.
After all points are generated, we can compute the DT according to the following algorithm.

DT Computation. To produce the DT of the generated point set, our algorithm proceeds
as follows. Each PE considers its assigned chunks plus a halo of neighboring cells. Initially,
the cells directly adjacent to the chunk are added to the halo. The PE computes the DT of
the vertices in its chunks plus halo and checks two conditions:

all points in the convex hull of the DT lie in the halo, not within the PE’s chunks; and
each simplex s with at least one point from inside a chunk has a circumsphere that is
completely contained within the bounding box of the PE’s chunks plus halo, i.e., s is
finalized and cannot violate the Delaunay criterion for any point beyond the current halo.

△ TRIANGLES
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The local computation finishes when both conditions are fulfilled. Otherwise, the halo is
expanded by one layer of cells and the DT is updated with the newly generated points.
Afterwards, the two conditions are checked again. This is a similar notion of finalized
simplices as used in our D&C DT algorithm (Section 2.4) and by e.g., [Lo12]. When adding
points of additional cells, our use of pseudorandomness ensures that all PEs generate the same
vertices for the same cell. We assume periodic boundary conditions to produce well-formed
DT graphs even for the outermost chunks and avoid long Delaunay edges at the border of
the DT. In Figure 2.25c the second termination condition of our algorithm is not fulfilled
and the halo must be expanded by one layer of cells.

We do not have a complete analysis of the algorithm but conjecture the following running
time bound.

▶ Conjecture 11. The RDG generator has to compute the DT for an expected nDT number
of points, with

nDT := n

P
+O

(( n

P

) d−1
d

)
points,

resulting in an expected running time of O(nDT + log P ) for uniformly distributed vertices.

Proof (sketch). Each PE can generate the vertices of its chunk and a constant number of
neighboring chunks in O(n/P + log P ) time [Fun+19, Lemma 5].

With our choice of cell side length according to Equation (2.2), c = ( d+1
n ) 1

d , the number
of cells in a chunk’s halo with r layers of cells is given by

2d

r∑
i=1

((
n

(d + 1)P

) 1
d

+ i

)d−1

∈ O
(( n

P

) d−1
d

)
if r is constant and d≪ n

P
.

Each cell contains d + 1 vertices in expectation. For uniformly distributed points, we
conjecture that, with our heuristic choice of cell side length c, only few layers of cells need
to be added to the halo beyond the directly adjacent ones. Our experiments confirm this
notion, refer to Section 2.6.3.3. Therefore, only a constant number neighboring cells need to
be generated by a PE to determine the DT of the vertices of its chunk.

The Delaunay triangulation of a uniformly distributed point set can be computed in
expected linear time [Mau84], yielding Conjecture 11. ◀

2.6.3 Experimental Evaluation
In the following we present the experimental evaluation of our RDG generator, regarding its
running time and scaling behavior. For an evaluation of the other implemented generators
we refer to [Fun+19].

2.6.3.1 Implementation
A C++ implementation of our graph generators, called KaGen, is publicly available on
GitHub.12 We use Spooky Hash13 as a hash function for pseudorandomization. Hash values
are used to initialize a Mersenne Twister [MN98] in order to generate uniform random variates.

12 https://github.com/KarlsruheGraphGeneration/KaGen
13 http://www.burtleburtle.net/bob/hash/spooky.html (accessed 08-12-2023)

https://github.com/KarlsruheGraphGeneration/KaGen
http://www.burtleburtle.net/bob/hash/spooky.html
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All algorithms and libraries are compiled using GCC version 5.4.1 using optimization level
fast and -march=native. In the distributed setting, we use Intel MPI version 1.4 compiled
with GCC version 4.9.3. Our implementation uses the CGAL library [HS15] to compute the
DT of the vertices of a chunk and its halo. CGAL provides a state-of-the art DT construction
algorithm, which is also used as base case algorithm in our D&C DT construction algorithm,
presented in Section 2.4.

2.6.3.2 Experimental Setup
We use the Phase 1 thin nodes of the SuperMUC supercomputer for scaling experiments and
parallel comparisons. The SuperMUC thin nodes consist of 18 islands and a total of 9216
nodes. Each compute node has two Sandy Bride-EP Xeon E5-2680 8-core processors with 32
GB of main memory. Each node runs the SUSE Linux Enterprise Server (SLES) operating
system. We use the maximum number of 16 cores per node for our scaling experiments. The
maximum size of our generated instances is limited by the memory per core (2 GB). If not
mentioned otherwise, all results are averages of ten iterations with different seeds.

We analyze the scaling behavior of our algorithms in terms of weak and strong scaling.
Weak scaling measures how the running time varies with the number of PEs for a fixed
problem size per PE. Analogously, strong scaling measures the running time for a fixed
problem size over all PEs. Due to memory limitations of the SuperMUC, strong scaling
experiments are performed with a minimum of 1024 PEs. Again, results are averaged over
ten iterations with different seeds.

2.6.3.3 Results
For the weak scaling experiments, we vary the input size per PE n/P from 218 to 222

for the two-dimensional RDG and—due to memory constraints—from 216 to 220 for the
three-dimensional one. Moreover, for 3D RDG and 215 PEs, only the smallest input size
could be computed within the memory limit per core of SuperMUC. For the strong scaling
experiments, the input size varies from 226 to 232. For weak scaling, our experiments show
an almost constant running time—depicted in Figure 2.26—well in agreement with our
conjectured asymptotic running time of O(n/P + log P ). The initial increase in runtime can
be attributed to the redundant vertex generation of neighboring cells. As the halo rarely
grows beyond the directly adjacent cells, no significant further increase in runtime can be
observed for more than 28 PEs. For strong scaling, the running time decreases by a factor of
17 going from 210 to 215 PEs, resulting in an efficiency of approximately 0.55.

Figure 2.27 shows the maximum halo size required for all simplices of the computed DT
to be finalized. Additionally, the cell side length according to Equation (2.2) is plotted. As
conjectured, in most cases a single layer of cells is sufficient for the DT to converge.

△ TRIANGLES
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Figure 2.26 Running time experiments for the RDG generator for two and three dimensions.
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2.6.4 Conclusions
In this section we presented a scalable graph generator for random Delaunay graphs. The
generator uses a divide-and-conquer scheme and pseudorandomization via hash functions
to generate massive point sets on distributed PEs in a communication-free manner. Our
experimental evaluation demonstrates the near-optimal scaling behavior of our generator.
Therefore, our generators enable RDGs to be used for research on a massive scale. In order
to help researchers to use our generators, we provide a widely usable open-source library.
In future work, we would like to extend our generator to the streaming model in order to
reduce the memory requirements per PE. Streaming algorithms for DT construction have
been proposed in the literature [Ise+06; WGG11] and their use would allow us to generate
even larger instances.

2.7 Summary and Outlook

In this chapter we presented two novel algorithms to construct the Delaunay triangulation of
a given point set. The first algorithm is a divide-and-conquer algorithm for general point
sets in arbitrary dimension, capable of processing large data sets in parallel on shared-
and distributed-memory machines. The algorithm divides the input points into smaller
subsets either through cyclic median splitting or using a sample-based approach that can
better exploit the structure of the data set to allow for fast merging of the resulting partial
triangulations. The merging of the partial triangulations is performed by re-triangulating a
small subset of their vertices—the border vertices—and using efficient hash table operations
to combine the three triangulations into one. All steps of the algorithm are parallelized.
Our experiments on synthetic and real-world data sets show that our algorithm outperforms
CGAL’s DT construction algorithm. Furthermore, our experiments demonstrate that the
choice of partitioning strategy has a significant impact on the performance of the algorithm,
with either the median splitting or one of the sample-based approaches being the best
choice depending on the structure of the input. Choosing the best partitioning strategy
automatically remains for future work.

The second DT construction algorithm that we proposed is specifically designed for
uniformly distributed points. It is integrated into the network generator KaGen, which
is capable of producing massive graphs on distributed-memory machines. The algorithm
exploits periodic boundary conditions and the uniformity of the input to limit the number
of neighboring points that are required to determine the local triangulation of a processing
element. We demonstrate its nearly perfect scaling behavior to over 32 000 PEs.

Impact and Subsequent Work. After publication of our D&C DT algorithm several other
new algorithms for DT construction have been proposed [Car+19; MPR18; NR20; Su+20].
We will briefly discuss these algorithms and their relation to ours.

Su et al. [Su+20] present a serial incremental insertion algorithm with a novel adaptive
Hilbert sorting scheme to reduce the time spent on locating the containing simplex of a newly
added point. Marot et al. [MPR18] present an improved incremental insertion algorithm
for shared-memory parallelism based upon the algorithm of Batista et al. [Bat+10]. They
factorize the in-sphere predicate into two parts—a query point independent simplex part
that can be precomputed and a query point dependent part that can use the precomputed
values. This optimization renders the runtime of the in-sphere predicate negligible in the
overall algorithm execution. The authors only evaluate their algorithm against sequential
and parallel CGAL and do not compare against our algorithm. Their serial implementation

△ TRIANGLES
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outperforms CGAL by a factor of 3. Their parallel implementation achieves a speedup of 3.1
over parallel CGAL on four cores and 4.5 on 64 cores. In Section 2.4.4.1, we report a speedup
of 4 on 32 cores over parallel CGAL. This suggests that our algorithm performs on par with
Marot et al.’s one. Furthermore, our algorithm could benefit from integrating their serial
implementation as base case algorithm.

Caraffa et al. [Car+19] present a distributed DT construction algorithm for Spark clusters.
Each PE processes the points of one tile. After triangulating their local points, a star splaying
algorithm [She05] is used to merge the local triangulations into a global one. The authors
report an efficiency of their parallelization of 0.4 for 28 cores, corresponding to a speedup
of ∼ 11, which is similar to our distributed-memory algorithm. The authors do not compare
their algorithm against other implementations.

Nguyen and Rhodes [NR20] present another distributed approach to DT construction for
large-scale datasets. They partition the input into regions and compute a coarse-grained
triangulation of the entire dataset to determine independent regions that can be triangulated
in parallel. Their algorithm shares the same notion of finalized simplices and border simplices
as ours. Finalized simplices are written to disk and removed from the triangulation, whereas
border simplices are kept in the global triangulation to refine them with points from other
partitions as they are scheduled for triangulation. The algorithm relies on a master-worker
architecture to determine independent regions, schedule triangulations and collect border
simplices. Their results show an impressive relative speedup of 135 for 256 PEs, but they
do not compare their implementation against other algorithms. Furthermore, the authors
only conduct experiments on two-dimensional datasets and do not mention whether their
algorithm generalizes to higher dimensions.

In conclusion, our D&C DT algorithm is still competitive with the latest shared- and
distributed-memory DT construction algorithms. Integrating the optimizations presented by
Marot et al. [MPR18] could further improve its competitiveness.

Our network generator KaGen has been cited by 67 papers as of writing of this dissertation.
KaGen has been used to devise and test new graph algorithms, served as basis to develop
more specialized graph generators for targeted user groups as well as model and study the
generated graph networks themselves. The Delaunay graph generator specifically has been
used by e.g., [HST22; TPM20; vLTM18].
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3 Yao Graph Generation
Summary: Yao graphs are geometric spanners that connect each point of a given
point set to its nearest neighbor in each of k cones drawn around it. They were
introduced to construct minimum spanning trees in d dimensional spaces and have
since been applied to, e.g., wireless networks. An optimal O(n log n)-time algorithm
to construct Yao graphs for a given point set has been proposed in the literature
but—to the best of our knowledge—never been implemented. Instead, algorithms with
quadratic complexity are used in popular packages to construct these graphs. In this
dissertation we present the first implementation of the optimal Yao graph algorithm.
We engineer the data structures required to achieve the O(n log n)-time bound and
detail algorithmic adaptations necessary to take the original algorithm from theory
to practice. We propose a priority queue data structure that separates static and
dynamic events and might be of independent interest for other sweepline algorithms.
Additionally, we propose a new Yao graph algorithm based on a uniform grid data
structure that performs well for medium-sized inputs. We evaluate our implementations
on a wide variety of synthetic and real-world datasets and show that they outperform
current publicly available implementations by at least an order of magnitude.

Attribution: This chapter is taken mostly verbatim from [FS23b] and its accompa-
nying technical report [FS23a]. The author of this dissertation was the main author
and contributor of the paper, with editing provided by Peter Sanders.

3.1 Introduction

Yao graphs are directed graphs that connect each point of a given point set to its nearest
neighbor in each of k cones, refer to Figure 3.1 for an example. A Yao graph is a cone-based
spanner [Dam18], i.e., a subgraph of the complete Euclidean graph that preserves the shortest
path between any pair of vertices up to a constant factor. More formally, a geometric
t-spanner is a weighted graph, where for any pair of vertices there exists a t-path between
them, which is a path with weight at most t times their spatial distance. The parameter t

is known as the stretch factor of the spanner. Upper bounds on the stretch factor of Yao
graphs have been the subject of extensive research. While the stretch factor of Yao graphs
with k ≤ 3 cones is proven to be unbounded, bounds have been established for all graphs
with k ≥ 4 cones [Bar+15]. Whereas for k ≥ 7 cones the stretch factor is bounded by the
general formula

(
1+
√

2−2 cos(2π/k)
)
/(2 cos(2π/k)−1), bounds on Yao graphs with 4 to 6 cones

require complex individual arguments [Bar+15; DN17].
Yao introduced this kind of graphs to construct minimum spanning trees in d-dimensional

space [Yao82]. They have been applied to wireless networks for topology control [SVZ07;
Zha+17] and routing [Si+14]. In 1990, Chang et al. [CHT90] presented an optimal algorithm
to construct these graphs in O(n log n) time. Due to the intricate nature of their algorithm
and the reliance on expensive geometric constructions, to the best of our knowledge, there is
no implementation of their algorithm available. Instead, an algorithm with an inferior O

(
n2)-

time bound is used in the cone-based spanners package of the popular CGAL library [STP22].

∨ CONES
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Figure 3.1 Yao graph for ten points and k = 5 cones. The five cones are illustrated as red dashed
lines around four example points.

Contribution. In this dissertation we present the first publicly available implementation of
Chang et al.’s optimal algorithm for Yao graph construction. We take their algorithm from
theory to practice by engineering the data structures required to achieve the O(n log n)-time
bound and provide detailed descriptions of all operations of the algorithm that are missing
in the original paper, such as input point ordering, handling of composite boundaries and
enclosing region search. In our event queue, we separate static (input point) events and
dynamic (intersection point) events. This greatly improves the efficiency of priority queue
operations and might be a useful technique for other sweepline algorithms. We test our
algorithm on a wide range of synthetic and real-world datasets. We show that, despite
the intricate nature of the algorithm and the use of expensive geometric constructions, our
implementation achieves a speedup of an order of magnitude over other currently available
implementations. Additionally, we develop a new Yao graph algorithm based on a uniform
grid data structure that only uses simple geometric predicates, is easy to parallelize, and
performs well for medium-sized inputs.

Outline. In Section 3.2 we review related work on the construction of Yao graphs. Section 3.3
presents three algorithms for Yao graph construction: a naive algorithm, our novel grid-based
algorithm and the optimal algorithm of Chang et al., with the algorithmic adaptions necessary
for its implementation. Further implementation details of Chang et al.’s algorithm, such
as data structures and geometric operations, are described in Section 3.4. We evaluate our
implementations and compare them against their competitors in Section 3.5. Section 3.6
summarizes this chapter and presents an outlook on future work.

Definitions. Given a set P of points in two-dimensional Euclidean space and an integer
parameter k > 1, the Yao graph Yk = (P, E) is a directed graph, connecting every point p ∈ P
with its nearest neighbor in each of k cones [Yao82]. Every cone Ci = (θL, θR), 0 ≤ i < k, is
defined by its two limiting rays with angles θL = 2(i+1)π

k and θR = 2iπ
k . We denote the cone

Ci with apex at point p as Cp
i . We furthermore define, that the left—or counterclockwise—

boundary ray with angle θL belongs to a cone C, whereas the right one does not, i.e., for a given
point p ∈ P and cone Cp

i we define the set of points P∩Cp
i := {q ∈ P : ∢(p, q) ∈ [θL, θR)}, with

∢(p, q) denoting the angle between p and q. Then the edge set E of the Yao graph Yk = (P, E)
can be formally defined as E := {(p, q) : ∀i ∈ [0, k),∀p ∈ P, q = arg minv∈P∩Cp

i
(d(p, v))},

with d(·, ·) denoting the Euclidean distance function. Yao graphs can be generalized to higher
dimensions [DGM09], however we focus on two-dimensional graphs in this dissertation.
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3.2 Related Work

Yao [Yao82] presents a O
(
n5/3 log n

)
-time algorithm to compute a solution to the Eight-

Neighbors Problem—a Yao graph with k = 8. It is based on a tessellation of the Euclidean
space into cells. For a given point and cone, each cell of the tessellation is characterized
whether it can contain nearest neighbor candidates in order to reduce the number of necessary
distance computations. The problem is solved optimally by Chang et al., who present a
O(n log n)-time algorithm for constructing the Yao graph of a given point set and a fixed
parameter k [CHT90]. Their algorithm follows the same structure as Fortune’s algorithm for
constructing the Voronoi diagram of a point set [For87], using the sweepline technique origi-
nally introduced by Bentley and Ottmann for computing line-segement intersections [BO79].
However, even though there are many implementations of Fortune’s algorithm available, there
is no implementation of Chang et al.’s Yao graph algorithm that we are aware of. Instead,
for instance, the CGAL library’s cone-based spanners package implements a less efficient
O
(
n2)-time algorithm [STP22]. Their algorithm is an adaption of a sweepline algorithm

for constructing Θ-graphs [NS07]. Θ-graphs are defined similarly to Yao graphs, except
that the nearest neighbor in each cone is not defined by the Euclidean distance but by the
projection distance onto the cone’s internal angle bisector. This allows for a O(n log n)-time
sweepline algorithm, that uses a balanced search tree as sweepline data structure to answer
one-dimensional range queries [NS07]. For Yao graphs, such a reduction in dimensionality
is not possible, thus, CGAL’s algorithm employs linear search within the sweepline data
structure to find the nearest neighbor, leading to the O

(
n2)-time bound. However, CGAL’s

algorithm is much simpler to implement than the optimal algorithm proposed by [CHT90]
and does not require geometric constructions, just predicates. Table 3.1 in Section 3.4
provides an overview of the required geometric operations by both algorithms.

3.3 Yao Graph Construction Algorithms

In this section, we discuss three algorithms to construct the Yao graph of a given point
set. After briefly presenting a naive Θ

(
n2)-time algorithm as baseline, we introduce a novel

grid-based algorithm that, while still having a worst-case time complexity of O
(
n2), performs

much better on realistic inputs. We then present our adaption of Chang et al.’s optimal
sweepline algorithm.

3.3.1 Naive Algorithm

A naive Θ
(
n2)-time algorithm to construct the Yao graph can be obtained by slightly

modifying a naive all nearest neighbor algorithm. In addition to comparing the distance
of all input point pairs (p, q), the algorithm needs to furthermore determine the cone of q

with respect to p. The cone Cp
i that q lies in with respect to p can first be approximated

by i = ∢(p,q)/k. Then two oriented side of line tests with the bounding rays of Cp
i suffice to

exactly determine the cone q lies in—either Cp
i or Cp

i−1, if q lies directly on the right bounding
ray of Cp

i . Note that this test is independent of the number of cones k. The algorithm
requires only two geometric predicates: distance comparison and oriented side of line test,
and its only dependency on k is the number of nearest neighbors it needs to store per point.
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Figure 3.2 Grid-based Yao graph construction algorithm. The cone boundaries are represented
by dashed lines. The algorithm visits grid cells in the order of the thick curve. Found
edges of the Yao graph are labeled in red.

3.3.2 Grid-based Algorithm
Our novel grid-based algorithm refines the naive one by limiting the number of distance
comparisons through the use of a uniform grid [Akm+89]. This is in contrast to Yao’s original
algorithm [Yao82], which uses a non-uniform tessellation. Our algorithm firstly places all
input points in the uniform grid data structure that splits the bounding box of all input
points in O(n) equal-sized cells. For each input point p, the algorithm first visits p’s own
grid cell and computes for each point q in the cell its distance to p and its cone Cp

i . The
algorithm then visits the grid cells surrounding p’s cell in a spiraling manner, as shown in
Figure 3.2. For each visited cell, the algorithm computes the distances and cones for the
points contained in it with respect to p until all cones of point p are settled. A cone is settled,
if a neighbor v has been found within that cone and no point in adjacent grid cells can be
closer to p than v. Note that some cones may remain unsettled until all grid cells have been
visited if no other input points lie within that cone for point p. This worst-case determines
the O

(
n2) runtime bound for our algorithm. We conjecture that the average-case runtime is

much better, as we will show in Section 3.5. In addition to the geometric predicates required
by the naive algorithm, the algorithm needs to determine the grid cell of a point and the
minimum distance of a point to a grid cell. Similar to the naive algorithm, and in contrast
to Yao’s original algorithm, the grid-based algorithm does not depend on k.

3.3.3 Chang et al.’s Algorithm
In their 1990 paper, Chang et al. present a O(n log n)-time sweepline algorithm to compute
the oriented Voronoi diagram (OVD) of a point set. Through a small modification, their
algorithm can compute the geographic neighborhood graph (GNG)—or Yao graph—of a point
set within the same, optimal, bound [CHT90, Theorem 3.2, Theorem 4.1].1 To construct
the Yao graph Yk = (P, E) with k cones for point set P, k sweepline passes are required,
each considering a specific cone C = (θL, θR). Algorithm 3.1 provides an overview of the
algorithm, with many details omitted for clarity.

The sweepline for cone C = (θL, θR) proceeds in direction τ = θL+θR

2 + π, i.e., opposite
to the cone’s internal angle bisector. Input points are swept in the order of their projection
onto τ—represented as blue dashed line in Figure 3.3—given by sorting

ρτ (p) :=
(

x

y

)
·
(

cos τ

sin τ

)
∀p =

(
x y

)T ∈ P. (3.1)

1 Our implementation computes the Yao graph but can easily be modified to compute the OVD.
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Figure 3.3 Example state of the sweepline algorithm for cone C = (θL, θR) (marked in red).
Input points (circles, bold labels) are numbered in the order they are swept by the
sweepline, with their projections on the cone’s internal angle bisector shown in blue.
Rays are labeled with the regions they are separating. Intersection events are marked
with a square. Already determined edges of the Yao graph are indicated by arrows.

Algorithm 3.1 High-level sweepline algorithm.

Input: Points P = {p1, . . . , pn} with pi ∈ R2, k ∈ N
Output: Yao graph Yk = (V, E)

1: Yk = (V, E)← (P, ∅)

2: for i ∈ [0..k − 1] do
3: θL ← 2(i+1)π

k θR = 2iπ
k ▷ compute boundary angles of cone Ci

4: priority queue Q← P ▷ points are sorted along sweepline direction θL+θR

2 + π

5: sweepline data structure SL← ∅
6: while p← popMin(Q) do
7: if p is input point then
8: find region Rq containing p in SL ▷ region defined by rays BL and BR

9: add edge (p, q) to Yk ▷ q is nearest neighbor of p in cone Ci

10: insert bounding rays of region Rp—B∗
L and B∗

R—into SL between BL and BR

11: add intersections of BL and BR with B∗
L and B∗

R to Q

12: if p is intersection then ▷ rays BL and BR intersect at p

13: determine new boundary B∗ between left region of BL and right region of BR

14: replace BL and BR in SL with B∗

15: add intersections of B∗ with its neighbors in SL to Q

16: return Yk
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All input points are inserted into an event priority queue Q with priority ρτ (p) and event
type input point. Each input point p is the origin of a cone Cp with boundary rays BL and
BR. The region Rp extends into the opposite direction of cone Cp, as shown in Figure 3.3.
Rp determines the region of the plane where point p is the nearest neighbor with respect to
cone Cp for any point being swept after p. The invariant of the algorithm is that once a point
has been swept, its nearest neighbor in cone C has been determined [CHT90, Lemma 3.1].
For instance, in Figure 3.3, p2 is in the region of p1, therefore p1 is the nearest neighbor
for p2 with respect to cone C. A boundary ray B□, with □ ∈ {L, R}, always separates the
regions of two input points, thus it is defined by its point of origin Bp

□ and angle Bθ
□ as well

as its left and right region, Bl
□ and Br

□ respectively. The region outside any point’s cone
is labeled with infinity. In Figure 3.3, the left boundary ray BL of region R2, originating
at Bp

L = p2 with angle Bθ
L = θL, separates region Bl

L = 1 and Br
L = 2. Due to intersecting

boundary rays, boundaries between regions can also be the union of a line segment and a
ray, as described in detail in Section 3.3.3.2. However, for simplicity of presentation we still
refer to these composite boundaries as boundary rays, unless this distinction is of relevance.
The algorithm maintains an ordered data structure SL of rays currently intersecting the
sweepline. The rays are ordered left-to-right and the data structure needs to support insert,
remove and find operations in O(log n) time, as well as access to the left and right neighbors
of a given ray. In Section 3.4.2 we describe a balanced binary search tree that supports
these operations and is tuned for our application. Algorithm 3.2 presents the details of
our algorithm, which are further described in the following. An example execution of the
algorithm is depicted in Figure 3.4.

3.3.3.1 Event Types
There are three different event types, each associated with a point p:

1. input points,
2. intersection points, and
3. deletion points.2

In the following, we describe how each event is handled by the algorithm. Through the
execution of the algorithm, the priority queue Q contains all unprocessed input points,
the intersection points of the boundaries of adjacent regions as well as deletion points for
composite boundaries, ordered according to ρτ (p). If several events coincide, their processing
order can be arbitrary.

1. Input Points. At the beginning of the algorithm execution, the priority queue Q is equal
to point set P sorted according to ρτ (p). For an input point event with associated point p,
the sweepline data structure SL is searched for the region Rq containing p. Section 3.4.2
describes this operation in detail. Region Rq is defined by its two bounding rays BL and BR

and their associated regions Br
L = Bl

R = Rq.3 We can then add edge (p, q) to the edge set E
of Yk, as proven in [CHT90, Lemma 3.1]. The point p is the apex of region Rp, bounded
to the left by B∗

L = (p, θL + π), separating regions Rq and Rp, and bounded to the right
by B∗

R = (p, θR + π), separating regions Rp and Rq. These new rays are inserted into SL

2 Not present in the original algorithm description by Chang et al. [CHT90] and omitted in Algorithm 3.1.
3 Note that Chang et al. [CHT90] explicitly store rays and regions in their sweepline data structure.

However, since a region is identifiable by its two bounding rays, we choose this simpler representation of
the sweepline state.
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Figure 3.4 Example execution for n = 6 points and cone C = (4π/3, 5π/3), with τ = π/2 (upward).
The currently processed point p is marked in red, the sweepline is a dashed, blue line.
All rays currently intersecting the sweepline are blue, except for the left boundary ray
BL (cyan) and right boundary ray BR (green) of p. Intersection points are marked
as squares, deletion points as triangles. For intersection events, the intersecting rays
are cyan and the bisector line is yellow. Edges of the Yao graph are solid black lines
and settled cone boundaries are dashed.
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between BL and BR, forming the subsequence [BL, B∗
L, B∗

R, BR]. Lastly, intersection points
of the considered rays need to be addressed. If BL and BR previously intersected in point v,
its associated intersection point event needs to be removed from the priority queue Q, as BL

and BR are no longer neighboring rays. Instead, possible intersection points between BL

and B∗
L as well as B∗

R and BR are added to Q for future processing.

2. Intersection Points. An intersection point v is associated with its two intersecting rays
BL and BR. They separate regions Rp, Rm and Rq, as shown in Figure 3.5, with

Rp := Bl
L Br

L =Rm = Bl
R Br

R =: Rq.

Region Rm terminates at intersection point v and a new boundary B∗ between Rp and Rq

originates at v. The shape of B∗ depends on the configuration of points p and q and can
either be a simple ray or a union of a line segment and a ray. Section 3.3.3.2 describes in more
detail how B∗ is determined. B∗ then replaces the subsequence [BL, BR] in the sweepline
data structure. Again, intersection points of the considered rays need to be addressed. If
BL has an intersection point with its left neighbor or if BR has an intersection point with
its right neighbor, the associated intersection point events need to be removed from the
event queue Q. Correspondingly, if B∗ intersects its left or right neighbor, the appropriate
intersection point events are added to Q.

3. Deletion Points. Deletion events are not part of the original algorithm described by
Chang et al., as the authors do not specify how to handle composite boundaries in [CHT90].
We use them to implement boundaries consisting of a line segment and a ray. The deletion
event marks the end of the line segment and the beginning of the ray. The ray replaces the
composite boundary in the sweepline data structure.

3.3.3.2 Boundary Determination
As described in the previous section, at an intersection point event v, the two intersecting
rays BL and BR are merged into a new boundary B∗, separating regions Rp := Br

L and
Rq := Bl

R. The shape of the boundary is determined by the configuration of points p and q.
The determination is based on the number of intersection points between lines

LL = (v, θL + π) (green),4
LR = (v, θR + π) (red), and
the bisector LBS of line p⃗q, LBS = ( p⃗+q⃗

2 ,∢(p, q) + π/2) (blue, dashed).

If LBS intersects neither LL nor LR then B∗ = LL = (v, π + θR) if p was swept before q,
otherwise B∗ = LR = (v, π + θR) (Figure 3.5a). Intuitively, the region of the lower point with
respect to the sweepline direction continues, whereas the upper region stops at intersection
point v. If LBS intersects both lines LL and LR, then the two intersection points must
coincide with v (Figure 3.5c). In this case, B∗ = (p,∢(p, q)+π/2), i.e., the boundary continues
with the angle of the bisector from point v. Intuitively, the overlapping area between Rp

and Rq is split at the bisector. Otherwise, i.e., LBS intersects either LL or LR in a point w,
the resulting boundary B∗ will be the union of the line segment v⃗w and ray (w,∢(p, q) + π/2)
(Figure 3.5b). In this case, a deletion point event is added to the priority queue at point w.

4 The given colors refer to the lines in Figure 3.5.
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(d) Input points lying on cone boundaries.

Figure 3.5 Illustration of the three possible configurations for boundary B∗ following an inter-
section point event. In all examples input point p is swept before q. Lines LL, LR

and LBS are dotted, the resulting boundary B∗ is denoted in bold. In Figure d), Yao
graph edges are shown as bold arrows.

Input Points Collinear on Cone Boundaries. Chang et al. make the assumption that
no two input points lie on a line with angle θL or θR. In the following we shall lift this
requirement. Input points sharing a common line with angle θ□ become visible from
each other. This impacts the regions the passing boundary rays are separating. Refer to
Figure 3.5d for a graphical representation of the following discussion. Recall, that the left—or
counterclockwise—boundary ray with angle θL belongs to a cone C, whereas the right one
does not. If a boundary ray B□ = (p, θ□, Bl

□, Br
□) intersects an input point q then B□

terminates at q and a new boundary ray B′
□ is formed. If B□ is a left boundary, i.e., θ□ = θL,

then edge (p, q) is added to Yk and B′
□ separates regions Bl

□ and Rq. Otherwise, if it is a
right boundary then no edge is added to Yk and B′

□ separates Rq and Br
□. In Figure 3.5d,

point q is on the left boundary of Rp, therefore edge (q, p) is added to Yk, whereas w is on
the right boundary of Rp and no edge is added. Point v lies on the right boundary of Rq

and left boundary of Rw, hence edge (v, w) is added to Yk.

3.3.3.3 Analysis

The total number of events processed by the sweepline algorithm is the sum of input point
events Ninput, intersection point events NIE and deletion events NDE. In order to bound the
number of events processed by the sweepline algorithm, we consider the number of rays that
can be present in the sweepline data structure during the execution of the algorithm.
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Algorithm 3.2 Sweepline algorithm for cone C defined by (θL, θR). L(p, θ, Ra, Rb) and
L(←→pv , Ra, Rb) denote the ray originating at p with angle θ and the line segment
from p to v, respectively, both separating regions Ra and Rb.

Input: Points P = {p1, . . . , pn} with pi ∈ R2, cone C = (θL, θR)
Output: Edges EC in cone C of Yao graph Yk = (V, E)

1: τ ← θL+θR

2 + π ▷ opposite of cone’s internal angle bisector
2: Q← {(ρτ (p) , p, I) : p ∈ P} ▷ initialize PQ with input points
3: SL← ∅
4: EC ← ∅

5: while p← popMin(Q) do
6: if p is input point then
7: BL, BR ← findRegion(p, SL) ▷ BL and BR enclose p

8: EC ∪= (p, Br
L) ▷ assert

(
Br

L == Bl
R

)
9: if BL ∩BR = v then delete v from Q

10: B∗
L ← L (p, θL + π, Br

L, Rp)
11: B∗

R ← L
(
p, θR + π, Rp, Bl

R

)
12: insert [B∗

L, B∗
R] into SL between BL and BR

13: if BL ∩B∗
L = v then Q ∪= (ρτ (v) , v)

14: if BR ∩B∗
R = v then Q ∪= (ρτ (v) , v)

15: if p is intersection then
16: BL, BR ← intersecting rays at p

17: a← Bl
L b← Br

R

18: if BL ∩ prev(BL) = v then delete v from Q ▷ left neighbor boundary on SL

19: if BR ∩ succ(BR) = v then delete v from Q ▷ right neighbor boundary on SL

20: LBS ← L( a⃗+b⃗
2 ,∢(a, b) + π

2 , Ra, Rb) ▷ bisector of line segment
←→
ab

21: LL ← L(p, θL + π, Ra, Rb)
22: LR ← L(p, θR + π, Ra, Rb)
23: if LL ∩ LBS = ∅ = LBS ∩ LR then ▷ bisector intersects no line from p

24: B∗ = L

(
p, π +

{
θL if ρτ (a) < ρτ (b)
θR else

, Ra, Rb

)
25: if LL ∩ LBS = p = LBS ∩ LR then ▷ bisector intersects both lines in p

26: B∗ = L(p,∢(a, b) + π
2 , Ra, Rb)

27: if LL ∩ LBS = v or LBS ∩ LR = v then ▷ bisector intersects one line in v

28: B∗ = L(←→pv , Ra, Rb) + L(v,∢(a, b) + π
2 , Ra, Rb)

29: Q ∪= (ρτ (v) , v) ▷ deletion event
30: replace [BL, BR] in SL with B∗

31: if B∗ ∩ prev(B∗) = v then Q ∪= (ρτ (v) , v)
32: if B∗ ∩ succ(B∗) = v then Q ∪= (ρτ (v) , v)
33: if p is deletion point then
34: B ← ray belonging to p ▷ B = L(←→pv , Ra, Rb) + L(v,∢(a, b) + π

2 , Ra, Rb)
35: replace B in SL with L(v,∢(a, b) + π

2 , Ra, Rb)
36: return EC
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Every input point event adds two rays to the sweepline data structure SL, resulting in
a total of 2n rays. It possibly removes one intersection event from the event queue Q and
may add up to two new such events. Every intersection point event removes two rays from
SL and adds one new ray, thus reducing the sweepline size by one. Therefore, at most 2n

intersection events can be processed before all rays are removed from the sweepline. An
intersection event possibly removes two additional intersection events aside from itself from
Q and may add one new intersection event.5 Additionally, one deletion event may be added
to Q. Therefore, at most 2n deletion events may be processed, each of which leaves the
number of rays and intersections unchanged. In total,

Nevents ≤ Ninput + NIE + NDE

≤ n + 2n + 2n = 5n (3.2)

With a balanced binary search tree as sweepline data structures each event can be processed
in O(log n) time. Thus, each of the k sweepline passes requires O(n log n) time.

3.4 Implementation Details

In this section, we highlight the data structures and geometric operations used in our
implementation of Chang et al.’s Yao graph construction algorithm.

3.4.1 Geometric Kernels
The algorithm by Chang et al. [CHT90] requires various geometric predicates and construc-
tions. We implement our own version of the required predicates and constructions in an
inexact manner. Additionally, the user can employ kernels provided by the CGAL library.
The EPIC kernel provides exact predicates and inexact constructions, whereas the EPEC
kernel features exact predicates and exact constructions [Brö+22].

Table 3.1 lists the geometric predicates used by the different algorithms for Yao graph con-
struction presented Section 3.3 and the one of CGAL’s cone-based spanners package [STP22].

5 Technically, B∗ can intersect both its neighbors, leading to two intersection events. However, when the
first—as defined by ρτ (·)—intersection event is processed, it will delete the second event from Q, as B∗

is removed from SL and a new boundary ray is inserted by the first event.

Table 3.1 Comparison of geometric predicates used in algorithms for Yao graph construction.

Chang et al. CGAL Naive Grid

Complexity O(kn log n) O
(
kn2) Θ

(
n2) O

(
n2)

Predicates
Eucl. distance comp. X X X X
dist. to line comp. X X
oriented side of line X X X
Constructions
cone boundaries X X X X
box construction X
line projection X
ray intersection X

∨ CONES
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Only the sweepline algorithm requires the computation of particularly costly intersections.
The naive as well as grid-based Yao graph algorithm require an oriented side of line predicate
only if cone boundaries are constructed exactly, in order to determine the cone Cp

i a point q

lies in with respect to point p. Additionally, the grid algorithm could construct the grid data
structure using exact computations. However, in our implementation we only use inexact
computations to place the input points into grid cells, as we did not encounter the need
for exact computation in any of our experiments. Note that the determination whether a
grid cell could hold a closer neighbor than the currently found one is done using the (exact)
Euclidean distance comparison predicate.

In order to reduce the number of expensive ray-ray intersection calculations, we store all
found intersection points in a linear probing hash table, with the two intersecting rays as key,
see, e.g., Line 13 in Algorithm 3.2. If we need to check whether two rays are intersecting—e.g.,
Line 9 of the same algorithm—we merely require a hash table lookup.

3.4.2 Sweepline Data Structure
Chang et al. prove a O(n log n)-time complexity for the algorithm [CHT90, Theorem 3.2].
In order to achieve this bound, the data structure maintaining the rays currently intersected
by the sweepline must provide the following operations all in O(log n) time:

insert,
remove,
predecessor search, and
access to left and right neighbor (O(1) in our data structure).

In order to support these operations, we use a doubly linked list of rays, with an AVL search
tree on top [AL62]. Figure 3.6 shows a graphical representation of our data structure. As the
order of the rays along the sweepline is known at the time of insertion—see Algorithm 3.2
Line 12—the O(log n)-time search phase of a traditional AVL data structure can be omitted
and new rays can be inserted in a bottom-up manner. However, this optimization requires
the need for parent pointers in the tree. Since always two neighboring rays are inserted into
the sweepline data structure at the same time, we implement a special insert operation for
this case that only requires one rebalancing operation for both rays. For removal operations,
the position of the ray within the sweepline is known as well—refer to Line 30. Thus, similar
to insert operations, no search phase is required for removals and the operation can be

Figure 3.6 The sweepline data structure
is a doubly linked list of rays
with an AVL search tree on
top. Additionally, each node
has a pointer to the rightmost
ray in its subtree (dashed)

<

pop & top

insert & remove

Figure 3.7 The priority queue consists
of a static, sorted array of in-
put points and a dynamic, ad-
dressable PQ for intersection
and deletion events.
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performed in a bottom-up manner. The algorithm always removes the two neighboring rays
BL and BR and replaces them with B∗. B∗ has the same left neighbor as BL and the same
right neighbor as BR. Therefore, we can simply replace BL with B∗ in the data structure
and just need to remove BR, leading to merely one rebalancing operation.

The search for the enclosing region of a point p—Algorithm 3.2 Line 7—is performed by
finding the first ray BR, currently intersecting the sweepline, that has p to its right. This
requires the evaluation of an oriented side of line predicate at each level of the tree. The left
neighbor BL of BR, must have p to its left or on it. Therefore, BL and BR enclose p and
Br

L = Bl
R = Rq gives the region p is contained in. To facilitate the search, each internal node

of the tree needs to refer to the rightmost ray in its subtree. As rays are complex objects, we
use pointers to the corresponding leaf to save memory. Given the expensive search operations,
AVL trees—as strictly height-balancing trees—are preferable to data structures with weaker
balancing guarantees, such as red-black trees [ŠT12].

3.4.3 Priority Queue

The priority queue (PQ) Q is initialized with all input points at the beginning of the algorithm.
During event processing, intersection and deletion events may be added and removed from Q,
therefore requiring an addressable priority queue. The objects are ordered according to
Equation (3.1), thus keys are (exact) numerical values. Our experiments show that, typically,
for n input points, only about O(

√
n) intersection and deletion events are in Q at any given

step. Using the same PQ for all events would result in expensive dynamic PQ operations.
As input point events are static in Q, we can use a two-part data structure as shown in
Figure 3.7. Input point events are stored in an array—sorted by priority in Q—with a pointer
to the smallest unprocessed element. Intersection and deletion events are stored in an actual
addressable priority queue. We use an addressable binary heap for this part of the data
structure. The top operation needs to compare the minimum element of the PQ with the
element pointed to in the array and return the minimum of both. Pop either performs a
regular pop on the PQ or moves the pointer of the array to the next larger element. Insert
and remove operations can access the PQ directly, as only this part of the data structure is
dynamic. Thus, the actual dynamic PQ is much smaller resulting in more efficient siftDown
and siftUp operations in the binary heap. The smaller heap size not only reduces the tree
height but also makes the heap more cache friendly.

This optimization might be of interest for other algorithms that initialize their priority
queue with all input points and only have a small number of dynamically added events in
their priority queue at any given time. Note that the total number of processed intersection
and deletion events can surpass the number of input points by far, however only a few of
these events are in the PQ at the same time.

3.5 Evaluation

In this section, we evaluate our implementations of the Yao graph construction algorithms
presented in Section 3.3 on a variety of datasets. As mentioned before, we are not aware
of any previous implementations of Chang et al.’s Yao graph algorithm. Therefore, our
main competitor is the Yao graph algorithm from the CGAL library’s cone-based spanners
package [STP22]. We are not aware of any other tuned implementations to construct
Yao graphs as further competitors.
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(a) Uniform distribution.

(b) Gaussian distribution.

EPEC kernel EPIC kernel
(c) Grid distribution.

(d) Circle distribution.

Figure 3.8 Input distributions for n = 1000 points and resulting Yao graph for k = 6. For the grid
distribution, the resulting graphs from exact constructions and inexact constructions
are shown.
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(e) Road dataset.

(f) Star dataset.

Figure 3.8 (cont.) Input distributions for n = 1000 points and resulting Yao graph for k = 6.
For the grid distribution, the resulting graphs from exact constructions and
inexact constructions are shown.

Experimental Setup. We test all algorithms on a variety of synthetic and real-world datasets.
We use input point sets distributed uniformly and normally in the unit square, as well as
points lying on the circumference of a circle and at the intersections of a grid—the former
being a worst-case input for the grid algorithm, the latter being a bad case for numerical
stability. Furthermore, two real-world datasets are used in our evaluation: intersections in
road networks and star catalogs. As road networks we use graphs from the 9th DIMACS
implementation challenge [DGJ09]. To generate a road network of a desired size n from
the Full USA graph, we use a random location and grow a rectangular area around it
until at least n nodes are within the area. US cities feature many points on a grid and
therefore present a challenge for numerical stability. We furthermore use the Gaia DR2 star
catalog [Gai18], which contains celestial positions for approximately 1.3 billion stars. We use
a similar technique as for road networks to generate subgraphs of a desired size. Here, we
grow a cube around a random starting location until it contains the desired number of stars.
We then project all stars onto the xy-plane as two-dimensional input for our experiments.
Figure 3.8 shows examples of our input datasets and the resulting Yao graphs.

We implemented all algorithms in our C++ framework YaoGraph, available on GitHub.6
Our code was compiled using GCC 12.1.0 with CGAL version 5.0.2. The experiments were
performed on a server with an Intel Xeon Gold 6314U CPU with 32 cores and 512 GiB of
RAM, running Ubuntu 20.04 with kernel version 5.4.0. For all experiments we used three
different random seeds and k = 6 unless otherwise specified.

6 https://github.com/dfunke/YaoGraph
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Figure 3.9 Statistics for varying input point distribution and point set sizes for k = 6 cones.
Error bands give the variation over the different cones being calculated.

3.5.1 Algorithmic Metrics

In this section we consider three statistics of the sweepline algorithm’s execution: number of
processed events as well as occupancy of the priority queue and sweepline data structure.
Figure 3.9a shows the number of events processed per input point by the algorithm. Each
input point event generates 2.3 intersection and/or deletion events on average, with very
little variance with regard to input size and distribution—except for the grid distribution
and road graphs. Both exhibit larger variance, depending on whether the cone’s boundaries
coincide with grid lines or not. Figure 3.9b shows the maximum number of intersection
and deletion events that are in the priority queue at any given time during the algorithm
execution. This number scales with O(

√
n) for most studied inputs, which motivates our

choice of the two-part priority queue as discussed in Section 3.4.3. The behavior of the circle
distribution requires further investigation. The maximum number of rays in the sweepline
data structure at any point during algorithm execution shows no clear scaling behavior, refer
to Figure 3.9c. It scales with O(

√
n) for most synthetic input sets, but approaches a constant

fraction of the input size for the circle (≈10 %), road (≈1 %) and star (≈0.1 %) datasets.
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Figure 3.10 Algorithm runtime experiments. Experiments over varying input sizes are performed
with k = 6 cones. Error bands give the runtime variation over the different input point
distributions. For the grid algorithm, the circle distribution is plotted separately with
triangular markers. The gray line represents the time limit of 30 min per algorithm.
Experiments over varying number of cones are with n = 1×105 uniformly distributed
input points.

3.5.2 Runtime Evaluation
In this section we discuss the results of our runtime experiments. Figures 3.10a–3.10c show
the (scaled) running time of all algorithms, displaying variations due to input distributions
as error bands. Detailed runtime plots for the different distributions are presented in
Figure 3.12. Note that only the grid and the sweepline algorithm are sensitive to the input
point distribution. As previously seen in Figure 3.9a, the number of processed events by the
sweepline algorithm is relatively stable for all distributions. Therefore, only little variation is
seen in the runtime of the algorithm. This also shows, that the size of the sweepline data
structure has only negligible influence on the algorithm runtime, as no higher runtime is
observed for the road or circle datasets. Our inexact kernel shows more runtime variation
than CGAL’s highly optimized kernels, mainly due to the grid distribution with its many
points directly on cone boundaries. The sweepline algorithm clearly outperforms CGAL’s
Yao graph implementation. Furthermore, even though the sweepline algorithm requires
much more involved computations, it is superior to the simple grid algorithm for non-exact
constructions. Only for exact constructions, large inputs are required to negate the more
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Figure 3.11 Algorithm runtime experiments. Experiments over varying number of cones are with
n = 1× 105 uniformly distributed input points.

expensive operations of the sweepline algorithm. The exact construction kernel leads to a
runtime overhead of 100 compared to the EPIC kernel. However, if points lie directly on cone
boundaries, exact constructions are necessary to obtain correct results, as seen in Figure 3.8c.
The data dependency is more pronounced for the grid algorithm, which performs well for
most datasets but degenerates to the naive algorithm for the circle distribution, due to the
many empty grid cells in the circle’s interior.

To compute a Yao graph with k cones, the sweepline algorithm requires k passes. This
linear relationship can be seen in Figure 3.11. The grid algorithm has no dependency
on k—except for the size of the neighborhood of a point. However, our experiments show
that the runtime of the algorithm increases with increasing k. We attribute this to the fact
that more grid cells need to be visited in order to settle all cones of a point p. As cones
become narrower with increasing k, chances are higher that a specific cone of p has no points
within a visited grid cell and thus further cells need to be visited. We did not perform these
experiments with the naive algorithm or the CGAL algorithm, due to their long runtimes.
CGAL’s algorithm also requires one pass per cone, whereas the naive algorithm’s runtime
dependency on k is negligible.

Table 3.2 shows the impact of our engineered data structures on the runtime of the
sweepline algorithm. The optimization of the AVL tree operations to avoid unnecessary
rebalancing operations has the largest impact on the runtime. For larger inputs, the priority
queue optimization would become more important.

Table 3.2 Impact of our optimizations on the runtime of the sweepline algorithm for n = 1× 104

uniformly distributed input points and k = 6 cones.

Optimization Runtime [s] Improvement [s] Improvement [%]

Baseline 1.940 – –
Priority queue 1.779 0.161 8.30
Robin Hood hash table†) 1.593 0.186 10.46
AVL tree operations 1.296 0.297 18.64

Total – 0.644 33.20
†) https://github.com/martinus/robin-hood-hashing (accessed 08-12-2023)

https://github.com/martinus/robin-hood-hashing
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Figure 3.12 Algorithm runtime experiments. Experiments over varying input sizes are performed
with k = 6 cones. The gray line represents the time limit of 30 min per algorithm.
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Figure 3.12 (cont.) Algorithm runtime experiments. Experiments over varying input sizes are
performed with k = 6 cones. The gray line represents the time limit of
30 min per algorithm.

3.6 Conclusions

We present the—to the best of our knowledge—first implementation of Chang et al.’s optimal
O(n log n)-time Yao graph algorithm. Our implementation uses carefully engineered data
structures and algorithmic operations and outperforms current publicly available Yao graph
implementations—particularly CGAL’s cone-based spanners package—by at least an order
of magnitude. We furthermore present a very simple grid-based Yao graph algorithm that
also outperforms CGAL’s implementation, but is inferior to Chang et al.’s algorithm for
larger inputs. However, the algorithm could be further improved by using a precomputed
mapping of the grid neighborhood to cones, in order to only visit grid cells that can contain
points in hitherto unsettled cones. Moreover, the algorithm is trivially parallelizable over
the input points, whereas Chang et al.’s algorithm can only be easily parallelized over the k

cones. The parallelization within one sweepline pass remains for future work.
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4 Mountain Isolation

Summary: One established metric to classify the significance of a mountain peak is
its isolation. It specifies the distance between a peak and the closest point of higher
elevation. Peaks with high isolation dominate their surroundings and provide a nice
all-round view from the top. With the availability of worldwide digital elevation models
(DEMs), the isolation of all mountain peaks can be computed algorithmically. Previous
algorithms run in worst-case time that is quadratic in the DEM size. We present
a novel sweep-plane algorithm that runs in time O(n log n + pTNN) where n is the
number of sample points in the DEM, p the number of considered peaks and TNN the
time for a two-dimensional nearest neighbor query in an appropriate geometric search
tree. We refine this to a two-level approach that has high locality and good parallel
scalability. Our implementation reduces the time for calculating the isolation of every
peak on Earth from hours to minutes while improving precision.

Attribution: This chapter is taken mostly verbatim from [FHS23a] and its accom-
panying technical report [FHS23b]. The author of this dissertation was the main
author and contributor of the paper. Nicolai Hüning provided the implementation
and performed experiments for his Bachelor thesis [Hün22]. Additionally, he authored
parts of the evaluation. Peter Sanders contributed the algorithmic analysis and
provided editing.

4.1 Introduction

High-resolution digital elevation models (DEMs) are an interesting example of large datasets
with a big potential for applications—such as flood risk analysis or flight and urban planning—
but equally big challenges due to their enormous size. For example, WorldDEM, provided
by the TanDEM-X mission, covers the entire globe with a resolution of 0.4 arcseconds and
is currently the highest-resolution worldwide DEM available [VS20]. It consists of 6 · 1012

individual sample points and amounts to approximately 25 TB of data. Modern LIDAR
technology allows for less than 1 m2 samples, resulting in more than 300 TB of data for
Earth’s land surface. The algorithm engineering community has greatly contributed to
unlocking the potential of DEMs by developing scalable algorithms for features such as
contour lines, watersheds, and flooding risks [Aga+08; dBT11; RLA17]. This dissertation
continues this line of research by studying the isolation of mountain peaks which is a highly
nonlocal feature and requires us to deal with Earth’s complicated (not-quite spherical) shape.

A mountain’s significance is typically characterized using three properties—elevation,
isolation, and prominence [Gri04]. Whereas elevation is a fundamental property, isolation
and prominence are derived measures. Isolation—also referred to as dominance—measures
the distance along the sea-level surface of the Earth between the peak and the closest point
of higher elevation, known as the isolation limit point (ILP). Prominence measures the
minimum difference in elevation from a peak and the lowest point on a path to reach higher
ground—called the key col. Refer to Figure 4.1 for an illustration.

∧ PEAKS
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A

P
key col

I

ILP

Figure 4.1 Illustration of a mountain A’s isolation I and prominence P . The isolation is
determined by the ILP (red) and is measured along the sea-level surface of the Earth.
The prominence is defined by the key col (blue) and is the difference in elevation
between it and A.

Whereas previously both measures had to be determined manually by laboriously studying
topographic maps, they can now be computed algorithmically using DEMs. Kirmse and
de Ferranti [KdF17] present the current state-of-the-art to compute both measures. Their
algorithm determines a peak’s isolation by searching in concentric rectangles of increasing
size around the peak for higher ground. To determine the isolation of every peak on Earth,
their algorithm has a worst-case running time of O

(
n2), with n being the number of sample

points in the DEM. For high-resolution DEMs of Earth and other celestial bodies, e.g.,
the Moon [Bar+16] or Mars [Gwi+10], algorithms with better scalability are needed. Also,
continuously updated digital elevation models (CUDEMs), such as NOAA’s DEM of North
America’s coastal regions [Ama+23], require efficient algorithms for frequent reprocessing.
In particular, parallel and external algorithms are required.

Contribution and Outline After presenting basic concepts in Section 4.2 and related work
in Section 4.3 we describe the main algorithmic result in Section 4.4. We begin with a
sequential algorithm that sweeps Earth’s surface top-down with a sweep-plane storing the
points having surfaces at that elevation. Processing a peak then amounts to a nearest
neighbor query in the sweep-plane data structure. This results in an algorithm with running
time O(n log n + pTNN) where n is the input size, p the number of considered peaks and
TNN the time for a two-dimensional nearest neighbor query in an appropriate geometric
search tree. To make this more scalable, we then develop an algorithm working on the natural
hierarchy of the data which is specified in tiles. This algorithm performs most of its work in
two scans of the data which can work independently and in parallel tile-by-tile. Only the
highest points in each tile need to be processed in an intermediate global phase. Each of
these three phases has a structure similar to the simple sequential algorithm.

In Section 4.5 we explain how two-dimensional geometric search trees can be adapted
to work on the surface of the Earth by deriving the required geometric predicates. After
outlining implementation details in Section 4.6, we evaluate our approach using the largest
publicly available DEM data in Section 4.7.

4.2 Preliminaries

In this section we briefly discuss basic concepts of spherical geometry, including two distance
measures to approximate distances along the surface of the Earth. Furthermore, we introduce
key aspects of digital elevation models and review state-of-the-art models.

Spherical Geometry. Most planets can generally be approximated by spheres. In the
geographic coordinate system, a point p = (ϕ, λ) on the surface of a sphere is identified by its
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latitude ϕ and longitude λ. Latitude describes p’s north-south location, measured from the
equator, ϕ ∈ [−90◦, 90◦] with negative values south of the equator. Longitude describes p’s
east-west location, measured from the prime meridian through Greenwich, λ ∈ (−180◦, 180◦]
with negative values west of the prime meridian.

For close distances, Earth’s surface is sufficiently flat to use planar Euclidean distances
between points. For longer distances, spherical distance calculations are necessary, which
are computationally more expensive. On the surface of the sphere, two points are always
connected by at least two great circle segments. The shortest such segment, the geodesic, can
be computed for points p1 = (λ1, ϕ1) and p2 = (λ2, ϕ2) with sphere radius R according to

α = sin2
(

ϕ2 − ϕ1
2

)
+ sin2

(
λ1 − λ2

2

)
cos(λ1) cos(λ2)

d(p1, p2) = R tan−1

( √
α√

(1− α)

)
(4.1)

As Earth and most other planets are not perfect spheres, ellipsoids are a more accurate
approximation of their shape. The World Geodetic System (WGS) [Nat14] defines such an
ellipsoidal approximation of the Earth, requiring the following—even more computationally
expensive—distance formula:

∆λ = (λ2 − λ1)/2 ∆ϕ = (ϕ2 − ϕ1)/2 Λ = (λ2 + λ1)/2
s = sin2 ∆ϕ · cos2 ∆λ+ cos2 Λ · sin2 ∆λ

c = cos2 ∆ϕ · cos2 ∆λ+ sin2 Λ · sin2 ∆λ

w = tan−1(
√

s/
√

c) r =
√

sc

w

d(p1, p2) = 2aw

(
1 + f

3r − 1
2c

sin2 Λ · cos2 ∆ϕ− f
3r + 1

2s
· sin2 ∆ϕ · cos2 Λ

)
(4.2)

with a and f denoting the equatorial radius and flattening of the WGS84 ellipsoid [Nat14].

Digital Elevation Models. Digital elevation models (DEMs) have become one of the most
important tools to analyze Earth’s surface in geographic information systems. They represent
Earth’s surface by providing elevation measurements on a grid of sample points. The data is
mostly stored in files of 1 square degree of coverage each, called tiles. A tile is addressed by
its smallest latitude and longitude. In order to enable seamless processing of several tiles,
each tile stores one sample row/column overlap with its neighbors. The resolution of DEMs
is given by the length of one sample at the equator in arcseconds (′′).

State-of-the-art worldwide DEMs, such as WorldDEM, provide a resolution of 0.4′′

spacing between sample points—about 12 m at the equator [VS20]. Local DEMs, such as
the swissALTI3D, even have a resolution of only 0.5 m sample point spacing [Bun22]. Freely
available DEMs, such as the Shuttle Radar Topography Mission (SRTM) DEM [Jet19],
provide a resolution of 3′′—about 90 m at the equator—and an absolute vertical height error
of no more than 16 m for 90 % of the data [Rod+05]. Unfortunately, it covers only areas
between 60◦ North and 56◦ South and contains large void areas, especially in mountainous
regions, which are of particular interest for us. In a laborious process, de Ferranti [dFer11]
fused raw SRTM data with other publicly available datasets [Ala08; Tac+11] and digitized
topographic maps to create a worldwide, void-free DEM. Figure 4.2 illustrates the difference
between raw SRTM data and the viewfinderpanoramas DEM.

∧ PEAKS
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Figure 4.2 Comparison of tile 46◦N 10◦E (Ötztal and Ortler Alps). Left raw data from NASA’s
SRTM with voids (black), right enhanced data by viewfinderpanoramas.org.

4.3 Related Work

Graff et al. [GU93] are the first to use DEM data to classify terrain into mounts, plains,
basins or flats. As there is no definitive definition of these terrain features, several methods
for terrain classification are studied in the literature [TMF19], including fuzzy logic [FW98;
FWC04] or, more recently, deep learning [Tor+18].

Prominence has received most of the attention when it comes to algorithmic compu-
tation of mountain metrics [Hel05; KdF17]. Kirmse and de Ferranti [KdF17] present the
current state-of-the-art regarding isolation and prominence computation. As their main
focus lies on the prominence calculation, they present a rather simple O

(
n2)-time isolation

calculation algorithm.
In their algorithm they first calculate potential peaks which are samples that are at least

as high as their eight neighboring samples. Afterwards, a search for the closest higher ground
(ILP) is conducted, where, centered on each peak, concentric rectangles of increasing size are
checked to find a sample with higher elevation. Since the closest higher ground of a peak could
also be in a neighboring tile, these must be checked as well. If a higher ground was found,
the distance to this sample is used to constrain the search in neighboring tiles. If not, tiles in
increasing rectangles around the peak-tile are checked until an ILP is found or the complete
world has been checked. Before searching a neighboring tile, the maximum elevation of the
tile is checked. When it is smaller than the peak elevation, the tile can be ignored. Tiles
and their maximum elevation are cached, because they need to be loaded rather frequently.
Inside the tile that contains the peak, planar Euclidean distance approximations are used
to find an ILP, for neighboring tiles, distances are computed according to the spherical
distance function. Because a majority of peaks have a small isolation, the ILP is often within
the same tile as the peak, so mostly planar Euclidean distance approximations are used to
determine a peak’s ILP. This reduces computational costs but also the accuracy for peaks
with small isolation. Only in a final step before output is the distance between a peak and
its determined ILP calculated using the precise, but expensive, ellipsoid distance function.
Kirmse and de Ferranti’s algorithm is unnamed, we refer to it as ConcIso for brevity.

Sweepline algorithms are introduced by Bentley and Ottmann [BO79] to compute line
segment intersections. The technique is generalized by Anagnostou et al. to three-dimensional
space [AGP90]. Sweepline algorithms have been applied to various geometric problems in
two- and three-dimensional space, such as computing Voronoi diagrams [For87] or route
mining [YLX20]. R-Trees are often used in spatial databases and have been adapted to
geodetic distance computations by Schubert et al. [SZK13].
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Figure 4.3 Illustration of DEM grid and sweep-plane algorithm by using a voxel representation.
The red point represents the current peak. Orange DEM points are active and
contained in the sweep-plane data structure. White points are inactive and already
removed from the data structure. Black points have not yet been processed.

4.4 Algorithms

In this section we present our novel sweep-plane algorithm to calculate the isolation of
mountain peaks. The algorithm takes as input the search area—a quadrilateral A defined
by its north-west and south-east corners—as well as the DEM data. We will first present
a single-sweep algorithm that processes the entire search area in one sweep-plane pass.
Subsequently, we present a scalable three-pass algorithm that reads the DEM-tiles of A twice
and can process tiles in parallel.

4.4.1 Single-Sweep Algorithm
To determine the isolation of a peak, its closest point with higher elevation—the isolation
limit point (ILP)—needs to be found. Given the search area A, each sample point p of the
DEM within A has two associated events: an insert event at p’s elevation and a remove
event at the elevation of its lowest immediate (NESW) neighbor. Additionally, if a point is
the high-point of its 3x3 neighborhood it is associated with a peak event at its elevation. We
describe the peak detection routine in more detail in Section 4.6.2. All events are created at
the beginning of the algorithm and can therefore be added to a static sequence sorted by
descending elevation. Peak events are processed before other events at the same elevation.

The sweep-plane then moves downward from the highest sample point to the lowest and
traces the contour lines of the terrain, refer to Figure 4.3. The sweep-plane data structure SL

is a two-dimensional geometric search tree that maintains a set of currently active points. A
sample point p becomes active at its insert event, when it is swept by the sweep-plane and
inserted into SL. Point p becomes inactive and is removed from SL at its remove event, at
which point its lowest neighboring point is activated and thus all of p’s neighboring points
are either active or have already been deactivated. When a peak event for sample point
p is processed, a nearest neighbor query for the closest active sample point to p in SL is
performed. The returned point w is the ILP for the peak: Since w is active and peaks are
processed before other events, w must be higher than p. There cannot be any closer ILP
as points activated later are not higher than p and since higher points v that are already
deactivated are surrounded by points that are all higher than p. At least one of them must
be closer to p than v.

∧ PEAKS
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Analysis. Given a DEM with n points, we can detect its p peaks in time O(n). The resulting
2n + p events can be sorted in O(n log n) time by elevation. Insertion and removal operations
take O(log n) worst-case time in several geometric search trees [Ben75; FB74; Smi00]. Nearest
neighbor search complexity is more complicated and still an open problem in many respects.
Therefore, we describe it abstractly as TNN. Simple trees used in practice such as k-D
trees [Ben75] or quad-trees [FB74] achieve logarithmic time “on average”. Chan [Cha20]
presents a theoretical data structure based on shallow cuttings that achieves a O

(
log4 n

)
worst-case time bound. Approximate queries within a factor of 1 + ϵ are possible in time
O
(
log(n)/ϵ2) [Ary+98]. Overall, we get the claimed time O(n log n + pTNN).

4.4.2 Scalable Multi-Pass Algorithm
High-resolution DEMs are massive data sets of currently up to 25 TB that require scalable
algorithms. The algorithm described in the previous section can be parallelized to some
extent but its sweeping character limits parallelism. Moreover, a geometric search tree
covering the entire Earth could get quite large. We therefore develop a two-level algorithm
that allows for more coarse-grained parallelism and better locality. We adopt the natural
hierarchy of the input data using tiles of a fixed area but note that grouping several tiles into
a larger one or splitting a tile into smaller ones would be possible in principle. Furthermore,
a more general multi-level algorithm could be developed using a similar approach.

Multi-level algorithms start at the finest level to extract information for global1 processing
at coarser level. The global results are then passed down to compute the final solution. In
our two-level algorithm this implies that we have two passes reading the DEM tiles from
external memory while a single global pass works with simple per-tile information. The
first (bounding) and last (finalization) pass can work in parallel on each tile. The global
(high-point) pass works in internal memory and is also parallelized. The first two passes
establish a global Tile-Peak map that stores for each tile which peaks can have an ILP
candidate in it. The third pass processes these assigned peaks for a tile and determines
their ILPs. All passes follow a very similar structure to our single-sweep algorithm from
Section 4.4.1. They are described in detail in the following. Additionally, Figure 4.4 provides
an overview of our algorithm.

Bounding Pass. The purpose of the first pass is to establish an upper bound on the isolation
of a peak and therefore limit the number of tiles that need to be searched for its ILP in the
finalization pass. To establish this upper bound, we find a tile-local ILP candidate for each
peak using our single-sweep algorithm (gray arrows in Figure 4.4). Only the highest point in
each tile will not have a tile-local ILP candidate and is treated separately in the high-point
pass (colored triangles in Figure 4.4). Given the upper bound on the isolation of a peak p,
we can assign p to all tiles within radius of the upper bound that could contain a closer ILP
for p. In the third pass, these neighboring tiles then need to process p in order to find ILP
candidates within them. To link peaks to tiles for processing in the third pass, we build a
Tile-Peak map that stores for each tile a list of peaks that could have an ILP within it.

High-Point Pass. As there is no local ILP for the high-point h of each tile, we address high-
points separately in the second pass. This pass uses only one type of event—a combination
of insert and peak event from the other passes—and processes only one point per tile,

1 Pun intended.
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Peak Detect. Bounding FinalizationHigh Points

Tile-Peak Map

Figure 4.4 Overview of our scalable multi-pass algorithm for four tiles in two dimensions. Peaks
are detected for each tile with the peak finding algorithm of ConcIso. The bounding
pass determines an upper bound on the isolation for each peak and assigns it to tiles
that could contain closer ILP candidates in the Tile-Peak map. The high-points of
each tile without a local upper bound are processed by a separate pass considering
only the high-points. In the finalization pass, all peaks assigned to a tile are checked
for an ILP candidate within the tile. The final determination of the closest ILP out
of the found candidates for each peak is not depicted. For the sweep-plane passes,
the sweep-plane is pictured in red, green points are active in the sweep-plane data
structure, gray points are inactive and hollow points have not yet been processed.
Peaks are marked by triangles and their tile-local ILP candidate is denoted by a gray
arrow. The high-point of each tile is marked by a different color triangle for each tile.

namely their high-points. For each high-point h, we perform a nearest neighbor query in the
sweep-plane data structure for h’s closest higher point p. The distance between h and p is
an upper bound on h’s isolation. The sweep-plane data structure is then traversed again to
find all tiles whose closest point to h is at least as close to h as p and h is linked to these
tiles in the Tile-Peak map. Finally, h is inserted into the sweep-plane data structure and the
next lower high-point is processed.

Finalization Pass. In the third pass, each tile is processed again by a sweep-plane algorithm
similar to the single-sweep variant. The peak events of this pass are all peaks that have been
assigned to the tile in the Tile-Peak map. For each assigned peak, the ILP candidate within
the processed tile is determined. After all tiles have been processed by the third pass, each
peak has as many ILP candidates as tiles it has been linked to. Thus, in a final step, for
each peak the closest found ILP candidate is set as the true ILP of the peak.

Algorithmic Details and Analysis Sketch. Let us first look at the total work performed to
process A tiles containing n sample points overall. The bounding pass performs a similar
amount of work as the global algorithm except that it defers nonlocal nearest neighbor
searches to the subsequent passes. More precisely, the high-points of each tile are deferred to
the high-point pass while other peaks are deferred to neighboring tiles within the upper bound
of their tile-local ILP candidate. On average, there is a constant number of such neighboring
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tiles, as the upper bound on the isolation cannot exceed the length of the diagonal of a tile.2

The high-point pass potentially defers nearest neighbor search work for the highest point
of each tile to a potentially large number of tiles. However, this is not so different from what
a search-tree based nearest neighbor search in a global tree data structure would do. Our
two-level algorithm can be viewed as a vertically split (quad-)tree algorithm where updates
and nearest neighbor searches are reordered to improve locality. The overall amount of work
done is quite similar though.

The finalization pass can be viewed as completing the deferred nearest neighbor searches.
Thus, the main overhead of the two-pass algorithm compared to the global algorithm is
that the data is swept through search trees twice. We mitigate this effect by building only
a coarse search tree in the bounding pass. This has no negative effect on precision as the
bounding pass is only needed to identify the tiles where an ILP can be. Only the finalization
pass computes the actual ILPs.

Let us now look at I/O-costs. Assume one tile and the high-points fit in internal memory.
This is similar to a “semi-external”-assumption used in previous algorithm engineering papers
on DEM processing, e.g., [Aga+08]. The I/O volume of our two pass algorithm is dominated
by reading all tiles twice.3 This is actually better than an external-memory implementation
of the global algorithm as that algorithm would have to sort the data by altitude before
being able to scan the input in the right order for the sweep. Even using pipelining [DKS08],
sorting would require at least two reading and one writing pass over the DEM data.

Finally, let us consider parallelization. Bounding and finalization passes can work on
A tiles in parallel. In order to also parallelize the high-point pass, we implement a variant
that uses a static search tree with subtrees augmented by the maximum elevation occurring
in a subtree. Then the A nearest dominating point searches can be done in parallel. See
Section 4.6.2 for details.

4.5 Predicates for Search Trees on Spherical Surfaces

The sweep-plane data structure needs to be a dynamic data structures that supports efficient
nearest neighbor queries. Space-partitioning trees such as k-D trees or quad-trees are well-
suited data structures for this application [Ben75; FB74]. These trees recursively divide the
input space into smaller and smaller blocks. For a spherical surface, the space is divided
into quadrilaterals which are aligned with latitude and longitude, refer to Figure 4.5a. A
quadrilateral is defined by its north-west and south-east corners. Each quadrilateral can
then be further subdivided into smaller quadrilaterals. The root of a space-partitioning tree
covers the entire input area.

Our sweep-plane algorithm requires two types of queries in these geometric search trees:
a) whether a given point p lies inside a quadrilateral Q and b) the shortest distance between
point p and quadrilateral Q. The former can be easily answered by comparing p’s latitude
and longitude with the coordinates of Q’s north-east and south-west corner. For the latter,

2 Near the poles, there are many candidate tiles that may be closer than a local ILP candidate. However,
averaged over all tiles, this effect is not large. It is interesting to note though that this is an artifact
of a pseudo-high longitudinal resolution that is not reflected in the actual precision of the sensors but
stems from artificially mapping the data using a Mercator projection. Meshes with more uniform cells
are possible, for example the icosahedral grid used in some modern climate/weather models [Jun+22].

3 In comparison, the Tile-Peak map has negligible data volume and can be handled in an I/O-efficient
way by observing that the first two passes only insert to it and the third pass only reads it tile by tile.
Thus, we can first buffer its data in an external log which is sorted by tile before the finalization pass.



97

(a) (b)

Figure 4.5 Representation of a latitude-longitude aligned quadrilateral and areas for the different
min-distance cases between a quadrilateral and a point.

(a) Case 2. (b) Case 3. (c) Case 4.

Figure 4.6 Example configurations for the minimum distance between a point and a quadrilateral.

there are four configurations of p and Q that need to be considered, refer to Figure 4.5b:

1. p ∈ Q (red area),
2. p is between the longitude lines of Q (green area),
3. p is between the four great circles through the corners of Q, which are perpendicular to

the longitude edges of Q (blue area),
4. all other positions (white area).

For case 1 the distance is zero. In case 2, the closest point s ∈ Q to p is on the intersection
between the longitude line of p and one of the latitude-edges of the quadrilateral, as the
shortest distance between two latitudes is along the longitude lines—also refer to Figure 4.6a.
The shortest distance of p to Q is thus the shorter distance between p and the north and
south latitude of Q.

In the remaining cases, s must lie on one of the longitude lines of the quadrilateral. To
determine the longitude edge closest to p, we calculate the center longitude of Q and rotate
it to align with the meridian. We rotate p by the same amount. If the longitude of p is
now positive, the west longitude-edge of Q is closer to p, otherwise the east one.4 Having
determined the closest longitude edge, we can now calculate point s using linear algebra in
Euclidean space. For this, point p and the edge-points defining the closest longitude edge,
lN and lS , are transformed according to

x := cos(lat(x)) cos(long(x)) y := cos(lat(x)) sin(long(x)) z := sin(lat(x)) (4.3)

4 This is possible because we split the Earth at the antimeridian. Therefore, the western longitude of Q is
always smaller than the eastern one.
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Note that this transformation assumes Earth to be a sphere. For a more accurate transfor-
mation assuming Earth to be an ellipsoid refer to [Nat14]. Now, the closest point s to p can
be determined according to

A := lS × lN B := p×A S := A×B (4.4)

Observe that S is normalized, because Equation (4.3) produces normalized vectors and
Equation (4.4) uses only cross products. The idea behind these formulae is the following: A

is the plane of the great circle defined by the edge-points of the longitude edge, lN and lS .
B is the plane of the great circle that is perpendicular to A and goes through the point p.
Lastly, the intersection between these two great circles is calculated (S), yielding the geodesic
between s and p, that is perpendicular to the longitude circle and thus the shortest possible
one. S is now transferred back to longitude and latitude using

lat(s) := arcsin(z) long(s) := arctan2(x, y)

This yields point s on the longitude-edge of Q that is closest to p. If the latitude of s is
between the top and bottom latitude of Q, s is the point with the shortest distance to p in Q

(case 3, Figure 4.6b). Otherwise, one of the corners is the point with the shortest distance
to p (case 4, Figure 4.6c).

Given these primitives, insert and query operations on space-partitioning trees for spherical
surfaces are identical to the ones for Euclidean space.

4.6 Implementation Details

We implement our new sweep-plane algorithm in the mountains C++ framework by Kirmse
and de Ferranti [KdF17].5 The framework provides essential functionalities for the work
with tiled DEM data, such as data loading and conversion, peak discovery and distance
computations. Our code is available on GitHub.6 In the following we provide details of our
implementation.

4.6.1 Data Structures
We implement a fully dynamic k-D tree, that supports insert and remove operations in
O(log n) worst-case time and nearest neighbor searches in O(log n) expected time [FBF77]
using the predicates described in the previous section.7 Points are stored in the leaves of
the tree, which have a fixed capacity of C points. On exceeding capacity C, a leaf is split
according to a center-split policy along the longer side of the quadrilateral. The first points
inserted into the tree often belong to the highest peak in a tile and are thus close to each
other. In order to prevent the tree from degenerating, we pre-build the first k levels in
a quad-tree-like manner. Our experiments show k = 4 to be a good choice. To improve
cache-efficiency, tree nodes are allocated in blocks and are re-used after deletion.

The Tile-Peak map is implemented as an internal memory hash map with the latitude
and longitude of a tile as key and a list of peaks as value.

5 https://github.com/akirmse/mountains (accessed 08-12-2023)
6 https://github.com/dfunke/mountains
7 We also adapted a quad-tree using our predicates, which was, however, outperformed by the k-D tree in

our experiments.

https://github.com/akirmse/mountains
https://github.com/dfunke/mountains
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4.6.2 Algorithm
Given the search area A, all contained DEM tiles can be processed in parallel. We use a
work queue and thread pool to distribute the computations among the available processing
elements. The Tile-Peak map is initialized in advance with all tiles. To sort the events of a
pass, we use the efficient sorting algorithm ips4o of Axtmann et al. [Axt+17].

Bounding Pass. We use the peak detection algorithm of Kirmse and de Ferranti [KdF17,
Sec. 2.2] to find all peaks within a tile. It considers all points to be peaks that have eight
neighboring points of lower or equal elevation. If a peak consists of several equally high sample
points, only a single one is added to the set of peaks.8 Since only an upper bound is calculated
during the bounding pass, we down-sample the resolution of the DEM after peak detection.
Since all peaks are within the tile which is processed, distances are rather small and can be
approximated using planar Euclidean geometry during the nearest neighbor search. The
upper bound is computed using the spherical distance function according to Equation (4.1).
If the determined upper bound on the isolation of a peak is below a threshold Imin we discard
the peak as insignificant. Peaks with an upper bound above Imin are added to the Tile-Peak
map for processing in the finalization pass as described in Section 4.4.2.

High-Point Pass. While processing the tiles in the bounding pass, we build a geometric
search tree T that partitions the entire search area down to the tile level. Internal nodes of T

save the highest elevation in their subtree. After all tiles have been processed, we can use
this information to efficiently determine upper bounds on the isolation of the high-points of
each tile. For each high-point h, we find the closest tile containing a point of higher elevation
than h in search tree T . The maximum distance between h and any point within the found
tile serves as an upper bound on h’s isolation. Given this upper bound we can add h to all
tiles containing potential ILPs in the Tile-Peak map. This approach is trivially parallelizable
over the number of high-points in the search area.

Finalization Pass. In this pass we use the full resolution of the input DEM. For each tile,
the peaks processed in this pass are the ones that are assigned to it in the Tile-Peak map.
We use ellipsoid distance computations according to Equation (4.2).

4.7 Evaluation

In this section we evaluate our novel sweep-plane algorithm to calculate the isolation of
mountain peaks, which we named SweepIso. We evaluate it with regard to runtime behavior
and solution quality and compare it against ConcIso from Kirmse and de Ferranti [KdF17].

Experimental Setup. All benchmarks are conducted on a machine with an AMD EPYC
Rome 7702P with 64 cores and 1024 GB of main memory running Ubuntu 20.04 with kernel
version 5.4.0 and GCC 9.4. The DEM data is stored on an Intel P4510 2 TB NVMe SSD.
We use the 3′′ data set from viewfinderpanoramas [dFer11] with worldwide coverage. To
build smaller test instances from the worldwide data set, we choose a random starting tile
and add neighboring tiles in a spiraling manner around it until the desired number of tiles
is reached. For each instance size, we generate several instances to cover a wide range of

8 The algorithm by Kirmse and de Ferranti always chooses the north-west corner of a peak.

∧ PEAKS



100 4.7 Evaluation

Table 4.1 Test instances used for worldwide and NA-EU runtime time testing.

(a) Worldwide data set.

Tile
count

Random
samples

4 50
8 40

16 32
32 24
64 18

128 12
256 8
512 4

1024 4
2048 4
4096 3
8192 3

16 384 2
26 095 2

(b) NA-EU data set.

Tile
count

Random
samples

4 50
8 40

16 32
32 24
64 18

128 12
256 8
512 4

1024 4
2048 4
4096 3

Table 4.2 DEM models of Earth, Mars and the Moon used in our experiments. The reported
runtime is the single-threaded runtime for the entire data set.

Name Resolution Points
[1× 109]

Size
[GB] Coverage Runtime

[h]

Earth SRTM 3′′ (90 m) 20 71 Global 2.07
Earth SRTM NA-EU 1′′ (30 m) 49 105 Cont. US+CAN+EU 3.8
Moon SLDEM2015 7′′ (59 m) 11 22 [60◦N, 60◦S] 2.5
Mars MGS MOLA -
MEX HRSC Blended

12′′

(197.6 m) 5.7 11 Global 1.3

terrain, refer to Table 4.1 for details. Additionally, we use the 3′′ and 1′′ DEM for the USA,
Canada and most of Europe from viewfinderpanoramas [dFer11] to study the scaling behavior
for higher-resolution DEMs. This data set corresponds to 4294 tiles or roughly 16 % of the
total test data set. We will call this data set NA-EU. We also use data sets from other
celestial bodies: Mars [Gwi+10] and the Moon [Bar+16]. Table 4.2 lists some properties of
the studied data sets along with the runtime of our algorithm to determine the isolation of
every peak contained in them.

For all benchmarks we use an isolation threshold Imin of 1 km and report the mean
runtime of 5 runs. I/O costs are not part of the reported figures as we use the mountains
framework [KdF17] for them without an attempt at optimization. They are about the same
time as computation for 3′′ DEMs and about 10 % of computation time for 1′′ ones and thus
could be overlapped with the computation in an optimized framework.
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(a) Throughput in sample points per second over number of tiles.
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(b) Throughput in processed peaks per second over number of tiles.

Figure 4.7 Single-threaded runtime comparison of SweepIso and ConcIso, regarding throughput
of sample points and processed peaks over number of tiles.

4.7.1 Runtime and Scaling Behavior

The runtime of the algorithms depends on the number of sample points in the DEM. These
can either increase due to a larger search area or a higher-resolution DEM. Another factor
is the number of processed peaks, since every peak starts a local search in ConcIso and a
nearest neighbor query in SweepIso. A larger search area increases the number of tiles and
the number of peaks, whereas higher-resolution data mostly increases the number of points
per tile. High-resolution DEMs can contain more peaks than lower-resolution ones due to the
more truthful representation of the terrain, however these are predominantly low-isolation
peaks and are filtered out in the first pass. We study both effects in our experiments by
using different resolution DEMs as well as increasing search areas.

SweepIso exhibits a nearly constant throughput of sample points per second with increas-
ing search area, while ConcIso’s throughput degrades—refer to Figure 4.7a. Figure 4.10a
shows that SweepIso outperforms ConcIso by a factor of 2 to 3 in terms of sample point
throughput. For instance, we reduce the time required to compute the isolation of every peak
on Earth from 9 h down to 3.5 h. However, ConcIso’s runtime scales significantly better
than its O

(
n2) worst-case runtime bound would suggest. This is because most peaks have a

relatively low isolation. In fact 99.996 % of discovered peaks on the world data set have an
isolation below 50 km and more than 99 % below 10 km. Since one tile covers on average an
area of 70 km× 111 km, the nearest higher point is most of the time within the same tile as
the peak, where fast approximations for the distance calculation are used. Nevertheless, for
high-resolution DEMs the computation cost per peak is significantly higher for ConcIso
than for SweepIso, refer to Figure 4.7b.
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(a) Execution time over processed sample points.
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(c) Throughput in peaks per second over processed sample points.
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Figure 4.8 Single-threaded runtime comparison of SweepIso and ConcIso.
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(f) Throughput in points per second over processed peaks.
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(g) Throughput in peaks per second over processed peaks.
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(h) Throughput in output peaks per second over processed peaks.

Figure 4.8 (cont.) Single-threaded runtime comparison of SweepIso and ConcIso.
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(k) Throughput in peaks per second over output peaks.
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Figure 4.8 (cont.) Single-threaded runtime comparison of SweepIso and ConcIso.
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(o) Throughput in peaks per second over number of tiles.
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Figure 4.8 (cont.) Single-threaded runtime comparison of SweepIso and ConcIso.
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To analyze the runtime behavior of SweepIso and ConcIso more in-depth, we can
characterize the input according to the number of

tiles,
processed sample points,
detected peaks, or
peaks above the isolation threshold Imin.

A fixed number of tiles can cover a wide range of terrain forms, influencing both the number
of peaks in the search area and the number of sample points. The latter is due to large
bodies of water being voided in the DEM, resulting in fewer sample points in a tile. The
performance of the algorithms can be measured by

elapsed time,
throughput of detected peaks, or
throughput of peaks above Imin.

Figure 4.8 presents a detailed comparison of both algorithms regarding these input
characteristics and performance metrics on a per instance level. In the following we discuss
some key insights into the runtime behavior of SweepIso and ConcIso. For SweepIso, the
throughput of peaks is nearly independent of the resolution of the DEM (Figure 4.8c), however
the throughput of output peaks—those with isolation above Imin—significantly decreases
for higher-resolution DEMs (Figure 4.8d). This is due to the higher number of low-isolation
peaks in high-resolution DEMs that need to be processed but are ultimately filtered out.
Comparing the throughput of sample points and peaks reveals the different algorithmic
approaches of SweepIso and ConcIso, refer to Figures 4.8b and 4.8c. SweepIso processes
sample points at a near constant rate, but shows a high variance in the throughput of peaks.
This is because it performs an approximately constant work per sample point to reduce
the work required per peak. The throughput of peaks therefore depends on the number
of non-peak sample points that need to be processed per peak, which is highly dependent
on the terrain of the search area. ConcIso on the other hand processes peaks at a nearly
constant rate with little variance, because no work per non-peak sample point is performed.
As most peaks have a low isolation, the number of sample points that need to be processed
per peak is low and relatively constant. Nevertheless, our approach is faster than ConcIso
for all tested resolutions and search areas. Figures 4.8m–4.8p further show the dependence
of SweepIso and ConcIso on the processed terrain forms. Both algorithms are highly
influenced by terrain covered by the processed tiles, as seen in the total execution time
(Figure 4.8m). Considering the variance of the throughput of sample points and peaks in
Figures 4.8n and 4.8o, confirms the observations made above.

Figure 4.9 shows the runtime composition of the bounding and the finalization pass.
As the DEM resolution is reduced in the bounding pass, the finalization pass requires the
majority of the runtime, especially for higher-resolution inputs. Geometric computations
only make a small fraction of the runtime. The high-point pass requires just 0.001 % of the
total execution time and is therefore omitted in the figure.

Figure 4.10a shows the single-threaded speedup of SweepIso over ConcIso. For 1′′

DEMs, SweepIso is over 3 times faster than ConcIso, with a speedup of factor 2 for the
3′′ DEMs world data set. A more detailed speedup comparison is shown in Figure 4.11.
Figure 4.10b shows the results of our multithreaded runtime experiments with the NA-EU
data set. SweepIso scales well with physical cores, but does not benefit from hyper-
threading (HT). For 64 cores it reaches a speedup of 25. We verified the scaling behavior of
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the algorithm for the entire Earth and were able to confirm a speedup of 25 on 64 cores. This
corresponds to a runtime of 8 min to calculate the isolation of every peak on Earth. We were
not able to execute ConcIso with multiple threads due to issues in the implementation.

4.7.2 Solution Quality
The isolation and witnessing ILP of a peak may change over a geologic timescale due to
tectonic activity, erosion, and deposition, but, in principle, are well-defined at any particular
point in time. However, the algorithmically computed values depend on imprecisions in both
the data and the used algorithms.

Due to the design of SweepIso, more expensive distance approximations can be used
to find the ILP than in ConcIso. This results in closer ILPs being found. Figure 4.12
displays the distribution of the difference in isolation and the distance between the found
ILPs between SweepIso and ConcIso, using the same data. Even if the isolation values
between the two algorithms do not vary greatly, the distances between the ILPs do. For
example for the Cerro Gordo summit in Mexico both algorithms find ILPs that are more
than 600 km apart while SweepIso’s ILP is merely 0.7 km closer to the peak.

To further evaluate the results, we used the collection of peaks with more than 300 km
isolation from Peakbagger [Sla23]. The comparison showed that for about 75 % of peaks in
this list the isolation deviation is below 2 km. In a DEM, a sample point corresponds to
the average elevation of the area it represents. This often leads to an underestimation of
a peak’s elevation, sometimes significantly [KdF17]. For instance, according to our DEM
data, Galdhøpiggen (the highest point of Scandinavia) is 11 m lower than Glittertind. This
causes a significant change in isolation of both mountains. Table 4.3 lists the five summits
with the biggest differences in isolation between peakbagger and our calculation. The five
most isolated peaks on Mars and the Moon as determined by our algorithm are presented in
Table 4.4. To the best of our knowledge, this is the first such list.
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Figure 4.12 Comparison of difference in isolation between SweepIso and ConcIso and distance
between found ILPs.
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Table 4.3 The biggest differences between our calculated isolation and Peakbagger (PB) data.
Ground truth elevation data is due to [COM17; Pea23].

Mountain PB
Rank

PB
Isolation

[km]

SweepIso
Isolation

[km]
Notes

Galdhøpiggen
(Norway) 47 1568.3 12.9

Galdhøpiggen
DEM elev.: 2455 m – real elev.: 2469 m

Glittertind
DEM elev.: 2466 m – real elev.: 2457 m

Isolation 1563.5 km

Mt. Kirkpatrick
(Antarctica) 45 1585.2 53.5

found ILP at -83.8967;168.3733
DEM elev.: 4416 m – real elev.: 4528 m

ILP elev.: 4416 m
Mt. Hope

(Antarctica) 75 1113.5 203.4 No data found in other sources

Dome Charlie
(Antarctica) 92 971.8 248.6

found ILP at -76.3783;116.3708
DEM elev.: 3265 m – real elev.: 3233 m

ILP elev. 3266 m

Mauga Silisili
(Samoa) 23 2245.1 2502.8

DEM elev.: 1854 m – real elev.:1863 m
PB ILP elev.: 1879 m

found ILP elev.: 1836 m
Cocos Islands

High Point 94 961.4 947.4 Found ILP at Enggano Island

Table 4.4 Most isolated peaks on Mars and the Moon according to the DEMs listed in Table 4.2.

Name Coordinates Elevation
[m] ILP Isolation

[km]

Mars

Olympus Mons 17.33◦N 133.42◦W 21 226 - ∞
Cruls crater wall 42.27◦S 163.78◦E 4331 46.79◦S 147.63◦W 2037.43
Near Cyclopia 6.34◦S 129.19◦E 3806 18.59◦N 149.99◦E 1913.59
Huygens crater wall 10.06◦S 54.62◦E 4604 10.50◦S 85.09◦E 1776.76
Ascraeus Mons 11.76◦N 104.53◦W 18 321 17.89◦N 131.64◦W 1593.92

The Moon

Engel’gardt crater wall 5.41◦N 158.63◦W 10 783.3 - ∞
Between Tacitus and
Fermat craters

18.93◦S 19.17◦E 4832.33 60.0◦S 72.65◦W 2261.5

Near Lewis crater 21.04◦S 112.33◦W 9459.83 5.26◦N 157.98◦W 1574.56
Near Calippus crater 39.09◦N 9.46◦E 3625.68 9.63◦S 2.06◦E 1492.13
Dellinger crater wall 7.25◦S 142.0◦E 7561.73 12.91◦S 170.22◦W 1434.95

∧ PEAKS
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4.8 Conclusions

We have presented SweepIso, a scalable and efficient algorithm to compute the isolation of
peaks. SweepIso considerably outperforms the previous, more brute-force, state-of-the-art
approach. The performance gains also enable more accurate distance calculations at decisive
places resulting in higher accuracy. SweepIso is able to process the entire Earth for currently
publicly available data within minutes. This is relevant as it indicates that SweepIso can
also handle higher-resolution data that is available commercially or that will be available
in the future. SweepIso’s two-level semi-external sweeping architecture may also be an
interesting design pattern for other computations on massive DEM data. Furthermore,
SweepIso could serve as a benchmark for dynamic nearest neighbor search data structures.

Future Work. From an application perspective, it would be interesting to compute not only
isolations for a given, necessarily imprecise data set but to compute confidence bounds that
take into account error margins in the input data. This would be possible at a moderate
increase in cost. Peaks could be replaced by enclosing boxes/circles while vertical errors could
be handled by having “may-be-there” and “must-be-there” insertion events and sweep-plane
data structures. Geographically most interesting would be those isolations that change a
lot depending on how high exactly particular pairs of peaks are. Those pairs could then be
valuable targets for additional data cleaning or new measurements.

For algorithm engineering, it would be interesting to close the gap between theory and
practice with respect of nearest neighbor data structures. We have reasonable empirical
performance of simple data structures like k-D trees but no well-fitting performance guarantees
applicable to SweepIso. For example, one could look for a more general characterization of
inputs where cover trees [BKL06] work provably well.
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Acronyms
ADT abstract data type. 5

BW algorithm Bowyer-Watson incremental insertion algorithm. 20

CGAL Computational Geometry Algorithms Library. 14
CUDEM continuously updated digital elevation model. 90

D&C divide-and-conquer. v, 2, 11, 12
DEM digital elevation model. vi, 1, 3, 89
DT Delaunay triangulation. 2, 11

EMST Euclidean minimum spanning tree. 2, 3, 13

GMP GNU Multiple Precision Arithmetic Library. 4
GNG geographic neighborhood graph. 72
GPGPU general-purpose graphics processing unit. 16

ILP isolation limit point. 3, 89

LEDA Library of Efficient Data types and Algorithms. 4

MPFR GNU Multiple Precision Floating-Point Reliably Library. 4

NCA nearest partition center assignment. 37
NNG nearest neighbor graph. 3, 13
NSA nearest sample point assignment. 37

OVD oriented Voronoi diagram. 72

PE processing element. 22
PQ priority queue. 6

RDG random Delaunay graph. 61
RGG random geometric graph. 61
RHG random hyperbolic graph. 61
RNG relative neighborhood graph. 13

SRTM Shuttle Radar Topography Mission. 91

TIG topographic isolation graph. 3

w.h.p. with high probability. 62
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