

The 21st International Workshop on Ceramic Breeder Blanket Interactions (CBBI-21)

> 19-20th October 2023 Granada, Spain

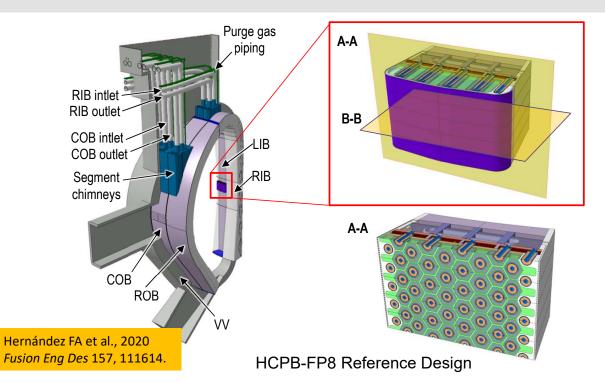
Design update of the European DEMO Helium Cooled Pebble Bed breeding blanket

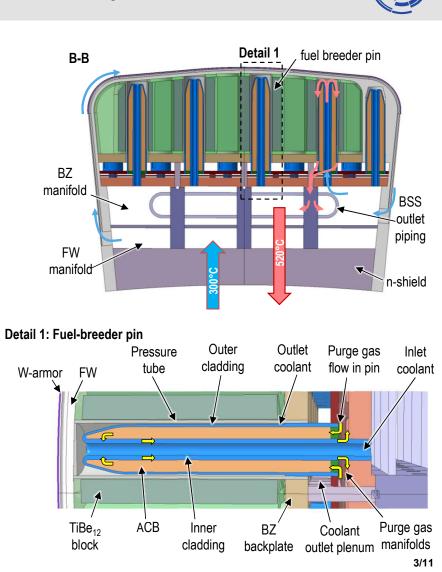
Guangming Zhou¹, Jarir Aktaa¹, David Alonso², Lorenzo V. Boccaccini¹, Ion Cristescu¹, Christophe Garnier³, Francisco A. Hernández^{1,4}, Mathias Jetter¹ Béla Kiss⁵, Christina Koehly¹, Luis Maqueda², Carlos Moreno⁶, Iole Palermo⁷, Jin Hun Park¹, Volker Pasler¹, Anoop Retheesh¹, Álvaro Yáñez²

¹ Karlsruhe Institute of Technology, Germany
 ² ESTEYCO, Spain
 ³ CEA, France
 ⁴ EUROfusion PMU, Germany

⁵ Budapest University of Technology and Economics, Hungary
 ⁶ Heffen Technologies, Spain
 ⁷ CIEMAT, Spain

Breeding Blanket Project in EUROfusion


This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission.



- 1. Status of HCPB at the conclusion of FP8 (2014-2020)
- 2. Challenges related to HCPB & solutions
- 3. Design activities
- 4. Conclusions

Status of HCPB at the conclusion of FP8 (2014-2020)

- Coolant: He @80 bar, 300-520°C
- Structural steel: Eurofer97
- Fuel-breeder pins contain advanced ceramic breeder (ACB) pebble
- Pins inserted into hexagonal beryllide blocks of neutron multiplier
- T-extraction: Purge gas of He + 0.1vol% H_2 @2 bar
- NA, TH & TM, TBR = 1.20

Challenges related to HCPB BB & solutions

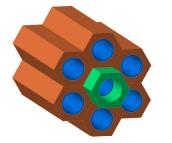
Highlighted Challenges

- 1. Low reliability of BB system under DEMO conditions (Adressed by [1]) Pinna T, Dongiovanni DN, 2020 Fusion Eng Des 161, 111937.
- Cracking of beryllide blocks (Adressed by [2] + R&D)
- Degradation of Eurofer at contact with pebbles in purge gas environment (Adressed by [1] + R&D)
- 4. Low BB shielding capability (Addressed by Efficient shield)
- 5. Limited heat flux removal capability of the

He-cooled FW

Limiters

[1] Equalize purge gas and coolant to establish a fault-tolerant blanket design, 80 bar pressure under normal condition

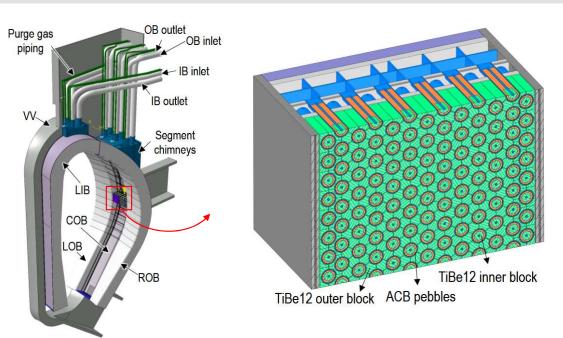

		80 bar 80 ba
80 bar	<mark>2 bar</mark>	80 bar 2 bar
80 bar	<mark>2 bar</mark>	80 bar
Cladding		

Large number of welds: 400e3

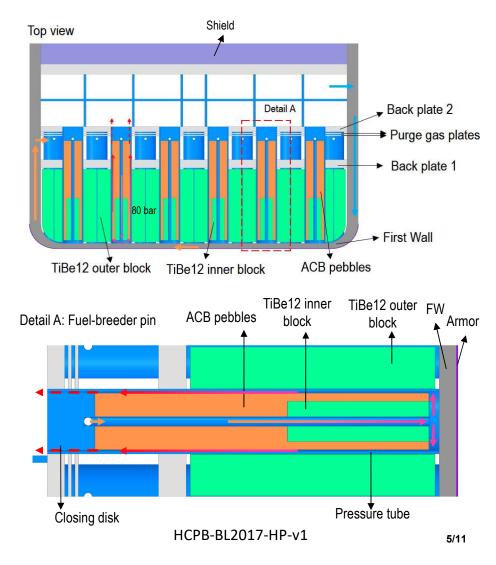
Max. failure rate of welds: 2.58e-08 (1/h)

400e3 x 2.58e-08 = 0.01 (1/h)

[2] Change shape of TiBe12 blocks



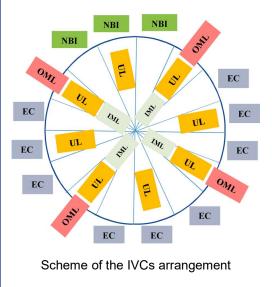
HCPB-FP8 Hexagonal prism with a central hole

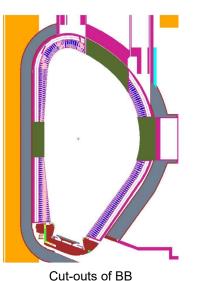


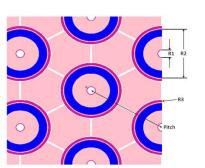
HCPB-BL2017-HP-v1 Triangular prism with lateral edges filleted Solid block shape improves structural integrity and reduce fabrication time 4/11

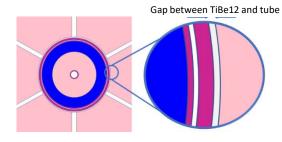
Design of high pressure purge gas HCPB (HCPB-BL2017-HP-v1)

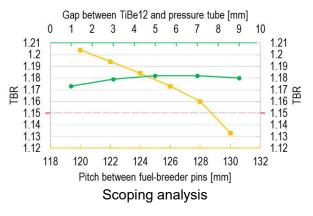
- Coolant: He @80 bar, 300-520°C
- Structural steel: Eurofer97
- Fuel-breeder pins contain advanced ceramic breeder (ACB) pebble
- Beryllide neutron multiplier of triangular prism with lateral edges filleted
- T-extraction: He + 200 Pa H_2 @80 bar; He + 200 Pa H_2O @80 bar (backup)
- FW and critical structure thicker + cooler by fresh coolant
- Inner beryllide block inside ACB pebble
- Nuclear, thermal hydr. & thermal-mech. analysis to confirm soundness

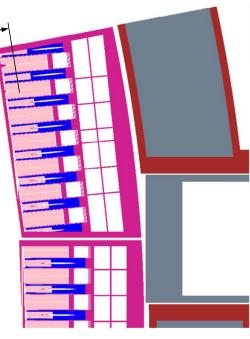


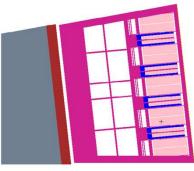

Tritium breeding assessment

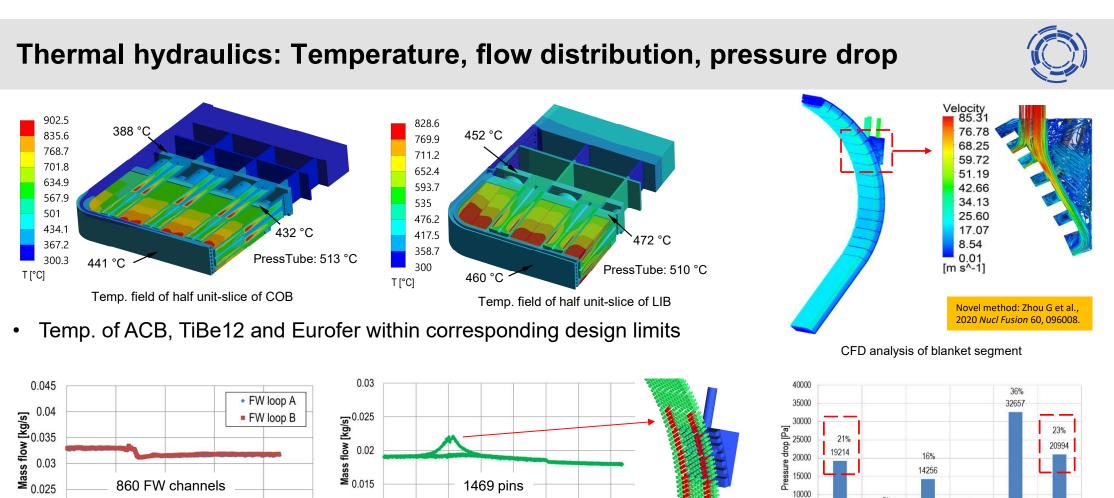

- Without considering cut-outs
- 3D heterogenous model calculated using MCNP6.2 and JEFF-3.3
- 11.25°: half of a sector of reactor
- The smaller the pitch, the higher TBR (TBR=1.16~1.20 ±0.01%)
- Larger gap facilitates neutron streaming, saturates at 5 mm

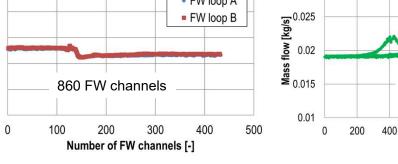

• TBR reduction of 10.5% (TBR=1.04~1.07)






A-A: Poloidal-toroidal view





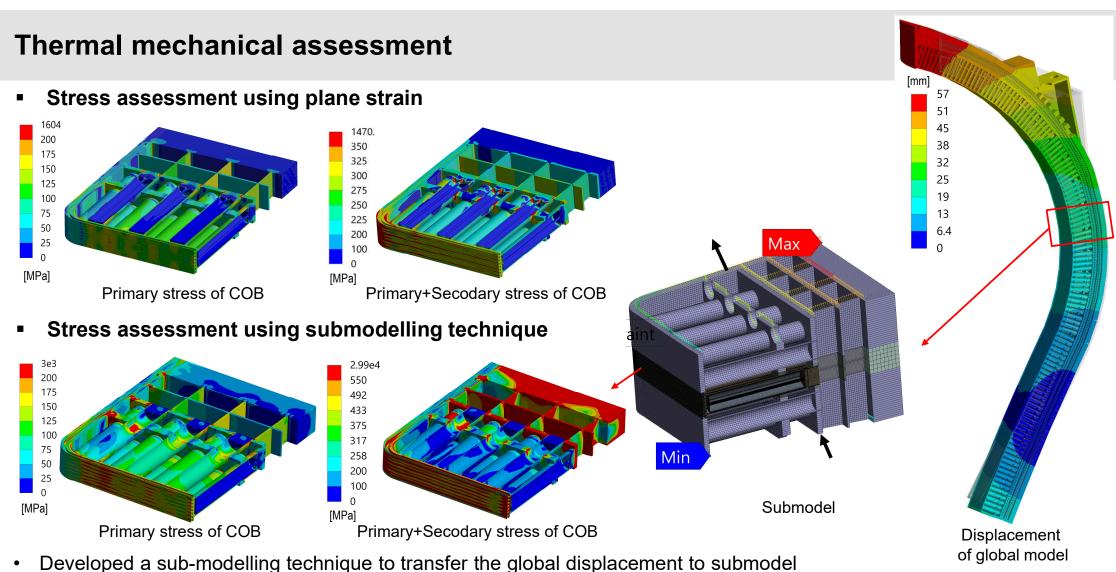
Radial-toroidal cut view - outboard

Radial-toroidal cut view - inboard

Mass flow rate distribution in FW

Max deviation from target value: 4.4%

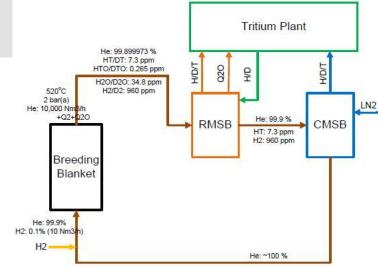
0.02

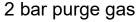

800 1000 1200 1400 600 Number of pins [-] Mass flow rate distribution in pins

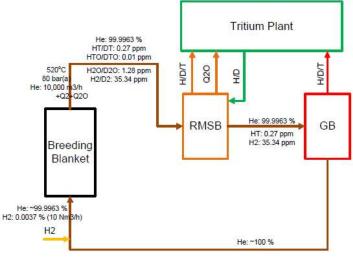
1469 pins

Max deviation from target value: 17.3% ٠

- adub 25000 20000 20000 LISSON 14256 10000 2% 1% 5000 1977 465 0 Chimney FW inlet MF BZ outlet MF BZ inlet MF FW Pine Locations [-] Pressure drop distribution
 - Total pressure drop: 0.89 bar


٠




- Generalized or plane strain boundary conditions not conservative
- Most critical regions met the immediate plastic instability, plastic collapse and thermal creep damage modes

Tritium Extraction and Recovery (TER) system

- Reference design
 - Two stages in series, first the adsorption of Q2O on the Reactive Molecular Sieve Bed (RMSB), thereafter the adsorption of Q2 on the Cryogenic Molecular Sieve Bed (CMSB) at 77 K
 - Tritium recovered via isotope exchange on RMSB and by heating-up of the CMSB
 - Extrapolated to DEMO scale is realizable, high Tech. Readiness Level
- Proposed design
 - 80 bar purge gas, introduced to improve reliability of BB
 - CMSB requires large amount of liquid N2, getter bed is explored as alternative
 - Getter bed, in particular ZAO, shows to be a viable option to replace CMSB in TER configuration for Q2 recovery from the purge gas

80 bar purge gas

He product. at

1st cm of VV

(limit: 0.16)

appm/fpy

0.56

0.42

0.35

0.29

0.27

0.24

0.22

0.18

0.17

0.16

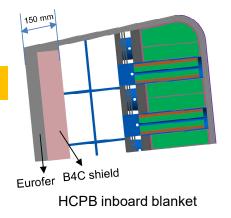
0.15

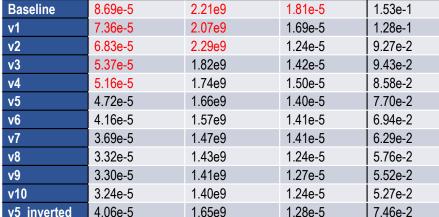
0.19

0.14

dpa/fpy at 1st

(limit: 4.5e-1)


cm of VV


appm/fpy

Shield design

- Parametric neutronics analysis
 - Shield materials: B4C, WC, WB Shoshin A et al., 2021 Fusion and hydrides Eng Des 168, 112426
 - Baseline: 150 mm Eurofer
 - *v1*: 10 mm B₄C, 140 mm Eurofer
 - **v2:** 20 mm B₄C, 130 mm Eurofer
 - *v3:* 30 mm B₄C, 120 mm Eurofer

 - **v10:** 100 mm B₄C, 50 mm Eurofer
- Tritium and helium production in B₄C
 - ${}^{10}_{5}B + {}^{1}_{0}n \rightarrow {}^{3}_{1}T + 2{}^{4}_{2}He$

1.33e9

Palermo I et al., 2022 Energies 15, 5734.

Neutron flux at

1st cm of TFC

(limit: 1e9)

n/cm²/s

Nuclear heating

at 1st cm of TFC

(limit: 5e-5)

W/cm³

Negligible, 117 kg T/fpy in EU-DEMO

Eng Des 168, 112426

1e-28 [Pa·m³/(s·m²)] << Outgassing limit 1e-11

1.16e-5

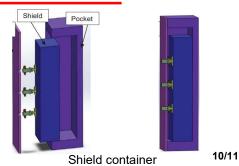
dpa/fpy at 1st

(limit: 1.6e-5)

cm of TFC

appm/fpy

Maximum T and He production is in v10: 1.84 mol (5.52 g) T per FPY, 500 mol (2 kg) Helium per FPY in EU-DEMO


Cases

v10 inverted

- 90 mm B₄C is needed for meeting all the requirements
- Container of B₄C is designed to contain fragmentation
- ITER-like solution seems feasible

Shoshin A et al., 2021 Fusion

2.81e-5

5.07e-2

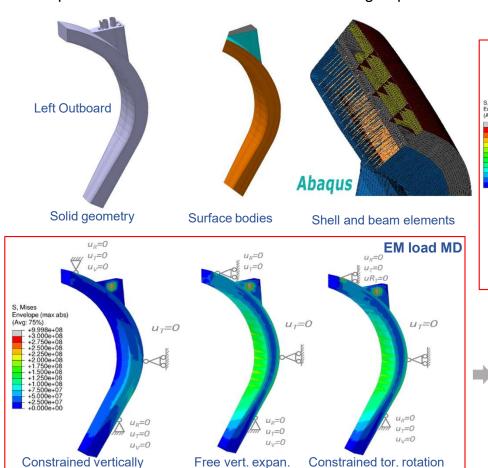
Conclusions

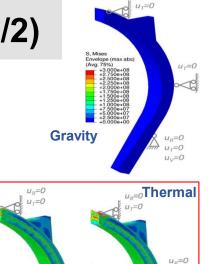
Summary

- Solutions proposed to resolve the challenges of HCPB concept
- Key solution: high pressure purge gas, to establish a high-reliability HCPB concept
- Nuclear, thermal hydraulics and thermal mechanics assessments confirms the soundness
 of high pressure purge gas HCPB concept
- Tritium Extraction and Recovery system can cope with high pressure purge gas

Outlook

- Start RAMI analysis to check the reliability
- Complete the on-going safety analysis to confirm there is no show-stopper
- Introduce this design as baseline of HCPB breeding blanket for EU DEMO


Contact: Guangming Zhou Email: <u>guangming.zhou@kit.edu</u>



Backup slides

Optioneering of blanket attachment (1/2)

 Attachment: accomodate gravity, thermal, pressure and EM loads, conform remote handling
 Equivalent shell and beam elements used to get quick feedback

u-=0

 $u_v=0$

Free vertical

expansion

 $u_R=0$

 $u_T=0$

Constrained

vertically

u_=0

 $u_{v}=0$

Gravity loads do not cause a large global stress, thus not critical. However, it is important that the segments are fully supported before any thermal expansion occurs.

When fully constrained, causing a large global stress on the First Wall.

When free to expand vertically,the stress level at the FW is almost negligible.

A slightly larger stress level is reached at the FW when a radial support is included.

When fully constrained, the stress on FW is negligible, but stresses become large if the segment is free to expand vertically.

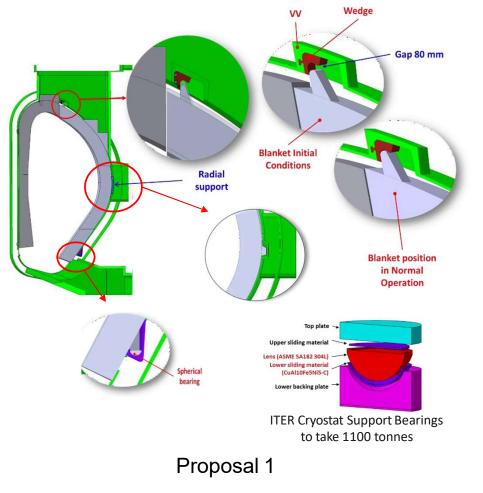
u,=0

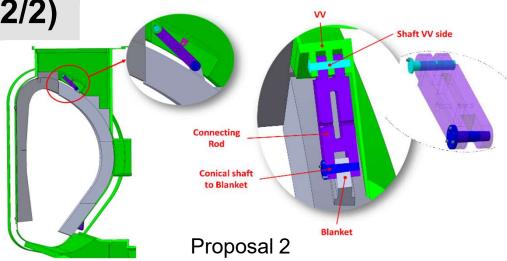
u_=0

uv=0

Free vertical

expansion

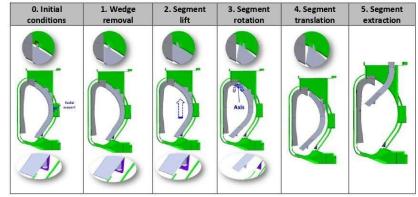

An important requirement derived: sufficient supporting conditions to withstand EM and seismic loads during operation


13

Optioneering of blanket attachment (2/2)

Proposed concepts of BB-to-VV attachment

Bottom, middle and top supporting structures



At bottom, spherical bearing similar to ITER Cryostat Support Bearings

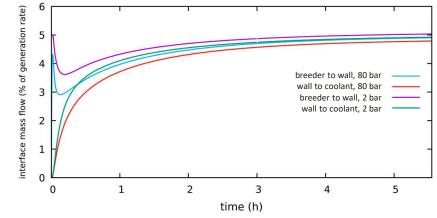
At midplane, toroidal key is proposed. The toroidal key has a toroidal gap to facilitate assembly by RH tools. The pocket at the VV allows sufficient vertical displacement (124 mm) of the segment for the assembly process.

At top, two proposals are being considered. Wedge (Proposal 1) and Conical shaft (Proposal 2).

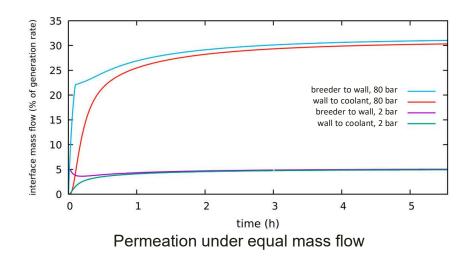
Tritium permeation analysis

- 3D component level solver [3]
 - Developed based on the OpenFOAM and benchmarked with TMAP 7

Open√FOAM


The Open Source CFD Toolbox

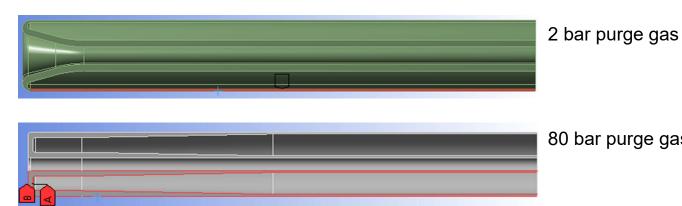
Fuel-breeder pin	


- T permeation analysis
- T permeation analysis under 2 bar pressure purge gas vs 80 bar pressure purge gas, with same H2 partial pressure
- Wet purge gas vs dry purge gas

Purge gas	Permeation to coolant	Wall T inventory
200Pa H2, no H2O	0.077% of T generation	65 ng
200Pa H2 + 200Pa H2O	0.022% of T generation 3.5 times less	19.2 ng

[3] Pasler V et al., 2021 Applied Sciences 11, 3481.

Permeation under equal volumetric flow



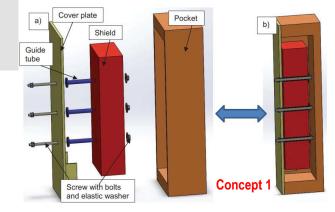
Assessment of lifetime due to pebble-Eurofer interaction

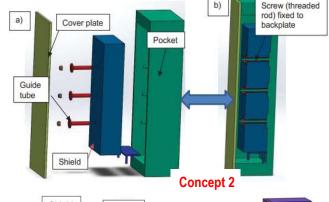
• Acc. to [1], the fatigue lifetime reduced due to interaction between pebbles and Eurofer97

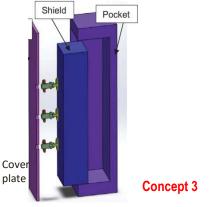
Creep-Fatigue-Assessment tool [2] used to assess different design options (2 bar vs 80 bar purge gas)

- Along the indicated paths, most regions failed to withstand the required 7787 cycles
- 80 bar purge gas
 Along the indicated paths, most regions succeeded to withstand the required 7787 cycles
 - New design able to improve lifetime

[1] Aktaa J et al., 2020 Fusion Eng Des 157, 111732.
 [2] Mahler M, Aktaa J, 2018 Nucl Mat Energ 15, 85-91.

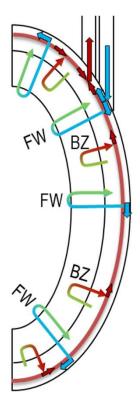

Shield design: Structural design and analysis

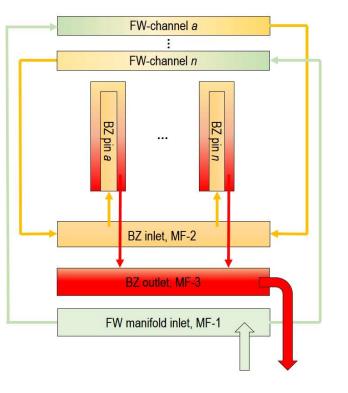

To confine the fragmentation, B_4C shield is designed to be contained


- Concept 1: Radiation, shield fixed to cover plate
- Concept 2: Contact, shield fixed to BSS backplate
- Concept 3: Contact, shield fixed to BSS backplate with external clamping

		2	Cover plate	Shield	BSS	
Concept 1	Tmax	°C	795 > 450°C → significant creep	950°C	364 < 375°C → negligible creep	Concept 2 & 3
	Tmoy	°C	791	935	343	
	ΔT		5	54	48	
	Max($\vec{\sigma}$)	MPa	9	124	89	
	$\overline{Q_m + Q_b} = \overline{\Delta Q}$	MPa	8 → low value	-	109	
	Applied design criteria		$\begin{array}{l} \mbox{Simplified analysis} \\ \mbox{with negligible} \\ \mbox{creep: Ratcheting} \\ \hline \hline P_m + P_b + \Delta Q \\ \mbox{< 3 Sm} \end{array}$	Max(∂)<155 MPa (B₄C Yield strength at 980°C	Ratcheting, negligible creep ΔQ < 1.5 <i>sm</i> =275 MPa (350°C)	
	Validation		No analysis (low stress), should be validated	Validated	Validated	

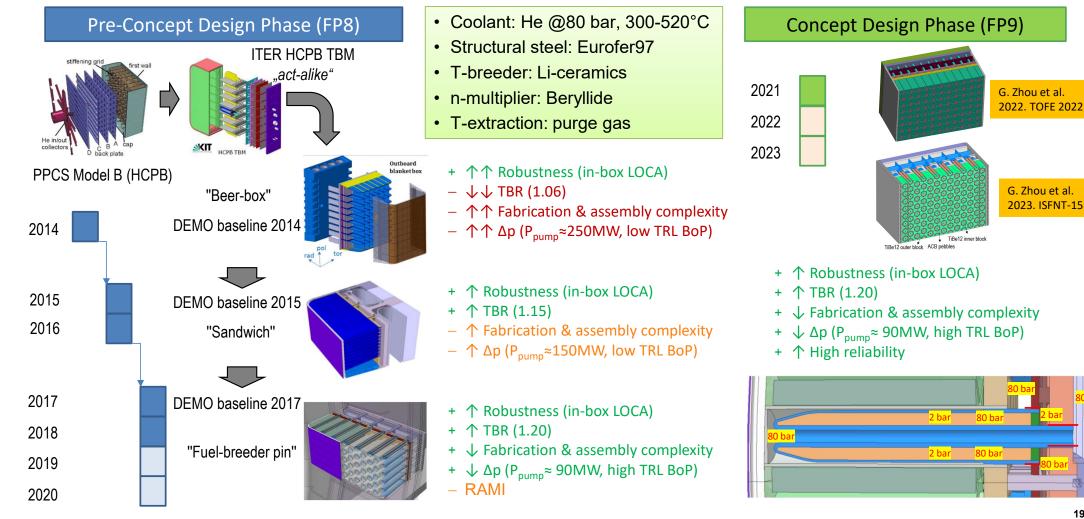
			Cover plate	Shield	BSS
ppts	Tmax	°C	426 < 450°C → negligible creep	467	382 > 375°C → significant creep
	Tmoy ΔT	°C	425 1	443 85	353 62
	Max($\bar{\sigma}$)	MPa	2	156	113
	$\overline{Q_m + Q_b} = \overline{\Delta Q}$	MPa	$2 \rightarrow \text{low value}$	-	132
	Applied design criteria		Ratcheting: $\overline{P_m + P_b} + \overline{\Delta Q}$ < 3 Sm	Max(∂)<155 MPa (B₄C Yield strength at 980°C	Simplified analysis with negligible creep: Ratcheting $\overline{\Delta Q} < 1.5 Sm$ =275 MPa (350°C)
	Criteria		No analysis, should be validated	Validated	Validated




Shield of ITER diagnostic port-plug


Shoshin A et al., 2021 *Fusion Eng Des* 168, 112426

Flow scheme



Solid breeding blanket in Europe: HCPB Design evolution

HCPB and WCLL are two driver blanket concepts for EU DEMO ٠

