Recovering Trace Links Between
Software Documentation And Code

Jan Keim
Sophie Corallo
Dominik Fuchf}

Tobias Hey
Tobias Telge

Anne Koziolek
{jan.keim,sophie.corallo,dominik.fuchss,hey,koziolek}@kit.edu,tobiastelge@me.com
Karlsruhe Institute of Technology
Karlsruhe, Germany

ABSTRACT

Introduction Software development involves creating various arti-
facts at different levels of abstraction and establishing relationships
between them is essential. Traceability link recovery (TLR) auto-
mates this process, enhancing software quality by aiding tasks like
maintenance and evolution. However, automating TLR is challeng-
ing due to semantic gaps resulting from different levels of abstrac-
tion. While automated TLR approaches exist for requirements and
code, architecture documentation lacks tailored solutions, hindering
the preservation of architecture knowledge and design decisions.
Methods This paper presents our approach TransArC for TLR be-
tween architecture documentation and code, using component-
based architecture models as intermediate artifacts to bridge the
semantic gap. We create transitive trace links by combining the
existing approach ArDoCo for linking architecture documentation
to models with our novel approach ArCoTL for linking architecture
models to code.

Results We evaluate our approaches with five open-source projects,
comparing our results to baseline approaches. The model-to-code
TLR approach achieves an average Fi-score of 0.98, while the
documentation-to-code TLR approach achieves a promising av-
erage Fi-score of 0.82, significantly outperforming baselines.
Conclusion Combining two specialized approaches with an interme-
diate artifact shows promise for bridging the semantic gap. In future
research, we will explore further possibilities for such transitive
approaches.

CCS CONCEPTS

« Software and its engineering — Software design engineering;
Documentation; Maintaining software; Software evolution; Soft-
ware architectures; - Computing methodologies — Natural
language processing; Information extraction.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE 2024, April 2024, Lisbon, Portugal

© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS

software traceability, software architecture, documentation, transi-
tive links, intermediate artifacts, information retrieval

ACM Reference Format:

Jan Keim, Sophie Corallo, Dominik Fuchf3, Tobias Hey, Tobias Telge, and Anne
Koziolek. 2024. Recovering Trace Links Between Software Documenta-
tion And Code. In Proceedings of 46th International Conference on Soft-
ware Engineering (ICSE 2024). ACM, New York, NY, USA, 12 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

During software development, various artifacts are created. These
artifacts are at different levels of abstraction and cover (partially)
different aspects of a system. The problem is that the relationships
between the artifacts are not always apparent and, thus, cannot be
used. Making these relationships explicit improves software quality
and simplifies processes. As such, software traceability is an impor-
tant factor in successful software development. With traceability
link recovery (TLR), software engineers can connect any uniquely
identifiable software engineering artifacts by creating explicit trace
links, maintain these trace links, and use the resulting network to
gain knowledge about the software product and its development [9].
Therefore, software quality can be improved by creating and
maintaining trace links [53]. For example, in collaborative devel-
opment, TLR can help engineers to keep all artifacts synchronized
and consistent [49]. Furthermore, traceability supports numerous
critical software engineering tasks (cf. [8]). For example, trace links
can improve the efficiency of software maintenance [31, 37], bug
localization [51], change impact analysis [11], and system secu-
rity [42, 44]. Trace links are also used to demonstrate the safety of
systems [36, 38, 43]. Some standards, such as ISO 26262 about the
functional safety of road vehicles, even mandate traceability.
Despite all the benefits, the main drawback of traceability is
the time-consuming and error-prone process of manually creating
and maintaining trace links [10, 50]. This is mainly due to the
semantic gap between artifacts of different abstraction levels [4],
e.g., requirements and code. Some (semi-)automated approaches
have been designed to assist users but face the same challenge.
Likewise, automated TLR approaches often only look at require-
ments and code. However, other types of artifacts, such as the
documentation of the system’s software architecture, are just as

http://ctuning.org/ae/ppopp2016.html
https://orcid.org/0000-0002-8899-7081
https://orcid.org/0000-0002-1531-2977
https://orcid.org/0000-0001-6410-6769
https://orcid.org/0000-0003-0381-1020
https://orcid.org/0000-0002-1593-3394
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICSE 2024, April 2024, Lisbon, Portugal

Software
Architecture The controller receives incoming requests and verifies them.
Documentation 1hen, it answers requests querying the persistence component.

Software %:]
Architecture Controller ——O—— DataPersistence

Model

A A

com.example
Code 57 57
service ‘ dataaccess ‘
Controller Products Users

auth

Authenticator

preferences

Figure 1: Running example: System with software architec-
ture documentation, software architecture model, and codel.

relevant. A software’s architecture is key to successfully developing,
maintaining, and evolving the system [39]. Software architecture
documentation (SAD) preserves the knowledge about the archi-
tecture, such as the underlying design decisions. Documentation
prevents rapid deterioration [48, 63] and enhances the benefits of
a good software architecture. Using trace links to find relevant
knowledge in SADs further enhances the utility of software archi-
tecture while improving the usability for developers and architects.
Therefore, linking SADs to other software artifacts, such as other
design artifacts or code, is beneficial on several levels.

Because different types of artifacts cover different aspects and
have different views on the system, these artifacts have different
levels of abstraction, and, as such, there is a semantic gap between
them [4]. Automated approaches have been developed to bridge
this gap by capturing the underlying semantics. However, this task
is inherently challenging, and such approaches are prone to mis-
interpretation, leading to potential imprecision. To overcome the
semantic gap between source and target artifacts, some other ap-
proaches suggest using intermediate artifacts (cf. [3, 42, 45, 62]).
The idea is that those intermediate artifacts have a smaller semantic
gap to the artifacts, allowing for easier pairing. For example, design
documentation is semantically closer to design artifacts like soft-
ware architecture models (SAMs) than to code. At the same time,
SAMs are also closer to code and serve as an intermediate artifact
between SADs and SAMs. For those smaller semantic gaps, more
specialized approaches show promising results (cf. [21, 24, 57]).
Thus, our main idea is to chain trace links from multiple special-
ized approaches to recover trace links for intermediate artifacts
and transitively combine the resulting links. For example, we can
use one approach to recover links between SADs and SAMs, and
another one to recover trace links between SAMs and code. We can
then transitively combine the links to obtain trace links between
SADs and code, bridging the semantic gap.

Keim et al.

Figure 1 depicts an example of SAD to SAM to code!. We observe
two key components: the Controller on the left and the DataPersis-
tence on the right. The SAD details their respective responsibilities
and their structural relationship is visualized in the SAM. The code
implementation introduces two essential packages, namely ser-
vice and dataaccess, each of which includes sub-packages such
as auth and preferences. The Controller class effectively em-
ploys the Authenticator to verify incoming requests. The classes
Products and Users serve as repositories, leveraging information
from hidden classes within the preferences package to establish
connections with a database.

In the example, elements that should be linked with trace links
are marked with the same color. Consequently, both sentences, due
to the references to the terms “controller” and “it”, are associated
with the Controller component and the classes within the service
package. Similarly, the second sentence is linked to the DataPersis-
tence component and the classes in the dataaccess package.

The example highlights several challenges encountered during
the creation of trace links. For instance, the description of the
controller component is necessary to properly link it to the whole
service package instead of only the Controller class. Another
challenge is the changed naming of the “persistence” component
in the SAD to dataaccess in the code. In such cases, using the
DataPersistence component in the SAM can help to bridge the gap.

This paper presents our novel approach using transitive links to
recover trace links between SADs and code. To bridge the semantic
gap between documentation and code, we use intermediate artifacts
in the form of component-based SAMs that describe the structure
of the system, such as UML component diagrams. The idea is to
combine two specialized approaches to improve the results for the
wider semantic gap between the original artifacts. More specifically,
we concatenate an approach for linking SADs and SAMs with an
approach for linking SAMs to code. To link SADs and SAMs, we use
the existing Architecture Documentation Consistency (ArDoCo)
approach by Keim et al. [24] as it is the state of the art for this
problem. For linking SAMs and code, we present a new approach
called ARchitecture-to-COde Trace Linking (ArCoTL). The ArCoTL
approach uses several heuristics and aggregation methods that are
concatenated in a graph to recover trace links. To be independent
of input languages and to support different component-based ar-
chitecture description languages and programming languages, the
approach uses abstractions for code and architecture. The approach
that transitively combines ArDoCo and ArCoTL to recover trace
links between SADs and code is called Transitive links for Architec-
ture and Code (TransArC) (see Figure 2).

A drawback of our approach is the need for an additional type
of artifact, the component-based SAMs. We argue that SAMs as
artifacts serve additional purposes besides our TLR approach. Sur-
veys with practitioners also indicate that a considerable fraction of
practitioners already have SAMs: 86% of practitioners used UML
as architecture description language in a study by Malavolta et al.
[33] and 26.3% of practitioners used architecture modeling or visu-
alization with UML in a study by Tian et al. [61]. In addition, there
are approaches that (semi-) automatically recover SAMs from code

!For readability reasons, we use an abstract representation of the code in this example
instead of the actual source code our tool uses.

Recovering Trace Links Between Software Documentation And Code

Software Code
o Software
5 rcl ueclur'e Architecture

ocumentation Models

Figure 2: High-level view of the TransArC approach for link-
ing SADs and code using ArDoCo [24] and our novel ArCoTL.

and deployment artifacts (cf. [6, 12, 25, 28, 59]), reducing the over-
head to create SAMs. In summary, the required SAMs potentially
improve results because they reduce the semantic gap, can likely
be created in a lightweight manner, and enable additional tasks.

Overall, this paper presents our transitive approach to linking
architecture documentation and code, including an approach for
linking models and code. Consequently, we have the following
research questions:

RQ1 How well can our approach ArCoTL recover trace links
between component-based software architecture models
and code?

RQ2 How accurate can our approach TransArC using inter-
mediate artifacts recover trace links between software
architecture documentation and code?

RQ3 How do the results for linking software architecture
documentation and code compare to state-of-the-art
requirements-to-code approaches?

The main contributions of this paper are:

C1 We present an approach for linking component-based
software architecture models and code.

C2 We combine two specialized TLR approaches to tran-
sitively link software architecture documentation and
code using architecture models as intermediate artifacts.

C3 We provide code, baselines, evaluation data, and results
in a replication package [1].2

The remainder of the paper is structured as follows: Related work
is examined in Section 2. In Section 3, we provide basic information
about the approach ArDoCo by Keim et al. [24] that we use for
linking SADs and SAMs. Our detailed approach is presented in
Section 4. We evaluate our approach in Section 5 and discuss threats
to validity in Section 6. Lastly, we conclude this paper in Section 7.

2 RELATED WORK

Automated software and system traceability encompasses different
domains, use cases, and techniques [3, 60]. Most of the success-
ful techniques are based on information retrieval (IR) and machine
learning (ML) that we look into in Section 2.1 and Section 2.2, re-
spectively. As we employ transitive tracing techniques, we also look
into it in Section 2.3. Overall, we focus on related work that involves
similar source and target models to texts and source code. In these
sections, we also provide details for the approaches by Gao et al.
[16] and by Hey et al. [22] as well as CodeBERT [13] that we use
as baselines in our evaluation (cf. Section 5.3).

2Currently, we provide our replication package at [1]. After the review process, we
will provide a permanent link (DOI) to the replication package.

ICSE 2024, April 2024, Lisbon, Portugal

2.1 Information Retrieval-based TLR

Early breakthroughs of TLR were primarily based on IR techniques.
Initial approaches utilized general preprocessing and combinations
of probabilistic models and vector space models (VSM) to iden-
tify candidates for trace links. An example of such an approach is
presented by Antoniol et al. [2], who create trace links between
code and source code documentation. However, a common chal-
lenge in this context is handling semantically similar expressions
like synonyms. Various methods have been proposed to address
this problem, including the use of word embeddings [7, 22, 65], la-
tent semantic indexing [34], incorporation of synonym coefficients
for similarity calculations [20], and the construction of semantic-
relationship graphs [58], among others.

VSM remains a popular technique for TLR [17, 32]. However,
since VSM are primarily designed for text-based data, several ap-
proaches try to reuse structural information to capture contexts
in source code [27, 47]. These approaches have shown promise in
improving TLR between requirements and source code [27].

Lohar et al. [30] compare various combinations of IR techniques
to create trace links between different artifact types, including re-
quirements and code. In their evaluation covering different projects
and domains, their approach achieved high mean average preci-
sions (MAPs) of 0.80 and 0.86 for recovering trace links between
use or test cases and code. However, the authors observed a strong
dependency between configurations, projects, and artifacts, as the
best results for projects were attained with different configurations.

To address these challenges, the approach TAROT introduces the
use of so-called biterms to improve TLR between requirements and
code [16]. Biterms, in the textual context, refer to two terms within
a sentence that have a grammatical relationship. Similarly, biterms
in the code side represent any combinations of two terms within
identifiers, with code comments treated analogously to text. The
intersection of both biterm sets results in consensual biterms, which
are subsequently weighted based on their frequency and location.
Different IR models, including VSM, latent semantic indexing (LSI),
and probabilistic Jensen Shannon model divergence (JSD), are em-
ployed to create candidate trace links between requirements and
code. In their evaluation, TAROT achieves a MAP of 0.62 for the
iTrust project when using VSM. When TAROT is combined with
the CLUSTER enhancing strategy (cf. [15]), the MAP is improved
to 0.73 using LSL

Hey et al. [22] leverage IR-based metrics to retrieve trace links
between requirements and source code classes. However, their ap-
proach FTLR stands out from other works as it employs a more
fine-grained technique. In FTLR, both artifact types are split into
smaller units, with requirements divided into sentences and code el-
ements represented by their public method signatures, extended by
the name of the containing class and their documenting comments.

The elements of both artifact types are preprocessed. The prepro-
cessing steps include stop word removal, lemmatization, and word
length filtering. The resulting artifact element types are represented
as Bag-of-Embeddings, using the pre-trained word embedding rep-
resentations of fastText [40].

Finally, trace links are generated in two steps. First, the fine-
grained elements are mapped based on the Word Mover’s Distance
(WMD) of the Bag-of-Embeddings. Second, the resulting element

ICSE 2024, April 2024, Lisbon, Portugal

trace links are filtered using a threshold. FTLR then creates trace
links for a class based on a majority vote, linking it to the most
frequently mapped requirements among its methods. With the best
configuration, the authors report an average F;-score of 0.327 for
this approach in their evaluation.

Overall, IR-based TLR approaches can achieve accurate results
when the semantic gap is small, but can struggle with larger ones.
In this study, we explore how intermediate artifacts can help to
bridge such larger semantic gaps.

2.2 Machine learning-based TLR

As for most areas, the progress made by ML and language models
has significantly advanced TLR approaches. ML is applied in vari-
ous ways, including combining recurrent neural networks (RNNs)
and word embeddings [18], combining feedforward neural net-
works and cluster-pair rank models [64], ranking embeddings [66],
using pre-trained language models, such as CodeBERT [29], and
using pre-trained classifiers based on textual features [52]. Other
researchers employ active learning [41] to tackle the challenge of
the availability of training data. However, these approaches use
initial trace links of the projects to train their models and therefore
tackle a different kind of TLR problem than our approach. Their
out-of-the-box performance for recovering trace links of unseen
projects without initial trace links is unclear. As large language
models can be used for transfer learning across tasks and projects,
they are promising candidates for the TLR task tackled in this paper.
Therefore, we use CodeBERT [13] as a baseline besides the two
previously mentioned IR-based techniques.

2.3 Utilizing intermediate artifact types

Instead of attempting to bridge large semantic gaps, some ap-
proaches suggest using transitive trace links. The Connecting Links
Method (CLM) focuses on establishing transitive trace links be-
tween two artifacts using a third artifact [45, 62]. In this process,
CLM generates trace links to the intermediate artifact by employ-
ing a VSM. When two trace links share the same element in the
intermediate artifact, they are connected.

A similar strategy is adopted by COMET, which leverages a
hierarchical probabilistic model to infer trace links [42]. The process
involves several steps: (1) initial trace links are generated using IR
and ML techniques; (2) these links are reviewed by developers in
a second stage; (3) the final phase operates on an approximation
of the previous steps. Transitive links between two artifacts are
established when two links from one artifact refer to the same
element in another artifact. The similarity for the intermediate
element is derived either from textual similarity (for requirements)
or from execution traces (for test cases).

In a different approach, Rodriguez et al. [55] utilize existing ar-
tifacts as intermediates. For instance, design artifacts are used to
map requirements to subsystem requirements. Unlike COMET, the
transitive trace links in this approach can connect different arti-
facts. In their evaluation, Rodriguez et al. compare LSI and VSM
as techniques for direct trace links with transitive trace links. The
transitive trace links are retrieved by applying different methods to
generate the required trace links to the intermediate artifacts. Ad-
ditionally, they compare these results to hybrid approaches, which

Keim et al.

Trace
Links

Element Element

Text Extraction || . . R
Identification Connection

Architecture ﬁ f
Documentation

Model Extraction

Architecture

Model Traceability Link Recovery

Figure 3: Overview of the ArDoCo approach [24]

combine the results of direct and transitive trace links. The eval-
uation demonstrates that, in most cases, the best transitive tech-
niques significantly outperform the direct techniques (@ < 0.001).
Although hybrid approaches often slightly outperform transitive
approaches, this difference was not statistically significant. This
shows that transitive approaches for TLR are helpful for improving
the performance, supporting our idea.

As such, we use some ideas from these approaches and apply
them to our TLR scenario. Moreover, we adapt them using differ-
ent approaches for the specific intermediate steps to benefit from
specialized approaches.

3 BACKGROUND: ARDOCO

As this work uses ArDoCo [24], we introduce their approach in
this section. ArDoCo is a tool for TLR and inconsistency detection
between natural language SADs and SAMs like UML.

The tool is designed as an extendable pipeline that incorporates
agent-based heuristics. The pipeline, depicted in Figure 3, comprises
various steps for TLR. The first two pipeline steps process the
artifacts individually and independently.

Initially, the approach processes the input SAD text using tra-
ditional natural language processing (NLP) techniques, including
part-of-speech tagging, sentence splitting, lemmatization, and de-
pendency parsing. These techniques aid in extracting structural
information from the text.

Next, the text extraction step identifies name- and type-like men-
tions from the processed text. For instance, in the running example
in Figure 1, words like “controller”, “persistence”, or “component”
are extracted. Similar mentions, i.e., identical or very similar words
are clustered, similar to coreference resolution. Each cluster is anno-
tated with confidence values that indicate whether the underlying
element is considered a name or a type. To achieve this, ArDoCo
leverages phrase structures (cf. [35]). In the running example, the
approach would confidently annotate “component” as a type, while
the other two highlighted words are likely names.

The model extraction step analyzes the SAM and its meta-model,
extracting elements like types and architecture components.

Following this, the element identification identifies potential
model elements based on the mentions in the text and the extracted
information from the meta-model. This process creates so-called
recommended instances, which can be seen as special named enti-
ties representing potential model elements.

Finally, the element connection establishes trace links between the
SAD and the SAM by mapping recommended instances to similar
elements of the instantiated model. To calculate similarity, ArDoCo

Recovering Trace Links Between Software Documentation And Code

Entity [—— Architectureltem

»

subcomponents
provided o .
. B g | Signatures

Component required Interface Signature

Figure 4: Intermediate model for architecture models

provides different metrics, including string-based, vector-based,
and other approaches.

For their evaluation, Keim et al. use five open-source projects to
assess the performance of their approach. The overall evaluation
results show an average precision of 0.87, an average recall of 0.82,
and an average Fq-score of 0.82.

4 APPROACH

Our approach TransArC to recover trace links between SAD and
code involves three steps, incorporating two distinct approaches
(see Figure 2). In the initial step, we utilize the ArDoCo approach,
as presented by Keim et al. [24] (see Section 3), to establish links
between SAD and SAM. Moving on to the second step, we intro-
duce our novel ArCoTL approach for linking SAM to code. The
approach transforms the artifacts into generalized intermediate rep-
resentations and computes trace links using a computational graph.
Detailed insights into this approach are provided in Section 4.1. In
the final step, we combine the outcomes of both approaches in a
transitive manner to create the desired trace links between SAD
and code. The procedure for this step is elaborated in Section 4.2.

4.1 ArCoTL: Linking SAM to Code

Our strategy for establishing links between SAM and code involves
a two-step approach, namely ArCoTL.

In the first step, we transform both types of artifacts into gener-
alized intermediate representations. In the second step, we employ
various heuristics and aggregations to examine potential hints that
signify a link between an architecture element and a code element.
To combine the different heuristics, we use a computational graph.

4.1.1 Intermediate Representations. The primary objective of inter-
mediate representations for both artifacts is to provide an abstrac-
tion from the concrete languages used for architecture description
and programming: First, they capture the essential commonalities
present in each respective part, enabling us to simplify complex
inputs and focus solely on the aspects that are required for fur-
ther processing. Second, these representations allow us to define
heuristics at a more abstract level, free from the intricacies of indi-
vidual languages. As a result, our heuristics become independent
of the particular input languages used, offering greater flexibility
and applicability.

Our representation for architecture models, as depicted in Fig-
ure 4, is characterized by its simplicity. The architecture model
consists of architecture items subdivided into components, inter-
faces, and signatures. Components may contain sub-components
and can provide or require interfaces that have signatures.

ICSE 2024, April 2024, Lisbon, Portugal

Entity

2

codeElements s« % codeElements

Codeltem | « codeElements

0.1 extendedTypes implementedTypes
Module (< }—' Computational Datatype
Object * YPe |
Package Control ClassUnit | |InterfaceUnit
Element

0.1 0..1

CompilationUnit —

CodeAssembly —

Figure 5: Intermediate model for code

The code model in Figure 5 is similarly straightforward. We base
the model on the Knowledge Discovery Metamodel (KDM) by the
OMG [46] and are using an excerpt of the KDM for our code model.

Code items fall into three categories: modules, computational
objects, and datatypes. Modules encompass packages, compilation
units, or code assemblies, representing the structural elements of
code. Computational objects represent functional parts of the code,
such as methods. Lastly, the code model includes datatypes, specifi-
cally classes and interfaces that can exist within the code.

We designed our models to maintain simplicity and general-
ity, enabling easy integration of additional architecture descrip-
tion languages or programming languages through adapters. These
adapters transform the input into our intermediate representations,
representing either the architecture or code model. The advantage
of this approach is that an adapter only has to be defined once
for each language, eliminating the need for adaptations in other
parts of our methodology, such as the computational graph with its
associated heuristics. Currently, our implementation supports UML
components diagrams and PCM [54] as architecture description lan-
guages, along with Java and Bash as programming languages. The
rationale behind selecting these languages is to demonstrate our
approach’s versatility and applicability with different languages.

Leveraging these intermediate representations, we are also able
to define trace links formally: A trace link comprises an architec-
ture item paired with a corresponding code item. To facilitate our
calculations, we construct a repository representing the traceability
matrix, encompassing all combinations of architecture and code
items. This matrix is the foundation for our traceability analysis.

4.1.2 Computational Graph. Our approach employs a variety of
heuristics and aggregators for conducting its calculations. The
heuristics evaluate each pair of entities, i.e., architecture and code
items. We categorize our heuristics into two distinct types: stan-
dalone and dependent heuristics. The outputs of each heuristic are
mappings that contain each entity pair together with the heuristic’s
confidence for this pair. The aggregators combine the mappings
and filter out unlikely pairs. We organize the calculations in a com-
putational graph. The outputs of the computational graph are the
identified trace links, i.e., pairs of architecture and code entities.

ICSE 2024, April 2024, Lisbon, Portugal

Algorithm 1 StandaloneHeuristicy (archltems, codeltems)

mappings < 0

for all archltem « archltems, codeltem « codeltems do
confidence « similarity; (archItem,codeltem)
mappings < mappings U (archltem, codeltem, confidence)

return mappings

Standalone heuristics operate independently, not relying on other
heuristics for their execution. Thus, they get the input artifacts, i.e.,
pairs of architecture and code items, and calculate their similarity to
create mappings, as is shown in Algorithm 1. We use the following
standalone heuristics:

Package Compares package name with name of components
Path Compares the path of a compilation unit with the
names of components

Compares method names with names of signatures
Compares names of architecture elements with names
of compilation units and datatypes

Method
Names

When comparing entity names, we determine if one entity’s
name contains parts of the other entity’s name. We identify parts of
an entity based on word boundaries and camel casing, hyphenations,
underscores, periods, and similar separators. However, we disregard
capitalization during the equality checks. The approach derives
confidence in this comparison from the ratio of the contained parts.
Consequently, this comparison is asymmetric. For instance, the
name “DatabaseAdapter” contains the name “database”, resulting
in a similarity score of 50%. Conversely, no containment in the
opposite direction leads to no similarity.

This asymmetric comparison is vital for controlling which en-
tity can be contained within another and for increasing precision,
especially for heuristics like Package or Path, where containment
plays a crucial role.

Many programming languages encode package names in the
path structure. However, slight differences can exist, so we em-
ploy both heuristics and incorporate this relationship. To avoid
redundant consideration of the package name via both the name
and the path, we exclude the package from the path. For exam-
ple, given the package mediastore.persistence and the path
ms-database/src/main/java/mediastore/persistence, we only utilize
the beginning of the path, i.e., ms-database/src/main/java. In this
example, a difference between both heuristics becomes apparent:
The beginning of the path represents the folder that can indicate
the component name and provide additional information compared
to only the package name. This situation can arise if the project
utilizes multiple modules.

Algorithm 2 DependentHeuristic; (mappings)

for all m « mappings do
for all m, < affectedMappingsy (m) do
mg.confidence «— getUpdatedConfidencey; (mq, m)

return mappings

Dependent heuristics use the resulting mappings of previous
heuristics as their input. As shown in Algorithm 2, dependent

Keim et al.

heuristics check for affected mappings and calculate the updated
confidence. There are the following dependent heuristics:

Hint Inheritance Inherits results from other heuristics (map-
pings) along extends- and implements-relations.

Common Words Checks if names differ only in common words
or prefixes/suffixes (e.g., Test, Impl, I).

Amb. Sub-pkg. Detects ambiguously mapped sub-packages.

Component rel. Looks at relations between components to re-

solve ambiguity.

Checks if a provide-relation of the architecture

exists in the source code.

Interface prov.

The Hint Inheritance heuristic uses the assumption that there is
a strong coupling between a class and its parent. Consequently, this
heuristic inherits mappings that regard a class and applies them to
the extending or implementing class.

The Common Words heuristic adapts the results of the Names
heuristic. When two entities’ names only differ in common words,
prefixes, or suffixes, the approach increases the confidence score.
For example, common words include “Test”, “Exception”, and “Fac-
tory”. We regard well-known prefixes and suffixes, e.g., “Impl”, used
to indicate implementations of abstract classes.

When dealing with packages, it is possible for a component and
its packages to be included in the packages of another component,
creating an ambiguous mapping. For instance, the package dataac-
cess.preferences can be mapped to both the DataPersistence and
the Preferences component. The Ambiguous Sub-package heuristic is
employed to address this ambiguity in two possible cases: In the first
case, when the heuristic finds another location where the compo-
nent (e.g., Preferences) is implemented, it is assumed that there is no
actual relation between the package (dataaccess.preferences)
and said component. We reason that the implementation of a compo-
nent should not be scattered in the code. Consequently, the heuristic
revokes the mapping to the (Preferences) component. In the second
case, if the approach finds no other location, the sub-package likely
is a component (here: Preferences), and the heuristic removes the
mapping to the DataPersistence component.

The Component relation and the Interface provision heuristics are
used to check for relations between components and/or interfaces
that can be detected in the code. These heuristics adapt previous
results based on the existence and absence of such relations. They
play a significant role if multiple mappings exist between an ar-
chitecture element and code elements. In these cases, they can
help remove mappings with source code elements that cannot be
associated with the relations in the architecture.

Aggregators. To combine mappings, we adopt two types of ag-
gregators: combiners and selectors. The first category, combiners,
consists of aggregators that, as the name suggests, combine the
mappings generated by one or more heuristics about the same en-
tity pair. The Max combiner utilizes a maximum function, which
sets the confidence score of an entity pair to the highest confidence
of mappings for this pair. We use the maximum function to in-
dicate that one result of competing heuristics covering different
aspects is sufficient and to avoid negative influence from single low
confidence mappings.

The second category of aggregators, selectors, facilitates the
selection of mappings based on specific criteria. The Best criterion

Recovering Trace Links Between Software Documentation And Code

| Input: SAM, Code |

v v v v v
‘ NameComﬂ | Package || Namejyierr || Methods Path
\ 4

[Bestc | [Bestyic || Best, ¢ | [Besty+c]
Y Y |
Inhe:nt. i\l Amblngkg. s Legend:
| Max | | Filter | Standalone A "
Y)72 Heuristic D geregator
| First, | Dependent Information
mon'W.
T ax A Architecture C Code
Comp.Rel. vy

Interf.Prov.

| Output: Trace Links |

Figure 6: The computational graph of ArCoTL

focuses on the mappings of multiple heuristics concerning one
certain fixed entity and selects only the highest confidence hint.
Consequently, we have two variants of this criterion, one focussing
on code items and one on architecture items. The First criterion
operates by examining the order of the heuristics and selecting,
for one entity, the first mapping from an ordered list of heuristics.
Consequently, the mappings are assessed sequentially for each
entity, and a mapping is chosen over others if its confidence is
greater than 0. We base this approach on the idea that heuristics
and, thus, the mappings are not equally important and need to be
weighted. We do this weighting according to their order, which
proves particularly relevant for specific combinations.

Lastly, we employ filters to remove mappings that contain nega-
tive evidence from dependent heuristics such as Ambiguous Sub-
package, Component relation, and Interface provision. These filters
play a crucial role in refining the final results of our approach.

Computational graph. The computational graph in Figure 6 con-
stitutes the backbone of ArCoTL. It comprises our five standalone
heuristics as the entry points into the computation process. Map-
pings from these heuristics are then filtered with the Best criterion.

Initially, our approach selects the best code items for each ar-
chitecture item, i.e., the set of code items that share the highest
confidence for each corresponding architecture item. Subsequently,
the computation proceeds with the inverse procedure, selecting the
best architecture item for the previously selected code items.

For the Names heuristic for components, filtering is based solely
on the best architecture items for each code item. We intention-
ally skip the other direction, as architecture elements are generally
implemented with one or more code elements, and limiting archi-
tecture items to only the best code items could hinder the recall
of the results. In general, we apply both directions to have precise
result pairs and only one direction for exploration.

We make use of one First matcher when combining the Package-
and Names-parts, prioritizing package names. Here, we first look
at the package name to leverage our underlying assumption that
package structures and component structures might exhibit simi-
larities. Additionally, some names can also be part of the package.
Therefore, we first select the results of the Package heuristic and
resort to the Names heuristic otherwise.

ICSE 2024, April 2024, Lisbon, Portugal

We use various dependent heuristics to adjust confidence values
and filter out improbable mappings as part of the calculation process.
Toward the end, the approach merges the computation results using
the maximum combiner to select only mappings with the highest
confidence for each entity pair. The results are further filtered using
the Interface provision heuristic. This refinement step enhances the
precision of the final results.

Finally, we generate trace links for each remaining mapping, i.e.,
pair of architecture item and code item with confidence > 0.

4.2 TransArC: Transitively Link SAD and Code

To finally establish trace links between documentation and code,
we combine two distinct approaches for our approach TransArC:
ArDoCo [24], which facilitates trace links between SADs and SAMs,
and our approach ArCoTL for linking SAMs to code.

The combination of these two approaches is achieved by creating
transitive links. This process involves linking SADs to code by
aggregating the trace links from the other two approaches that
share the same model elements from the SAM. This integration
of specialized approaches allows us to bridge the semantic gap
more effectively, particularly when linking SAMs and code. We
can improve the results by leveraging the structural information in
SAMs, which may not be as explicitly represented in SADs.

While transitive links provide comprehensive traceability, there
might be instances where code entities are mentioned in the doc-
umentation but cannot be directly linked to the design artifact.
We could utilize existing IR approaches to establish the missing
links in such cases. However, based on our experience, architecture
documentation seldom refers directly to code entities (e.g., classes),
as they are typically not represented in design artifacts. Architec-
ture documentation typically emphasizes architecture components
over implementation details. To avoid introducing imprecision, we
currently refrain from applying such approaches.

5 EVALUATION

This section evaluates our approaches for TLR between code, SAMs,
and documentation to answer our research questions. Overall, we
want to demonstrate the performance of our approach ArCoTL for
TLR between SAM and code and the performance of our approach
TransArC for TLR between SAD and code, including a comparison
to state-of-the-art approaches. To benefit the research community
and ensure our findings’ reproducibility, we make all our results
and experimental data available in a replication package [1].

5.1 Dataset

To assess the effectiveness of our approaches, we utilized the bench-
mark dataset provided by Fuchf} et al. [14]. This dataset comprises
five open-source projects, each differing in size and domain. The
projects are MediaStore (MS), TeaStore (TS), TEAMMATES (TM),
BigBlueButton (BBB), and JabRef (JR). The benchmark contains the
documentation of the projects created by the respective developers.
Additionally, the benchmark contains the development view (cf.
[26]) in the form of structural architecture models that originate
from other researchers (MS, TS, TM) or are reverse-engineered
(BBB, JR) (cf. [14, 24]). The benchmark contains gold standards for

ICSE 2024, April 2024, Lisbon, Portugal

Table 1: Number of artifacts per artifact type and number of
trace links in the gold standard for each project

Artifact Type MS TS TM BBB JR
SAD # Sentences 37 43 198 85 13
SAM # Model elements 23 19 16 24 6
Code # Files 97 205 832 547 1,979

SAM-Code # Trace links 60 164 1,616 730 1,956

SAD-Code # Trace links 50 707 7,610 1,295 8,240

the trace links between these projects” SADs and SAMs. These gold
standards were created in small user studies.

Since the benchmark projects are open-source, we have access
to their source code. Through a rigorous process, we established
corresponding gold standards for both scenarios, SAD to code and
SAM to code. At least two researchers independently generated the
gold standards. We resolved discrepancies through discussions and
merged the resulting gold standards. Table 1 gives an overview of
the dataset and gold standards.

Gold Standard for TLR between SAMs and Code. The gold standard
for TLR between code and SAMs consists of a mapping between
the model elements of the SAMs and their corresponding relative
paths to the source code files. We carefully map model elements,
such as components, to the best-fitting code elements. Due to the
difference in abstraction levels between code and SAMs, one model
element may be mapped to multiple code elements. For example,
an interface IDownload can be mapped to multiple interfaces in
the code, such as IDownload and IDownloadCache. Sometimes, the
best mapping is not at the file level but at the folder/package level.
For instance, in the running example illustrated in Figure 1, we
map the component DataPersistence to the package dataaccess. In
such situations, all contained elements are considered part of the
component, and we trace them accordingly.

Gold Standard for TLR between SADs and Code. The gold standard
for trace links recovery between SADs and code encompasses a
mapping between the sentences of the SADs and the corresponding
source code files. Once again, we map the relative path to a file
or the contents within a folder of the source code to the corre-
sponding sentence in the SAD. For example, the first sentence in
the running example depicted in Figure 1 is mapped to the files
Controller. java and Authenticator. java.

5.2 Metrics

For our evaluation, we use the metrics Precision (P), Recall (R), and
F1-score (Fy), their harmonic mean. These metrics are commonly
used in TLR and comparable research areas (cf. [8, 20]).

Generally, we define the true positives (TP), false positives (FP),
and false negatives (FN) as follows: TPs are found trace links be-
tween one artifact and another artifact that are also contained in
the gold standard. FPs are found trace links between one artifact
and another artifact that are not contained in the gold standard.
FNs are trace links between one artifact and another artifact that
are contained in the gold standard but not found by the approach.

In addition to these metrics, we present two distinct average
values. First, we provide the overall average across all projects,

Keim et al.

regardless of size. This average offers valuable insight into the
expected performance per project. Second, we offer a weighted
average considering the number of expected trace links for each
project. This weighting enables more profound insights into the
anticipated efficacy of an approach per trace link.

5.3 Baseline Approaches

This section outlines the baseline approaches utilized for compar-
ison in our study. Specifically, we have chosen to include the ap-
proaches TAROT [16], FTLR [22], and CodeBERT [13]. We further
adapt ArDoCo [24] to create trace links between SAD and code.

TAROT [16] and FTLR [22] both represent recent and state-of-
the-art IR-based solutions for linking requirements and code, and
CodeBERT [13] is a large language model trained on finding the
most semantically related source code for a given natural language
description. Therefore, all three demonstrate promising results for
similar TLR problems (cf. Section 2). Since these approaches can
handle natural language input and code, they are well-suited for
addressing our specific TLR problem. Moreover, their replication
packages allow us to use and adapt these approaches. Despite their
ability to handle natural language texts, SADs, method documenta-
tion, and requirements are on different levels of abstraction. Conse-
quently, the results of these approaches can be negatively influenced
and might perform worse if applied to SADs. However, these are
suitable approaches that can be used for comparison in our scenario.

As an additional baseline suited towards SADs, we adapt ArDoCo
to directly operate with our code models (cf. Section 4.1.1).

TAROT. To be able to apply TAROT as-is to our scenario, we
interpret each sentence of the SAD as a requirement. We use a
threshold to filter TAROT’s similarity matrix to generate trace
links. We evaluate TAROT’s different IR methods, i.e., JSD, LSI,
and VSM. For our comparison, we optimize the threshold for each
project and method based on the resulting F;-score, thus obtaining
the most favorable results from TAROT.

FTLR. We treat FTLR similarly to TAROT and interpret the sen-
tences of the SAD as requirements. We apply the different modes
of operation and select the best-suited mode (WMD as similarity
measure, taking method comments into account). The generation
of trace links in FTLR also relies on thresholds. In our replication
package [1], we provide the results obtained using the best possible
threshold for each project and mode of operation. In addition, we
provide the results for FTLR’s default thresholds for comprehensive
comparison and analysis.

CodeBERT. We fine-tune the CodeBERT language model [13]
for the Java code search task of the CodeSearchNet dataset [23] to
apply CodeBERT in our scenario. This dataset consists of pairs of
Java methods and their corresponding method documentation, and
the task requires the language model to predict whether certain
method documentation belongs to a method implementation. This
task can be interpreted as similar to linking sentences in SADs
to their corresponding source code classes. We use the fine-tuned
model to predict links between SAD and code.

Adapting ArDoCo: ArDoCode. To add a baseline that is more
geared towards SADs, we adapt ArDoCo to create trace links be-
tween SADs and code, calling it ArDoCode. For this, we interpret

Recovering Trace Links Between Software Documentation And Code

Table 2: Results for TLR between models and code

Project Precision Recall F;-score
MediaStore (MS) 0.98 1.00 0.99
TeaStore (TS) 0.98 0.98 0.98
TEAMMATES (TM) 1.00 1.00 1.00
BigBlueButton (BBB) 0.94 0.96 0.95
JabRef (JR) 1.00 1.00 1.00
Average 0.98 0.99 0.98
weighted Average 0.99 0.99 0.99

the intermediate code model as a kind of SAM, again resolving
packages to create trace links to the contained elements.

5.4 Results

In this section, we present the results of our evaluation.

Traceability Link Recovery between SAMs and Code. First, we
address our first research question (cf. Section 1), which focuses on
the performance of our approach in recovering trace links between
software architecture models and code. We present precision, recall,
and Fy-score for each project, along with the average and weighted
average over all projects in Table 2.

The results of our approach are exceptional, indicating a near-
perfect linkage of artifacts. This is expected as SAMs and code
are closely related. The approach can utilize many of the similar
structures that can be found in both types of artifacts. Ultimately,
the semantic gap is relatively small between these artifacts, which
is also one of our intentions for the overall approach to link SAD
and code transitively via SAMs.

However, we still observe some naming-related issues, which
can impact the results. As such, false positives occur due to the
similar naming of different elements. For example, in BBB, classes
in the folder bbb-graphql-middleware/demo/client are erroneously
mapped to the HTML5 Client interface of BBB because of the sim-
ilarity of the folder name. Likewise, the class DbException in the
MediaStore project is incorrectly mapped to the IDB interface in-
stead of the intended DB component. Regarding TS and BBB, our
approach produces some false negatives. Here, the challenge lies in
mapping elements with significantly different naming conventions,
especially when dealing with abbreviations. For instance, due to
too dissimilar naming, the component BBB web of BigBlueButton
could not be mapped to the folder bigbluebutton-web. Automated
expansion of abbreviations might improve this (cf. [5, 19]).

Concluding RQ1, our approach achieves an average F1-score
of 0.98 (weighted 0.99) for the trace links between SAMs and
code. According to the classification scheme of Hayes et al. [20],
our TLR approach achieves excellent results. Moreover, these results
represent a solid foundation for our transitive approach.

Traceability Link Recovery between SADs and Code. In the second
part of the evaluation, we focus on the TLR between SADs and code.
Thus, we aim to address our second research question, evaluating
the effectiveness of our approach in recovering trace links between
software architecture documentation and code using transitive
trace links. Additionally, we compare the results obtained by our
approach with those of the baseline approaches to answer our RQ3.

ICSE 2024, April 2024, Lisbon, Portugal

To measure the quality of the recovery and facilitate comparison
with the baselines, we calculate the precision, recall, and F;-score
for each project. The baseline approaches are initially designed for
different tasks, so we optimize their thresholds to maximize the
F1-score. We then select the results of the mode of operation with
the best average Fy-score.

In our evaluation, we find that TAROT’s best mode of operation
utilizes IR in combination with JSD. For FTLR, the best mode of
operation uses WMD along with method comments (cf. Section 5.3).
The results of all approaches are shown in Table 3. We highlight
the best results for each metric and project.

The baseline approaches perform worse, achieving an average
F-score of 0.22 for TAROT, 0.21 for FTLR, 0.28 for CodeBERT, and
0.37 for ArDoCode. TAROT has a weighted average F;-score of 0.29,
FTLR of 0.28, and CodeBERT of 0.36. ArDoCode has a weighted
average Fi-score of 0.62 due to its good performance on the larger
projects TM and JR. All baselines achieve better recall than preci-
sion. Comparing the results with the reported results of FTLR [22]
for its original task, linking requirements and code, we observe
similar outcomes. This suggests a certain degree of similarity in
the underlying problem to the extent that the performance of the
approaches in both scenarios is comparable to some extent.

Comparing our approach to the baselines, our transitive ap-
proach combining two specialized approaches outperforms the
baselines with an average Fq-score of 0.82 (weighted 0.87). For MS
and TS, we achieve perfect precision, while for JR, we achieve per-
fect recall. This result highlights the project dependency, influenced
by the project’s characteristics. These characteristics include the
similarity and consistency of the names in the two artifacts. More-
over, projects may use similar terms corresponding to different
entities, making it hard to link them correctly.

We use Wilcoxon’s signed rank test to calculate the significance
of our approach’s F-scores compared to the baselines. TransArC
is significantly outperforming the baseline approaches (at the 0.05
level). This outcome can likely be attributed to the larger semantic
gap the baseline approaches try to bridge. Moreover, TAROT, FTLR,
and CodeBERT are fine-tuned for similar but different scenarios.

Nevertheless, the combination of our two specialized approaches
proves highly effective. Accordingly, this methodology facilitates
the practical use of TLR (cf. [20]). Comparing the results of Ar-
DoCode and TransArC, intermediate artifacts seem to play a vital
role in bridging the semantic gap. We argue that creating intermedi-
ate artifacts is worthwhile, especially given their other applications
and the possibility to reverse engineer them (cf. Section 1).

In summary, our transitive approach TransArC performs promis-
ingly with an average F1-score of 0.82 (weighted 0.87). Thus,
we can confidently answer RQ2: According to the classification
scheme of Hayes et al. [20], our approach excellently recovers trace
links between SADs and code. Additionally, we can briefly answer
RQ3: Our approach significantly outperforms the baselines in
all projects concerning precision, recall, and F-score.

6 THREATS TO VALIDITY

In this section, we discuss threats to validity based on the guidelines
by Runeson and Hoést [56].

ICSE 2024, April 2024, Lisbon, Portugal Keim et al.
Table 3: Results for TLR between documentation and code
MS TS ™ BBB JR Avg. w. Avg.

Approach P R Fl P R Fl P R Fl P R F1 P R Fl P R F] P R Fl
TAROT .09 .24 .13 .19 44 27 06 .32 .11 .07 .18 .10 .32 10 49 .15 .44 22 .19 .63 .29
FTLR .15 26 .19 .19 25 21 .06 .30 .10 .04 42 .07 .32 93 48 .15 43 21 .19 59 .28
CodeBERT .29 .12 .17 26 57 36 .09 .22 .12 .07 .49 .12 49 83 61 24 45 28 .28 53 .36
ArDoCode .05 .66 .09 .20 .74 31 37 92 53 .07 .57 .13 66 1.0 .80 .27 .78 .37 47 .92 .62
TransArC 1.0 52 .68 10 71 .83 .71 91 80 .77 91 84 89 10 .94 .87 .81 .82 .81 .94 .87

To ensure Construct Validity, we employ commonly used metrics
and select projects that have been previously studied in research.
Additionally, we deliberately choose projects with diverse char-
acteristics, such as different domains, sizes, and relative sizes of
documentation to lines of code. By doing so, we aim to mitigate
potential confounding factors that could hinder us from effectively
addressing our research questions.

Regarding Internal Validity, there is the threat that we examine
TLR in a way that there are other influencing factors that affect our
evaluation. Moreover, we might misinterpret the cause of certain
results, leading to wrong conclusions. To address internal valid-
ity concerns, we follow established practices to minimize threats.
Specifically, we define and evaluate trace links on a sentence level
and map them to code files, akin to requirements-to-code traceabil-
ity. We use the same selection of open-source projects as Keim et al.
[24]. This methodology helps mitigate the risk of selection bias.
However, it is essential to acknowledge that open-source projects
can vary significantly in code quality, documentation, and consis-
tency. Consequently, noise and errors in the data can potentially
impact the evaluation process, leading to inflated or deflated perfor-
mance metrics. Lastly, we might have misjudged the influence of
the semantic gap. To mitigate this and to determine the influence,
we adapted ArDoCo to work directly with the code model.

Our research design is subject to certain threats to External
Validity. First, we focus solely on (structural) component-based
architecture models, potentially limiting the generalizability of our
findings w.r.t. other architectural paradigms or views. According to
Tian et al. [61], this view is commonly used for architecture. The
results still may vary if, e.g., more logical descriptions and views
of the architecture are used, or if the abstraction levels are more
different. Second, among the evaluated projects, there are academic
projects designed to mimic real applications, but they may exhibit
certain differences, making clear statements about generalizability
challenging. While our projects encompass different domains and
sizes, they do not fully represent all possible application variants.
Certain types of projects or specific project characteristics may be
overrepresented or underrepresented in our dataset, potentially
skewing the evaluation results and restricting the applicability of
our findings to different projects and real-world scenarios.

To address threats to validity regarding Reliability, we utilize
benchmark datasets previously employed in published research.
However, we still need to create a gold standard for TLR between
SAM and code, as well as SAD and code. For this, we adopt a rigor-
ous approach where at least two researchers independently gener-
ated the gold standards, to reduce a potentially biased influence by

a single person. These gold standards are merged through compari-
son and discussion to decide any differences. Still, it is important to
acknowledge possible bias, such as researchers interpreting artifacts
differently, which impacts reliability to some extent.

7 CONCLUSION AND FUTURE WORK

In conclusion, this scientific study investigated the use of trace-
ability link recovery (TLR) for linking software architecture doc-
umentation (SAD) to code. The approach achieves this utilizing a
transitive method that combines the results from two specialized
approaches, namely TLR for SAD to component-based software
architecture model (SAM) using the ArDoCo approach by Keim et
al. [24] and a novel approach for TLR between SAM and code.

The proposed approach for model-to-code-TLR utilizes heuris-
tics and aggregators, seamlessly integrated within a computational
graph. The efficacy of this method was evaluated on a dataset com-
prising five diverse projects. To answer RQ1 (performance for TLR
between SAM and code), the evaluation results for the SAM to code
TLR exhibit outstanding performance. Thanks to using both name
similarity and structural information, the approach achieved an
average Fi-score of 0.98. Answering RQ2 (performance for TLR
between SAD and code) and RQ3 (comparison to baselines), the re-
sults for transitive links between SAD and code display exceptional
results with an average Fy-score of 0.82 (weighted 0.87), surpassing
the baseline approaches significantly. These results further validate
the effectiveness of our approach to bridge the semantic gap.

In summary, this research contributes a promising methodology
for documentation-to-code linkage, and the remarkable achieved
performance demonstrates its potential applicability in real-world
scenarios. These findings open up exciting possibilities for improv-
ing traceability linkage. To ensure replicability and transparency,
we have made available a comprehensive replication package [1],
encompassing the implemented approach, baseline models, evalu-
ation data, and the obtained results. By sharing this package, we
aim to facilitate the reproduction of our study and enable fellow
researchers to validate and build upon our findings.

In our evaluation, we used projects from different domains with
SADs in different styles and slightly different levels of abstrac-
tion. Therefore, we believe that our results are to a certain degree
generalizable. The results can vary with vastly diverging SADs. Ad-
ditionally, SAMs that do not encapsulate the structural components
or focus on a too different abstraction can cause a degradation of
our approach’s performance. However, the general idea to bridge
the semantic gap by using multiple specialized approaches should

Recovering Trace Links Between Software Documentation And Code

hold for other artifacts that are semantically in between the original
gap. Still, we need to explore this theory further in future work.

Consequently, our plan includes extending the generalizability of
our approach in future work. First, we aim to evaluate the approach
with additional projects to assess its capabilities in different settings,
domains, and scenarios. Second, we will investigate the adaptability
of our transitive approach for other instances of TLR, such as linking
requirements to code. This will entail exploring and identifying
various reasonable and efficient intermediate artifacts.

To improve upon the promising results, we plan to make various
improvements in future work to further refine the approach.

For our transitive approach, we prioritize precision by disregard-
ing direct mentions of classes in SADs that cannot be linked to
SAMs. In future research, we intend to explore opportunities to
combine our approach with other (IR) approaches, to address cases
where documentation mentions code entities not explicitly repre-
sented in the design artifact. This will further strengthen the overall
efficacy and completeness of our approach. Moreover, we plan to
extend the inconsistency detection capabilities of ArDoCo [24] to
SAD and code using TransArC for establishing the required links.

By focusing on these avenues of enhancement, we aim to create
a more robust and versatile TLR framework that can further TLR
and aid various software engineering tasks in an array of contexts.

REFERENCES

[1] Anonymous. 2023.
f5666e4cadce0f1c40bl

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. 2002. Recovering
Traceability Links between Code and Documentation. IEEE Transactions on
Software Engineering 28, 10 (Oct. 2002), 970-983. https://doi.org/10.1109/TSE.
2002.1041053

[3] Thazin Win Win Aung, Huan Huo, and Yulei Sui. 2020. A Literature Review of
Automatic Traceability Links Recovery for Software Change Impact Analysis. In
Proceedings of the 28th International Conference on Program Comprehension (Seoul,
Republic of Korea) (ICPC °20). Association for Computing Machinery, New York,
NY, USA, 14-24. https://doi.org/10.1145/3387904.3389251

[4] TJ.Biggerstaff, B.G. Mitbander, and D. Webster. 1993. The concept assignment
problem in program understanding. In [1993] Proceedings Working Conference on
Reverse Engineering. 27-43. https://doi.org/10.1109/WCRE.1993.287781

[5] Shanqing Cai, Subhashini Venugopalan, Katrin Tomanek, Ajit Narayanan, Mered-
ith Ringel Morris, and Michael P. Brenner. 2022. Context-Aware Abbreviation
Expansion Using Large Language Models. arXiv:2205.03767 [cs.CL]

[6] Yuanfang Cai, Hanfei Wang, Sunny Wong, and Linzhang Wang. 2013. Leveraging
Design Rules to Improve Software Architecture Recovery. In Proceedings of the
9th International ACM Sigsoft Conference on Quality of Software Architectures
(Vancouver, British Columbia, Canada) (QoSA ’13). Association for Computing
Machinery, 133-142. https://doi.org/10.1145/2465478.2465480

[7] Lei Chen, Dandan Wang, Junjie Wang, and Qing Wang. 2019. Enhancing Un-
supervised Requirements Traceability with Sequential Semantics. In 2019 26th
Asia-Pacific Software Engineering Conference (APSEC). 23-30. https://doi.org/10.
1109/APSEC48747.2019.00013

[8] Jane Cleland-Huang, Orlena Gotel, Andrea Zisman, et al. 2012. Software and
systems traceability. Vol. 2. Springer.

[9] CoEST. 2023. Center of Excellence for Software & Systems Traceability. https:
//web.archive.org/web/20230518011309/http://www.coest.org/. Accessed: 2023-
05-18.

[10] Alexander Egyed, Florian Graf, and Paul Griinbacher. 2010. Effort and Quality
of Recovering Requirements-to-Code Traces: Two Exploratory Experiments.
In 2010 18th IEEE International Requirements Engineering Conference. 221-230.
https://doi.org/10.1109/RE.2010.34
Davide Falessi, Justin Roll, Jin L.C. Guo, and Jane Cleland-Huang. 2020. Leverag-
ing Historical Associations between Requirements and Source Code to Identify
Impacted Classes. IEEE Transactions on Software Engineering 46, 4 (2020), 420-441.
https://doi.org/10.1109/TSE.2018.2861735
[12] Jean-Marie Favre. 2005. Foundations of model (Driven)(Reverse) engineering. In
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:

Replication Package. https://figshare.com/s/

—_
o

ICSE 2024, April 2024, Lisbon, Portugal

A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536-1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

Dominik Fuchf}, Sophie Corallo, Jan Keim, Janek Speit, and Anne Koziolek.

2023. Establishing a Benchmark Dataset for Traceability Link Recovery be-

tween Software Architecture Documentation and Models. In Software Archi-

tecture. ECSA 2022 Tracks and Workshops, Thais Batista, Tomas Bures, Claudia

Raibulet, and Henry Muccini (Eds.). Springer International Publishing, Cham,

455-464. https://doi.org/10.1007/978-3-031-36889-9_30

[15] Hui Gao, Hongyu Kuang, Xiaoxing Ma, Hao Hu, Jian Lii, Patrick Mader, and

Alexander Egyed. 2022. Propagating Frugal User Feedback through Closeness of

Code Dependencies to Improve IR-based Traceability Recovery. Empir Software

Eng 27, 2 (Jan. 2022), 41. https://doi.org/10.1007/s10664-021-10091-5

Hui Gao, Hongyu Kuang, Kexin Sun, Xiaoxing Ma, Alexander Egyed, Patrick

Méder, Guoping Rong, Dong Shao, and He Zhang. 2023. Using Consensual

Biterms from Text Structures of Requirements and Code to Improve IR-Based

Traceability Recovery. In Proceedings of the 37th IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE °22). Association for Computing

Machinery, New York, NY, USA, 1. https://doi.org/10.1145/3551349.3556948

[17] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia. 2011. On Integrating
Orthogonal Information Retrieval Methods to Improve Traceability Recovery. In
2011 27th IEEE International Conference on Software Maintenance (ICSM). 133-142.
https://doi.org/10.1109/ICSM.2011.6080780

[18] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. 2017. Semantically Enhanced

Software Traceability Using Deep Learning Techniques. In Proceedings of the

39th International Conference on Software Engineering (ICSE ’17). IEEE Press,

Piscataway, NJ, USA, 3-14. https://doi.org/10.1109/ICSE.2017.9

Hussein Hasso, Katharina Grofier, Iliass Aymaz, Hanna Geppert, and Jan Jiirjens.

2022. Abbreviation-Expansion Pair Detection for Glossary Term Extraction. In

Requirements Engineering: Foundation for Software Quality, Vincenzo Gervasi and

Andreas Vogelsang (Eds.). Springer International Publishing, Cham, 63-78.

[20] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram. 2006.
Advancing Candidate Link Generation for Requirements Tracing: The Study of
Methods. IEEE TSE 32, 1 (Jan. 2006), 4-19. https://doi.org/10.1109/TSE.2006.3

[21] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, E Ashlee

Holbrook, Sravanthi Vadlamudi, and Alain April. 2007. REquirements TRacing On

target (RETRO): improving software maintenance through traceability recovery.

Innovations in Systems and Software Engineering 3 (2007), 193-202.

Tobias Hey, Fei Chen, Sebastian Weigelt, and Walter F. Tichy. 2021. Improving

Traceability Link Recovery Using Fine-grained Requirements-to-Code Relations.

In 2021 IEEE International Conference on Software Maintenance and Evolution

(ICSME) (2021-09). 12-22. https://doi.org/10.1109/ICSME52107.2021.00008

[23] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2020. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. arXiv:1909.09436 (June 2020). https://doi.org/10.48550/arXiv.1909.
09436 arXiv:1909.09436 [cs, stat]

[24] Jan Keim, Sophie Corallo, Dominik FuchB, and Anne Koziolek. 2023. Detecting
Inconsistencies in Software Architecture Documentation Using Traceability Link
Recovery. In 2023 IEEE 20th International Conference on Software Architecture
(ICSA). 141-152. https://doi.org/10.1109/ICSA56044.2023.00021

[25] Yves R. Kirschner, Jan Keim, Nico Peter, and Anne Koziolek. 2023. Automated

Reverse Engineering of the Technology-Induced Software System Structure. In

Software Architecture, Bedir Tekinerdogan, Catia Trubiani, Chouki Tibermacine,

Patrizia Scandurra, and Carlos E. Cuesta (Eds.). Springer Nature Switzerland,

Cham, 283-291.

P.B. Kruchten. 1995. The 4+1 View Model of architecture. IEEE Software 12, 6

(1995), 42-50. https://doi.org/10.1109/52.469759

Hongyu Kuang, Patrick Méder, Hao Hu, Achraf Ghabi, LiGuo Huang, Jian Lii, and

Alexander Egyed. 2015. Can Method Data Dependencies Support the Assessment

of Traceability Between Requirements and Source Code? J. Softw. Evol. Process

27, 11 (Nov. 2015), 838-866. https://doi.org/10.1002/smr.1736

Michael Langhammer, Arman Shahbazian, Nenad Medvidovic, and Ralf H Reuss-

ner. 2016. Automated extraction of rich software models from limited system

information. In 2016 13th Working IEEE/IFIP Conference on Software Architecture

(WICSA). IEEE, 99-108.

[29] Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane Cleland-Huang. 2021.

Traceability Transformed: Generating More Accurate Links with Pre-Trained

BERT Models. In 2021 IEEE/ACM 43rd International Conference on Software Engi-

neering (ICSE). 324-335. https://doi.org/10.1109/ICSE43902.2021.00040

Sugandha Lohar, Sorawit Amornborvornwong, Andrea Zisman, and Jane Cleland-

Huang. 2013. Improving Trace Accuracy Through Data-driven Configuration

and Composition of Tracing Features. In Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York, NY,

USA, 378-388. https://doi.org/10.1145/2491411.2491432

Patrick Mader and Alexander Egyed. 2015. Do developers benefit from require-

ments traceability when evolving and maintaining a software system? Empirical

Software Engineering 20 (2015), 413-441. https://doi.org/10.1007/s10664-014-

[14

[16

[19

[22

[26

[27

[28

%
=

[31

https://figshare.com/s/f5666e4ca4ce0f1c40b1
https://figshare.com/s/f5666e4ca4ce0f1c40b1
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1145/3387904.3389251
https://doi.org/10.1109/WCRE.1993.287781
https://arxiv.org/abs/2205.03767
https://doi.org/10.1145/2465478.2465480
https://doi.org/10.1109/APSEC48747.2019.00013
https://doi.org/10.1109/APSEC48747.2019.00013
https://web.archive.org/web/20230518011309/http://www.coest.org/
https://web.archive.org/web/20230518011309/http://www.coest.org/
https://doi.org/10.1109/RE.2010.34
https://doi.org/10.1109/TSE.2018.2861735
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1007/978-3-031-36889-9_30
https://doi.org/10.1007/s10664-021-10091-5
https://doi.org/10.1145/3551349.3556948
https://doi.org/10.1109/ICSM.2011.6080780
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1109/TSE.2006.3
https://doi.org/10.1109/ICSME52107.2021.00008
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.1109/ICSA56044.2023.00021
https://doi.org/10.1109/52.469759
https://doi.org/10.1002/smr.1736
https://doi.org/10.1109/ICSE43902.2021.00040
https://doi.org/10.1145/2491411.2491432
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1007/s10664-014-9314-z

ICSE 2024, April 2024, Lisbon, Portugal

[32]

[33]

[34

[37

[38]

[39]

[40

(41

[42]

[43

[44]

[45

[46

[47]

[48]

[49]

9314-z

Anas Mahmoud and Nan Niu. 2015. On the Role of Semantics in Automated
Requirements Tracing. Requirements Eng 20, 3 (Sept. 2015), 281-300. https:
//doi.org/10.1007/s00766-013-0199-y

Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony
Tang. 2012. What industry needs from architectural languages: A survey. IEEE
Transactions on Software Engineering 39, 6 (2012), 869-891.

Andrian Marcus and Jonathan I. Maletic. 2003. Recovering Documentation-to-
source-code Traceability Links Using Latent Semantic Indexing. In Proceedings
of the 25th International Conference on Software Engineering (ICSE °03). IEEE
Computer Society, Washington, DC, USA, 125-135. https://dl.acm.org/doi/10.
5555/776816.776832

Peter Hugoe Matthews et al. 1981. Syntax. Cambridge University Press.
Christoph Mayr-Dorn, Michael Vierhauser, Stefan Bichler, Felix Keplinger, Jane
Cleland-Huang, Alexander Egyed, and Thomas Mehofer. 2021. Supporting Quality
Assurance with Automated Process-Centric Quality Constraints Checking. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
1298-1310. https://doi.org/10.1109/ICSE43902.2021.00118

Patrick Mader and Alexander Egyed. 2012. Assessing the effect of requirements
traceability for software maintenance. In 2012 28th IEEE International Conference
on Software Maintenance. https://doi.org/10.1109/ICSM.2012.6405269

Patrick Méder, Paul L. Jones, Yi Zhang, and Jane Cleland-Huang. 2013. Strategic
Traceability for Safety-Critical Projects. IEEE Software 30, 3 (2013), 58-66. https:
//doi.org/10.1109/MS.2013.60

Nenad Medvidovic and Richard N. Taylor. 2010. Software architecture: founda-
tions, theory, and practice. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering, Vol. 2. 471-472. https://doi.org/10.1145/1810295.1810435
Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-
mand Joulin. 2018. Advances in Pre-Training Distributed Word Representations.
In Proceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018). European Language Resources Association (ELRA),
Miyazaki, Japan. https://aclanthology.org/L18-1008

Chris Mills, Javier Escobar-Avila, Aditya Bhattacharya, Grigoriy Kondyukov,
Shayok Chakraborty, and Sonia Haiduc. 2019. Tracing with Less Data: Active
Learning for Classification-Based Traceability Link Recovery. In 2019 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). 103-113.
https://doi.org/10.1109/ICSME.2019.00020

Kevin Moran, David N. Palacio, Carlos Bernal-Cardenas, Daniel McCrystal, Denys
Poshyvanyk, Chris Shenefiel, and Jeff Johnson. 2020. Improving the Effectiveness
of Traceability Link Recovery Using Hierarchical Bayesian Networks. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(ICSE °20). Association for Computing Machinery, New York, NY, USA, 873-885.
https://doi.org/10.1145/3377811.3380418

Shiva Nejati, Mehrdad Sabetzadeh, Davide Falessi, Lionel Briand, and Thierry
Coq. 2012. A SysML-based approach to traceability management and design
slicing in support of safety certification: Framework, tool support, and case
studies. Information and Software Technology 54, 6 (2012), 569-590. https:
//doi.org/10.1016/j.infsof.2012.01.005

Armstrong Nhlabatsi, Yijun Yu, Andrea Zisman, Thein Tun, Niamul Khan, Arosha
Bandara, Khaled M. Khan, and Bashar Nuseibeh. 2015. Managing Security Control
Assumptions Using Causal Traceability. In IEEE/ACM 8th SST. 43-49. https:
//doi.org/10.1109/SST.2015.14

Kazuki Nishikawa, Hironori Washizaki, Yoshiaki Fukazawa, Keishi Oshima, and
Ryota Mibe. 2015. Recovering transitive traceability links among software arti-
facts. In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 576-580. https://doi.org/10.1109/ICSM.2015.7332517

Object Management Group (OMG). 2006. Knowledge Discovery Metamodel
(KDM) Specification, Version 1.4. OMG Document Number formal/2016-12
(https://www.omg.org/spec/KDM/1.4/ About-KDM/).

A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshyvanyk,
and A. De Lucia. 2013. When and How Using Structural Information to Improve
IR-Based Traceability Recovery. In 2013 17th European Conference on Software
Maintenance and Reengineering. 199-208. https://doi.org/10.1109/CSMR.2013.29
D.L. Parnas. 1994. Software aging. In Proceedings of 16th International Conference
on Software Engineering. 279-287. https://doi.org/10.1109/ICSE.1994.296790
Cosmina Cristina Ratiu, Wesley K. G. Assungao, Rainer Haas, and Alexander
Egyed. 2022. Reactive Links across Multi-Domain Engineering Models. In Proceed-
ings of the 25th International Conference on Model Driven Engineering Languages
and Systems (Montreal, Quebec, Canada) (MODELS °22). ACM, New York, NY,
USA, 76-86. https://doi.org/10.1145/3550355.3552446

B. Ramesh and M. Jarke. 2001. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering 27, 1 (2001), 58-93.
https://doi.org/10.1109/32.895989

Michael Rath, David Lo, and Patrick Méder. 2018. Analyzing Requirements and
Traceability Information to Improve Bug Localization. In Proceedings of the 15th
International Conference on Mining Software Repositories (Gothenburg, Sweden)
(MSR ’18). Association for Computing Machinery, New York, NY, USA, 442-453.
https://doi.org/10.1145/3196398.3196415

[52

[53

[54]

o
2

[56]

[57

[58

o
20,

[60

[61

[62

(63

[64]

[65

[66

Keim et al.

Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and Patrick Mader.
2018. Traceability in the Wild: Automatically Augmenting Incomplete Trace Links.
In Proceedings of the 40th International Conference on Software Engineering (ICSE
’18). ACM, New York, NY, USA, 834-845. https://doi.org/10.1145/3180155.3180207
Patrick Rempel and Parick Mader. 2017. Preventing Defects: The Impact of
Requirements Traceability Completeness on Software Quality. IEEE Transactions
on Software Engineering 43, 8 (2017). https://doi.org/10.1109/TSE.2016.2622264
Ralf H Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek,
Heiko Koziolek, Max Kramer, and Klaus Krogmann. 2016. Modeling and simulating
software architectures: The Palladio approach. MIT Press.

Alberto D. Rodriguez, Jane Cleland-Huang, and Davide Falessi. 2021. Leveraging
Intermediate Artifacts to Improve Automated Trace Link Retrieval. In 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 81-92.
https://doi.org/10.1109/ICSME52107.2021.00014

Per Runeson and Martin Host. 2008. Guidelines for conducting and reporting
case study research in software engineering. 14, 2 (2008), 131. https://doi.org/
10.1007/s10664-008-9102-8

Aaron Schlutter and Andreas Vogelsang. 2021. Improving Trace Link Recovery
Using Semantic Relation Graphs and Spreading Activation. In Requirements
Engineering: Foundation for Software Quality, Fabiano Dalpiaz and Paola Spoletini
(Eds.). Springer International Publishing, Cham, 37-53.

Aaron Schlutter and Andreas Vogelsang. 2021. Improving Trace Link Recovery
Using Semantic Relation Graphs and Spreading Activation. In Requirements
Engineering: Foundation for Software Quality, Fabiano Dalpiaz and Paola Spoletini
(Eds.). Springer International Publishing, Cham, 37-53. https://doi.org/10.1007/
978-3-030-73128-1_3

Marcelo Schmitt Laser, Nenad Medvidovic, Duc Minh Le, and Joshua Garcia.
2020. ARCADE: an extensible workbench for architecture recovery, change,
and decay evaluation. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1546-1550.

Kamal Souali, Othmane Rahmaoui, and Mohammed Ouzzif. 2016. An overview of
traceability: Definitions and techniques. In 2016 4th IEEE International Colloquium
on Information Science and Technology (CiSt). 789-793. https://doi.org/10.1109/
CIST.2016.7804995

Fangchao Tian, Peng Liang, and Muhammad Ali Babar. 2022. Relationships
between software architecture and source code in practice: An exploratory survey
and interview. Information and Software Technology 141 (2022), 106705.
Ryosuke Tsuchiya, Kazuki Nishikawa, Hironori Washizaki, Yoshiaki Fukazawa,
Yuya Shinohara, Keishi Oshima, and Ryota Mibe. 2019. Recovering transi-
tive traceability links among various software artifacts for developers. IE-
ICE TRANSACTIONS on Information and Systems 102, 9 (2019), 1750-1760.
https://search.ieice.org/bin/summary.php?id=e102-d_9_1750

Zhiyuan Wan, Yun Zhang, Xin Xia, Yi Jiang, and David Lo. 2023. Software Archi-
tecture in Practice: Challenges and Opportunities. arXiv preprint arXiv:2308.09978
(2023). accepted for ESEC/FSE 2023.

W. Wang, N. Niu, H. Liu, and Z. Niu. 2018. Enhancing Automated Requirements
Traceability by Resolving Polysemy. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). 40-51. https://doi.org/10.1109/RE.2018.00-53
Meng Zhang, Chuanqi Tao, Hongjing Guo, and Zhiqiu Huang. 2021. Re-
covering Semantic Traceability between Requirements and Source Code Us-
ing Feature Representation Techniques. In 2021 IEEE 21st International Con-
ference on Software Quality, Reliability and Security (QRS). 873-882. https:
//doi.org/10.1109/QRS54544.2021.00096

T. Zhao, Q. Cao, and Q. Sun. 2017. An Improved Approach to Traceability Recov-
ery Based on Word Embeddings. In 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). 81-89. https://doi.org/10.1109/APSEC.2017.14

https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1007/s00766-013-0199-y
https://doi.org/10.1007/s00766-013-0199-y
https://dl.acm.org/doi/10.5555/776816.776832
https://dl.acm.org/doi/10.5555/776816.776832
https://doi.org/10.1109/ICSE43902.2021.00118
https://doi.org/10.1109/ICSM.2012.6405269
https://doi.org/10.1109/MS.2013.60
https://doi.org/10.1109/MS.2013.60
https://doi.org/10.1145/1810295.1810435
https://aclanthology.org/L18-1008
https://doi.org/10.1109/ICSME.2019.00020
https://doi.org/10.1145/3377811.3380418
https://doi.org/10.1016/j.infsof.2012.01.005
https://doi.org/10.1016/j.infsof.2012.01.005
https://doi.org/10.1109/SST.2015.14
https://doi.org/10.1109/SST.2015.14
https://doi.org/10.1109/ICSM.2015.7332517
https://www.omg.org/spec/KDM/1.4/About-KDM/
https://doi.org/10.1109/CSMR.2013.29
https://doi.org/10.1109/ICSE.1994.296790
https://doi.org/10.1145/3550355.3552446
https://doi.org/10.1109/32.895989
https://doi.org/10.1145/3196398.3196415
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.1109/ICSME52107.2021.00014
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-030-73128-1_3
https://doi.org/10.1007/978-3-030-73128-1_3
https://doi.org/10.1109/CIST.2016.7804995
https://doi.org/10.1109/CIST.2016.7804995
https://search.ieice.org/bin/summary.php?id=e102-d_9_1750
https://doi.org/10.1109/RE.2018.00-53
https://doi.org/10.1109/QRS54544.2021.00096
https://doi.org/10.1109/QRS54544.2021.00096
https://doi.org/10.1109/APSEC.2017.14

