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Abstract
Artificial Intelligence (AI) is one of the most momentous technologies of our time. Thus, 
it is of major importance to know which stakeholders influence AI research. Besides 
researchers at universities and colleges, researchers in companies have hardly been 
considered in this context. In this article, we consider how the influence of companies on 
AI research can be made measurable on the basis of scientific publishing activities. We 
compare academic- and company-authored AI publications published in the last decade 
and use scientometric data from multiple scholarly databases to look for differences across 
these groups and to disclose the top contributing organizations. While the vast majority 
of publications is still produced by academia, we find that the citation count an individual 
publication receives is significantly higher when it is (co–)authored by a company. 
Furthermore, using a variety of altmetric indicators, we notice that publications with 
company participation receive considerably more attention online. Finally, we place our 
analysis results in a broader context and present targeted recommendations to safeguard a 
harmonious balance between academia and industry in the realm of AI research.

Keywords  Artificial intelligence · Impact quantification · Company influence · Industry-
academia collaboration

Introduction

Artificial intelligence (AI) research is a rapidly growing field of study that is likely to 
revolutionize both industry and society in the upcoming decades (Makridakis, 2017). 
Consequently, the leaders in AI research will play a significant role in shaping this 
revolution. It is therefore of great importance for academia, industry, government agencies, 
policy makers, and the general public to know which stakeholders have the most impact in 
this area.
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Traditionally, the academic field has focused primarily on basic research, education, 
and training, while the industrial field has engaged in applied research and development in 
commercially viable application areas. In the field of AI, however, these tendencies seem 
to have shifted in recent years (Gil & Selman, 2019; Littman, 2021). Many technology 
companies have massively invested into AI related research and development (Dernis et al., 
2019) and are now able to compete with the best academic research institutions—best illus-
trated by their increased presence in prestigious AI conferences such as the Conference 
on Neural Information Processing Systems (NeurIPS) and the International Conference on 
Machine Learning (ICML) (Ahmed & Wahed, 2020; Hagendorff & Meding, 2021). This 
is particularly remarkable as companies seem to have lowered their publication efforts in 
other disciplines (Larivière et al., 2018; Tijssen, 2004). In addition, it has been observed 
that publication activities among companies became more concentrated (Ahmed & Wahed, 
2020; Krieger et al., 2021). For instance, large language models such as GPT-3 were devel-
oped and trained with an entire research team at OpenAI in the background. Training 
GPT-3 took around one month and costed tens of million US Dollar.1 It is easy to imagine 
that such resources are not readily available to researchers in academia. As a consequence, 
many academics and policymakers call for a democratization of AI.

Existing approaches to evaluating the impact of corporate AI research fall short in 
several respects: Some researchers only analyze the number of publications as a proxy for 
research participation (Ahmed & Wahed, 2020; Zhang et  al., 2021) and hence disregard 
citations and the impact of research outputs. Other scholars rely on a single metric such as 
the average citation count (Klinger et al., 2020) or the median citation count (Hagendorff 
& Meding, 2021). In fact, a study suggests that there is no significant quality difference 
between academic and corporate research outputs in AI (Hartmann & Henkel, 2020). In 
addition, most scientists based their analysis on a limited set of pre-selected conference 
papers (Ahmed & Wahed, 2020; Hagendorff & Meding, 2021; Hartmann & Henkel, 
2020) and are thus neither comprehensive nor representative. Given these shortcomings, it 
follows that it is still largely unknown how the research quality and impact of corporate and 
academic AI research compare in recent years.

This article aims to provide an in-depth assessment of the impact of AI research 
conducted by companies and to compare academia- with company-authored AI 
publications2 using large scholarly datasets, such as the Microsoft Academic Graph,3 the 
associated Microsoft Academic Knowledge Graph,4 the Altmetric.com database,5 and the 
Global Research Identifier Database.6 Overall, we make the following contributions: 

1.	 We analyze the impact of AI research conducted by companies using large scholarly 
datasets and using a combination of citations and altmetrics.7

2.	 We disclose key contributors and topics concerning company-involved AI research.
3.	 We place our analysis results into a broader context and provide targeted 

recommendations for action for science, industry, and politics.

1  https://​www.​nytim​es.​com/​2020/​11/​24/​scien​ce/​artif​icial-​intel​ligen​ce-​ai-​gpt3.​html
2  In this article, we use the terms “publication” and “(research) paper” interchangeably.
3  https://​www.​micro​soft.​com/​en-​us/​resea​rch/​proje​ct/​micro​soft-​acade​mic-​graph/
4  https://​makg.​org/
5  https://​www.​altme​tric.​com/
6  https://​www.​grid.​ac/
7  Our source code and data is available online at https://​github.​com/​LazaT​abax/​AI-​Impact-​Scien​tomet​rics.

https://www.nytimes.com/2020/11/24/science/artificial-intelligence-ai-gpt3.html
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://makg.org/
https://www.altmetric.com/
https://www.grid.ac/
https://github.com/LazaTabax/AI-Impact-Scientometrics
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The upcoming sections are structured as follows: In Sec.  2, we outline related work. In 
Sec. 3, we describe how we created our dataset for analyzing the impact of companies on 
AI research, before presenting our methodology for data analyis in Sec. 4. Section 5 pre-
sents the results of our analyses. In Sec. 6, we discuss our findings. We conclude in Sec. 7.

Related work

In this section, we outline existing works on analyzing the impact of research quantitatively 
and qualitatively. We then describe how our analysis differs from existing works.

Analyzing research quantity

A report from the Joint Research Centre of the European Commission and the OECD 
identified the top corporate R&D investors (Dernis et  al., 2019). Not only did they 
display which of them published the most papers related to AI in the period from 2014 
to 2016, they also looked into which of them filed the most patents or registered the most 
trademarks. However, they did not put the contributions of these companies in relation to 
the contributions made by the academic field.

The annual Artificial Intelligence Index Report by Stanford University included such 
comparisons (Zhang et al., 2021). Among other things, the authors analyzed peer-reviewed 
papers related to AI from Elsevier’s Scopus database. They note that in every major country 
and region, the highest proportion of peer-reviewed AI papers comes from academic 
institutions. However, the second highest share differs across regions: In the United States, 
corporate-affiliated research represents 19.2% of the total publications, whereas in China 
(15.6%) and the European Union (17.2%), government institutions rank second in terms 
of publications. The authors also mention that corporate-academic collaboration has 
significantly grown in importance and popularity in the AI field (Zhang et al., 2021, p. 23). 
According to the authors, publications in AI research in general continue to grow at an 
increasing pace, and China overtook the United States for the share of AI journal citations 
for the first time. The US, on the other hand, are still ahead at AI conferences in terms of 
publications and citations (Zhang et al., 2021). The report provides a great overview over 
the field but does not delve further into the differences between corporate research and 
academic research.

Jurowetzki et  al. (2021) analyzed publication counts by company and non-company 
institutions. They detect an increased proportion of corporate publications in AI research 
in the 2010  s. They conclude that companies hold an increasingly important position 
in fundamental AI R &D. They collect evidence of the brain drain of researchers from 
academia to industry and find that researchers working in the field of deep learning and 
those with higher average impact are more likely to switch (Jurowetzki et al., 2021, p. 25).

The study settings of Ahmed and Wahed (2020) allowed the authors to analyze such 
differences in more detail. They also collected data through the Scopus database, but they 
focused on papers published at major AI and non-AI conferences. To classify affiliations, 
they used a fuzzy string matching and regular expressions (Ahmed & Wahed, 2020, p. 14). 
In addition, they differentiated between different company sizes and university rankings by 
combining their affiliation data with information from Fortune magazine and QS World 
University Rankings. Their findings show a clear upward trend in corporate representation 
at all major AI conferences, as well as increased cooperation between elite universities and 
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companies since the advent of deep learning. This is remarkable since companies seem to 
have lowered their publication efforts in other disciplines (Tijssen, 2004; Larivière et al., 
2018). Large technology companies and elite universities, with which they often work, 
have clear advantages in modern AI research, according to their reasoning. They argue 
that the underlying reason for this trend is the computational advantages of large compa-
nies, which they refer to as the “compute divide.” As a result, middle to low tier universi-
ties are effectively crowded out in AI as they lack access to such computational resources. 
Although their analysis shows that there has been an increase in the participation of com-
panies in AI research, this study only considers the publication quantity and does not eval-
uate the quality of the publications or more specifically their citation impact.

Analyzing research quality

Several researchers aimed for measuring differences in the research quality. Hagendorff and 
Meding (2021), for instance, analyzed 10,000 machine learning papers published between 
2015 and 2019 from three leading conferences, namely CVPR,8 NeurIPS,9 and ICML.10 To 
distinguish between the different affiliation types, the authors searched for a predefined set 
of academic and industry words in each paper’s full-text. Consistent with the previously 
discussed works (Zhang et al., 2021; Ahmed and Wahed, 2020), the authors also state that 
the absolute number of papers and the proportion of academia-industry cooperation papers 
is rising across-the-board. More importantly, however, the authors aimed to compare the 
“success” or “impact” (Hagendorff & Meding, 2021, p. 8) that papers had depending on 
their affiliation type. As an indicator for that, they used the median number of citations per 
publication. Their results show that there is a significant difference between academia and 
industry. Company papers from all considered years and conferences have higher median 
citations than purely academic ones. However, the effect seems to diminish over time, 
which is due to the fact that citations are typically slow to accumulate and thus generally 
lower for more recently published papers. Therefore, the authors admit that mere citation 
analyses may not be particularly credible for very recently published papers. In addition 
to their simple citation analysis, the authors looked for mentions of trending topics in 
machine learning, such as “adversarial,” “reinforcement,” “deep” or “convolution” in the 
papers. This provided insights into how early and how often such topics were to be found 
in pure academic, pure industry, and mixed papers. As it turned out, academic papers seem 
to be lagging roughly two years behind in such mentions compared to company papers 
(Hagendorff & Meding, 2021, p. 8). A similar analysis of social impact terms did not yield 
a significant difference between the groups.

Klinger et al. (2020) considered the research trajectory and topic diversity of published 
AI research and inspected the influence of private sector organizations in AI research. They 
based their analysis on a sample of around 90,000 pre-prints that were published in AI-
related categories on arXiv.org. Because arXiv does not hold curated records of affiliations 
or citations, they fuzzy matched the paper titles with the Microsoft Academic Graph and its 
authors with the Global Research Identifier Database. In contrast to other approaches, they 
only split their paper collection into two groups: papers with industry participation and 

8  Conference on Computer Vision and Pattern Recognition.
9  Conference on Neural Information Processing Systems.
10  International Conference on Machine Learning.
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papers without. They find that papers involving companies have higher median and average 
citations than those without company involvement, similar to Hagendorff’s results (Hagen-
dorff and Meding, 2021). Remarkably, this observation holds true even when accounting 
for the publication year, the number of institutions involved, and the topical composition of 
the papers (Klinger et al., 2020, p. 31). Thus, the authors concluded that AI research under-
taken by private companies is particularly influential. In addition, they also noted that the 
top collaborators with private AI researchers are elite institutions in the US.

Hartmann and Henkel (2020) analyzed (meta-)data of 15,000 articles from five AI 
conferences, covering the period of 2004–2016. They then manually distinguished between 
corporate and non-corporate institution types and split the articles into groups accordingly. 
Their findings suggest that the scientific quality of corporate publications is on average 
comparable to that of academic publications in AI, and that the increase in the number of 
corporate publications is not associated with a decrease in quality (Hartmann & Henkel, 
2020, p. 9). While the authors do not find significantly higher citation counts of industry 
papers as the two previously mentioned studies (Hagendorff & Meding, 2021; Klinger 
et  al., 2020), the period they considered differs from the one in our work. It is possible 
that in more recent years the citation patterns have indeed changed as we will show in 
Sec.  5. Hartmann and Henkel further argue that the main reason companies engage in 
fundamental AI research is the central role that data plays in their business models. Large 
tech companies typically create and own major data assets which gives them a comparative 
advantage in conducting AI research over universities (Hartmann & Henkel, 2020, p. 372).

Current shortcomings and own contribution

Although the studies mentioned above have provided valuable insights into the research 
trajectory of AI, a comprehensive scientometric analysis of the rise of corporate science 
has not been performed so far. Many researchers base their claim of the rise of corporate 
AI research merely on increased publication counts by the industry or on increased 
academia-industry collaboration patterns (Ahmed & Wahed, 2020; Hartmann & Henkel, 
2020; Zhang et al., 2021). These quantity comparisons can be judged as helpful, but they 
mostly measure scientific participation and not impact. Furthermore, the samples used 
in these analyses often consist of a relatively low number of publications taken from a 
few selected top conferences (Hagendorff & Meding, 2021; Hartmann & Henkel, 2020), 
completely disregarding publications from journals and smaller conferences. Consequently, 
these datasets may not be sufficiently representative for the entire field of study. Moreover, 
the performed impact measurements predominantly rely on average or median citation 
counts (Hagendorff & Meding, 2021; Klinger et  al., 2020), while other citation metrics 
may better describe the citation distribution (see Sec. 4). Furthermore, none of the existing 
works address the issue of time delay in citations. Particularly, recently published papers 
may not have had adequate time to accumulate citations, thereby hindering the observation 
of corresponding effects.

To address these issues and gain a deeper insight into how companies impact AI 
research, we work on the following improvements and extensions in this article: First, 
we incorporate considerably more venues and papers into our analysis while maintaining 
high data quality. Second, we better characterize the citation distribution by using other 
appropriate citation impact indicators. Third, we include altmetrics in our analysis because 
they capture impact in a timely manner and can provide a different perspective on impact.
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Dataset

In this section, we present the datasets used for analyzing the impact of companies on 
AI research. We outline our data sources in Sec.  3.1 and the data generation process in 
Sec. 3.2.

Data sources

We used the following data sources for our analysis:

–	 the Microsoft Academic Graph11 (MAG),
–	 the associated Microsoft Academic Knowledge Graph12 (MAKG),
–	 the Altmetric.com database13 (ALTM), and
–	 the Global Research Identifier Database14 (GRID).

In the following, we describe these data sources in detail.

Microsoft Academic Graph

The Microsoft Academic Graph (MAG) (Wang et al., 2020) is a large, heterogeneous graph 
containing metadata about millions of scholarly entities, such as publications, authors, 
institutions, and fields of study. We chose the MAG15,16 over other scholarly databases for 
the following reasons:

First, the MAG covers more publications than comparable databases like Scopus, Web 
of Science, Dimensions, and CrossRef, as a recent study confirmed (Visser et al., 2021). 
The used MAG version contains metadata of more than 260 million publications across 
all scientific domains and nearly 27 million computer science papers specifically. Unlike 
databases like Scopus, which mainly focus on peer-reviewed journal articles, the MAG 
also contains many conference proceedings, book chapters, patents etc. from the last 
few decades. To study the AI discipline, in which researchers often prefer to publish in 
conferences or online-archives rather than journals, a broad coverage of documents in the 
data is valuable (Visser et al., 2021).

Second, the MAG provides bibliometric data suitable for citation analysis. Its coverage 
of citations is better than that of Scopus and Web of Science and comparable to that of 
Google Scholar (Harzing & Alakangas, 2017). The main advantage of using the MAG over 
Google Scholar for a full-fledged bibliometric analysis is that the MAG also provides rich 
metadata about authors and affiliations (Hug et al., 2017).

11  https://​www.​micro​soft.​com/​en-​us/​resea​rch/​proje​ct/​micro​soft-​acade​mic-​graph/
12  https://​makg.​org/
13  https://​www.​altme​tric.​com/
14  https://​www.​grid.​ac/
15  We used the latest MAG data dump version that was available at the start of our data analysis (July 
2021).
16  OpenAlex (https://​opena​lex.​org/) is a current attempt to maintain and improve the data previously avail-
able at the MAG. However, at the time of our data analysis, OpenAlex was not yet available to the extent 
that it is today. According to our research, OpenAlex has no significant improvements in AI paper coverage.

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://makg.org/
https://www.altmetric.com/
https://www.grid.ac/
https://openalex.org/
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Global Research Identifier Database

The Global Research Identifier Database (GRID) is an openly available, global database of 
research-related organizations.17 It provides unique and persistent identifiers, along with 
metadata, for more than 100,000 curated records of organizations.

Our MAG data features GRID identifiers for most affiliations. This allows us to con-
nect affiliations with their respective GRID entries. Linking the MAG affiliations to GRID-
IDs is important for our analysis, because it enables us to retrieve the organization type of 
given affiliations—knowing if an institution belongs to academia or industry. GRID distin-
guishes between education, healthcare, company, archive, nonprofit, government, facility, 
and other as types of organizations.18 For our analysis, we focus on the entries labeled as 
either company or education:

–	 Research producing institutions are categorized under education if they have the ability 
to grant degrees. This typically includes faculties, departments, and schools. They 
represent academia.

–	 Company organizations, on the other side, are defined as private business entities with 
the aim of gaining profit. They represent the industry.

Since links between the MAG and GRID already exist, manual mapping or string match-
ing, as required in other related work, is unnecessary.

Altmetric database

The Altmetric database is one of the largest altmetric data providers currently available 
(Robinson-Garcia et al., 2014). It contains high quality data related to mentions of scientific 
publications on the web, including social media. Operating since 2012, altmetric.com has 
been monitoring a range of non-traditional sources. Today, the Altmetric database contains 
191 million mentions of over 35 million research outputs (including journal articles, 
datasets, images, white papers, reports and more).19 The sources include public policy 
documents, blogs, mainstream media articles, faculty opinions, and social media posts. 
Altmetric.com also collects the number of online readers on platforms such as Mendeley. 
However, these values are not used for the attention score.

The Altmetric attention score is a sophisticated score based on all online mentions 
a research output has received from these sources. It is automatically calculated and 
weights mentions depending on three main factors: volume, sources, and authors.20 First, 
the score increases with the number of people mentioning a given publication. Notably, 
only one mention per person per source is counted to prevent individuals with multiple 
postings about a paper influencing the score. Second, mentions from different sources are 
weighted differently. To illustrate, a newspaper article contributes more than a blog post 
which contributes more than a tweet. Third, the author of an online mention also plays 
a role in how it contributes to the score. Altmetric.com looks on the frequency someone 

17  Similar to Microsoft Academic, the GRID is not being continued from 2022 on. It has also received an 
open-access successor database which built on its data named Research Organization Registry (ROR).
18  https://​www.​grid.​ac/​pages/​polic​ies
19  https://​www.​altme​tric.​com/​about-​our-​data/​how-​it-​works-2/
20  https://​www.​altme​tric.​com/​about-​our-​data/​the-​donut-​and-​score/

https://www.grid.ac/pages/policies
https://www.altmetric.com/about-our-data/how-it-works-2/
https://www.altmetric.com/about-our-data/the-donut-and-score/
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mentions scholarly articles, whether there is any bias towards a particular journal or 
publisher, and who the audience is. For instance, a physician sharing a link to a study with 
other physicians counts significantly more than a journal account pushing the same link 
automatically. Robinson-Garcia et al. (2014) conclude that Altmetric.com is a transparent, 
rich and accurate tool for altmetric data. For our analysis, we rely on the Altmetric API 
provided for research purposes.

Microsoft Academic Knowledge Graph

The Microsoft Academic Knowledge Graph (MAKG) is a large dataset with informa-
tion about scientific publications and related entities (Färber, 2019). It was built on the 
basis of the MAG data and contains additional and revised metadata about scholarly enti-
ties (Färber & Ao, 2022). MAKG’s revised version features tags for publications, offering 
more detailed information about the respective areas of research. Extracted from the pub-
lications’ abstracts and filtered using the TextRank algorithm, these tags extend the field 
of study labels given in the MAG. They enable us to glean additional insights into the 
research focus of given AI papers.

Dataset creation

A schematic overview of our data generation approach is given in Fig. 1. Overall, we per-
form the following steps: (1) identifying relevant papers, (2) merging paper and affiliation 
metadata, (3) grouping papers into three disjoint groups, (4) applying venue and time fil-
ters, (5) enriching the resulting sample with altmetric information, (6) and retrieving key-
words from it. In the following, we describe these steps in more detail. 

1.	 Identifying relevant papers: The primary objective of the initial step is to gather meta-
data for relevant publications. Since our focus is on analyzing papers related to AI, we 
need to identify the papers within the MAG database that pertain to AI research. How-
ever, there are two challenges in determining which publications fall under the broad 
scope of AI. Firstly, AI research intersects with various other scientific disciplines, mak-
ing it difficult to establish clear boundaries. For example, disciplines like neuroscience or 
statistics share overlapping areas with AI, and the distinctions may not be well-defined. 
Secondly, it is unclear whether papers that utilize AI methods without directly contrib-
uting to AI knowledge should be included in our analysis. Some publications in fields 
such as finance or contemporary art may employ existing machine learning techniques 
without making significant contributions to the AI domain itself. Every paper in the 
MAG database is already associated with one or more fields of study, thanks to Micro-
soft’s assignment procedure outlined by Sinha et al. (2015). The assignment involved 
using “seed” papers as a starting point, which were either known to belong to a specific 
field or had relevant keywords in their titles. Additional papers were then identified as 
candidates based on their similarity to the top N related papers within a given field. 
The confidence score of related papers within a specific field increased based on their 
interconnectedness with other papers in that field. The described assignment procedure 
and the possibility of assigning multiple fields of study to a paper help resolve the two 
challenges mentioned earlier. Assigning multiple fields of study to a paper enables us to 
include papers that belong to AI as well as other relevant domains such as mathematics. 
Additionally, the counting of connections a paper has to other papers within a particular 
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field addresses the second challenge. This means that a paper that primarily applies AI 
methods to unrelated topics should either be excluded from the candidate list or assigned 
a very low confidence score. Utilizing the MAG’s integrated field of study categoriza-
tion, we can specifically employ the field of study ’Artificial Intelligence’ within the 
field of study ’Computer Science’. It is the sixth largest second-level field, comprising 
over 4.4 million papers. However, for increased data quality, we chose to exclude papers 
with a confidence score21 of exactly zero, as this helps avoid the inclusion of potentially 
misassigned papers in the AI field.22

2.	 Merging paper and affiliation metadata: In a second step, we combine the metadata from 
the identified papers with the metadata about the institutions of the papers’ authors. As 
described in Sec. 3.1.1, the MAG assigns affiliations to authors and authors to papers. 
Hence, we can link papers via authors to affiliations (see Fig. 2). Notably, more than half 
of the (co-) authors (and thus about a quarter of the papers) had no information on their 
affiliation specified in the MAG; also, about 20% of authors who had an affiliation entry 
cannot be mapped to a corresponding GRID entry. Ultimately, we obtain 7700 unique 
affiliations associated with AI-research, linked to 315,000 papers, which is about 60% 
of the papers from Step 1.

3.	 Grouping papers into three disjoint groups: Third, we match the metadata of publications 
and affiliations with the information about the organization types found in GRID. This 
allows us to split institutions (and thus papers) into a company group and an education 
group. About 5,500 of the 7,700 research organizations were identified as education 
types, 530 as company types. Note that there are plenty of papers co-written by authors 
from companies and from academia that can be found in both groups. This unclear 
distinction might skew results in either direction. Hence, we decided to put all papers 
that could be found in both groups into a separate third group. Similar to Hagendorff 
and Meding (2021), we call this mixed group the cooperation group, which leaves us 
with three disjoint groups of papers. In the simplified examples of Fig. 2, paper 1 would 
be considered an education paper, paper 2 a cooperation paper, and paper 3 a company 
paper.23

4.	 Applying venue and time filters: Before performing our citation analysis, we filter the 
remaining 230,000 papers in two ways. First, we exclude all papers not published in 
journals or conferences. This is necessary in order to ensure comparability across the 
different proportions of document types across groups. Academic institutions almost 
exclusively publish journal articles and conference proceedings (over 90% of papers). 
Companies’ publications on the other hand include a significant amount of patents 
among other things (over a third of their documents). Since journal and conference 
papers have higher citation rates than other types of documents, this filter should in 

22  The confidence values between 0 and 1 are not evenly distributed. Among the 520,000 articles with a 
confidence value greater than zero, 99.998% have a value between 0.2 and 0.5. Therefore, we consider a 
threshold of 0.5 inappropriate for our scenario. Even if we were to set a threshold of 0.2, only 10 additional 
papers would be included in the sample.
23  If an author is employed at both a university and a company, we considered both affiliations and cat-
egorized all of these papers as collaborative papers. Upon reviewing our dataset, we discovered that only 
18 papers had an author with both a corporate and an educational affiliation. However, since these papers 
included other (co-)authors with one of the respective affiliations, they would have been classified as col-
laborative papers regardless.

21  This score ranges between zero and one and indicates the confidence of the field of study assignment, 
see https://​docs.​micro​soft.​com/​en-​us/​acade​mic-​servi​ces/​graph/​refer​ence-​data-​schema#​paper-​fields-​of-​study.

https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema#paper-fields-of-study
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theory prevent this disparity potentially benefiting academia. Second, we additionally 
exclude papers which were published before 2012. This has several reasons. The sim-
plest one is that our main focus lies on the last decade of AI research. Additionally, 
recent developments such as the deep learning hype have their origins in the ImageNet 
Challenge from 2012 (Alom et al., 2018; Ahmed & Wahed, 2020). Moreover, a practical 
reason for choosing only papers from 2012 on is that Altmetric has only been established 
and has collected data from this year onwards. We call the resulting filtered dataset the 
citation dataset (see Fig. 1). It consists of about 72,000 pure education papers, 3800 
cooperation papers, and 1500 pure company papers.

5.	 Enriching the resulting sample with altmetric information: Furthermore, based on the 
papers from the previous dataset, we create an altmetric dataset with altmetric indicators 
included (see Fig. 1). For integrating the altmetric data into this dataset, we query 
the Altmetric API and match about 17% of the selected papers using their DOI. The 
relatively low matching proportion is to be expected and is in line with previous attempts 
(Robinson-Garcia et al., 2014) due to the fact that Altmetric does not create entries for 
unnoticed papers. This approach enables us to study the similarities and differences 
between citation-based indicators to altmetric ones for the considered AI papers.

6.	 Retrieving keywords: At last, we access paper tags from the MAKG. Since the MAKG 
features up to five tags per paper, we are able to compile a list of over 300,000 tags 
attributable to papers from our citation dataset. As these tags can be interpreted as 
papers’ keywords, we name the resulting dataset keyword dataset (see Fig. 1). We also 
prepare two other paper samples through Step 1 to 4 to compare their citation distribu-
tions. The first one consists of AI papers published in five major AI conferences as in 
Hartmann and Henkel (2020), to reproduce and compare with the results of our main 
citation dataset. In the following we refer to it as the conference sample. Secondly, we 
are interested in non-AI papers to examine whether observed patterns are unique to 
the field of AI. For this, we perform the same data processing steps to papers from the 
unrelated field of electrical engineering. We refer to it as the non-AI sample.

Fig. 1   Schematic overview of the dataset creation pipeline
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Data analysis

In our data analysis, we use several measurements for quantifying the impact of AI 
research that we want to explain in greater detail in this section. First of all, we show 
how we approach the citation analysis in Sec. 4.1. In Sec. 4.2, we describe our use of 
altmetrics to measure a different dimension of impact. Finally, Sec.  4.3 outlines our 
method to analyze common AI research topics of academia and the industry. We con-
duct the analysis outlined in this section using Python, utilizing in particular the librar-
ies pandas, scipy, and pyaltmetrics.

Citation analysis

We start the citation analysis with comparing basic citation-based metrics like average 
citations and average citations per year that are calculated for each of the three groups 
education, company, and cooperation independently. For measuring the differences 
between groups more appropriately, we apply percentile ranks and derive a weighted 
score from them. To validate the statistical significance of our results, we also apply 
significance tests. At last, we highlight top research organizations and their relative con-
tributions in terms of publications and citations.

In the following we explain the statistical methods used in the analysis: In Sec. 4.1.1 
we briefly mention our outlier detection method, in Sec. 4.1.2 we discuss the percentile 
rank approach, and in Sec. 4.1.3 we explain the significance tests in use.

Fig. 2   Exemplary paper-author-
affiliation combinations
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Outlier detection

Citation distributions are typically highly skewed, meaning that the vast majority of papers 
receive little to no citations while a small fraction of successful papers gets cited very fre-
quently. To analyze whether such very successful papers distort our citation metrics, we 
for once exclude outliers and look into the metrics of the remaining papers. Following a 
standard method for detecting statistical outliers (Yang et al., 2019), we define upper outli-
ers as being above Q3 + 1.5 ∗ IQR , with Q3 being the 75th quantile and IQR the interquar-
tile range – the difference between the 25th and 75th percentile in the sorted list of a given 
sample. In our citation dataset, this applies to about 17.5% of papers which received more 
citations than the group-specific outlier threshold.

Percentile ranks

As citation distributions are typically highly skewed, arithmetic averages alone are not 
well suited for citation analyses. Scientometricians argue, therefore, that percentiles are an 
important alternative to such average-based indicators for obtaining a normalized citation 
impact of publications (Bornmann et al., 2013). With percentile ranks, the citation score 
of each paper is rated in terms of its percentile in the total citation distribution-the 0th 
percentile being the lowest and the 99th percentile being the highest in citations. One can 
obtain percentiles from a set of numerical data by arranging it in ascending order and then 
splitting it into 100 groups of the same size.

There are two variants of the percentile rank approach: one with 100 rank classes 
(PR(100)), and one with 6 rank classes (PR(6)). The PR(6) method with 6 classes 
(Leydesdorff et  al., 2011) rewards highly cited papers stronger than the PR(100), which 
is desirable for highly skewed distributions. The PR(6) score has been widely used, such 
as by the National Science Foundation (Leydesdorff et al., 2011). It also has the highest 
correlation with conventional indicators. For these reasons, we use it for the analysis.

To apply the PR(6) method, we split our paper collection into six classes:

–	 Rank 1: Bottom-50%: papers with a percentile less than the 50th percentile;
–	 Rank 2: 50th-75th: papers within the [50th; 75th) percentile interval;
–	 Rank 3: 75th-90th: papers within the [75th; 90th) percentile interval;
–	 Rank 4: 90th-95th: papers within the [90th; 95th) percentile interval;
–	 Rank 5: 95th-99th: papers within the [95th; 99th) percentile interval;
–	 Rank 6: Top-1%: papers with a percentile equal to or greater than the 99th percentile.

Each paper that we want to analyze is assigned to one of these classes. The thresholds that 
define the class intervals are calculated from the aggregation of all papers. Afterwards, each 
set of papers receives a mean percentile rank score by weighting the relative frequencies 
(i.e., probabilities) p(x) in each set with their class rank x, as follows:

This means that papers that are, for instance, in the 80th percentile weigh three times as 
much as papers in the 40th percentile. The lowest possible score a set can receive is 1, for 

(1)R(6) =

6
∑

x=1

x ∗ p(x)
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the case when all papers are in the bottom class. The highest score is 6 in the event that 
every paper gets placed in the top-1% class.

With this score we can evaluate whether the citation count of a given subset of papers 
is above or below a certain level. The expected value for the case of random attribution 
equals:

Statistical significance tests

To test the statistical significance of found differences, we use non-parametric tests, since 
they do not require us to make assumptions about the distributions at hand (e.g., assump-
tion of a normal distribution or homogeneous variance in the subsamples). Non-parametric 
tests, as suggested in Leydesdorff et al. (2011), work well with citation distributions, which 
are typically highly skewed. First, we test whether differences among the subsets under 
study are significant using the Kruskal-Wallis rank variance test (Kruskal & Wallis, 1952). 
If the null hypothesis is not rejected (i.e., no significant differences among the sets are 
found), then the analysis ends because it is not relevant to test further. In the other case, 
one can test for pairwise differences using the Mann–Whitney’s U test (Mann & Whitney, 
1947) on each two subsets. We define a difference to be statistically significant when the 
p-value of the Kruskal-Wallis test is lower than the � = 0.05 level, or lower than the Bon-
ferroni adjusted � = 0.0167 level when performing the three pairwise Mann–Whitney U 
tests on the subsets.24

Altmetric analysis

We follow a similar procedure with the attention scores of the matched paper sample from 
the Altmetric database. First, we analyze the basic statistics of the attention scores. Second, 
we apply the PR6-method and test for statistical differences across the groups. Third, we 
compare citation counts, attention scores and other altmetrics of papers to investigate the 
relationship between them. Besides correlation, we are interested in the question of whether 
either group has some inherent bias towards more attention from fellow scholars (expressed 
by citations) or more attention from the public on the internet (expressed by altmetric 
attention score). To analyze this, we use the framework proposed by Williams (2022) that 
categorizes papers into three cases given their relative strength in the mentioned metrics:

(2)1 ⋅ 0.50 + 2 ⋅ 0.25 + 3 ⋅ 0.15 + 4 ⋅ 0.05 + 5 ⋅ 0.04 + 6 ⋅ 0.01 = 1.91

24  We also evaluate if the absence of keywords (i.e., not fields of study) would pose an issue, considering 
both the number of affected articles and any bias in company involvement between articles with and with-
out keywords. Our examination reveals that articles lacking keywords accounted for a mere 0.04% of the 
total articles we analyze. Additionally, these articles demonstrate a comparable level of company involve-
ment to those with keywords, with an average company involvement of 7.4% compared to 9.4%. Based on 
these findings, we assert that the data used in our study is representative and reliable. To address concerns 
regarding potential variations in keyword semantics and their impact on our results, we can emphasize three 
key points. Firstly, our study focuses exclusively on AI as a restricted domain, minimizing the need for dis-
ambiguation of words. Secondly, we have identified only eight distinct AI subfields, such as machine learn-
ing and AI ethics, having rather non-overlapping topics. Thirdly, we employ a diverse range of keywords, 
including synonyms, for each AI subdomain.



	 Scientometrics

1 3

–	 Exceptionals highest scores in both citation count and altmetric attention score;
–	 Scholars top in citations and lowest in altmetrics; and
–	 Influencers top in altmetrics and lowest in citations.

Williams defined papers as top performing on a given metric if they land in the top 
20%; conversely, low performing papers on a given metric are papers in the lowest 20%. 
According to William’s study, scholars’ papers are rather technical, jargonistic, specific 
and unappealing while influencers’ papers are rather non-technical, large-scale, pragmatic, 
relatable and appealing. Exceptionals, on the other hand, combine the advantages of both 
sides.25

Intuitively, we anticipate academic papers to be more likely to land in the category of 
scholars as they, in theory, focus more on basic research that is more valuable to other 
researchers. Papers where the industry is involved, on the other hand, should in theory be 
more relevant for a wider audience, represented by the category influencers, since they 
traditionally perform more applied research. There should be no significant difference in 
the category exceptionals if we assume similar levels of research quality across our groups.

Subfield analysis

For our subfield analysis, we match our given list of paper keywords with the controlled 
vocabulary of AI by Duran-Silva et  al. (2021). It describes an extensive and expert-
validated list of terms for the following AI subdomains: 

1.	 General,
2.	 Machine Learning,
3.	 Computer Vision,
4.	 Natural Language Processing,
5.	 Knowledge Representation and Reasoning,
6.	 Distributed Artificial Intelligence,
7.	 Expert Systems, Problem-Solving, Control Methods and Search
8.	 AI Ethics

To analyze common research topics across groups, we measure the share of matched 
keywords in above mentioned subfields from company-involving papers.26 If this share is 
higher in a given subdomain than in the total average of all matched keywords, we consider 
that this subfield is of higher research focus for the industry.

Results

Firstly, we present the results of our citation analysis of industry, academic, and academic-
corporate collaboration papers in Sec. 5.1. Secondly, we analyze the impact of AI papers 
across these groups based on altmetrics in Sec. 5.2. Thirdly, we use the paper keywords to 
investigate the research focus of the three groups in Sec. 5.3.

26  Company-involving papers are the union of pure company and cooperation papers.

25  For the full list of characterisics see Williams (2022, p. 7).
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Citation analysis

The bibliometric data in the MAG provides insights into the citation impact of published 
AI research. As stated in Sec. 3, we start with around 230,000 papers, that we split into 
the affiliation groups of education, company and cooperation according to their entry in 
GRID.

Citation statistics

First of all, we investigate the effects the filters from data preparation step 4 have on cita-
tions across our three disjoint groups. In Fig. 3 we directly compare the groups in terms 
of average citations per paper. We see that there are already visible differences in average 
citations in the unfiltered sample. Cooperation papers have a clear lead in average citations. 
In fact, AI papers co-written by university and company departments earn over 50% more 
citations as pure company papers and three times as many as pure university papers.

The middle and right part of Fig.  3 show the effect the two filters applied in 
preparation step 4 have on our groups. There, we can see that papers across the board 
have slightly higher average citations when only publications from journals and 
conferences are included. As predicted, this effect is even stronger for the average 
number of citations of company papers which feature a lot of patents in the unfiltered 
sample (59.3 vs. 40.0 citations on average). Their papers were cited almost 50% more 
often on average after applying the venue filter.

Additionally filtering out papers written before 2012 reveals further noteworthy 
results. While citations in education-type papers fell according to our expectations, 
they increased considerably in company-type papers. As expected, an AI research paper 
authored by an university after 2012 received less citations on average than an older 
paper. Corporate AI papers, on the other hand, received on average significantly more 
citations per paper after 2012. In fact, pure company papers reached an average of 83.6 
citations per publication, which is almost 5 times the amount of citations an academic 
paper received. They even outperformed the cooperation papers, which follow close 
behind with 70 citations on average.

Admittedly, the above mentioned differences in average citations are not 
representative for the whole citation distribution. Highly cited outlier papers distort 
these numbers in a major way. For example, a famous 2014 paper from the University 
of Toronto titled “Dropout: a simple way to prevent neural networks from overfitting” 
has been cited almost 20,000 times. In 2018, researchers from Google published a very 
successful AI paper named “BERT: Pre-training of Deep Bidirectional Transformers 
for Language Understanding” with more than 15,000 citations according to our dataset 
(which explains that year’s slight bump in Fig. 5).

To evaluate the robustness of these findings, we for once exclude those outliers and 
visualize the distribution of the remaining data points across groups as boxplots. Figure 4 
shows that the differences across groups still hold, even if such outlier papers are excluded. 
As we can see, most papers in all groups receive either zero citations or citations in the 
single digit area. Nevertheless, company papers and cooperation papers have their boxes 
shifted upwards. Cooperation papers in particular show a substantially higher median 
count and upper quartile. This suggests that the previously described effects are notably 
robust and show up even when disregarding exceptionally successful outlier papers.
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Moreover, we look into the average number of citations per year to capture time-
dependent effects (see Fig. 5). We observe that in 2012 citations across the three groups 
were nearly identical. Company and cooperation papers only started having higher aver-
ages since 2013. The clear peak, however, is reached in 2015. There, papers from pure 
companies averaged about 300 citations and academic-industry collaboration papers 
200 citations, which are outstanding numbers. Papers written entirely at universities at 
the same time receive only 21 citations. Overall, their mean citation counts remain quite 
stable around the mark of 20 throughout the years and thus always beneath their coun-
terparts with industry involvement. As expected, citations drop for newer papers across 
the board and as a result the differences diminish over the last 3 years.

Percentile rank results

We also make use of the PR-6 approach to measure the impact of AI papers. We split 
the citation dataset papers into the 6 percentile classes according to their standing in the 
ordered list of papers and evaluate the share of papers from each group that get assigned to 
the classes (see Fig. 6). The shares these charts depict can be interpreted as the probability 
that a random paper from a particular group will end up in a percentile class. The expected 
share of a randomly drawn paper from the aggregated sample is marked with a dotted refer-
ence line (e.g., 25% of papers are expected to land in the 50th-75th percentile class and so 
on). As we can see in the ’bottom 50%’ class, the share is higher for education-type papers, 
lower for company papers, and lowest for cooperation papers. This, however, only holds 
true for the first two classes, which contain papers with relatively low citation impact. 
From the 75th to 90th percentile class and onwards this tendency reverses. Papers written 
by universities are underrepresented in the upper classes and papers written by the industry 
or in academia-industry collaboration are clearly overrepresented. This effect increases the 
higher the percentiles get. In the top 1% class, the share for company papers even exceeds 
that of cooperation papers.

Furthermore, we calculate the weighted percentile rank score (see Sec. 4.1.2) of each 
group given formula (1). Since the education group makes up the vast majority of papers 
in our sample, it yields almost precisely the expected score of 1.91 as in the formula (2). 
Company papers, on the other hand, produce a score of 2.34 and cooperation papers 2.67.

To compare our results with other paper selection approaches from the literature 
(Ahmed & Wahed, 2020; Hagendorff & Meding, 2021; Hartmann & Henkel, 2020), we 
prepare and analyze a smaller conference sample with papers from 5 major AI conferences 
with our MAG data. The resulting citation metrics are depicted in Table 1. As can be seen, 
the averages and PR6-scores from industry-involving publications are comparable to the 
ones from our citation dataset, except that the average and median of papers from aca-
demia are slightly higher. That latter fact is not surprising, since we expect papers that are 
accepted in the most prestigious conferences to be cited more frequently. However, this 
also shows that the inclusion of additional conference and journal papers in the citation 
dataset results in a larger difference in citation metrics across the groups.

It follows that industry-involving publications in AI conferences have a higher citation 
impact than academic ones, but the magnitude of the effect is smaller than that of our cita-
tion dataset, which also features journals and less prestigious conferences. To evaluate 
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whether this tendency holds true for an unrelated field of study, we also applied it on our 
non-AI sample consisting of electrical engineering papers.27

Further, we statistically tested the significance of the observed citation differ-
ences across the groups. The null hypothesis of the Kruskal-Wallis, that there are no 

Fig. 3   Average citations for 
papers across groups

Fig. 4   Number of citations across 
groups without outlier papers

Fig. 5   Citation counts per paper 
across the groups from 2012-
2021

27  The same data preparation steps, filters, and analysis methods are used as in our citation dataset. As the 
metrics in Table 2 show, we cannot observe a clear difference between papers from academia and the indus-
try in citation counts for electrical engineering. Only, the cooperation papers seem to have a slight edge 
over the other groups.
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differences in our citation dataset, does not hold (p-value ≪ 0.001 ) and thus we contin-
ued with pairwise Mann–Whitney-U tests. They showed that both company and coop-
eration papers have significantly higher citations than education-type papers (p-value 
≪ 0.001 ). Remarkably, cooperation papers also show a significant difference to com-
pany papers (p-value ≪ 0.001 ). Given the above, we can confidently say that the cita-
tion impact of academia-industry collaboration papers is higher than that of pure com-
pany papers, which in turn have a higher impact than purely academic ones. The tests 
for our conference sample are in line with the tests of our citation dataset as they prove 
to be statistically significant as well.

On the contrary, the Mann–Whitney-U tests of our non-AI sample could not show 
significantly different citations numbers between education and company papers in 

Fig. 6   Share of papers per group in the percentile rank classes in relation to the expected share

Table 1   Citation statistics of AI 
conference papers

Group Paper Count Mean Median Max Std PR6

Education 19.8k 24.26 5.00 42,481 349.06 1.88
Company 1.2k 80.09 5.00 13,138 633.08 2.11
Cooperation 3.3k 37.60 8.00 2819 141.23 2.21

Table 2   Citation statistics of 
engineering papers

Group Paper Count Mean Median Max Std PR6

Education 110k  8.34 2.00  2303  30.88 1.98
Company 6k 7.37 2.00 722 22.82 1.95
Cooperation 6k 9.94 3.00 427 20.43 2.24
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either direction, hinting on the fact that the AI research field is unique in this regard. 
There, only cooperation papers are significantly better in attracting citations than the 
other groups.

Top research organizations

As observed earlier, the citation distribution is highly skewed, with some papers receiv-
ing thousands of citations, while others do not get recognized at all. To identify which 
organizations impact the field the most, we take a look at the upper end of the top research 
producing organizations by publication and citation count.

Starting with the contributions of the research institutions that were labeled as educa-
tion types, we identified almost 4,000 of them publishing in sum over 67,800 papers on 
the topic. Unsurprisingly, some academic research institutions publish significantly more 
AI articles than others. For instance, the Carnegie Mellon University, Tsinghua Univer-
sity, Massachusetts Institute of Technology, and Peking University are each responsible for 
over 500 articles, while there are many universities publishing only sporadically ( x0,5 = 4, 
x = 17 ). In Fig. 7, the top ten AI-article producing universities are depicted in descending 
order. Apart from the aforementioned four, the list follows with four Chinese universities, 
namely, Zhejiang University, Beihang University, Sun Yat-sen University, National Uni-
versity of Defense Technology, and has the Georgia Institute of Technology from the US 
and the Nanyang Technological University from Singapore in between. All of them have 
published 320 to 420 AI-articles respectively in the last decade.

The slope is even steeper for AI-papers authored by companies only. Figure 7 shows 
that even within the top ten of companies there are clear differences in publication counts. 
Google leads the board by a wide margin with 222 published papers followed by IBM with 
150, Microsoft with 110, and Facebook with 80. The rest of the top ten features Samsung, 
Intel, Huawei, Amazon, Baidu and Adobe Systems28 who are responsible for over 260 arti-
cles in sum. The majority of the other 160 companies included in the dataset have pub-
lished significantly less AI research ( x0,5 = 2, x = 9).

However, if we want to measure which research organizations have the greatest impact 
on the scientific community, we need to look at aggregated citations. Therefore, we 
selected the top ten academic and industry institutions in terms of citations and ranked 
them in descending order (see Fig. 8). On the academic side, we now have a clear winner in 
terms of the highest overall citation count of their AI papers: the University of California, 
Berkeley with over 53,000 citations. Most Chinese universities from the top ten by paper 
count have been replaced in the top ten by citation count either by other American univer-
sities, namely Stanford University and the University of Washington with around 16,000 
and 15,000 citations respectively, or by the British universities of Oxford and Cambridge 
with around 20,000 and 14,000, respectively. The University of Toronto is also worth men-
tioning in second place with a total of over 25,000 citations.

Google has by far the highest citation impact from the industry side, as can be seen in 
Fig. 8. In fact, with over 74,000 total citations, Google even surpasses the top universities 
from our list. Microsoft is in second place with nearly 17,000 citations, followed by Face-
book/Meta with just under 10,000. Nvidia, IBM, and Apple papers have collected about 

28  The mentioned company names are directly derived from the MAG and may not represent their correct 
legal name, e.g., ’Google’ refers to its parent company Alphabet Inc. which also includes DeepMind, and 
’Facebook’ is now officially called Meta Platforms Inc., etc.
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4000, 3000 and 2000 citations, respectively, in that order. The top ten continues with Intel, 
Adobe Systems, Valeo and Tencent. Remarkably, the top eight of the list were all Ameri-
can tech companies, followed by a French automotive supplier and a Chinese technology 
holding company.

Starting from all companies that have published AI papers, we looked at which 
companies are the most represented in terms of the number of publications and the number 
of citations of their publications (see Fig. 9). While Google researchers produced nearly 1 
out of 7 of the industry’s AI papers, they received the majority of the citations. Together 
with Microsoft and Facebook, the proportion of the total citations adds up to almost 80%. 
This illustrates the high concentration of corporate research and its dependence on a few 
tech companies, as highlighted by Ahmed and Wahed (2020).

If we exclude papers authored by Google from our citation dataset, we find that the 
citation average of company papers is more than halved ( x0,5 = 5; x = 41.3 ) compared to 
the results in Sec. 5.1.1, which reinforces the great impact of their publications. However, 
company papers still outperform university papers ( x0,5 = 3; x = 17.23 ), thus the observed 
difference does not solely rely on one company. Even when excluding the top-3 AI-research 
producing companies, a considerable difference between company and education papers 
still persists, but admittedly on a smaller scale ( x0,5 = 4; x = 24.3).

Altmetric analysis

After mapping papers from our citation dataset from the MAG to the Altmetric database 
we are able to retrieve around 13,000 papers with valid entries in both databases. In this 
section, we show the results of the altmetric analysis given this data.

Attention score statistics

Starting with Altmetric.com’s main metric, the (online-)attention score, we look into simi-
larities and differences in the altmetric dataset. The resulting descriptive statistics are sum-
marized in Table 3. All groups share the same median score of 3. On average on the other 
hand, education and cooperation papers receive a score of around 12. This indicates a heav-
ily skewed distribution with some papers receiving really high attention while the majority 
receives little to no attention according to the Altmetric.com score, similar as with citation 
counts. Company papers receive more than twice the attention score on average compared 
to papers from the other groups, with a mean score of 28.6. Notably, this exact number has 
to be taken with care, since the subset of company papers is less extensive and hence shows 
substantially more variance and standard deviation than the others.

The difference between cooperation papers and education papers is not apparent when 
looking at the median or average scores. To more robustly compare the differences across 
groups, we make use of the PR-6 approach again and calculate the weighted percentile 
rank scores as given in Equation (1). As the education group makes up the vast majority of 
papers, it yields almost precisely the expected score of 1.91 as given in Equation (2). Com-
pany and cooperation papers on the other hand, produce scores of about 2.1. This stems 
from the fact that most of these papers are to be found above the 50th percentile of atten-
tion scores.

Despite the difference in PR6 being seemingly small, the altmetric scores of the three 
groups still have statistically significant differences according to a Kruskal-Wallis test 
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( p ≪ 0.01 ). The pairwise results of Mann–Whitney-U tests indicate significantly higher 
scores of company papers compared to education papers ( p ≪ 0.01 ), significantly higher 
scores of cooperation papers to education papers ( p ≪ 0.01 ), and similar scores between 
company and cooperation papers ( p = 0.43).

Comparisons across metrics

In this subsection, we examine the relationship between altmetrics and citations. For this, 
we first look at the Pearson correlation coefficients between the metric scores, which are 
depicted as a matrix in Fig. 10.

Fig. 7   Top 10 paper counts of universities (top) and companies (bottom)
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As we can see, the assumption of an existing correlation between online mentions and 
the attention score is correct. Remarkably, however, the online reader counts are highly 
correlated to citations. Although not anticipated, it makes intuitively sense, since online 
reader counts are primarily derived from the Mendeley platform, which includes a refer-
ence management software that scientists use to organize related work. This suggests that 
the amount of researchers that have saved and read a paper on Mendeley is proportional to 
the citations it will later obtain, presumably because they kept the paper on Mendeley in 
order to later cite it. The citation counts and attention scores in the altmetric dataset are 
only weakly correlated. This is in line with previous works that have compared altmetric 
scores to citations (Salajegheh & Dayari, 2019; Zhang et al., 2019).

In Fig. 11, we show the log scale of the citation count and the altmetric score of our 
13,000 papers to further investigate this relationship. As explained in Sec. 4, we apply the 
categorization of Williams (2022) into scholars’ papers that score high in citations but not 

Fig. 8   Top 10 total citations of universities (top) and companies (bottom)
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in altmetrics, influencers’ papers which do the opposite, and exceptionals’ papers that score 
high in both. The categories are visualized in Fig. 11 by the dashed lines: the upper left 
corner corresponds to scholars’ papers, the lower right corner to influencers’ papers and 
the upper right to the exceptionals. By doing so, we can see whether either of our groups 
performs better in attracting citations from the scientific world or attention on the web.

Surprisingly, education, company, and cooperation papers are almost equally likely to 
be labeled as scholars’ or as influencers’ papers, which means that we cannot conclude a 
tendency of either group towards citations nor online attention (see Table 4). Nevertheless, 
there is a clear difference in the category of exceptionals: Over 10% of papers where com-
panies were involved land in there in contrast to just under 6% for papers with academic 
origins. In other words, our results show the relative superiority of industry papers over 
academic ones in both dimensions symmetrically.

Fig. 9   Share of papers (top) and 
citations (bottom) by companies

Table 3   Statistics of attention 
scores

Group Paper Count Mean Median Max Std PR6

Education 12,639  11.97 3.00 3,362.28  61.82 1.91
Company 294 28.62 3.00 3,051.42 215.02 2.10
Cooperation 709 12.88 3.00 660.80 45.30 2.14
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Fig. 10   Pearson correlations 
between different metrics

Fig. 11   Citations counts vs. altmetric scores (in log scales)

Table 4   Paper category shares 
per group type

Group Scholar Influencer Exceptional

Education 0.02 0.03 0.06
Company 0.01 0.02 0.11
Cooperation 0.02 0.03 0.10



Scientometrics	

1 3

Keyword analysis

Our list of MAKG tags is derived from papers included in our citation dataset presented 
in Sec.  5.1. It consists of about 310,000 tags, 93% of which belong to pure university 
papers. Accordingly, the remaining 7% of tags come from papers with company involve-
ment. We match the list of tags with the terms from the controlled vocabulary for AI sub-
fields (Duran-Silva et al., 2021). Again, about 7% of all matched terms can be attributed to 
company or cooperation papers. However, the percentage of matched terms attributable to 
papers with company involvement differs across the AI subfields. Figure 12 illustrates this 
discrepancy.

The terms of the subfields ’Philosophical/theoretical Foundations’, ’Distributed 
Artificial Intelligence’ and ’Problem Solving, Control Methods and Search’ have 
hardly any matches in company-involved papers. Terms of the subfields ’Knowledge 
Representation and Reasoning’, ’Expert Systems’ and ’General’ receive some mentions 
in industry-involving papers but remain rare. This suggests that these six fields are not a 
research priority for the industry and are predominantly studied by academic institutions. 
In contrast, terms from the subfields ’Machine Learning’, ’Natural Language Processing’ 
and ’Computer Vision’ appear more frequently in papers (co-)authored by companies. 
’Computer Vision’ in particular has more than twice the percentage compared to the 
average share of all matched terms. Therefore, these three fields can be considered more of 
a priority for companies. For ’AI Ethics’ the percentage is very close to the average of 7% 
and does not hint in any direction, which is consistent with the analysis of Hagendorff and 
Meding (2021). With our approach, we can therefore not conclude whether AI ethics are 
more of a priority for academia or the industry.

Discussion

We interpret and put our analysis results into context in Sec.  6.1, discuss potential 
explanations for our findings in Sec.  6.2, and review possible implications for science, 
industry, and politics in Sec. 6.3.

Fig. 12   Percentage of matched terms attributable to papers with industry involvement



	 Scientometrics

1 3

Interpretation of results

Our citation analysis in Sec. 5.1 reveals several key points:
First, papers involving companies in our main dataset clearly show higher mean, 

median, and PR-6 scores with respect to citations, indicating a higher citation impact of 
such publications. This finding is quite robust, as it is true even when very successful 
outlier papers or papers from top organizations are excluded. It provides additional support 
and reinforces the findings of Hagendorff and Meding (2021) and Klinger et  al. (2020), 
who assert that there has been a discernible narrowing of AI research and a stagnation 
of diversity in recent years. Their research indicates that AI studies involving the private 
sector tend to exhibit lower levels of diversity and possess greater influence compared to 
academic research. One may assume that our findings contradict the statement of Hartmann 
and Henkel (2020,  p. 367), who argue that citation impact of academic and corporate 
research outputs is about the same in AI. However, since their study mainly considers 
bibliometric data from before 2012, their conclusion may very well be correct for the time 
frame under study (see our next finding).

The second finding is that the citation counts of AI research papers written by compa-
nies in the last decade are considerably higher than those written earlier. We observe this 
fact when applying the time filter and when analyzing the time series. This is remarkable 
considering that, on average, university AI papers follow the typical rule of lower cita-
tions for more recent publications. This might explain the roughly equal citation impact 
that Hartmann and Henkel (2020) observed in their analysis of papers from 2004 to 2016. 
Moreover, our inspection of the top contributors supports the statement by Ahmed and 
Wahed (2020) who proclaim that AI is increasingly being shaped by large technology com-
panies. Google, Facebook/Meta, and Microsoft in particular stand out in our analysis as 
being highly influential.

Third, cooperation papers have similarly high citation metric scores as pure company 
papers. They are slightly lower on average on our main sample but have in turn a higher 
median and PR-6 score. From that we can conclude that cooperation papers have about the 
same or even slightly higher citation impact than pure company papers.

However, we cannot directly conclude from the higher citation impact of papers that 
they are also of higher quality as the relationship between citation impact and research 
quality is complex. Aksnes et al. (2019) describe research quality as a multidimensional 
concept that includes not only the aspect of scientific relevance – for which citations are a 
good proxy for – but also plausibility, originality, and societal relevance.

Including altmetric data analysis on the same papers allows us to also capture differences 
in societal relevance (or broader impact) of papers between groups, as argued by Bornmann 
(2014). Our study in Sec.  5.2 shows that citation counts and altmetric scores of papers 
correlate only weakly, suggesting that they indeed measure different things. We also 
observe that the high correlation found between citation counts and online readers suggests 
that this altmetric indicator might be a suitable feature for future citation predictions (see, 
e.g., Yan et al. (2011); Yu et al. (2014)), which we do not cover here.

Our analysis of the altmetric data provides additional evidence supporting the hypoth-
esis of a higher impact of papers authored or co-authored by companies. Although the sam-
ple size used for this step was smaller and the sample contained relatively few industry 
papers, the observed differences remain both evident and statistically significant. Papers 
originating from the private sector not only garner significantly more citations but also 
attract greater online attention, implying a broader relevance beyond the realm of academia.
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Hence, under the reasonable assumption that the plausibility and originality constituents 
of research quality are not considerably worse in corporate AI science,29 our results indicate 
that papers with company-involvement are indeed of higher quality. As our comparison 
with papers from a non-AI field has shown, this tendency does not necessarily hold true 
for other branches of science, which supports the claim that the comparative research 
advantages of companies are only present in the field of AI Ahmed and Wahed (2020).

Additionally, our keyword analysis in Sec. 5.3 showed that the industry predominantly 
focuses on the trending AI subdomains of computer vision, natural language processing, 
and machine learning, which are being impacted by advances in deep learning and benefit 
from it. On the contrary, academia has explored a wider variety of topics in AI, including 
knowledge representation and reasoning, distributed AI, and the theoretical foundations of 
AI.

Potential explanations

Our analysis of corporate and university AI research over the last decade reveals a striking 
finding: corporate AI research has consistently produced papers with significantly higher 
impact than those from academia. In this subsection, we present three possible explanations 
for this observation.

Hypothesis 1: Industry’s Access to Top AI Talent.
One plausible explanation for the higher research impact of corporate AI papers is the 

growing trend of tech companies attracting top AI scientists from universities. Numerous 
studies (Hagendorff & Meding, 2021; Hartmann & Henkel, 2020; Jurowetzki et al., 2021) 
have pointed out that the industry actively recruits and hires talented researchers, resulting 
in a considerable pool of AI expertise transitioning to corporate settings. While it may 
be tempting to attribute the entire increase in research impact to this talent migration, 
Jurowetzki et  al. (2021) found that AI scientists transitioning into industry experience 
an initial surge in paper citations, indicating that the private sector possesses inherent 
advantages in conducting impactful AI research. Nevertheless, the precise extent to which 
the strategic hiring of successful university researchers contributes to the higher impact of 
corporate AI research remains an open question (Hagendorff & Meding, 2021).

Hypothesis 2: Industry’s Superior Computational Resources.
Ahmed and Wahed (2020) propose another explanation, suggesting that the unequal 

access to computational resources could be a key factor behind the prevalence of compa-
nies in AI research. Given that modern AI research heavily relies on extensive computing 
power (see deep learning and especially fields such as large language model training and 
meta-learning), large tech companies equipped with advanced hardware resources may be 
better positioned to make significant progress in computationally intensive research.

Hypothesis 3: Industry’s Exclusive Data Assets.
It is widely recognized that the private sector has gathered substantial quantities 

of proprietary data for AI research in recent years. According to Hartmann and Henkel 
(2020), this privileged access to data sets provides companies with a competitive edge over 
academic institutions in the field of AI research. Unfortunately, universities frequently lack 
access to such proprietary data, which hampers their capacity to conduct research that is 

29  The high acceptance rates of industry papers in leading AI journals (see, e.g., Ahmed and Wahed 
(2020)) may rather indicate that they even outperform university papers in these regards, too.
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on par with industry standards. The authors also propose that this data exclusivity may 
facilitate companies in appropriating the value of their research, making it easier for them 
to publish their results.

Notably, the last two explanations hold particular relevance for research on topics 
related to deep learning, as these methods require large amounts of data and considerable 
computational resources. As we saw in Sec. 5.3, the industry shows a particular interest in 
areas most affected by deep learning. This finding supports the notion that the availability 
of both data and computational power contributes to the higher impact of company-
involved AI research.

Recommendations for action for academia, industry, and politics

It is widely acknowledged that companies play a crucial role in driving AI research for-
ward. They make significant contributions to the field by expanding research opportuni-
ties and facilitating evaluations in specific domains. Notable breakthroughs in AI research, 
such as advancements in medicine (e.g., drug discovery), chemistry (e.g., protein folding 
(Jumper et al., 2021)), and personal assistance systems (e.g., Alexa, ChatGPT), have been 
made possible through the support and funding provided by companies.

While the importance of industry involvement in AI research has been recognized in 
academic works (Gil & Selman, 2019), and potential challenges associated with increased 
industry funding and participation have been noted (Abdalla & Abdalla, 2021; Group et al., 
2019), there has been limited systematic assessment on whether the specific characteristics 
of companies, such as their commercial orientation, impose undue limitations or have 
unforeseen impacts on AI research (Littman, 2021). The question remains whether action 
needs to be taken by academia, industry, or policymakers to ensure a balance between 
academia and industry.

In the following, we propose concrete recommendations for action. They are based on 
the three hypotheses outlined in the previous subsection.

Addressing Hypothesis 1: Bridging the AI Talent Gap

1.	 AI Research Fellowships and Career Paths: Government and otherwise institutional 
fellowship programs and research grants may be established to attract and retain AI 
talent in academia, especially in job-wise competitive fields such as deep learning 
(Jurowetzki et al., 2021). These programs should offer competitive funding packages 
and career development opportunities to motivate researchers to pursue academic 
careers (Jurowetzki et al., 2021). Research indicates that a postdoc’s transition to a 
non-academic career can be influenced various factors, including individual traits, the 
attitude and support of their principal investigator, as well as broader organizational 
and policy factors (Hayter & Parker, 2019). In Germany, junior professorships were 
introduced in 2002 to enhance career prospects for young scientists. Nevertheless, 
postdocs reported only a marginal impact of these university reforms (Fitzenberger & 
Schulze, 2014).

2.	 Industry-Academia Talent Development: Developing joint training programs, 
internships, and mentorship initiatives between academia and industry can enable 
knowledge transfer between universities and industry, attract researchers to universities, 
and facilitate the sharing of cutting-edge research practices, data, and infrastructure 
(Spicer et al., 2022).
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Addressing Hypothesis 2: Providing Computational Resources for Academia

1.	 Adequate Public Funding of Academic Computing Infrastructure: We argue that aca-
demia needs to be able to produce AI research of equal quality without depending on 
industry involvement, otherwise academic integrity may be compromised (Jurowetzki 
et al., 2021; Hagendorff & Meding, 2021). As such, it needs to be ensured that research 
institutions like universities have the necessary resources to conduct high-quality 
research independent of industry.

2.	 Provisioning Companies’ Computing Infrastructure for Academia: An alternative 
approach to enhancing academic research could involve providing cloud services and 
other infrastructure resources, such as high-performance computing, to academic 
researchers without imposing substantial additional costs or effort (Littman, 2021). 
By doing so, this approach would address the hardware limitations currently faced 
by academia, fostering an environment conducive to extensive experimentation and 
innovation. One way to achieve this could be through partnerships between academic 
institutions and industry. These partnerships can facilitate joint research projects and 
knowledge sharing, while maintaining the integrity of academic research. Additionally, 
governments could subsidize companies that provide computing infrastructure 
specifically for AI research.

Addressing Hypothesis 3: Promoting Openess and Industry-Academia Collaborations

1.	 Regulations and Incentives for Sharing Research Artifacts: It is essential that research 
results can be replicated and that artifacts, such as datasets, are accessible following the 
FAIR principles (Wilkinson et al., 2016). While the scientific community increasingly 
embraces the practice of sharing code and data,30 this culture has not yet become 
prevalent in the industry (Ahmed & Wahed, 2020). Instead, policies promoting 
transparency and the sharing of core datasets between public and private actors are 
subject to controversial discussions (Cockburn et al., 2018). Moreover, even if such 
resources are provided, the replication of experiments may be challenging due to limited 
hardware resources. In light of these challenges, it is important to facilitate the sharing 
of non-sensitive AI artifacts, such as datasets, code, and AI models, by private entities, 
while simultaneously ensuring compliance with privacy regulations.31 Encouraging 
incentives, such as tax benefits or research grants, should also be considered for 
organizations that openly share their artifacts. These measures would promote a culture 
of openness and collaboration, benefiting both the scientific community and industrial 
applications of AI technology.

2.	 Collaboration and Data Provisioning Platforms: It is highly beneficial to enhance and 
expand collaboration platforms and repositories that enable seamless sharing of AI code, 
models, and datasets (see, for instance, Zenodo, figshare, and AWS Open Data). By 
leveraging these platforms, researchers can effortlessly build upon one another’s work, 
including works from industry, and replicate experiments, fostering a more cohesive 
and progressive research ecosystem. Zenodo and figshare in particular allow researchers 

31  Recent regulatory efforts being negotiated in the EU, namely the AI Act & Data Act, point in the right 
direction and should further promote the disclosure of (research) data.

30  See initiatives like the German National Research Data Infrastructure, https://​www.​nfdi.​de/.

https://www.nfdi.de/
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to upload data at a mostly reasonable scale, but making very large datasets available 
is not possible on these platforms. In these cases, researchers currently rely primarily 
on corporate programs (e.g., Amazon’s AWS Open Data). We recommend providing 
advanced data hosting options that are independent of companies.

3.	 Standardization of Data Formats and Documentation: This facet involves advocating 
for the adoption of standardized data formats and documentation protocols. Such stand-
ardization enhances data interoperability and accessibility, thereby enabling researchers 
across institutions and industries to use common datasets with greater efficiency.

4.	 Interdisciplinary and Transdisciplinary Research Collaborations: Encouraging 
collaboration between academia, industry, policymakers, and civil society organizations 
can foster (a) a unified perspective on the broad impact of AI research, and (b) more 
targeted strategies to address AI research challenges. Such collaboration can cultivate 
a holistic view, focusing on the development of value-oriented, long-term oriented, 
trustworthy AI. For instance, this approach can mitigate the systematic “narrowing” 
of AI research, where certain topics disproportionately receive more attention (Klinger 
et al., 2020; Hooker, 2021; Jurowetzki et al., 2021). It is also beneficial for creating 
AI for social good, for instance when it comes to preserving diversity in AI models 
(Kuhlman et al., 2020) or combating disinformation (Gil & Selman, 2019; Buchanan 
et al., 2021).

5.	 Incentives for Responsible AI Research Practices and Evaluation: Funding mechanisms 
can be developed to reward researchers and organizations that actively incorporate ethical 
considerations into their AI research. This can be achieved through funding programs 
focusing on or prioritizing projects that are consistent with ethical guidelines (Jobin & 
Ience, 2019) such as the EU Ethics Guidelines for Trustworthy AI (e.g., covering human 
agency, transparency, and fairness) (European Commission, 2019; Smuha, 2019) and the 
UN sustainability goals (Vinuesa et al., 2020). In addition, policymakers could advocate 
for the widespread adoption of evaluation frameworks for researchers and institutions 
that do not rely solely on the citation count as impact indicator but that also encompass 
broader aspects, such as the openness and sustainability of research artifacts, to provide 
a more comprehensive and responsible measure of scientific contributions.

6.	 Teaching Fair AI Research: We can support the recommendations to provide mandatory 
courses or course content in schools and universities that provide students with the 
knowledge to be aware of industry influence on AI research and to reduce the bias 
of industry-driven AI research detached from corporate interests during the research 
processes.

Conclusion

Artificial Intelligence (AI) is one of the most significant technologies of our time. Thus, 
in various contexts, it becomes vital to understand and quantitatively measure who is 
exerting the greatest influence on the future of AI. In pursuit of this understanding, we 
used scientometric data from multiple academic databases to examine and compare the 
citations and altmetric influence of academic and corporate AI research papers. Although 
the vast majority of publications are still authored by academics, we found that the citation 
impact of a paper is significantly higher when it is (co-)authored by a company, confirming 
previous studies. Similarly, papers (co-)authored by companies receive significantly more 
attention online, as measured by altmetrics. The robustness of our results across different 
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methods of data selection and metrics indicates that corporate AI research has indeed 
become more important than purely academic AI research in recent years.

We also provided an overview of the major players in corporate AI research. The pub-
lications of these key technology companies, mainly based in the United States and China, 
have an immense impact on the field. Additionally, our keyword analysis disclosed that the 
private sector is particularly interested in topics affected by deep learning, such as com-
puter vision and natural language processing.

Based on our findings, we formulated several recommendations for action for academia, 
industry, and policymakers: (1) promoting ethical and responsible AI research, (2) 
promoting open data and open code initiatives, the FAIR principles, and democratization 
of AI research, (3) strengthening financial and infrastructural support for academic 
AI research, and (4) bridging the AI talent gap. Given these recommendations, we are 
confident that corporate involvement can positively influence future AI research.
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