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ABSTRACT | In the last decade, deep learning (DL) has sig-
nificantly impacted industry and science. Initially largely moti-
vated by computer vision tasks in 2-D imagery, the focus has
shifted toward 3-D data analysis. In particular, 3-D surface
reconstruction, i.e., reconstructing a 3-D shape from sparse
input, is of great interest to a large variety of application
fields. DL-based approaches show promising quantitative and
qualitative surface reconstruction performance compared to
traditional computer vision and geometric algorithms. This
survey provides a comprehensive overview of these DL-based
methods for 3-D surface reconstruction. To this end, we will first
discuss input data modalities, such as volumetric data, point
clouds, and RGB, single-view, multiview, and depth images,
along with corresponding acquisition technologies and com-
mon benchmark datasets. For practical purposes, we also
discuss evaluation metrics enabling us to judge the recon-
structive performance of different methods. The main part
of the document will introduce a methodological taxonomy

Manuscript received 1 March 2022; revised 9 June 2023 and 24 September
2023; accepted 26 September 2023. Date of publication 30 October 2023; date
of current version 17 November 2023. (Corresponding author: Markus Gétz.)
Anis Farshian, Markus Gétz, Charlotte Debus, and Achim Streit are with
the Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344
Karlsruhe, Germany (e-mail: anis.farshian@kit.edu; markus.goetz@kit.edu;
charlotte.debus@kit.edu; achim.streit@kit.edu).

Gabriele Cavallaro is with the Julich Supercomputing Centre,
Forschungszentrum Jilich, 52428 Jllich, Germany, and also with the Faculty of
Industrial Engineering, Mechanical Engineering and Computer Science,
University of Iceland, 107 Reykjavik, Iceland (e-mail: g.cavallaro@fz-juelich.de).
Matthias NieBner is with the Visual Computing Laboratory, Department of
Informatics, Technical University of Munich, 80333 Munich, Germany (e-mail:
niessner@tum.de).

Jon Atli Benediktsson is with the Faculty of Electrical and Computer
Engineering, University of Iceland, 102 Reykjavik, Iceland (e-mail:
benedikt@hi.is).

Digital Object Identifier 10.1109//JPROC.2023.3321433

, Member IEEE, MATTHIAS NIEBNER

, JON ATLI BENEDIKTSSON ", Fellow IEEE,

ranging from point- and mesh-based techniques to volumetric
and implicit neural approaches. Recent research trends, both
methodological and for applications, are highlighted, pointing
toward future developments.
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LINTRODUCTION
In the last decade, advances in artificial intelligence, in
particular in deep learning (DL) [1], [2], [3], have been
adopted by a multitude of fields and have, thus, led to
major breakthroughs in science and industry alike. One
of the major driving forces behind these developments
is the field of computer vision, and its desire to “teach”
machines how to recognize patterns within image and
video data. Initially, a strong emphasis was placed on
the interpretation of 2-D information; however, recent
advances in cost-effective scanner-based data acquisition
and the establishment of large-scale shape repositories
have brought the analysis of 3-D data into focus. Still,
complexity, variety, and irregularities in 3-D shape repre-
sentations pose significant methodological challenges.
The reconstruction of 3-D surfaces of objects from differ-
ent types of input data formats, such as point clouds, depth
maps, single-view, or multiview images, is fundamental to
a number of application fields, such as computer vision,
robotics, CAD, medicine, city planning, disaster preven-
tion, and archeology. One of the special use cases of 3-D
reconstruction is human shape reconstructions and pose
estimation from images or videos, which is addressed by
some other works [4], [5].
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Fig. 1. Output representations of various 3-D surface reconstruction approaches. DL-based 3-D surface reconstruction approaches can be

broadly classified into four main categories according to their representation: volumetric, point cloud, mesh, and an example of implicit
neural representation based on SDF. (a) Object. (b) Voxelized. (c) Point cloud. (d) Mesh. (e) Implicit.

Despite a long research history for 3-D surface recon-
struction, the precise representation of 3-D geometrical
objects remains an unsolved problem, usually requiring
the reconstructed 3-D surfaces to be: 1) highly resolved
and smooth; 2) water-tight, i.e., “without gaps”; 3) in
accordance with possible ground truth; 4) robust against
noisy or incomplete input; and 5) simultaneously, densely,
and compressibly represented.

Classical approaches for addressing these problems
encompass geometrical or simplistic machine-learning-
based algorithms [6], [7]. Most of these methods are not
able to comprehensively and consistently reconstruct arbi-
trary detailed 3-D surfaces. Well-known techniques, such
as (screened) Poisson surface reconstruction (PSR) [8],
[9], the ball-pivoting algorithm (BPA) [10], and Delaunay
triangulation [11], [12], still suffer from scalability issues
and struggle to reconstruct fine details for large-scale
data.

The recent successes of deep neural networks (DNNs)
in other data-driven computational problems, such as
classification [13], [14], object detection [14], [15], and
segmentation [13], [14], [16], have sparked interest in
utilizing DL for 3-D surface reconstruction. Partially over-
lapping with the latter is the task of shape completion, i.e.,
enhancing the input data with (partially) occluded shape
information.

Several reconstruction-related surveys [17], [18]
present early approaches, with [17] providing an overview
of the classical and non-DL-based surface reconstruction
methods from point clouds with respect to priors and [18]
reviewing RGB-D scene reconstruction approaches. There
is another DL-based surface reconstruction survey [19]
with a focus on image-based methods. This article,
however, covers broader data modalities and reviews
recent trends in 3-D surface reconstruction including
implicit neural representation and neural radiance fields
(NeRFs) thoroughly.

Therefore, the fast-paced development of the field
makes it, however, necessary to revisit up-to-date research
frequently. The current landscape of DL-based 3-D recon-
struction can be broadly classified into four main cate-
gories according to their representation, as depicted in
Fig. 1: 1) volumetric, i.e., representing a surface with
small cuboids, either a dense 3-D voxel grid [20], [21],

[22], [23], [24], [25] or an octree [26], [27], [28], [29];
2) point-based [30], [31], [32], [33], i.e., using points to
present a surface; 3) mesh-based [34], [35], [36], [37],
[381, [391, [401, [41], [42], [43], [44], i.e., describing
an object with vertices, edges, and faces; and 4) implicit
neural representation [45], [46], [47], [48], [49], [50],
[511, [521], [53], [54], [55], [56], i.e., representing a shape
as a neural network that takes any (z,y,z) coordinate
as input and maps it to an occupancy or signed distance
of the shape at that coordinate or modeling radiance or
appearance properties of an object such as NeRF-based
approaches [57], [58], [59], [60], [61], [62], [63], [64],
[65], [66], [67], [68].

In this survey, we present a comprehensive overview
of these state-of-the-art DL-based approaches to 3-D sur-
face reconstruction. Our main goal is to provide method
researchers with a guide to current work and applied
researchers with a toolbox for their domain challenges.
Toward this end, we first provide a broad introduction
to input data formats (see Section II), acquisition tech-
nologies (see Section III), and widely used benchmarking
datasets (see Section IV). Section V covers evaluation
metrics enabling to quantitatively judge the reconstructive
performance of a method, independent of being classi-
cal or learning-based. The main part of this survey (see
Section VI) highlights DL methods to reconstruct 3-D
surfaces using volumetric, point- and mesh-based, and
implicit neural representations. We assume that the reader
has a general grasp of neural networks and DL concepts to
thoroughly follow the content. Discussion, current trends,
and challenges are highlighted in Section VII. Finally,
Section VIII summarizes and concludes this survey.

II. INPUT DATA
Various types of data representations can be used as
input for the 3-D surface reconstruction task. Conven-
tional representations of 3-D inputs can be divided into
Euclidean and non-Euclidean data. Examples of non-
Euclidean data representations are point clouds or meshes,
while Euclidean data representations can be volumetric,
RGB-D data, or multiview images.

Point clouds are currently the most common format of
raw 3-D sensor data. With the improvement of scanning
devices, leading to enhanced capabilities for capturing the
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surrounding 3-D environment in various applications and
representing it with points, point clouds are becoming
increasingly important and available. Thus, processing this
type of representation using neural networks and DL tech-
niques has attracted considerable attention. From a math-
ematical point of view, point clouds comprise an irregular
data structure in the form of an unordered set of points.
Each point on a 3-D surface of an object can basically be
defined by a vector of its (z, y, z) coordinates, which can be
inferred by various 3-D data acquisition techniques. Hence,
the size of the representation matrix of a 3-D object is
initially N x 3 for N points. The matrix may also contain
different properties including color, transparency, surface
normals, and other scanner information. However, pure
point clouds do not include the interconnections between
vertices. Since a point cloud is a set, its elements are
orderless, a characteristic that causes many challenges for
surface reconstruction methods. Point clouds can be easily
converted to/extracted from other data representations,
such as voxels, depth maps, or meshes, and vice versa.
Furthermore, they can be extracted from depth images by
projecting the depth value of each pixel into 3-D space.

Meshes are another highly popular type of represen-
tation for 3-D objects providing detailed and connected
geometries in an efficient way. They are irregular data
embedding in continuous space. Their basic components
are vertices, edges, i.e., pairs of vertices, and (triangular)
faces, i.e., n-tuples of edges, forming an undirected graph.

In volumetric representations, the basic element is a
voxel. A voxel in a 3-D grid is a cuboid equivalent to a
pixel in 2-D space. The 3-D grid, regardless of being sparse
or dense, can be fed to a neural network as the input.

An RGB-D image is a combination of an RGB image and
a depth image. It not only has RGB information for each
pixel but also includes depth information.

Multiview images are a collection of (single-view)
images taken from different angles of an object. By putting
these images together, 3-D information can be partly
retrieved.

On the other hand, 2-D data, such as single-view RGB
images, can also be considered the input to a network for
surface reconstruction individually, in which the method is
called single-view reconstruction (SVR) [69], [70], [71] or
in conjunction with another 3-D input mentioned earlier.

III. DATA ACQUISITION

As explained in Section II, point clouds are the most
common format of raw 3-D sensor data. 3-D point cloud
data are acquired through sensing technologies that mea-
sure distance [i.e., 3-D laser scanning also known as light
detection and ranging (LiDAR)] or generated with stereo-
and multiview image-derived systems that can be based
on red, green, blue-depth (RGB-D) cameras, stereo cam-
eras, and multiple synthetic aperture radar (SAR) image
pairs [16], [72]. High-quality 3-D point clouds can capture
the 3-D surface geometries of target objects (e.g., physical
features that occupy the Earth’s surface and ocean bottom)

with a spatial accuracy up to the millimeter level and a
point density of a few thousand points per square meter
(pts/mz).

A. 3-D Laser Scanning (LiDAR)

LiDAR is a remote sensing (RS) active technology that
uses light in the form of a pulsed laser to measure the dis-
tance between the sensor and the object under study [73].
By measuring the time that emitted pulses take to travel
to a target, LiDAR derives 3-D representations of objects.
LiDAR can also operate at different wavelengths (i.e., mul-
tispectral LiDAR [74], [75]) to discriminate the different
spectral reflectance of land-cover classes [76], [77].

Depending on the platform on which the LiDAR sensor
is mounted, a 3-D laser scanner is classified as a terrestrial
laser scanner (TLS or ground LiDAR), airborne laser scan-
ner (ALS), mobile laser scanner (MLS), and unmanned
laser scanner (ULS) [16], [72].

A TLS uses ground-based RS systems (e.g., tripods) to
cover middle- or close-range areas with scans performed
in all directions, including upward [78]. Once scans of a
single zone are completed, the tripod is moved to another
location to scan from another angle or capture data from a
new area. As TLS systems are static during the acquisition
process, they reach the highest point cloud density and
can produce high-quality 3-D models of the interiors of
buildings and heritage sites.

Nevertheless, TLS systems cannot always be used, espe-
cially for scanning restricted locations that are not safe or
accessible for teams (e.g., areas of dense vegetation and
unsafe building sites). In these cases, LiDAR sensors can
be mounted on airborne platforms. ALS systems are also
used to acquire point cloud data over large areas (e.g., for
3-D building reconstruction [79]).

When target regions are directly accessible, their struc-
tures and objects can be reconstructed from data acquired
by MLS systems, i.e., LiDAR sensors mounted on moving
vehicles (e.g., to derive high-resolution 3-D city mod-
els [80]).

Since drones and other unmanned vehicles have become
cheaper and autonomous navigation more reliable [81],
ALS and MLS are often operated as ULS systems. Their
platforms are compact and lightweight, which enables
them to be exploited as first responders for disaster man-
agement. ULS systems can make a first scan of the terrain
to track movements and changes, and deliver 3-D mapping
of the most affected locations [82], [83].

B. Photogrammetry

While LiDAR performs a direct measurement of the
target object, i.e., by physically hitting a feature with
light and measuring the reflection, approaches based on
photogrammetry or computer vision theory [84] use a
set of overlapping images taken from different locations
to identify isolated points within a target. This includes
not only airborne photogrammetry but also satellite stereo
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systems, which can map larger regions quickly. Image-
based reconstruction algorithms can estimate the relative
locations of these points and eventually convert the over-
lapping images into a 3-D point cloud. For instance, the
structure from motion (SfM) algorithms [85] can process
multiview images simultaneously through estimating cam-
era positions and orientations automatically, while dense
matching and multiview stereo (MVS) algorithms [86] can
generate a large volume of point clouds (e.g., large-scale
scenarios and crowded environments).

C. RGB-D Camera

Similar to LiDAR, RGB-D cameras measure the distance
between the sensor and the objects. Depth information
of each RGB pixel of the image is retrieved via a depth
sensor. An RGB-D camera generates a colored point cloud
by mapping RGB images with depth information (i.e.,
images include the (z,y,z) spatial coordinates and RGB
colors). In this case, the point cloud is not the direct
result of RGB-D scanning [87], [88] since the camera
generates pixelwise depth data rather than unstructured
points. RGB-D cameras are generally cheaper than LiDAR
systems and are mostly used in indoor environments for
close-range applications [89].

Structured light and Time of Flight (ToF) [90], which
are active imaging systems, serve as depth cameras and
calculate the distance from the sensor to an object, conse-
quently providing 3-D information. The depth of an object
can be determined using ToF sensors by measuring the
duration of light travel from the sensor to the object and
back. By determining the ToF of light, these sensors can
calculate the object’s distance and create a detailed depth
map, which can be directly used or easily converted to a
point cloud for instance. Structured light sensors employ
the deformation of a projected pattern to determine the
distance. By emitting a known light pattern onto a scene
and examining how the pattern changes as it interacts with
objects in the scene, these sensors are able to accurately
measure the depth information of the objects. Structured
light technology-based 3-D scanners are comparatively
more affordable, being lighter in weight than their laser-
based counterparts as well. Due to their higher degree of
sensitivity to lighting conditions, they may not operate well
in outdoor environments or in challenging conditions such
as dusty rooms. For black or glossy surfaces, a specific spray
should be applied before 3-D scanning.

D. SAR Point Cloud

SAR is an active RS system that can operate day and
night and can penetrate clouds and smoke. Interferometric
SAR (InSAR) extends the principle of SAR to the 3-D
domain [91] by taking advantage of the physical proper-
ties of microwaves [92]. An InSAR system compares the
phase of multiple SAR image pairs acquired from slightly
different viewing angles to generate InSAR-based point
clouds. The SAR tomography (TomoSAR) and persistent

scatterer interferometry (PSI) are two major techniques
that generate point clouds with InSAR [16]. They are used
to monitor terrain changes (e.g., surface deformations and
human-made structures [93]).

E. Videogrammetry

3-D point clouds can also be reconstructed using video
frames (i.e., the input data are video streams instead
of a collection of images). This approach is referred to
as videogrammetry [94] and is based on the principles
of photogrammetry. It can reconstruct point clouds from
the frames of a video since their information is sequen-
tially interconnected. Videogrammetry approaches provide
a valuable alternative to camera images. They can be semi-
automatic since the search for target points in different
images can be achieved by measuring or tracking features
of interest between consecutive video frames. However, the
reconstruction needs to be coupled with effective frame
selection algorithms (e.g., video frames are selected based
on the surveyed geometry) and robust 3-D processing
methodologies [95].

IV. DATASETS

DL approaches are data-demanding; thus, they require
large amounts of data with high-quality 3-D shapes and
ground truths. Recent developments in scanning and sens-
ing technologies have led to the collection of various
widely used and openly accessible benchmarking datasets.
These datasets are used to train and evaluate the perfor-
mance of DL methods for different tasks, including 3-D
reconstruction. In this section, we summarize some of the
most popular datasets, which can be used by different 3-D
DL approaches, with a focus on 3-D reconstruction. Table 1
offers a comparative overview of these datasets.

1) ShapeNet [96] is a richly annotated, large-scale syn-
thetic dataset of 3-D shapes represented by 3-D
computer-aided design (CAD) models of objects, pro-
viding roughly 3000000 shapes. This dataset has
been used for computer graphics and vision purposes.
The full ShapeNet dataset is not yet publicly available.
It consists of several subsets, including ShapeNet-
Core and ShapeNetSem. ShapeNetCore contains a
single clean 3-D shape that covers 55 common object
categories with about 51300 unique 3-D shapes.
ShapeNetSem is a smaller, more densely annotated
subset, containing 12000 shapes of a broader set of
270 categories. For each shape in ShapeNet, annota-
tions such as its geometry, texture, parts, symmetry
planes, voxelization, screenshot, category, alignment,
and size are available. The final representation of an
object in this dataset can be a 3-D mesh. The 3-D
shapes are stored in the Wavefront object file format
(.ob7j), which describes the surface geometry of a
3-D shape and includes vertices and faces, along with
material template library (.mt1) files used to store
material definitions. An .mt1 file is a companion file

Vol. 111, No. 11, November 2023 | PROCEEDINGS OF THE IEEE 1467



Farshian et al.: Deep-Learning-Based 3-D Surface Reconstruction—A Survey

Table 1 Comparison of Benchmark Datasets

points and 3,5
million faces in 11
classes

mesh

Name Count/Size Dataset Representation  Scene Type Source DL Tasks
Type
ShapeNetCore 51,300 3D models  Synthetic Mesh Indoor and CAD model Shape recognition,
from 55 object cate- outdoor objects reconstruction,
gories retrieval
ShapeNetSem 12,000 3D models  Synthetic Mesh Indoor and CAD model Shape recognition,
of 270 object cate- outdoor objects reconstruction,
gories retrieval
PartNet 573,585 part  Synthetic Mesh and Indoor object parts CAD model Part-level understanding
instances of 26,671 point cloud
3D ShapeNet
models in 24 object
categories
ModelNet 127,915 3D models  Synthetic Mesh Indoor and CAD model Recognition,
with 662 object cat- outdoor objects reconstruction,
egories generation,
and completion
KITTI Around 49,000  Real-world Image and Outdoor RGB and Stereo,
frames  from 5 point cloud LiDAR optical flow,
categories visual odometry,
SLAM,
3D object detection,
and object tracking
Semantic 23,201/20,351 scans  Real-world Point cloud Outdoor LiDAR (MLS) Semantic segmentation
KITTI with 4549  points and scene completion
from 28 classes
ScanNet 2,5 million frames Real-world Image and Indoor RGB-D Sensor Object classification,
from 1500 RGB-D mesh voxel labeling,
scans model retrieval,
and reconstruction
Matterport3D 10,800 views from  Real-world Image and Indoor RGB-D Sensor Scene understanding,
90 scenes mesh normal prediction,
classification,
semantic segmentation,
and reconstruction
NYU depth v2 1449 RGB-D  Real-world Image Indoor RGB-D Segmentation
images  consisting
464 diverse scenes
across 26 scene
classes
Sun3D 415 sequences cap-  Real-world Image and Indoor RGB-D sensor Scene understanding,
tured for 254 differ- point cloud reconstruction,
ent spaces in 41 dif- and segmentation
ferent buildings
Sun RGB-D 10,335 RGB-D im- Real-world Image Indoor RGB-D sensor Scene understanding,
ages from 47 scene semantic segmentation,
categories consisting object detection,
about 800 object cat- orientation,
egories and classification
Sydney urban 631 scans from 26  Real-world Point cloud Outdoor LiDAR Classification
objects object categories and recognition
ABC 1 million 3D models  Synthetic Mesh Indoor CAD model Feature detection,
shape reconstruction and
surface normal estimation
Semantic3D 4 billion points in 8  Real-world Point cloud Outdoor LiDAR (TLS) Classification and
class labels semantic segmentation
H3D Around 73 million Real-world Point cloud and  Outdoor LiDAR Semantic segmentation
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Table 1 (Continued.) Comparison of Benchmark Datasets

3D-Front 18,968 rooms with  Synthetic Mesh Indoor CAD model 3D scene understanding,
13,151 furniture ob- reconstruction,
jects from 31 scene and segmentation
categories
3D-FUTURE 20,240 images of  Synthetic Mesh Indoor CAD model 2D instance segmentation,
5,000 different 3D object pose estimation,
rooms image-based 3D shape re-
trieval,
3D reconstruction from a
single image,
and texture recovery for
3D shape
SensatUrban 4 billion points in 13 Real-world Image and Outdoor UAV Photogramme-  Urban-scale point cloud
semantic class labels point cloud try understanding

2)

3)

4)

5)

6)

for one or more .ob7j files, which describes some
surface appearance properties.

PartNet [97] is a dataset of 3-D objects, built on
top of ShapeNet with fine-grained, hierarchical, and
instance-level 3-D part annotations. The dataset com-
prises 573 585 part instances of 26 671 ShapeNet 3-D
shapes in 24 indoor object categories in an attempt to
enable part-level understanding of 3-D objects.
ModelNet [98] is a large-scale CAD model syn-
thetic dataset. It includes a comprehensive and
clean collection of 127915 CAD models with 662
object categories and consists of two subsets, Mod-
elNetl0 and ModelNet40 with ten and 40 classes,
respectively. ModelNet10 has also been annotated
with the orientation of the CAD models, which are
given in the Geomview object file format (.off).
The final representation of this dataset can be a
mesh.

KITTI [99], [100] is a real-world urban scene dataset
composed of images and point clouds. The dataset
was acquired by the autonomous driving platform
Annieway while driving around the city of Karl-
sruhe. Evaluation benchmarks were developed for
several computer vision and robotic tasks, such as
stereo, optical flow, visual odometry, SLAM, 3-D
object detection, and 3-D object tracking. Semantic
KITTI [101], which is based on KITTI, provides
pointwise annotations for semantic segmentation and
semantic scene completion purposes. The dataset
comprises 28 classes including classes for nonmoving
and moving objects.

ScanNet [102] is a 3-D reconstruction dataset of
indoor scenes consisting of 2.5 million frames (views)
derived from more than 1500 RGB-D scans. 3-D cam-
era poses, surface reconstructions, and instance-level
semantic segmentations are also provided. All scans
are reconstructed into 3-D mesh models. The data are
stored in polygon file format (.ply).

Matterport3D [103] is another dataset facilitat-
ing RGB-D scene understanding. It captures 10800
panoramic views from 194400 RGB-D images of 90
building-scale scenes. The dataset is annotated with

7)

8)

9)

10)

11)

12)

13)

surface reconstructions as textured meshes, camera
poses, and 2-D/3-D semantic segmentations.

NYU depth v2 [104] introduced an annotated dataset
of 1449 RGB and depth images, consisting of 464
diverse indoor scenes. These images were acquired by
RGB and depth cameras from Microsoft Kinect.
Sun3D [105] is a real-world large-scale dataset of
RGB-D frames with semantic object segmentations
and camera pose used for scene understanding. It
consists of 415 sequences captured for 254 different
indoor spaces in 41 different buildings.

SUN RGB-D [106] is a dataset containing over
10000 RGB-D images from NYU depth v2 [104],
Berkeley B3DO [107], and SUN3D [105] datasets.
These images are annotated with 2-D segmenta-
tions (146617 2-D polygons), 3-D object boxes
(64595 3-D bounding boxes), 3-D room layout,
3-D object orientation, and scene category for each
image.

The Sydney Urban Objects dataset [108] is a point
cloud dataset that contains 631 scans of 26 different
object classes, including vehicles, pedestrians, trees,
and signs taken in the city of Sydney. Each object’s
information is available in three file formats: ASCII
CSV format (.csv), binary-packed CSV (.bin), and
meta information files (.meta).

The ABC dataset [109] is a CAD model dataset with
one million 3-D models. Koch et al. [109] offered a
pipeline that is able to convert these CAD models into
other representations in order to be processable by
DL techniques. These models are provided in .obj
and 3-D systems’ stereolithography CAD file format
(.stl).

Semantic3D.net [110] is a large labeled 3-D point
cloud dataset of natural scenes with over four billion
points in eight class labels. These dense point clouds,
which were recorded by TLSs, depict urban and rural
outdoor terrestrial scenes.

H3D [111] is a high-resolution real-world dataset
containing both point clouds (H3D(PC)) and meshes
(H3D(Mesh)) of airborne LiDAR data and can be used
for semantic segmentation in geospatial applications.
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Fig. 2. Visualization of (a) CD, (b) EMD, and (c) HD metrics. Red
dots and blue dots belong to two different point sets, and each of

these metrics measures the distance between these two sets in a

unique way.

14)

15)

16)

17)

The point clouds are classified into 11 classes, and
labeled 3-D textured meshes can be derived from
them.

3-D Furnished Rooms with layOuts and semaNTics
(3D-Front) [112] is a synthetic dataset of indoor
CAD model scenes, containing 18968 rooms with
3-D objects. The individual objects are taken from
3D-FUTURE [113]. The CAD models are stored in
.obj and .mt1 file formats.

3-D Furniture shape with TextURE
(3D-FUTURE) [113] is a repository of 3-D furniture
shapes in the household scenario enriched with 3-D
and 2-D annotations. It includes 20240 synthetic
images of 5000 different rooms. Stylistic and texture
details of individual objects are provided. The 3-D
models are stored in . ob7 file format.

SensatUrban [114] is a dataset for urban-scale point
cloud understanding. It covers 7.6 km? of urban
areas in Birmingham, Cambridge, and York cities. The
point clouds are obtained from high-resolution aerial
images, which are captured by the UAV mapping
system.

Stanford 3-D Scanning Repository [115] is a surface
reconstruction repository containing some famous
3-D models, such as the Stanford bunny, happy Bud-
dha, dragon, and armadillo in .ply format. These
3-D models and some others also exist in the Large
Geometric Models Archive [116].

V. EVALUATION METRICS

Evaluation metrics are used to assess the performance
of DL models [1], [2], [3]. Various metrics have been
proposed for testing deep geometric learning methods.
Some of the common distance metrics used for sur-
face reconstruction methods are Chamfer distance (CD),
earth mover’s distance (EMD), and Hausdorff distance
(HD), which all measure the discrepancy between two
sets, as illustrated in Fig. 2. Another common metric
for evaluating 3-D reconstruction solutions is the Inter-
section over Union (IoU). Furthermore, the formulas in
this section denote false positives, false negatives, true
positives, and true negatives as FPs, FNs, TPs, and TNs,
respectively.
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D

2)

3)

4)

The CD [30] measures the distance between two dif-
ferent surfaces or sets of points by first calculating the
distances between predicted points and their ground-
truth nearest neighbors and then averaging all of
these distances. The calculated value represents the
dissimilarity between predicted output and ground
truth. The lower the value, the better the result.
Let S; and Sy be two point clouds that represent
the predicted and ground-truth shapes, and z and
y be two points that belong to these point clouds,
respectively. Then, the CD is defined as

> min{lz - ylf3

zeSl

dep (S1, S2) =

+ D minfle -yl (D

yES2

The EMD, also known as the Wasserstein distance in
mathematics and optimization theory) [30], [117],
[118], is based on solving an optimization problem,
called the transportation problem. The transportation
problem attempts to find the least-expensive flow of
goods from suppliers to consumers while satisfying
the consumers’ demand. For the calculation of the
EMD of two point sets, each point in one set should
be assigned to a unique point in the other set to fulfill
optimal assignment. EMD uses bijection between the
points that minimize the total sum of the pairwise
distances. Consider S; C R® and S, C R® to be two
point sets of equal size, representing the predicted
and ground-truth shapes, respectively. The EMD [30]
is defined as

demp (51, 52) = Hlln ZHl’— )| @

where ¢ : S; — S, is a bijection.

The HD considers the farthest and largest dissimilarity
between predicted output and ground truth. A point
in one set that has the worst mismatch and maximum
distance from its nearest point in the other set deter-
mines the HD

dup (S1, S2) = max { max mm |z — ;]|
z; €51 y; €S

a - 3
[nax min [|o: yJH} 3)

The metric is, however, not very robust toward out-
liers.

The IoU, also known as the Jaccard Index, is often
used as a quality measure in object detection and
semantic segmentation. As illustrated in Fig. 3, it is
defined as the overlap between the prediction and the
ground truth, divided by their union. The lower the
IoU, the worse the prediction result.
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Prediction Ground-truth . L. .
harmonic mean of precision and recall. The higher the
value, the better the result

IoU = = T ETF .
- TP+FN+FP (Recall  Precision)

Fiscore = 2 %

. 7
(Recall + Precision) ™

Prediction Ground-truth

For point clouds, precision and recall can be calcu-

Fig. 3. Visual intuition of the loU metric. lated by checking the percentage of points in one
point cloud, for instance, the predicted point cloud or
the ground truth, which can find a neighbor from the
other point cloud within a threshold [38]. Intuitively,
the F-score can be interpreted as the percentage of
points that were reconstructed correctly [119].

8) In classification problems, the accuracy (Acc) is the
ratio between correct predictions and all predictions,
i.e., it shows how much of the data is labeled correctly

IoU can also be easily utilized for evaluating voxel-
based representations and specifying the overlap
between a reconstructed 3-D voxel and its voxelized
ground truth. For volumetric approaches, IoU can be
formulated as [20]

(TP +TN)

U = ik [ (P > ) 1 (yi5)] @ ACCUIACY = (5 U FP L FN £ TN) ®
Y T (Pagmy > 1) + 1 (y6im))]

However, it is not an appropriate metric for imbal-
where I(.) is an indicator function, p(i, 7, k) is the pre- anced datasets as it does not take into account the
dicted voxel occupancy probability, ¢ is a voxelization distribution skew [120].
threshold, and y(i, 7, k) is the ground-truth occupancy 9) Normal consistency (NC) [45] is defined as the mean
probability. absolute dot product of the surface normal of each

5) In classification problems, precision is the number point, i.e., a perpendicular vector to the surface at the
of predictions correctly assigned to one label, i.e., given point, in one mesh, and the surface normals of
true positives, divided by the number of all predic- its nearest neighbors in the other mesh

tions assigned to that label, including those identified

incorrectly, i.e., false positives (see Fig. 4) NC ( i M) — Normal Consistency ( N M)

1
ision = —1F__ = [(n (p) ,n (72 (p)))|dp
Precision = TP + Fp° o) 2|0M| Janr

! d

The average precision (AP) is computed by averaging * 210M| Jou [tn (m (@), n (@) da
all precision values of all positively labeled sam- 9
ples [98]. The mean AP (mAP) is the average of AP
calculated over all classes. For point clouds, precision
is calculated as the percentage of predicted points
that are close to the ground-truth surface, i.e., with
a distance less than a specific threshold [119].

6) Recall or sensitivity denotes the ratio between the
number of predictions correctly assigned to one class
(TP) and the actual number of elements in that class,

where M and &M are predicted and ground-truth
mesh surfaces, n(p) and n(g) are unit normal vectors
on these mesh surfaces, respectively, m2(p) and 71 (q)
indicate the projections of p and ¢ on the aforemen-
tioned surface meshes, respectively, and (., .) implies
the inner product. The higher the NC, the better the

including those that are incorrectly assigned to the result.
other label (FN) (see Fig. 4). It is a measure of how
well a DL model can find all labels of one class Ground Truth
P T Positive Negative %
Recall = m ’ (6) : £ True Positives False Positives ‘: g
T I8 (TP) (FP) ic
S |iT IS
For point clouds, recall is calculated as the percentage = N é
of points on the ground truth, which are close to the £ |2 False Negatives True Negatives =
predicted surface, i.e., having a distance less than a Z " m
specific threshold [1191. A .

Recall denominator
7) The F; score, also known as balanced F-score,

F-measure, or dice similarity coefficient (DSC), is the Fig. 4. Confusion matrix for binary classification.

Vol. 111, No. 11, November 2023 | PROCEEDINGS OF THE IEEE 1471



Farshian et al.: Deep-Learning-Based 3-D Surface Reconstruction—A Survey

10) The Jensen-Shannon divergence (JSD) [31] mea-
sures the similarity between marginal point distribu-
tions. It is mainly based on the Kullback-Leibler (KL)
divergence [121]. Considering two point clouds and
a voxel grid that discretizes 3-D space, the number
of points within each voxel from the predicted point
set P and the ground-truth point set G is counted.
The JSD between the obtained empirical distributions
(Pp, Pg) is calculated as

1 1
ISD (Pp||Pc) = 5 Dxu (Ppl[M) + 5 Dy (Pal[M)
(10)

where M = (1/2)(Pp + Pg).

Coverage [31] quantifies the fraction of points in the
ground-truth set S, which are matched to points
in the predicted set S;. A match happens when the
nearest neighbor in the ground-truth set is found for
each point in the predicted set

11)

D(X,Y)|X € 51
|:S2]

Coverage (51, .52) = arg min
YeSs

an

where D(.,.) or “nearness” is measured using distance
metrics, such as CD or EMD. High coverage indicates
that most of the points in Sy are roughly present
within S;. However, this does not assess the quality of
the predicted set. Achieving perfect coverage is pos-
sible, despite large distances between the predicted
point set and the ground-truth set [33].

Minimum matching distance (MMD) [31], [33] is a
complement to the coverage metric. It measures the
distance between every point in the ground-truth set
Sy and its nearest neighbor in the predicted set S;
and averages these distances in order to evaluate the
quality of the predicted set

12)

MMD (S, S5) = ——

in D(X,Y
5 2 i D(XY)

Xes;
2

(12)
ves

where D(.,.) is measured using distance metrics such
as CD or EMD.

Light field descriptor (LFD) [122] measures visual
similarity between 3-D shapes. In short, LFD assumes
that a 3-D object can be represented as a number of
2-D views; therefore, if two 3-D models are similar,
they also look alike from all views. A light field,
which is used in image-based rendering, is defined
as a 5-D function that represents the radiance at a
given 3-D point along a given direction. To extract
LFD for a 3-D model, a set of image renderings (sil-
houettes) are obtained from different angles. These
rendered images are acquired using cameras located
on the vertices of a fixed regular dodecahedron, i.e.,
20 vertices, which surrounds the 3-D model. Each of

13)

Fig. 5. (a) Comparison of LFDs between two 3-D models: a pig and
a cow. First, rendered images are extracted for both 3-D models.
Then, as illustrated in (b), all 2-D images from the same views are
compared, and a similarity value for this camera angle is obtained.
Next, a different mapping between rendered images of the two 3-D
models is chosen, and thus, another similarity value is extracted, as
illustrated in (c). Eventually, the rotation of camera positions with
the best similarity is found, as shown in (d). The similarity between
the two 3-D del: d by ing up the similarities from
all the corresponding images [122].

is attail

these silhouettes is then encoded both by a region
shape descriptor (Zernike moments descriptor) and
a contour shape descriptor (Fourier descriptor) for
similarity comparisons. A visual representation can
be found in Fig. 5. LFD is a good visual similarity
metric for 3-D surfaces; however, by rendering merely
the silhouette of the shape without lighting, LFD can
only observe the condition of this shape on the edge
of the silhouette [49]. D, which is the dissimilarity
between two 3-D models, is calculated as

10
Da (L1, Ly) = m_inZd(Ilk,IZk), i=1,...
¢ k=1

,60

(13)
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Fig. 6. Taxonomy of learning-based reconstruction approaches based on 3-D shape representation.

where ¢ indicates different rotations between camera
positions for two 3-D models, and 71k and I,k are
corresponding images for the ith rotation. The dissim-
ilarity between two images is denoted by d.

VI. DL-BASED 3-D SURFACE
RECONSTRUCTION

DL-based 3-D surface reconstruction approaches can be
broadly classified into four main categories according to
their representation, as illustrated in Fig. 6:

1) Volumetric representations define a surface via small
cuboids, either a dense 3-D voxel grid [20], [21],
[22], [23], [24], [25] or an octree [26], [27], [28],
[29]. Dense voxels are the 3-D analog of a pixel in
2-D space, i.e., a cubical element in a regularly spaced
3-D grid. Therein, octrees are obtained by recursively
splitting 3-D space into octants, i.e., eight equally
sized cells. In this data structure, only cells containing
information by being close to the surface boundary
are subdivided. Neighboring cells that have the same
value do not need to be subdivided, and all of these
areas can be represented by a single large octree cell.
In order to achieve finer details, the space can be
further partitioned into smaller octree cells, which is
the main difference between a regular voxel grid and
an octree.

2) Point-based representations utilize the constituting
surface points to mark a shape [30], [31], [32], [33].
The entire surface is described through an unordered
set of (z,y, z) coordinates.

3) Mesh-based representations describe an object
through vertices, edges, and faces [34], [35], [36],

[371, [381, [39]1, [40], [41], [42], [43], [44].
Existing approaches can be mainly divided into three
categories.

a) Patch-based approaches attempt to reconstruct the
final shape by learning a group of mappings from
2-D squares to 3-D patches and putting together
these small patches.

b) Deformable template-based approaches deform
the vertices of a template mesh with predefined
interconnections and predict the final shape based
on it.

c) Other mesh generation methods are so unique,
yet singular, that they are sorted into a catch-all
category.

4) Implicit neural representations describe a shape as a
neural network that takes any (z,y, z) coordinate as
input and maps it to occupancy or signed distance
value [45], [46], [47], [48], [49], [50], [51], [52],
[531, [541, [55], [56] or model radiance or appear-
ance properties of an object such as NeRF-based
approaches [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66], [671, [68].

Accordingly, we summarize and discuss the existing
literature for DL-based 3-D surface reconstruction methods
based on these categories in Sections VI-A-VI-D. Further-
more, we depict the architecture of different approaches
with a unique color scheme in these sections. In the figures,
data units are represented in red, trainable units in blue,
and computing units in orange.

A. Volumetric Representations

Volumetric approaches in neural networks for 3-D sur-
face reconstructions rely on describing the object through
a grid. By extending the concept of 2-D convolutions to
3-D, a grid can be easily processed using learning-based
approaches, such as neural networks.

Volumetric methods characterize 3-D object data using:
1) aregular 3-D voxel grid, i.e., dense voxels, and/or 2) an
octree, i.e., sparse voxels.

Analogously to the concept of a pixel in the 2-D world,
a voxel is a cubical element in a regularly spaced 3-D grid.
An octree can be built by recursively subdividing the space
into octants until a predefined maximum depth is reached.
Additional information can be stored in cubic cells (both
in dense and sparse voxels) to help reconstruct surfaces as
follows.

1) Signed distance functions (SDFs) express the distance

between the center of each voxel and the closest point
on the surface of an object. They can be stored in a
cuboid by calculating distance functions (DFs) [25],
[123]. SDFs, a variation of DFs, purely calculate the
signed distance value for each cell. Truncated SDFs
(TSDFs) [124] go beyond the SDF definition by spec-
ifying a truncation threshold for SDF values stored in

Vol. 111, No. 11, November 2023 | PROCEEDINGS OF THE IEEE 1473



Farshian et al.: Deep-Learning-Based 3-D Surface Reconstruction—A Survey

cuboids, i.e., assigning a fixed value to voxels that
are not near enough to the surface and their signed
distance values exceed the defined threshold.

2) Occupancy or indicator functions indicate whether a
cuboid is occupied by the surface of an object or not.

Learning voxel-based SDF representations is usually
rather complicated compared to occupancy representa-
tions since dealing with DFs in 3-D space is more dif-
ficult than simply classifying a voxel as occupied or
unoccupied [45]. However, voxel-based SDF approaches
provide the advantage of generating smoother surfaces
compared to occupancy grid-based approaches. A general
disadvantage of voxel-based methods is their resolution
limitation by the underlying 3-D grid. Mesh extraction
approaches, such as the classical Marching Cubes (MC)
algorithm [125], can be used to infer a mesh from the final
output of these methods.

1) Dense Voxels: The majority of approaches with dense
voxel-based representation voxelize the 3-D space in order
to apply 3-D convolutional neural networks (CNNs) on a
grid directly. In this section, we first present pioneer studies
that applied CNNs to a 3-D representation, i.e., dense
voxels, for shape classification and then introduce 3-D
surface reconstruction and shape completion approaches
that use dense voxels.

a) Volumetric CNNs for 3-D shape classification: Sev-
eral studies have focused on solving shape classification
and recognition tasks using dense voxels [21], [23], [98],
[126], [127], [128], [129]. One of the pioneers in building
DL models in 3-D world is 3-D ShapeNets, as proposed
by Wu et al. [98]. They were among the first authors to
show the application of CNNs to a 3-D representation. The
introduced architecture uses a convolutional deep belief
network for representing a 3-D shape as a probabilistic
distribution of binary variables on a 3-D voxel grid. 3-D
ShapeNet is able to conduct several tasks, from shape
recognition to reconstruction and completion, as well as
next-best-view prediction. The DL model takes a single-
view depth map of the physical object as input and con-
verts it into a volumetric representation. The occupancy
status of each cell is specified by classifying it as either free
space, unknown space, or observed surface. Next, a deep
belief network is trained on this grid of size 30°. In terms
of accuracy, precision, and recall metrics, 3-D ShapeNets
outperform several baseline methods for 3-D shape clas-
sification and retrieval, such as the LFD approach [122]
and the spherical harmonic descriptor (SPH) [130], even
though it utilizes a mesh at lower resolution. It was further
shown that the DL model is able to automatically learn
general 3-D features.

Maturana and Scherer [126] introduced VoxNet that
voxelizes input point cloud data and processes the grid
with a 3-D-CNN for object recognition tasks. The authors
utilized a volumetric grid for representing the estimated
spatial occupancy and a 3-D-CNN for extracting features
and predicting class labels directly from the occupancy

grid of size 323. Each point in the input point cloud
is mapped to discrete volume coordinates. The resulting
voxel volumes are fed to the proposed shallow neural
network. VoxNet has fewer parameters compared to 3-D
ShapeNets [98], i.e., less than one million versus over
12.4 million parameters, while achieving 8% and 6%
higher average accuracy for ModelNet10 and ModelNet40
datasets, respectively. However, in both these methods, the
memory and computational costs increase cubically with
respect to the input resolution.

ORION [127], which is based on VoxNet [126], studies
the importance of object orientation in 3-D object recog-
nition results. Unlike VoxNet and 3-D ShapeNets [98],
which augment training data with rotations of the objects
to achieve rotational invariance of the network, ORION
seeks to predict object orientation. The proposed network
uses 3-D convolutional networks for 3-D recognition and
adds an auxiliary orientation loss for better classification
performance. By forcing the network to predict object
orientation in addition to class labels during training,
more accurate classification results can be achieved at test
time. The ORION network is shallower than the proposed
method by Brock et al. [21] that we discuss further down
this survey, leading to fewer trainable parameters.

Some studies utilize multiview CNNs for analyzing a 3-D
shape. Multiview CNNs work in three steps: 1) rendering
a 3-D shape as a collection of images from different view-
points; 2) inferring features for each viewpoint; 3) fusing
these features across various views. In order to minimize
the performance gap between multiview CNNs and volu-
metric CNNs, Qi et al. [128] suggested two new network
architectures of volumetric CNNs. One architecture focuses
on local regions, while the other uses anisotropic probing
kernels for convolving a 3-D cube, then projecting 3-D vol-
umes to a 2-D image, and afterward applying image-based
CNNs for classification. The proposed CNNs surpass volu-
metric CNN-based methods, such as 3-D ShapeNets [98]
and VoxNet [126]. Moreover, their classification accuracy
competes with some multiview-based methods, such as
MVCNN [131], LFD approach [122], and SPH [130], given
the same 3-D resolution of 30°.

b) 3-D surface reconstruction and shape completion
using volumetric representation: In this section, we review
the studies that leverage dense voxel representations for
3-D surface reconstruction [20], [21], [22], [23] and
3-D shape completion [24], [25]. Choy et al. [20] intro-
duced a framework, 3-D recurrent reconstruction network
(3D-R2N2), for both single- and multiview 3-D reconstruc-
tions. This method takes one or more RGB images of an
object from arbitrary viewpoints as input and outputs a
3-D occupancy grid. The proposed network is composed
of three main modules, as shown in Fig. 7: 1) a 2D-CNN,
which encodes the input into a low-dimensional feature
vector; 2) a 3-D convolutional long short-term memory
(LSTM) [132], in which the 3D-LSTM units keep their pre-
vious cell states or update them, whenever there are more
observations, i.e., multiview images, available; 3) a 3-D
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Fig. 7. Overview of the 3D-R2N2 network [20]. The input to this
network is one or more RGB images from arbitrary viewpoints, and
the output is a 3-D occupancy grid. The main modules of 3D-R2N2
are an encoder, a 3-D LSTM, and a decoder.

deconvolutional neural network (3D-DCNN) that decodes
the 3D-LSTM hidden states into a higher resolution and
produces the final occupancy grid.

In the LSTM module, 3D-LSTM units are located in a
grid structure in such a way that each of them focuses
on reconstructing a particular part of the output. Two
versions of 3D-LSTMs, 3D-LSTMs without output gates
and 3-D gated recurrent units (GRUs), were tried out in
3D-R2N2, in which the latter achieved better results. The
output size is 323, Although the generation of detailed
and thin parts of the objects and the reconstruction of
objects with high texture levels are very challenging, 3D-
R2N2 performs better than the category-specific approach
proposed by Kar et al. [133], which learns 3-D shapes
using camera viewpoint estimations together with object
silhouettes, in SVR using real-world images. 3D-R2N2 is
also able to produce accurate outputs compared to the
MVS method [86] in multiview reconstruction (MVR).

Brock et al. [21] investigated generative and discrim-
inative voxel modeling with deep ConvNet architectures.
In short, their method presents a voxel-based variational
autoencoder (VAE) [134], [135] for reconstruction and
interpolation, a graphical user interface for investigating
the latent space of autoencoders (AEs), and a deep voxel-
based CNN for object classification. The output size of the
network is 323, The voxel-based VAE learns to reconstruct
features of an object, attaining acceptable reconstruction
accuracy. It further facilitates the transition from one object
to another by interpolating between their reconstructions.
The neural model has significantly fewer parameters than
FusionNet [129], i.e., 18 million as opposed to 118 million.
Nevertheless, it achieves competitive results compared to

ORION [127] considering that ORION uses orientation
augmentations to improve the classification.

The TL-embedding network [22] learns a vector repre-
sentation of an object, which is both generative in 3-D,
i.e., able to reconstruct objects in 3-D space from this
representation, and predictable from 2-D images, i.e., able
to extract this representation from images. As shown in
Fig. 8, this architecture is composed of a convolutional
network, which brings about predictability, and an autoen-
coder, which results in generativeness. It generates outputs
with 20® resolution. This method captures stylistic details
better than the method proposed by Kar et al. [133].

Wu et al. [23] introduced a framework, called 3-D gen-
erative adversarial network (3D-GAN), which generates
novel volumetric 3-D objects from a probabilistic latent
space. 3D-VAE-GAN, an extension of 3D-GAN, provides
the ability to reconstruct surfaces from input images. For
generation and recognition of 3-D objects, this method
utilizes both general-adversarial modeling [136], [137]
and volumetric convolutional networks [98], [126], as
illustrated in Fig. 9. Furthermore, it fuses 3D-GAN with
a VAE [134] for 3-D object reconstruction from a single
2-D image. The resolution of its final output can reach
up to 64°. The classification accuracy of this network is
roughly similar to volumetric learning-based approaches,
such as VoxNet [126] and ORION [127], but is lower
than the method proposed by Qi et al. [128]. It shows
higher AP for voxel prediction compared to the work by
Girdhar et al. [22] in a single-image 3-D reconstruction
task. However, 3D-VAE-GAN usually creates a noisy and
incomplete output from an input image. Studies conducted
by Wu et al. [138] showed that, ultimately, training GANs
together with recognition networks can lead to high insta-
bility.

Stutz and Geiger [25] introduced a learning-based
approach with weak supervision for 3-D shape completion.
It takes a 3-D bounding box and an incomplete point
cloud as input and predicts the complete object shape.
The completion process is done in two steps. 1) A shape
prior is learned, i.e., a VAE is employed to learn a 3-D
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Fig. 8. TL-embedding network [22]. During training, two types of

input are fed to the network: 2-D RGB images as the input to

ConvNet at the bottom and 3-D voxel maps as the input to the
autoencoder at the top. The network outputs a 3-D voxel map.
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Fig. 9. Generator architecture in 3D-GAN [23]. Five volumetric fully
convolutional layers of kernel sizes 4 x 4 x 4 and strides 2 make up
the generator. The discriminator architecture is usually mirroring
the generator architecture.

shape model on synthetic data, encoding shape models in
a dataset using occupancy grids and SDFs at 24 x 52 x
24 resolution. 2) Shape inference is performed. For this,
3-D shape completion is considered a maximum likelihood
(ML) problem. The authors used the amortized ML (AML)
approach that works over the lower dimensional latent
space z from the first step. It keeps the pretrained decoder
from the previous step fixed and adds a new encoder. The
encoder is trained without supervision, i.e., without using
explicit labels, and learns to directly predict ML solutions
from incomplete input observations using ML loss. The
presented method was shown to be faster than a fully
supervised baseline while using 9% or less supervision
while being able to produce competitive results.

Dai et al. [24] fused a volumetric DNN with a 3-D shape
synthesis procedure to complete partial 3-D inputs. Their
approach generates the output in two major stages. 1) A
shape prediction method, which predicts a volumetric grid
with 322 resolution as a low-resolution global structure of
the input. The proposed network, the 3-D-encoder-predic-
tor network (3D-EPN), consists of 3-D convolutional layers
and attempts to predict distance field values for missing
data. 2) A patch-based 3-D shape synthesis method, which
employs a synthesis procedure to improve local details and
create a high-resolution output using CAD model priors.
Given the predicted coarse output from the first stage, the
authors carried out a search for similar 3-D shape models
in the ShapeNet [96] database. Based on the results, they
sought to find similar local patches in these shape models
for the purpose of local detail synthesis. The resolution of
the final voxel grid is 128%. Without the synthesis step,
3D-EPN provides only low resolution and is unable to
predict local details and fine structures. Nevertheless, it
outperforms 3-D ShapeNets [98] and Poisson methods
[81, [9]1.

In another approach, Dai et al. [139] suggested sparse
generative neural networks (SG-NNs), which is a self-
supervised scene completion approach that accepts an
incomplete RGB-D scan as input and predicts a high-
resolution 3-D reconstruction while also inferring unseen,
missing geometry. The self-supervised nature of this tech-
nique allows for training entirely on real-world, par-
tial scans. This eliminates the requirement for synthetic
ground truth. Self-supervision is achieved by removing

some frames from a given (incomplete) RGB-D scan,
resulting in an even more incomplete input; this input is
used to create an input-target pair (the original scan is con-
sidered the target scan). The difference in partialness is
then correlated in this input-target pair, while regions that
have never been observed are masked out during training.
Despite the fact that fully complete scenes are not used
as samples during training, this approach generates high
levels of completeness by learning to generalize comple-
tion patterns across the training set. Dai et al. also pro-
posed an SG-NN, a fully convolutional encoder—-decoder
architecture, capable of predicting high-resolution final
geometry as a sparse TSDF representation. This end-to-
end formulation generates a 3-D scene in a coarse-to-fine
manner. SG-NN is built upon sparse convolutions [140]
that operate only on surface geometry. This self-supervised
approach produces more accurate and complete scenes
in comparison to a fully supervised approach, such as
3D-EPN [24].

In general, voxel-based methods encounter a number
of difficulties. Information loss may occur due to dis-
cretization and transformation of input data to coarse
voxels. Moreover, cubic growth in memory limits the reso-
lution and the overall computational demands bring about
coarse final outputs. Generating higher resolution surfaces
requires deeper networks. However, the network depth is
constrained by the available GPU memory. Therefore, it
may affect the ability of CNNs with volumetric decoders
in producing high-resolution outputs [141].

2) Octrees: Dense voxel representations are associated
with a number of challenges regarding resolution, memory,
and computational complexity. In many cases though, the
3-D shape surface occupies only a small portion of 3-D
space. Hence, octrees mark a popular approach for parti-
tioning space, as they allow for the 3-D data to be stored in
a sparse structure [142], [143]. For octree construction of
a 3-D shape, a bounding cube is created around the entire
shape. This bounding cube will be recursively subdivided.
In each step, all cuboids, which are occupied by a shape
boundary, are traversed, and each of them is divided into
eight smaller, equally sized cuboids. However, in order to
enable CNN operations on an octree, this data structure
needs to be updated and slightly changed, which leads
to complex implementations, while the resolution is still
limited by the underlying 3-D grid [45]. Hence, convolu-
tions and pooling to octrees are applied similar to CNN
operations on dense voxels with the main difference being
that the elementary operand is an octant.

a) OctNet: Riegler et al. [144] presented OctNet that
enables the usage of high-resolution inputs for DL pur-
poses. OctNet is based on a 3-D-CNN that can be applied
to a special form of octree data structure to learn repre-
sentations from high-resolution 3-D data. Vanilla octree
implementations might encounter data access speed issues
in high-resolution (high recursion depths) octrees. On the
other hand, for convolutional network operations, such
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as convolution or pooling, it is crucial to have frequent
access to different data elements, such as cell neighbors.
In order to provide faster data access and reduce cell
traversal time, the authors proposed a hybrid grid-octree
data structure. They used a shallow octree, which is an
octree with maximum depth D = 3, as a basic building
block. Several of these shallow octrees are stacked in a
regular grid structure to cover the whole volume. Input
resolution effects of this representation were evaluated
on three different tasks: 3-D classification, 3-D orientation
estimation of unknown object instances, and semantic seg-
mentation of 3-D point clouds. For high-resolution inputs
in the 3-D shape classification task, OctNet runs faster and
requires less memory as opposed to DenseNet, a densely
voxelized version of OctNet. In general, both OctNet and
DenseNet perform better than a shallow network such as
VoxNet [126], verifying that network depth is of great
importance.

OctNet does not generate an octree structure, and this
structure has to be known in advance for both input
and output. In classification and semantic segmentation
tasks, this does not comprise a problem. However, learning
the volumetric structure of objects and scenes, and being
able to construct them is crucial in generative tasks, such
as reconstruction, generation, and completion, since the
input and output partitioning structure might be different.
OctNetFusion [26] proposes a learning-based approach,
which learns to partition the space and can predict an
SDF or a binary occupancy map. The network takes one
or more 2.5-D depth maps as input. To reconstruct precise
and complete 3-D outputs, it fuses depth information from
different viewpoints into a coarse volumetric grid. Then,
this volumetric grid (grid-octree structure) is fed to the
OctNetFusion network architecture, consisting of encoder—
decoder modules. The network determines whether a cell
should be subdivided or not in a coarse-to-fine manner.
The output resolution can be up to 256°. This approach
performs qualitatively and quantitatively better than tradi-
tional volumetric fusion approaches, such as vanilla TSDF
fusion [124] and TV-L1 fusion [145] for volumetric fusion
tasks and Voxlets [146] for volumetric shape completion
from a single image.

b) O-CNN: Another concurrent work in the scope of
octree-based CNNs (O-CNNs) for 3-D shape analysis is the
O-CNN [147]. The authors’ main idea is to represent 3-D
objects with octrees and execute 3-D-CNNs only on nodes
or cuboids, which are occupied by boundaries of the 3-D
object, instead of sliding the convolutional kernel over the
whole voxel grid, as done for the standard convolution
computation in full voxel grids. The network constructs
an octree from an input-oriented 3-D model, e.g., an
oriented triangle mesh or a point cloud with oriented nor-
mals, and enriches each octant of this data structure with
metainformation, such as shuffle key vectors, label vectors,
and input signal, which are needed for the convolution
operations. Furthermore, a hash table is built to accelerate
neighborhood search in the convolution. By storing the

octree data structure in the graphical memory, O-CNN can
be easily and efficiently trained and evaluated on GPUs.
To demonstrate the efficiency of their network, the authors
evaluated it on three shape analysis tasks: object classifi-
cation, shape retrieval, and shape segmentation. In terms
of classification accuracy, O-CNN performed better than
VoxNet [126], slightly worse than the method proposed
by Brock et al. [21], and competitive to nonvoxel-based
methods, such as PointNet [148]. In addition, the impact
of different input representations on the same network
architecture (O-CNN) was investigated. Results showed
that an octree input achieves higher accuracy compared to
full voxel structures. For object part segmentation, O-CNN
yields better or comparable performance than other meth-
ods, such as PointNet [148].

To improve the computation and memory efficiency
of O-CNN, Wang et al. [27] proposed the exten-
sion “Adaptive O-CNN,” which consists of an encoder—
decoder structure and uses patch-guided adaptive octree
shape representations. Contrary to approaches such as
volumetric-based CNNs, where the output is generated as
voxels of the same resolution, this method can generate
adaptive octrees based on a patch-guided partitioning
strategy and with differently sized planar patches. The
underlying assumption is the subdivision rule, which states
that splitting all octants to the finest level is not necessary.
The process can be stopped early for some of the octants,
and the local shape inside these octants can be repre-
sented by simple patches, e.g., planar patches. However,
this approach limits the quality of the output and may
encounter some difficulties in generating watertight and
curved surfaces. Adaptive O-CNN obtains better or com-
parable classification accuracy than PointNet [148], Oct-
Net [144], and O-CNN [147], yet it performs worse than
PointNet++ [149], Kd-Network [150], and the method
proposed by Brock et al. [21]. For the task of shape recon-
struction from a single image, Adaptive O-CNN surpasses
PointSetGen (PSG) [30] and AtlasNet [34] in generating
more detailed geometry.

¢) Other octree prediction approaches: Héane et al.
[28] introduced a hierarchical surface prediction (HSP)
framework for high-resolution voxel grid prediction in
3-D object reconstruction. The main idea boils down to
generating and predicting high-resolution voxels around
the predicted surface and coarse-resolution voxels for
the interior and exterior parts of an object. The high-
resolution voxels are not predicted directly, but, instead,
a coarse-to-fine approach is used to create smoother 3-
D models hierarchically and in a multiresolution fashion.
Starting with approximating the coarse geometry of the
output, more finely resolved details are added step by
step by refining the surface. This process, finally, results
in a voxel grid with up to 256> resolution. The proposed
method is based on an encoder—decoder architecture. A
convolutional encoder encodes input to a feature vector,
and then, an upconvolutional decoder predicts the voxel
grid or final data structure (called voxel block octree
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Fig. 10. OGN [29] takes an input 3-D shape and gradually
reconstructs octrees as the output in different resolutions.

data structure in this article). Classifying each voxel as
the boundary, free space, or occupied space, only voxels
with a boundary label require high-resolution prediction
since they cover the actual surface. The major difference
between HSP and OctNet [144] is that OctNet takes the
structure of the shallow octrees as input, while HSP pre-
dicts the structure of the tree together with its content. HSP
produces more accurate surfaces with higher resolutions
compared to low-resolution baselines predicting dense
voxels.

In a similar approach, Tatarchenko et al. [29] sug-
gested an octree generating network (OGN) that is a
convolutional decoder that can generate and predict the
octree structure of 3-D shapes, along with the occupancy
value of each cell. It operates on octrees and reconstructs
3-D shapes in a multiresolution manner, as illustrated in
Fig. 10. This method generates results up to a resolu-
tion of 5123, The network gradually reconstructs a high-
resolution surface from the initial, low-resolution dense
voxel grid using hash-table-based octree blocks. If the
reconstructed surface has not yet reached the final output
resolution, cells with a “mixed” state, i.e., undetermined
state, will be passed to the next layer of the network for
further subdivision. Providing the same accuracy as dense
voxel grids in low resolutions, OGN offers less memory
consumption and shorter run-time in higher resolutions in
comparison to voxel grid-based networks. In particular, it
is 20 times faster and requires two orders of magnitude
lower memory usage at 5122 resolution.

B. Point-Based Representations

These days, point clouds are becoming increasingly
important and available due to the improvements in scan-
ning devices in recent years. A point cloud is a set of points
in 3-D space, inferred by various 3-D data acquisition
techniques. It is an irregular data format since there is no
canonical order between the points in a set. Each point
can be defined by its (z,y, z) coordinates. Therefore, the
size of the matrix representing a 3-D object is initially
N x 3 for N points. The number of columns in this
matrix representing the features might be extended if other

information, such as color and normal, exists. Considering
the irregular and unordered nature of point clouds, it is
difficult to apply DL techniques, such as CNNs, directly on
them. Consequently, in order to process a point cloud with
neural networks, it was common to transform them into
voxel grids or collections of images. These transformations
usually present numerous challenges, such as information
loss, voluminous data, resolution constraints, and high
computational costs. To reduce the overhead of data trans-
formation to other data formats, different methods for
effectively processing point clouds with neural networks
have been proposed, which will be discussed in Sections
VI-B1 and VI-B2.

1) PointNet and PointNet+-+: Pioneer works in the field
of learning global features directly on point clouds are
PointNet [148] and PointNet++ [149]. PoinNet as pro-
posed by Qi et al. [148] directly consumes a raw point
cloud as an input and uses it for discriminative DL tasks,
e.g., object classification, semantic segmentation, and part
segmentation. As illustrated in Fig. 11, each of the points
in the input set is processed by a small neural network
individually and independently based on its own coordi-
nates, resulting in a high-dimensional embedding of the
points. Following the embedding step, a simple symmetric
function, such as max pooling, is utilized to aggregate the
encodings from each of the points. The symmetric function
is chosen such that it pays attention to the permutation
invariance of the input points. The aggregation step brings
about a global feature vector, which encodes the whole
shape and can be fed to different neural networks for
recognition purposes. PointNet achieves higher classifi-
cation accuracy compared to the LFD approach [122],
which is a 3-D model retrieval method, SPH [130], and
other methods with volumetric representation, such as 3-
D ShapeNets [98], VoxNet [126], and another method
previously proposed by Qi et al. [128]. Although it has
around 17 times fewer parameters than multiview-based
methods, such as MVCNN [131], its performance is only
slightly lower compared to these methods. PointNet pro-

12— MLP )—>

Ca—> (M D—>|

g }
20— D—>52 ) — | |——
. . A~

(13— (CHF D —>

Segmentation
loss
Latent Space

Fig. 11. PointNet architecture [148], which is used for
classification and segmentation tasks, directly accepts a point cloud
as input. Each of the points in the input point cloud is processed by
a small neural network individually and independently. Then, point
features are aggregated by max pooling, a simple symmetric
function that respects the permutation invariance of the input
points. The aggregation step creates a global feature vector that
encodes the entire shape.
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vides linear complexity O(NN) in both spatial and temporal
domains, where N is the number of input points, while the
complexity grows squarely with respect to image resolu-
tion for multiview methods and cubically with respect to
the volume size for volumetric methods. More importantly,
due to it satisfying the permutation invariance condition,
PointNet cannot capture local information and, thus, lacks
generalization.

In order to resolve the issues of PointNet, Qi et al.
[149] introduced the extension PointNet++, which pays
more attention to local features and combines them with
global features to infer better results. The architecture is
built on top of PointNet, enriching it with a hierarchical
feature learning approach. The whole process, which is
done recursively, can be summarized as follows: 1) spec-
ifying centroids of local regions by sampling a subset of
the input point cloud using the farthest point sampling
(FPS) algorithm; 2) finding local neighborhoods of these
centroid points using radius-based ball query; 3) applying
a mini-PointNet in each neighborhood to mimic the con-
cept of a convolution kernel and conduct convolution-like
operations in point space for the purpose of local feature
extraction. The presented method proved to be robust
toward nonuniform sampling density, which might occur
due to perspective effects, variations in radial density,
motion, and so on. Compared to PointNet, PointNet++ has
an improved classification accuracy for the ModelNet40
dataset.

2) Point cloud reconstruction and generation: PointNet
was mainly implemented for discriminative tasks, such
as classification and segmentation. The first approach for
reconstructing a 3-D point cloud of an object from a
single (monocular) RGB or RGBD image was proposed by
Fan et al. [30] and is based on a generative learning-based
approach. The main contributions of this work are given
as follows: 1) designing a point set generator network;
2) proposing two proper loss functions for the comparison
of the ground truth with the network’s predictions for
point sets, i.e., CD and EMD; 3) modeling uncertainty and
ambiguity of the ground truth. The proposed network is
composed of an encoder and a predictor part. The encoder
transforms the input into an embedding space. The predic-
tor is divided into two parallel branches: a deconvolution
(deconv) branch and a fully connected (fc) branch. The
deconvolution branch learns the smooth parts and main
body of the object, while the fc branch learns nonsmooth
parts and details. The results of these branches are then
concatenated to create the final point set. In comparison
to 3D-R2N2 [20], which generates a volumetric repre-
sentation from single or multiview images, this method
produces better results on CD, EMD, and IoU metrics.
In addition, it is able to reconstruct thin structures more
accurately.

Achlioptas et al. [31] proposed a solution for generative
tasks and unsupervised representation learning based on
an end-to-end pipeline that can reconstruct point clouds
using deep autoencoders (AEs) and GANs. The autoen-
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Fig. 12. FoldingNet architecture [32] consists of a graph-based
encoder (an improved and generalized version of PointNet), which
encodes local neighborhood structure information, and a
folding-based decoder, which reconstructs the point cloud from a
2-D grid template deformation process.

coder extracts features by learning a lower dimensional
representation of the input, based on which the GAN [136]
generates point clouds. In the autoencoder architecture,
the authors exploited a PointNet-like encoding scheme
to learn compact representations. The encoder generates
a latent code that is invariant to the order of input
points. The latent code is converted back to a point cloud
using a standard deep network with three fc layers as a
decoder. The authors further investigated three different
approaches for point cloud generation: 1) GAN operating
on raw point cloud; 2) latent-GAN, which is a plain GAN
being trained on the latent space of the pretrained AEF;
3) Gaussian mixture models operating on the latent space
learned by AE. The study indicated that the proposed AE
provides good generalization capacity toward unseen data.
However, the output of the proposed DL model architec-
ture is limited to 2048 points, and generating high-quality
surfaces with such a small number of points is challenging.

Another closely related approach that attempts to solve
unsupervised learning challenges using deep autoencoders
is FoldingNet [32]. The presented architecture, as illus-
trated in Fig. 12, utilizes a simple graph-based scheme as
the encoder part (similar to the method proposed in [151],
an improved and generalized version of PointNet) in order
to encode local neighborhood structure information. Since
applying convolution operations on graphs is difficult,
the authors suggested building the k-nearest neighbor-
hood graph (K-NNG) and repeatedly applying max-pooling
operations on each node’s neighborhood. This way, the
DL model is able to capture locality and extract features
of neighboring points. For the decoder part, a folding-
based scheme is proposed to reconstruct the point cloud
from a 2-D grid template deformation process. Due to
the fact that 3-D point clouds are often sampled from
object surfaces, one can make the assumption that any
3-D object surface can be converted and squeezed into a
2-D plane. It is also possible to reverse this process, i.e.,
wrapping 3-D shapes with a fixed 2-D paper (plane). This
property builds the foundation of the proposed method.
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The decoder maps 2-D points from a 2-D template grid
to the surface of the 3-D object using folding operations.
The definition of the folding operations, i.e., 2-D-to-3-D
mapping, is the main contribution of this article, making
it the first single learned parametric function embedding
from a (gridded) 2-D (point) manifold into 3-D space
and a fundamental building block for other surface recon-
struction approaches. FoldingNet’s decoder requires about
7% of the parameters of the fc decoder proposed by
Achlioptas et al. [31], which is significantly smaller than
the latter. However, it was shown to perform better at
feature extraction in terms of classification accuracy and
reconstruction loss. Overall, FoldingNet achieves higher
classification accuracy than other unsupervised methods,
such as LFD approach [122], SPH [130], TL-embedding
network [22], and 3D-GAN [23].

PointFlow [33] is a 3-D point cloud generation frame-
work that learns a distribution of distributions, i.e., the
distribution of shapes and its respective points. A VAE
is applied to transform sampled 3-D points from the
point prior into a realistic point cloud conditioned on a
shape vector. The distributions are modeled in two steps.
First, the distribution of the latent space of shapes is
learned. To enable the method to sample multiple shapes,
PointFlow extracts latent vectors of different shapes. A
sampled Gaussian vector (a shape prior) is transformed
into a shape latent vector using a continuous normalizing
flow (CNF) [152], [153], [154]. In the second step, the
distribution of points on a specific shape is learned for
shape generation. Given a sampled 3-D Gaussian point
cloud (point prior) and a shape latent vector inferred from
the first step, a CNF is used to move input points to their
new location and transform them into the target shape.
For generative tasks, PointFlow outperforms the methods
proposed in [31] in terms of the 1-nearest neighbor accu-
racy (1-NNA) metric while having fewer parameters. With
respect to the EMD score, it achieves better autoencoding
performance compared to Achlioptas’ method [31] for
point cloud reconstruction from inputs.

Several recent studies have investigated point cloud
upsampling [155], [156], [157], normal and curvature
estimation from point clouds [158], [159], classifica-
tion [160], [161], [162], [163], [164], [165], [166],
segmentation tasks [160], [161], [162], [164], [166],
[167], [168], object detection [163], [169], and point
cloud denoising [170]. Although point-based representa-
tion approaches discretize the surface of the shape into
a set of 3-D points, they do not model the correspond-
ing connectivity. Thus, additional postprocessing steps are
needed to generate the final high-quality 3-D mesh. On
the other hand, existing approaches are very limited in
terms of the number of generated points leading to limited
output quality.

C. Mesh-Based Representations

Meshes are irregular types of data that are difficult
to predict by neural networks. Their components are
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Fig. 13. AtlasNet [34] is a patch-based approach that takes either
a 2-D image or a 3-D point cloud as input and outputs a 3-D mesh.
MLPs are used to estimate the target 3-D surface, which learns the
local mapping of 2-D-points to 3-D-surface points.

vertices, edges, i.e., pairs of vertices, and (triangular)
faces, i.e., triplets of vertices. Therefore, researchers have
investigated different paths to address mesh-based rep-
resentations, namely, patch-based approaches [34], [37],
deformable template-based approaches [38], [39], [40],
[41], [70], [171], and other mesh generation meth-
ods [35], [36], [42], [43], [44], [172].

1) Patch-Based Approaches: Groueix et al. [34] intro-
duced a method for 3-D surface generation, called Atlas-
Net, as illustrated in Fig. 13. They suggested generating
a 3-D surface and representing it as a set of folded 2-D
squares. The input shape can be either a 2-D image or a 3-D
point cloud. The method outputs the corresponding 3-D
mesh and its atlas parameterization. The main steps of the
approach include encoding an input 3-D point cloud into a
3-D shape and reconstructing the 3-D shape from an input
RGB image. 3-D point clouds are encoded using a PointNet-
based encoder, which transforms the input point cloud into
a 1024-D latent vector. Input images are encoded using
ResNet-18 [173]. The decoder consists of four fc layers,
which extract the final surface. The target 3-D surface
is estimated using multilayer perceptrons (MLPs), which
learns the local mapping of 2-D-points to 3-D-surface
points. Therefore, by transforming the 2-D squares to the
3-D surface using learnable parametrizations, i.e., MLPs
or patches, the final surface is covered in a way similar
to putting paper strips on a shape to make a papier-
maché. The difference between the proposed method and
FoldingNet [32], which is a folding-based method, is that
FoldingNet deforms just one 2-D square or patch, while
AtlasNet investigates a varying number of 2-D squares.
Results from AtlasNet showed that the usage of multi-
ple patches improves 3-D reconstruction. For SVR from
a 2-D RGB image, AtlasNet yields qualitatively better
performance compared to the dense voxel-based method
3D-R2N2 [20], the octree-based method HSP [28], and
a point-based method [30]. Furthermore, it was shown
that AtlasNet provides good generalization properties;
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Fig. 14. Meshlet inconsistencies adapted from the patch-based
approach paper [37].

however, it generates artifacts such as self-intersecting
parts and overlapping patches.

Badki et al. [37] proposed an approach to extract a 3-D
mesh from a noisy, sparse, unordered, and nonoriented set
of points. Instead of learning shape priors at the object
level, the method learns them locally while enforcing
global consistency. In order to represent these priors and
local features, small mesh patches, called meshlets, were
used. These meshlets can be interpreted as a dictionary
of local features and learned priors. The final mesh is
the union of all meshlets. The authors used a VAE for
learning the priors by using a very large dataset of mesh-
lets, which was extracted from objects in the ShapeNet
dataset. During training, the local priors are learned with
meshlets. At inference, meshlets are deformed to match
the input point cloud via distance minimization. Since
individual meshlets are updated independently in order to
adapt to the points, the overall mesh extracted from their
union is not watertight. Therefore, a global consistency
step is performed to eliminate inconsistencies across all
meshlets, as illustrated in Fig. 14. Compared to occupancy
networks [45] and AtlasNet [34], which are class-specific
algorithms that learn priors at the object level, and deep
geometric priors [174], this method produces better quan-
titative results in terms of CD and HD metrics. It also
performs qualitatively well at reconstructing objects from
unseen classes during training, coping with noise, and
being robust to dramatic changes in the object’s pose.

For all the aforementioned methods, mesh patches and
the tessellation process may affect the quality of the final
surface, especially for complex shapes. Therefore, these
approaches may generate self-intersecting meshes and
might be unable to generate closed surfaces.

2) Deformable Template-Based Approaches: Deformable
template-based approaches take a template mesh with
predefined interconnections as input, deform the vertices,
and predict the final shape based on this. These approaches
can generally reconstruct meshes and shapes with sim-
ple topology; however, they struggle to generate complex
structures with a lot of details. Wang et al. [38] designed
Pixel2Mesh, an end-to-end reconstruction pipeline for
extracting a 3-D triangular mesh from a single RGB image.
Taking an input image and an ellipsoid with fixed num-
bers of edges and vertices as the initial mesh, it gradu-
ally deforms the mesh using a graph-based CNN [graph

convolutional network (GCN)] to generate the final 3-D
shape. As illustrated in Fig. 15, the overall method is
composed of two main parts. 1) An image feature network
(2D-CNN), which is used to infer perceptual features using
an input color image. 2) A three-block cascaded mesh
deformation network (graph-based ResNet) that takes care
of initial mesh deformation in a coarse-to-fine manner.
Each graph-based ResNet block takes the perceptual fea-
ture concatenated with 3-D feature encoding of the input
mesh as input. In their study, the authors showed that
Pixel2Mesh outperforms 3D-R2N2 [20] and the point-
based method proposed by Fan et al. [30] in terms of the
mean of F-score, CD, and EMD metrics. Qualitywise, it pro-
duces smoother surfaces with local details. Nevertheless,
the approach shows generalization issues and can only
generate meshes and objects of topologies similar to the
initial mesh.

Pixel2Mesh++ [39] works along with Pixel2Mesh to
produce 3-D meshes from multiview images. The main
idea is that adding more images (three to five) of an
object as input provides more information for a shape
generation method and, thus, results in more accurate
and detailed reconstructions. Pixel2Mesh++ consists of a
multiview deformation network (MDN), which processes
cross-view information for the prediction of optimal defor-
mations. First, a coarse mesh is produced by Pixel2Mesh,
which is then fed to the MDN part to be refined pro-
gressively by adding details. With regard to the F-score
metric, Pixel2Mesh++ generates better results than 3D-
R2N2 [20], learned stereo machine (LSM) [175], and
two other baselines that the authors implemented using
Pixel2mesh [38]. In addition, it generalizes well across
various semantic categories and produces high-quality out-
puts with accurate details.

Recent efforts by Kanazawa et al. [40] utilized a
CNN image encoder followed by three modules for 3-D
shape generation, camera pose estimation, and texture
prediction. The CNN acts as an encoder, producing a latent
representation of a single input image, which is fed to the
three prediction modules. The 3-D structure of a shape
is generated by deforming a learned category-specific
mean shape with instance-specific predicted deformations.
Texture is parameterized as a UV image that is predicted
using texture flow. This mechanism enables the method to
transfer the texture of one instance onto another. However,
it cannot produce the detailed structure of the input shape.
The presented approach obtains comparable results to the
one proposed by Kar et al. [133] in terms of the IoU metric.
Kar et al. [133] exploited segmentation masks and option-
ally a set of keypoints as annotations during inference to
generate 3-D rigid objects. Contrary to that, the method
of Kanazawa et al. [40] only utilizes these annotations
during training and directly predicts a 3-D structure form
an unannotated input image at inference time.

Hanocka et al. [41] introduced Point2Mesh for recon-
structing meshes from point clouds. The core idea is a mesh
fitting process for the reconstruction of the final mesh.
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Fig. 15. Pixel2Mesh network [38] is a deformable template-based approach that reconstructs a 3-D triangular mesh from a single RGB
input image. It consists of three mesh deformation blocks used for mesh resolution enhancement and vertex location estimation.

In addition to the input point cloud, an initial watertight
mesh is fed to the network. This initial mesh represents
a coarse approximation of the point cloud, which is iter-
atively deformed from outside-in using a CNN to fit the
input point cloud, as illustrated in Fig. 16. Accordingly, a
network learns displacement and deformation of the mesh
vertex positions. The optimization of Point2Mesh is based
on MeshCNN [176], which is a CNN-based pipeline applied
on triangular meshes. Unlike Screened PSR, Point2Mesh
is agnostic to normal orientation and ensures watertight
reconstructions from noisy input with missing parts and
unoriented normals. It also achieves a higher F-score
compared to Screened PSR [9] and deep geometric pri-
ors [174] for shape denoising and completion. However,
Point2Mesh requires a large amount of compute time and
memory, possibly alleviated by data parallelism or model
parallelism [177].

3) Other Mesh Generation Methods: Liao et al. [42]
investigated end-to-end 3-D surface prediction using a dif-
ferentiable MC (DMC) algorithm. In previous research, the
surface prediction was solved in two steps: first, predicting
an intermediate SDF/occupancy representation using an
auxiliary loss, and second, taking a postprocessing step for
3-D mesh extraction separately, such as the MC algorithm.
On the other hand, applying backpropagation to the MC
algorithm is intractable due to nondifferentiability. Hence,
in order to unite these steps to create an end-to-end frame-
work, the authors inserted a differentiable formulation

Fig. 16. Point2Mesh [41] takes a point cloud (in blue) and a
deformable initial mesh as input and gradually reconstructs the final
output shape.

as a final layer into a 3-D-CNN. A point cloud, which
is used as input, is directly converted into a volumetric
representation using a grid pooling operation, e.g., max
pooling in each cell. An encoder-decoder network with
skip connections is then used to process pooled features,
with the decoder operating in volumetric space. That
way, it not only estimates occupancy probabilities but also
predicts the vertex displacement field for a surface mesh.
Compared with baseline methods that infer occupancy or
TSDF first and then apply MC as a postprocessing step,
DMC achieves superior results with respect to CD, accu-
racy, and completeness metrics. Nevertheless, difficulties
may arise while reconstructing very thin surfaces, and
disconnected parts can become connected.

Scan2Mesh [43] is a generative model that combines
convolutional and graph neural network architectures to
predict a complete, lightweight, and structured 3-D mesh
representation from an unstructured and incomplete range
scan of an object. The aim is to predict both vertex location
and edge. Initially, the feature space is computed through
a set of 3-D convolutions from input TSDE The vertices
are then predicted based on the extracted features. An fc
graph is generated from the predicted vertices, and all of
the vertices are connected to each other via edges. Next, a
graph neural network is used to classify edges and extract
the ones that belong to the mesh graph structure. Using
this intermediate graph of predicted edges and vertices, a
dual graph is created which comprises a set of valid poten-
tial faces. Finally, another GNN is applied to predict the
final face structures from the dual graph. Scan2Mesh offers
better qualitative and quantitative performance compared
to 3-D ShapeNets [98], 3D-EPN [24], and PSR [8], [9].
However, it depends on fc graphs for predicting edges,
which leads to limitations in model size (MS).

Mesh R-CNN [44] is an approach that unifies both
2-D perception and 3-D shape prediction. It takes a sin-
gle RGB image as an input, detects 2-D object instances
in the image, and creates a category label, bounding
box, segmentation mask, and 3-D mesh predictions of
the detected objects as the outputs. Mesh R-CNN utilizes
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Mask R-CNN [178], an end-to-end region-based 2-D object
detector, for the detection of 2-D objects. The 3-D shape
prediction step depicted in Fig. 17 is based on a hybrid
approach, which primarily produces a coarse voxel repre-
sentation of a detected object, transforms this voxelization
into an initial 3-D triangular mesh, and, finally, refines
this mesh by modifying the vertex positions using a
GCN. This approach achieves better results compared to
a voxel-based method, such as 3D-R2N2 [20], a point-
based method [30], and a mesh-based method, such as
Pixel2mesh [38] in single-image shape prediction consid-
ering CD and F1-score metrics.

Liu et al. [35] attempted mesh reconstruction from
input point clouds by fully utilizing the input and simply
adding connectivity to the existing points. Toward this end,
they introduced a deep point cloud network that proposes
candidate triangles and predicts faces. This information is
provided as input to a mesh generation module. First, a
k-nearest neighbor (k-NN) graph is built for each point in
the input point cloud, in order to decide which three points
should form a triangle face and infer candidate triangle
proposals. Next, an MLP network is employed to classify
candidate triangles and filter out incorrect triangles, such
as the ones that connect two independent but spatially
adjacent parts of the shape, using the intrinsic—extrinsic
ratio (IER). To infer the local connectivity between vertices
comprising a triangle, the ratio of the geodesic distance
(intrinsic metric) and the Euclidean distance (extrinsic
metric) was proposed. Finally, in a postprocessing step, the
remaining candidate triangles are sorted and merged in a
greedy way to generate the final mesh. The approach out-
performs several learning-based methods, such as Atlas-
Net [34], deep geometric priors [174], deep MC [42],
and DeepSDF [50], as well as traditional reconstruction
methods, such as PSR [8], [9], MC [125], and BPA [10]
in terms of F-score, CD, and NC metrics. Moreover, it gen-
erates higher quality outputs with fine-grained structures
than the aforementioned methods and offers the capability
to be transferred to unseen categories.

Daroya et al. [36] proposed a recurrent neural network
(RNN)-based method, called recurrent edge inference net-
work (REIN), to produce triangulated surface meshes from
sparse input point clouds using a bottom-up approach. The
network tries to predict edges sequentially and generates
a mesh by processing points one at a time from a queue
of points. The latent vector of the input point cloud,
which is inferred by a PointNet-based [148] autoencoder,
is also used to enrich the data with global structure
information of an object. For edge prediction, the authors
relied on the application of recurrent networks, inspired by
GraphRNN [179]. An RNN can be a good choice for infer-
ring sequential predictions based on previous states [180].
To tackle memory issues of processing large point clouds,
small sections of the input point cloud are fed into the net-
work one at a time, instead of processing all of it at once.
In each small section, points in the queue are processed
consecutively by REIN in two steps. 1) Edge Prediction:

REIN tries to predict connections, i.e., edges, between the
new vertex (which was chosen from the queue) and the
current partially predicted mesh. Two RNNs are used for
edge prediction: State RNN and Edge RNN. State RNN
encodes the current state of the graph with its nodes
and edges, given a point cloud and its latent vector as
input. Edge RNN attempts to predict the sequence of edges
considering the current state. 2) Face Generation: All of the
vertices and predicted edges are investigated to form faces.
However, the face generation module encounters prob-
lems generating surfaces from edge predictions, especially
for nonmanifold surfaces. Qualitatively and quantitatively,
REIN produces better mesh surfaces than BPA [10] and
PSR [8].

D. Implicit Neural Representation

Neural networks are universal function approxima-
tors [181]; hence, they can be used to approximate
any measurable function, including SDF and occu-
pancy/indicator function, or to model other properties,
such as radiance fields. Neural networks that parameter-
ize such implicitly defined functions, without explicitly
parameterizing the surface or properties of interest, are
considered implicit neural representations [51].

Similar to implicit functions stored in discretized voxel
grids, different functions can provide geometric infor-
mation for parameterizing a surface by a neural net-
work [123]. There are also other functions that focus on
capturing surface-related properties, such as appearance,
texture, or reflectance properties. In particular, these func-
tions can be as follows.

1) Level set methods define a DF f on the entire point
set and then extract the zero-level set f = 0 as
the boundary of an input object, as illustrated in
Fig. 18. They divide a 3-D space threefold into an
interior part, an exterior part, and an exact overlap
with the object’s surface. Given a point (z,y, 2), the
function f calculates the distance of this point to the
boundary of the object, specifies its sign (SDF) [182],
and decides the location of the point w.r.t. the surface.
The sign indicates whether a point is inside or outside
of the surface. Therefore, in contrast to SDFs stored in
voxels that discretize 3-D space and store SDF value
in each voxel, SDFs in implicit neural representation
are calculated for each point individually using a neu-
ral network. DeepSDF [50], which will be explained
further down in this survey, was the first paper to
propose this approach.

2) Occupancy functions model an approximate likeli-
hood of whether a point is occupied by part of an
object or not. This can be expressed as a binary
classification problem to classify a point as occupied
or unoccupied. The approach can be interpreted as
a special case of SDF that only considers the sign
of SDF values [50]. Occupancy networks [45] and
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Fig. 17. Mesh R-CNN [44] architecture. After the object detection step, the voxel branch predicts a coarse voxel representation for each

object detected by Mask R-CNN [178]. Then, in the mesh refinement branch, the cubified object is transformed into the mesh after a series

of refinement steps.

IM-NET [49] fall into this category and will be clar-
ified subsequently.

3) Radiance fields refer to a set of techniques that
aim to model the radiance or appearance properties
of an object or scene. Notable examples of these
methods include NeRF [57] and its variants, and
Sections VI-D2a and VI-D2b will provide thorough
explanations of them.

1) Implicit Neural Representation Based on Variants of SDF
or Occupancy Function: The key idea behind these implicit
neural representations is to represent a shape as a neural
network that takes a point in space as input and outputs
some property of that space, i.e., mapping it to occupancy
or signed distance of the shape at that coordinate. How-
ever, implicit neural representations cannot directly derive
detailed 3-D shape features. Thus, an extraction step is
needed to infer a corresponding explicit representation,
such as a mesh. A possible isosurface extraction approach
is the classical MC algorithm [125].

Compared to voxel-based representations, the memory
cost of implicit neural representations remains constant
with respect to the resolution. However, the capability of

>0

=0

Fig. 18. Level set methods divide a 3-D space into three parts: an
interior part (f < 0), an exterior part (f > 0), and an exact overlap
with the object’s surface (f=0).

these methods to reconstruct fine details is constrained
by the capacity of their underlying network architec-
tures [51].

As mentioned previously, occupancy networks, IM-
NET, and DeepSDF [45], [49], [50] represent pioneer
works in implicit neural representation concurrently.
Mescheder et al. [45] introduced a new representation
for 3-D geometry, called occupancy networks, which can
predict the continuous occupancy function using a neural
network for the extraction of 3-D meshes. As illustrated
in Fig. 19, the occupancy function is approximated with
a DNN that determines an occupancy probability value
between 0 and 1 for every possible point in 3-D point space
(similar to a neural network for binary classification).
The mesh is then generated from the occupancy network
by utilizing a simple multiresolution isosurface extraction
(MISE) algorithm, which employs octree structures and the
MC algorithm [125]. This expressive approach does not
require the discretization of 3-D space. The representation
can be inferred from different kinds of input, such as
single images, noisy point clouds, and coarse discrete voxel
grids, and can encode various structures efficiently. In com-
parison to methods using different 3-D representations,
such as 3D-R2N2 [20] (a voxel-based method), point set
generating networks [30] (a point-based method), and
Pixel2Mesh [38] and AtlasNet [34] as mesh-based tech-
niques, occupancy networks show competitive qualitative
and quantitative results for various inputs, e.g., single
images, noisy point clouds, and coarse discrete voxel grids.

In a similar fashion, Chen and Zhang [49] attempted
to solve 3-D shape analysis and synthesis problems by
proposing an implicit field decoder (IM-NET), which is
based on the application of binary classifiers. Based on two
inputs, a point coordinate and a feature vector encoding a
shape (extracted from a shape encoder), IM-NET specifies
whether the point is inside or outside the surface, using
only the sign of its SDE They utilized their proposed
implicit decoder as the decoder part of some conventional
frameworks (such as autoencoders (AEs) and GANs) and
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proposed IM-AE and IM-GAN, respectively. IM-AE and IM-
GAN can be used for both 3-D reconstruction and shape
generation tasks. Based on visual results, IM-AE generates
smoother and high-quality surfaces compared to a clas-
sical 3-D-CNN-based decoder implementation, operating
on voxelized shapes. IM-GAN showed better performance
compared to AtlasNet [34] (in which output quality is
constrained by the number of generated points) and 3D-
GAN [23] (low coverage). For the single-view 3-D recon-
struction task, the proposed framework constructs higher
quality results than AtlasNet [34] and HSP [28]. However,
applying the implicit decoder on each point in the training
set increases training time considerably. In addition, the
network does not generalize well to other categories since
it is trained individually for each shape category.

With DeepSDF [50], a novel shape representation based
on the concept of SDFs was introduced. Instead of storing
SDF in a discretized regular grid, as done in classical sur-
face reconstruction techniques, the network directly learns
continuous 3-D models of SDF from point samples. The
trained network predicts the corresponding SDF value of
the input data, from which the zero-level set surface can be
extracted. The zero isosurfaces can be rendered and visu-
alized through raycasting or polygonization algorithms,
e.g., MC [125]. The network takes (z,y,z) coordinates
and a shape encoding vector as input to model a dataset
of shapes. In order to obtain a meaningful latent space
of shapes, an autodecoder is used for learning a shape
embedding without an encoder. One of the advantages
of the method is that the network size is considerably
smaller compared to the voxel-based methods. DeepSDF
outperforms Atlasnet [34] (a mesh-based method) and
OGN [29] (an octree-based method) in reconstructing
complex topologies with fine details. It further outperforms
3D-EPN [24] (SDFs stored in voxels) for the shape comple-
tion task.

Sitzmann et al. [51] introduced a novel architecture,
called sinusoidal representation networks (SIRENSs), an fc
neural network that uses periodic sine as its nonlinearity
for implicit neural representations. The motivation behind
this lies in the fact that many recently published studies
on implicit neural representation employing rectified lin-
ear unit (ReLU)-based MLPs are incapable of capturing
high-frequency details of the input signal. There are two
possible explanations for this phenomenon. 1) Conven-
tional neural network architectures encounter difficulties
while learning to apply the same function at two differ-
ent coordinates, and thus, the learned functions are not
shift-invariant in general. 2) ReLU nonlinearities cannot
parameterize any signal that has information in its sec-
ond derivative since its second derivative will be zero
everywhere. Therefore, the authors suggested replacing
conventional nonlinearities, such as tanh or ReLU, with a
periodic sine activation function to improve final results.
This replacement results in gaining a certain degree of
shift-invariance and also addresses the problem of the
second derivative since the derivative of sine is a shifted
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Fig. 19. Occupancy networks architecture [45] predicts occupancy
function for each point in 3-D space using a DNN. Different encoder
architectures are used in occupancy networks depending on the task
and input. A ResNet-18 architecture [173] for image input, a
PointNet encoder [148] for point cloud input, and a 3-D-CNN for
voxel input are employed.

sine itself. The method was applied to a wide variety of
areas, including image, audio, and video representations,
3-D reconstruction, and solving first- and second-order dif-
ferential equations. In the 3-D shape reconstruction task,
SIREN generates details of complex objects and scenes
better than ReLU-based implicit representations, such as
NeRF [57].

a) Methods based on unsigned distances: Some stud-
ies exploit unsigned distances instead of occupancy or
signed distances for learning representations. With sign
agnostic learning (SAL), Atzmon and Lipman [52] pro-
posed a DL approach based on raw input data with-
out any oriented normals or signs. Generally, regression-
based methods utilize regression loss for training and need
inside/outside ground-truth information for this process,
such as DeepSDF [50] or occupancy networks [45]. In con-
trast to these methods, SAL uses a sign agnostic loss func-
tion that can be directly applied to raw unsigned data. The
algorithm generates high-quality surfaces in comparison to
AtlasNet [34] and a baseline method that approximates
SDF based on the work by [9]. The D-Faust dataset, which
comprises raw scans of humans in various poses, is used for
the experiments. Although there is no need to include the
signed implicit ground-truth representation in the calcula-
tion of the loss function during training and also closing
surfaces for training data is unnecessary in this work, SAL
predicts SDF as the final output, which also results in
closing the gaps even in open surfaces and generating only
closed outputs (closed surfaces, in this case, are a division
of 3-D space into three regions: inside, outside, and on
the surface of an object, and they do not have separate
parts). Neural distance field (NDF) [53] is a method to
predict the unsigned distance field for 3-D surfaces using a
neural network. Similar to SAL, NDF does not close shapes
during training. However, it can successfully generate open
surfaces, shapes with inner structures, and open manifolds
compared to IF-Net [56] and SAL [52].

DUDE [54] is another approach, which is able to rep-
resent a surface by combining the unsigned distance field
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with the normal vector field. Evaluation of this method in
comparison to DeepSDF and SAL demonstrates its supe-
riority in producing high-quality outputs, especially for
open surfaces, with visually pleasant renderings. The main
difference between NDF and DUDE compared to SAL is
that the first two can reconstruct both open and closed
shapes with complex and detailed topology, while the latter
attempts to close parts that should be open.

b) Part-based approaches: Encoding an entire sur-
face into a single latent vector can lead to substantial
information loss since the limited size and capacity of
the latent representation causes accuracy and general-
ization issues [48]. In order to solve the difficulties of
generalizing to other shape categories and scaling to
large scenes, researchers resort to conditioning an implicit
neural representation on local geometric features [46],
[47]1, [48], [55], [56], [183], [184]. There are differ-
ent approaches to the implementation of such condition-
ing. Some approaches fuse the volumetric representation
(voxel grids) with the implicit neural representation and
use local features stored in voxels for inferring implicit
neural representation [46], [47], [55], [56]. Others use
local patches to learn implicit neural functions [48], [183],
[184]. All of these methods leveraged the advantages of
encapsulating local and global information for proposing
more generalizable and scalable approaches.

Jiang et al. [55] suggested the local implicit grid (LIG)
representation, which decomposes 3-D space into a regular
grid of overlapping part-sized local regions and encodes
each region with implicit feature vectors. The key idea
behind the algorithm is that objects in different categories
share similar geometric features and details at neither
microscale, i.e., a very small patch, nor macroscale, i.e., the
entire object, but part scale. Therefore, a part-autoencoder
was used to learn embeddings for different parts of an
object and extract meaningful abstraction of its shape.
The autoencoder consists of a 3-D-CNN encoder and an
implicit network decoder in the form of a reduced version
of the IM-NET [49] decoder. During inference, a pretrained
implicit function decoder is used in each grid cell in
order to generate the respective scene part. Eventually,
the overlapping latent grids were optimized via the pro-
posed mechanism to reconstruct the entire scene. Since
this method generalizes shape priors learned from object
datasets, it does not need any training on the scene-
level dataset for reconstructing scenes from sparse oriented
point samples. Therefore, it generates higher quality out-
puts from unseen object categories than other methods,
such as IM-NET [49], since IM-NET learns only a single
embedding for an entire object. Compared to traditional
surface reconstruction methods such as PSR [8], [9], LIG is
capable of recovering thin structures and details very well.

Likewise, Chibane et al. [56] introduced implicit feature
networks (IF-Nets) that are composed of an encoding and
a decoding tandem. The network takes voxels or point
clouds as the input and predicts whether point p lies inside
or outside of an object, resulting in a continuous surface at

arbitrary resolution. To encode local and global structures
of a 3-D shape, a 3-D multiscale grid of deep features
is extracted instead of using a single vector to summa-
rize an entire object. Consequently, rather than classifying
(z,y,2) point coordinates directly, the decoder classifies
a point based on these extracted features and creates
occupancy predictions. IF-NET achieves better quantitative
results than occupancy networks [45], point set generation
network [30], deep MC [42], and IM-NET [49] in point
cloud completion, voxel super-resolution, and single-view
human reconstruction tasks. Moreover, Chibane and Pons-
Moll [185] proposed an extension of IF-Nets for 3-D tex-
ture completion.

Peng et al. [46] developed convolutional occupancy net-
works, a hybrid voxel grid/implicit neural representation-
based approach that combines convolution operations with
implicit representations in the form of a convolutional
encoder with an implicit occupancy decoder. The method
is independent of the input representation. Given a point
cloud or voxel grid as input, the method uses a 2-D plane
encoder/3-D volume encoder based on PointNet to process
the input by converting it into features and projecting these
local features onto a plane(s)/volume. A convolutional
2-D plane decoder/3-D volume decoder further processes
the feature plane(s)/volume using 2-D/3-D U-Nets [186],
[187], integrating both local and global information. In
the end, a small fc occupancy networks [45] is used to
predict the occupancy probability from a given query point
p and its feature in 3-D space. For rendering and extracting
meshes from the input, the MISE algorithm is applied dur-
ing inference. Evaluation of both object- and scene-level
reconstructions was performed using synthetic and real-
world datasets. The major difference between the novel
method [46] and the original occupancy networks [45] is
that convolutional occupancy networks capture the local
features of the space and global features, leading to higher
generalizability, scalability, and faster training. Moreover,
it benefits from the translational equivariance property of
convolutional networks while not supporting the rotational
equivariance property.

In a similar work, Chabra et al. [47] introduced deep
local shapes (DeepLSs), a method for deep shape represen-
tation, which uses learned local shape priors. As illustrated
in Fig. 20, the key idea is the decomposition of a shape
into small components in order to improve reconstruction
results. To this end, local information of these components
is stored in a grid of independent latent codes. Based on
these, SDFs are predicted by applying DeepSDF [50] as
a local shape neural network to each grid cell. DeepLS
outperforms DeepSDF in accuracy and inference time by
approximately an order of magnitude.

Unlike occupancy networks [45] and DeepSDF [50],
which extract the global latent code vector from the
entire input, local patches are modeled as deep implicit
functions in patch-based approaches [48], [183], [184].
Erler et al. [48] presented a patch-based learning frame-
work, called Points2Surf, which generates accurate implicit
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Fig. 20. DeeplLS [47] decomposes a scene into local shapes and
uses a set of locally learned continuous SDFs defined by a neural
network.

surfaces directly from raw point clouds without sur-
face normals. The underlying algorithm is based on the
notion of considering a shape as a collection of small
shape patches. Instead of representing an entire surface
as a single latent vector, Points2Surf creates separate
feature vectors for different patches to describe local
details in addition to global information. By decompos-
ing the surface reconstruction problem into learning a
global function (that learns the sign of SDF) and a local
function (that learns the absolute distance field of SDF
with respect to local patches), Points2Surf succeeds in
being robust to noise and missing parts and also gen-
eralizing well to unseen shapes. In addition, Points2Surf
yields a significant drop in the reconstruction error on
unseen classes compared to both data- and nondata-driven
methods, such as DeepSDF [50] and AtlasNet [34], or
SPR [9]. However, this patch-based approach results in
longer computation time, inconsistencies between outputs
of neighboring patches, and nonwatertight and bumpy
surfaces.

There are a growing number of studies based on implicit
neural representation for various tasks. Some authors
investigated 3-D human reconstruction [184], [188],
[189], 4-D reconstruction [190], and 3-D reconstruction of
the appearance and texture of surfaces in addition to their
geometry with 3-D supervision [191], [192] or without
3-D supervision [57], [193], [194], [195]. These are some
recent articles [196], [197], [198], [199], [200], [201],
which are SDF-based, and some [184], [188], [189], [202]
that are based on predicting occupancy probability.

¢) Equivariant neural networks: Chatzipantazis et al.
[203] introduced an SE(3)-equivariant coordinate-based
attention network called TF-ONet for 3-D surface recon-
struction. Local shape modeling and equivariance are the
two core design principles of this method. SE(3) stands for
special Euclidean group in three dimensions representing
transformations including translations and rotations in 3-
D. In simple terms, equivariance means that, when the pat-
tern in the input changes, i.e., when it is rotated or shifted
to a specific direction, the output should also change
in an equivalent proportion. TF-ONet works directly on
unoriented and irregular point clouds and outputs the
occupancy field of a shape. To predict the occupancy score
at any given point in space, TF-ONet creates equivariant

features for each point that function as keys and values of
specialized attention blocks. This enables TF-ONet to out-
put high-quality reconstructions and generalize to novel
scenes composed of multiple objects, despite being trained
on single objects in canonical poses. Inspired by SE(3)
transformers [204] and tensor field networks [205], TF-
ONet attention modules ensure equivariance by incorpo-
rating symmetries into the learning process. It is basically
a two-level approach. 1) The first level, i.e., an encoder,
applies self-attention in local neighborhoods around each
point to infer local features from the point cloud. 2) The
second level, i.e., a cross-attention occupancy network,
uses the extracted point features and the coordinates of a
query point in space to calculate the value of the occupancy
function for the specific query point.

For single-object reconstruction tasks, TF-Onet performs
comparably better than nonequivariant networks, such as
occupancy networks [45], convolutional occupancy net-
works [46], IF-Net [56], and also equivariant networks,
such as vector neurons [206] and GraphOnet [207] con-
sidering evaluation metrics, such as Chamfer-L1, F1-score,
and IoU. For scene reconstruction tasks trained only on sin-
gle objects, global shape modeling-based techniques, such
as occupancy networks [45] and vector neurons [206],
are not able to generalize to scenes containing multiple
objects. Moreover, local shape modeling-based methods,
such as convolutional occupancy networks [46], which
are not equivariant under SE(3) transforms, are only able
to produce low-quality objects in novel poses. TF-ONet
instead excels at the tasks and can generalize to novel
scenes with high quality, benefiting both from local shape
modeling and equivariant properties.

2) NeRF-Based Approaches:

a) Fundamentals of NeRF: NeRFs [57], commonly
referred to as NeRFs, are basically used for view synthesis.
The main idea behind NeRFs is to train a model that can
produce new views of a scene or an object and can repre-
sent them in 3-D, given a set of 2-D images from different
viewing angles as input. Hence, multiple input views of a
scene and their corresponding camera poses are used to
render new views of that scene by interpolating between
the given views. The NeRF method employs an fc deep
network to represent a scene. Each input (z,y, 2,0, ¢) is a
single continuous 5-D coordinate that encompasses spatial
position and viewing direction, and each output (RGBo)
is density and view-dependent emitted radiance at that
particular spatial location. Consequently, the neural net-
work describes an implicit function that exists throughout
all locations as a continuous representation without any
discretization. As a result, by implicitly encoding density
and color through a neural network, NeRF has demon-
strated impressive performance on new view synthesis of a
particular scene.

Although overfitting is usually an undesirable behavior
in machine learning, the key part of this approach is
the usage of a neural network that is overfitted to one
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Fig. 21. Overview of NeRFs [57]. The ship in the figure is borrowed from the ShapeNet dataset [96].

particular scene and only cares about this specific scene.
For rendering a new scene, it is necessary to take a fresh
neural network and train it from scratch until it is overfit-
ted to the new scene. Therefore, instead of storing a scene
as a mesh or a voxel grid, the scene is stored in the weights
of the neural network. For instance, if a scene consists of
a tree, the weights represent this tree and are very specific
to it, outputting nonsense for another scene if not being
trained once again.

To explain the fundamentals of NeRF in more detail
according to Fig. 21, the images have to be transformed to
5-D coordinates (z,y, z, 0, ¢)s first. (z, y, z) are coordinates
of a pixel point in 3-D space, and (0, ¢) are related to
the viewing angle. For each pixel on an image, a ray is
sent through. Therefore, every pixel in every input pic-
ture defines a ray, and then, it is sampled along the ray.
Consequently, each input image sends out a lot of rays,
and for each ray, there are many sampled points. Next,
for each location represented as (z,y, 2, 0, ¢), the neural
network effectively determines the presence of an object
and subsequently identifies its corresponding color. This
nine-layer fc network provides four numbers (RGBo) as
the output: the (RGB) is the color of that particular pixel
point, and o is the density for each of the individual points.
The density value serves as an indicator of the presence or
absence of an object in the designated region of space, as
well as its density. If this process is done for all the points
in space from all viewing angles, a complete 3-D repre-
sentation of what it looks like can be inferred. The neural
network outputs different results for the same location
depending on different viewing angles. Accordingly, it can
capture the reflections, lighting effects, and transparency.
Eventually, classical techniques for volume rendering are
employed to project the network outputs onto a 2-D image.
Given that volume rendering is intrinsically differentiable,
it is possible to define a loss function that measures the
difference between the predicted and the ground-truth
color of the ray. In order to convert NeRF to a mesh, MC
can be further applied.

To produce high-resolution complex scenes, two inter-
esting tricks were utilized: 1) positional encoding; 2) hier-
archical sampling. Positional encoding, which is similar
to the same one in transformers [208], is used to map
the 5-D input vector to higher dimensional space using

sin and cos waves, helping MLP in approximating and
representing high-frequency functions. It enhances the
ability of a neural network to not only capture coarse-
grained structures but also to perform well in representing
finer details. Hierarchical sampling is a two-step sampling
method with two networks: a coarse network and a fine
network. The points on the ray are sampled in a uniformly
distant fashion from each other. These sampled points are
run through the network for density prediction. Next, an
evaluation step is taken place to decide where should be
sampled more in the second round, based on the output of
the previous step. Thus, the output of the coarse network
discloses where the important stuff is. The second round of
sampling starts with points with higher density, i.e., points
closer to the particular object that is perceived, and the
vicinity of such points will be sampled a lot more. Both
coarse- and fine-grained networks are optimized at the
same time using a loss.

Delving into the advantages associated with NeRFs, it is
clear that these methods are not view-dependent, without
the need for any 3-D input supervision. In addition, NeRFs
are memory-efficient compared to voxel grid representa-
tion. One neural network of one scene fits into a few
megabytes, which might even be smaller than the input
image size for that scene, whereas dozens of gigabytes
might be needed for storing the same scene in voxels.
Regarding the limitations of NeRFs, what makes them
impractical is their requirement for a large number of high-
quality posed images as input. The more images are fed,
the better the output quality will be. Another downside
is related to their high computational cost, originating
from optimizing each scene individually without sharing
knowledge between different scenes [62]. This implies
that, for every scene, the network should be trained again,
and a pretrained one cannot be utilized. For instance, it
takes around 100k-300k iterations, i.e., roughly one to two
days, for the naive NeRF network [57] to be trained on a
single scene using a single NVIDIA V100 GPU.

b) NeRF and its variants for view synthesis: This
section provides a summary of some of the papers that
aim to enhance NeRF and its abilities. In NeRF-++,
Zhang et al. [61] analyzed NeRF and uncovered three
major problems and situations in which NeRF might
fail: shape-radiance ambiguity, near-field ambiguity, and
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parameterization of unbounded scenes, such as large real-
world scenes. The first two issues are related to the fact
that NeRF is actually overparameterized, i.e., the degree
of freedom for NeRF to hallucinate and move toward a
completely wrong answer is high. However, the authors
of NeRF [57] use an interesting implementation trick and
regularization. They feed viewing angles in the very last
layers of the MLP network. Therefore, the MLP actually
starts with locationwise coordinates of a point in the begin-
ning, and viewing angles are fed in the last layers, resulting
in a limited degree of freedom for NeRE Accordingly,
if all 5-D coordinates are fed to the network from the
beginning, the shape radiance ambiguity becomes a big
issue, affecting the quality of NeRF’s outputs drastically.

NeRF++ proposes a couple of solutions to tackle these
three problems and enhance output quality. By introduc-
ing an auxiliary loss, NeRF can avoid moving toward a
poor solution, which may lead to completely wrong scene
geometry estimation, thus addressing the shape-radiance
ambiguity issue. Furthermore, adaptive near-field culling
is proposed to solve the near-field ambiguity issue. It culls
the front part of each view frustum adaptively based on
the geometry of a scene, i.e., it prevents estimating the
geometry right in front of the camera contrary to vanilla
NeRE The third issue concerns scenarios in real-world
settings where precise reconstruction of objects in front
of the camera is essential. However, the camera’s ability
to capture other items beyond these objects necessitates
a certain level of reconstruction for the distant items
as well. NeRF++ suggests homogenous parameterization
that enables having a detailed reconstruction in the fore-
ground and a detailed reconstruction of the background.
This is done by training two NeRFs, one for the foreground
part of the scene and the other for the background part,
increasing the capacity of the model for reconstructing
details at different levels. NeRF++ still needs per-scene
training, and one scene takes about three days to be
trained.

PixelNeRF [62] is built upon the concept of NeRFs
for 3-D reconstruction and synthesizing photorealistic 3-
D scenes from a single or a small number of posed images.
PixelNeRF attempts to tackle the requirement of NeRFs for
a lot of images as the input and make it generalizable.
Considering the fact that extracting 3-D geometry and the
appearance of a scene from limited input is a challenging
task, and NeRFs do not share knowledge between the
scenes, the framework proposes to condition an NeRF on
spatial image features. Thus, pixelNeRF employs a fully
convolutional image encoder that infers a pixel-aligned
feature grid. Then, a spatial location and its corresponding
encoded feature are fed to an NeRF network for color and
density prediction. PixeINeRF shows better generalization
capabilities and performance compared to NeRE However,
its rendering time is still slow, and more input views cause
a linear increase in the runtime.

In another concurrent work to overcome the gener-
alizability issue and long optimization time of NeRFs,

MVSNeRF [63] suggests a DNN that can reconstruct
an NeRE given only three nearby input views. This
approach combines plane-swept cost volumes, which are
used for geometry-aware scene reasoning in MVS, with
NeRF models. To create a cost volume, MVSNeRF first
warps 2-D image features onto a plane sweep. Then,
a 3-D-CNN is leveraged for the reconstruction of a
neural encoding volume with per-voxel neural features.
Next, features interpolated from the encoding volume are
employed to predict density and RGB radiance for an
arbitrary point using an MLP. Achieving comparable or bet-
ter rendering results, MVSNeRF can significantly surpass
NeRFs [57] in terms of optimization time efficiency, i.e.,
roughly 30 times faster, if more images are provided as
input. Moreover, it generalizes better than PixelNeRF [62]
and IBRNet [209].

MipNeRF [210] attempts to address one of the problems
of NeRE which is the production of blurred or aliased
renderings when dealing with training or testing images
at different scales. In NeRE, all of the cameras have the
same distance from an object. Thus, it is able to do
view synthesis without the need to think about scaling or
aliasing. However, when new cameras are to be added at
different scales, NeRF begins to collapse since it is a single-
scale model trying to tackle a multiscale problem. To fix
this issue, MipNeRF proposes some modifications to the
vanilla NeRF including the following: 1) casting a cone
instead of sending a ray through each pixel; 2) slicing up
the cone into conical frustums instead of sampling single
points along each ray; 3) computing integrated positional
encoding instead of positional encoding of a single coordi-
nate along the ray; 4) in general, training a single neural
network that describes the scene at multiple scales instead
of training separate neural networks at various scales.
These new properties help MipNeRF reason about the
scale of its inputs. MipNeRF is capable of producing high-
resolution renderings across multiple scales rather than
just at a single scale in vanilla NeRE NeRF’s performance
decreases when being trained on multiscale data, while
MipNeRF’s performance does not. The number of param-
eters in MiPNeRF is half of that in NeRF while also being
7% faster for their multiscale dataset. Mip-NeRF360 [211]
and ZipNeRF [212] are some other recent methods used
for antialiasing NeRFs.

In a work proposed by NVIDIA, instant
NGB Miiller et al. [213] try to facilitate and speed
up neural graphics primitive tasks. A neural graphics
primitive is an object represented by a neural network that
takes a query as input, such as position and some extra
parameters, and outputs appearance and shape attributes.
Examples of NGP can be computing SDE NeRFs, radiance
cashing, and so on. To bring about simplicity, instant
training, real-time rendering, and high-quality results
for instant NGB solutions such as multiresolution hash
encoding by storing the trainable feature vectors in a
compact spatial hash table, using a small neural network
called a fully fused neural network, and improvement of
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CNN, GCN,

loU, CD,

EMD, HD, Binary Cross-Entropy (BCE),

AP,

Name Input Output Method Loss Dataset Metric
3D-R2N2 [20] A single-view image  Voxels Encoder-decoder, Voxel-wise CE ShapeNet, IoU, CE
or 3D conv LSTM Pascal 3D [229],
multi-view images Online
products [230]
VRN [21] Voxels Voxels Encoder-decoder BCE ModelNet Accuracy
TL-embedding [22] RGB images Voxels Encoder-decoder CE, ShapeNet, AP
Euclidean loss IKEA
dataset [231]

3D-GAN [23] An image Voxels CNN, BCE loss, ModelNet, AP
3D GAN, KL-divergence loss, = IKEA dataset,
Encoder-decoder reconstruction loss ShapeNet

3D-EPN [24] Depth maps Voxels Encoder-predictor L1 loss ShapeNet Accuracy, LI
network error

3D shape comple- Point cloud and Occupancy grid  Encoder-decoder Reconstruction loss, ~ ShapeNet, Hamming dis-

tion [25] a 3D bounding box or SDFs maximum likelihood  KITTI, tance, accuracy,

loss ModelNet completeness

SG-NN [139] RGB-D scan A sparse TSDF  Encoder-decoder L1 loss, BCE loss Matterport3D L1 error

Octnetfusion [26] One/multiple 2.5D  Voxel or Encoder-decoder L1 loss, ModelNet40 IoU, precision,

depth image(s) Octree BCE recall

HSP [28] RGB images or Voxels Encoder-decoder CE ShapeNet TIoU, CD

depth images or
partial grids

OGN [29] Voxels Structure of an  Encoder-decoder CE ShapeNet IoU

octree and bi-
nary occupancy
map

Adaptive A single image or A patch-guided  Encoder-decoder CE, ModelNet, CD, accuracy

O-CNN [27] point cloud adaptive octree SDE ShapeNet

Point set generation A single RGB or Point cloud Encoder-predictor CD, ShapeNet IoU, CD, EMD

net [30] RGB-D image EMD

Latent Point cloud Point cloud Encoder-decoder, CD, ShapeNet, JSD, coverage,

3D points [31] GAN EMD ModelNet MMD

FoldingNet [32] Point cloud Point cloud Encoder(graph- CD ShapeNet, Accuracy
based)-decoder ModelNet

PointFlow [33] Point cloud Point cloud Encoder-decoder Prior loss, ShapeNet JSD, MMD,

reconstruction loss, coverage, CD,
posterior loss EMD, accuracy

AtlasNet [34] 2D images or Mesh Encoder-decoder CD loss ShapeNet CD

point cloud

Meshlet [37] Point cloud Mesh Encoder-decoder CD loss ShapeNet CD, HD

Pixel2Mesh [38] An RGB image Mesh Graph convolution  CD loss, Dataset of 3D-  Fl-score, CD,
network normal loss R2N2 [20] EMD

Pixel2Mesh++ [39] A few RGB images Mesh GCN CD loss, Dataset of 3D-  Fl-score, CD

or normal loss R2N2 [20]
multi-view images

CMR [40] An image Mesh Convolutional Reprojection loss, CUB-200-2011 ToU
encoder regression loss dataset,

PASCAL 3D+
dataset

Point2Mesh [41] Point cloud Mesh CNN CD loss, A large dataset Fl-score

beam-gap loss of object
scans [232]

DMC [42] Point cloud Mesh Encoder-decoder Point to mesh loss, ShapeNet CD, accuracy,
network with skip  occupancy loss, completeness
connections smoothness loss,

curvature loss

Scan2Mesh [43] One/multiple depth  Mesh CNN, CE, ShapeNet CD,

image(s) graph neural  CD loss normal
network deviation
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Table 2 (Continued.) Comparison of Various 3-D Reconstruction Methods: CNN, GCN, loU, CD, EMD, HD, Binary Cross-Entropy (BCE), AP, Cross-
Entropy (CE), Squared Distance Error (SDE), NC, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM)

Mesh R-CNN [44] An RGB image A category GCN BCE, ShapeNet, Fl-score, CD,
label, CD Pix3D dataset NC
segmentation
mask,
boundary box,

a 3D triangular
mesh

Meshing point  Point cloud Mesh CNN Euclidean distance, ShapeNet Fl-score, CD,

clouds with IER [35] geodesic distance NC

REIN [36] Point cloud Mesh Encoder-decoder, CD, ShapeNet, CD, point nor-

RNN BCE ModelNet10 mal similarity

Occupancy An image or Implicit surface  Encoder, CE ShapeNet, IoU, CD, NC

Nets [45] point cloud or fully connected net- KITTI,

discrete voxel grids work Pix3D
IM-Net [49] Images or Implicit surface  Encoder-decoder, Weighted mean  ShapeNet MSE, IoU, CD,
voxels GAN squared error, LFD, MMD,
Wasserstein -~ GAN Ccov
loss

DeepSDF [50] Point cloud Implicit surface  Auto-decoder L1 loss ShapeNet CD, EMD,

accuracy

SIREN [51] Point cloud Implicit surface  Fully connected SDF loss (Eikonal  Stanford 3D N/A

neural network equation) scanning
repository

SAL [52] Point cloud or Implicit surface  Variational encoder-  Sign-agnostic loss  D-Faust dataset CD

triangle soups decoder with L2 distance

NDF [53] Point cloud Implicit surface  Encoder-decoder Unsigned distance ~ ShapeNet CD

field loss

DUDE [54] Triangle soups Implicit surface  Feed-forward L2 loss ShapeNet IoU, mean

networks absolute error,
normal map
error

LIG [55] Point cloud Implicit surface  Encoder-decoder BCE loss ShapeNet, F1-Score, CD

Matterport 3D,
SceneNet

IF-NET [56] Point cloud or Implicit surface  Encoder-decoder CE ShapeNet IoU, CD, NC

occupancy grid

Conv occupancy  Point cloud or Implicit surface  Encoder-decoder BCE ShapeNet, Fl-score, IoU,

nets [46] voxels/coarse occu- ScanNet, CD, NC

pancy grid Matterport 3D

DeepLS [47] Depth data or Implicit surface  Autodecoder Negative log likeli-  Stanford 3D CD

mesh network hood loss scanning
repository,
3D
warehouse [233]
Point2surf [48] Point cloud Implicit surface  Encoder-decoder L2 loss, ABC dataset CD
BCE loss
UNISUREF [223] RGB images Implicit surface =~ MLP Reconstruction loss,  DTU [234], CD
Surface BlendedMVS
regularization [235],
SceneNet
NeuS [222] RGB images Implicit surface =~ MLP Color loss, DTU [234], CD, PSNR,
regularization loss, BlendedMVS SSIM
mask loss [237]

training and rendering algorithm are proposed as main
ideas.

The amount of research efforts based on NeRF is increas-
ing. From relighting [64], [65], [214], [215] and view syn-
thesis without pose supervision [216] to learning nonrigid
objects and dynamic scenes [66], [67], [68], [217], [218],
[219] and tackling computational challenges of NeRF and
heading toward the real-time rendering [58], [59], [60],
[220], numerous studies have been conducted to broaden
the horizons of NeRF and its various applications.

c) NeRF for 3-D surface reconstruction: In an NeRF
model, the scene geometry is hidden inside the neural
networks, i.e., it is implicit. In order to achieve 3-D sur-
face reconstruction and transform the NeRF representation
into an explicit representation, such as a mesh, a surface
extraction step is essential. By analyzing and thresholding
the learned density, i.e., extracting an arbitrary level set
of the density function that is learned by NeRF, and using
methods such as MC, the baseline NeRF can extract and
reconstruct an approximate explicit 3-D geometry [221].

Vol. 111, No. 11, November 2023 | PROCEEDINGS OF THE IEEE 1491



Farshian et al.: Deep-Learning-Based 3-D Surface Reconstruction—A Survey

Table 3 Quantitative Report About Some of the Methods’ Performance on ShapeNet. CD, loU, AP, and F_Score Are Calculated as the Average. For
loU, F_Score, and AP, the Higher the Better. For CD, the Lower the Better. The Number of ShapeNet Categories Used in an Experiment (#Cats), Not
Measured or Not Mentioned (-), SVR, MVR, Reconstruction (R), Completion (C), Autoencoding (AE), Training Time (T), Inference Time (l), Generating
a Mesh (mg), Memory (Mem.), and MS. * Is Calculated for (323). + Is Related to Chamfer-L1. For Detailed Information Regarding Data Preparation
Methods, Train/Test Splits, Metrics, and Other Specific Details, Please Refer to the Context of Each Individual Paper

ShapeNet ] .
Eapers CD IoU Ili“_score AP #Cats flask fLize Size
3D-R2N2 [20] - >0.60 - - 13 MVR (3 views) - -
TL-embedding [22] - - - 65.40 5 SVR - -
OGN [29] = 0.59 * = = 13 SVR 5 days T for 2565 0.54G(256°)
Adaptive O-CNN [27] 0.00460 - - - 13 SVR - -
Point set generation [30] 0.25000 0.64 - - 13 SVR - -
PointFlow [33] 0.00070 - - - 13 AE - -
AtlasNet [34] 0.00150 - - - 13 AE (25 patches) - -
AtlasNet [34] 0.00510 - - - 13 SVR (25 patches) | - -
Meshlet [37] 0.00900 - - - - R - -
Pixel2Mesh [38] 0.59100 - 59.72 - 13 SVR 72h T - 15.5ms I (mg) -
Pixel2Mesh++ [39] 0.48000 - 66.48 - 13 MVR (3 views) 96h T - 15.5ms I (mg) -
Scan2Mesh [43] 0.00160 - - - 8 C - -
Meshing with IER [35] 0.00071 - 87.20 - 8 R <10s I/a pc with 12,800 pts | -
IM-Net [49] 0.00140 - - - 5 SVR - -
IM-Net [49] 0.00060 0.75 - - 5 AE - -
DeepSDF [50] 0.00030 - - - 5 AE 9.72s I 0.0074(MS)
DeepSDF [50] 0.00160 - - - 3 C 9.72s 1 0.0074(MS)
IF-NET [56] 0.00002 0.88 - - 13 R - -
Occupancy Nets [45] 0.21500+ 0.57 - - 13 SVR 3s I/per mesh -
Occupancy Nets [45] 0.07900+ 0.77 - - 13 C 3s I/per mesh -
Conv onets [46] 0.04800+* 0.87 93.30 - 13 R - 5.9G Mem.

Although NeRF and its variants generate impressive results
for the novel view synthesis task, they cannot output
high-quality 3-D surface reconstruction. The quality of
the extracted 3-D geometry is not satisfactory because
the initial objective of NeRF is novel view synthesis, not
3-D surface reconstruction. Since the density-based rep-
resentation used in NeRFs is flexible and does not have
enough constraints on 3-D geometry [222], it imposes
some limitations on inferring accurate surface geometry,
especially when ambiguities exist. Therefore, the extracted
surfaces usually contain artifacts. To alleviate this issue,
some papers have been presented for the 3-D surface
reconstruction task that tried to incorporate implicit neural
surface representation approaches based on an SDF or an
occupancy function into NeRF-based methods, benefiting
from the advantages of both categories. In these methods,
instead of choosing the density-based scene representation
used in NeRE the scene space is usually represented as an
SDF or an occupancy function.

Oechsle et al. [223] proposed UNIfied Neural Implicit
SUrface and Radiance Fields (UNISURFs), which is a
framework for 3-D surface reconstruction and capturing
high-quality implicit surface geometry from multiview
images without the need for object masks. It unifies the
implicit surface models with radiance fields for solid and
nontransparent object reconstruction given a set of RGB
images. UNISURF represents surfaces and defines object
or scene geometries using occupancy values. It learns and
optimizes this implicit surface via a volume rendering
method like NeRE The output mesh is extracted using
the MISE algorithm [45]. Considering reconstruction qual-
ity, UNISURF outperforms NeRF [57]. There are some
limiting factors for this method, including reconstructing

only solid objects and constraints to model transparencies,
performance drop for overexposed or rarely visible regions
in the ground-truth images, and inability to resolve the
shape-appearance ambiguities, such as shadows and holes
in objects.

In another concurrent attempt, Wang et al. [222] pre-
sented NeuS that learns neural implicit surface represen-
tation based on SDF using volume rendering, with the
goal of reconstructing the 3-D surface of an object or
scene given multiple images from different viewing points
without leveraging mask supervision. Instead of just doing
standard volume rendering or standard surface rendering,
this framework suggests using volume rendering (inspired
by NeRF) in addition to surface representation with neural
SDE The key idea behind this method is to represent a 3-D
surface as the zero-level set of an SDE i.e., representing a
surface with neural implicit SDFs, and to introduce a new
volume rendering method by taking inspiration from NeRE
for training a neural SDF representation with robustness.
This novel volume rendering technique attempts to learn
the weights of the neural network by rendering images
from the implicit SDF first and then minimizing the differ-
ence between the rendered images and the input images.
NeusS performs quantitatively and qualitatively better than
NeRF [57] and UNISURF [223] in high-quality surface
reconstruction. However, one failure case of NeusS is its
inability to accurately reconstruct textureless regions. This
limitation is caused by the ambiguity of these textureless
regions for reconstruction in neural rendering.

Variants of NeuS [224], [225] have been proposed
with the goal of improving the reconstruction quality. HF-
NeuS [224], a method for multiview surface reconstruc-
tion with high-frequency details, breaks down the SDF
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into fundamental components, namely, base and displace-
ment functions, and adopts a gradual increase in high-
frequency details through a coarse-to-fine strategy. In Geo-
Neus [225], by utilizing sparse 3-D points in SfM constraint
in conjunction with the photometric consistency in MVS
constraint, the learning of neural SDF can be enhanced.

In a similar fashion to NeuS, another concurrent work
called VoISDF [226] suggested a volume rendering frame-
work for implicit neural surfaces. Replacing general-
purpose MLP densities with densities from a certain family,
i.e., in this case representing the density as a function
of the signed distance to the scene’s surface, is the core
contribution of VolSDE Two fc neural networks, one for
the approximation of the SDF of the learned geome-
try and the other for representing the scene’s radiance
field, form the structure of this framework. Compared to
NeRF [57] and NeRF++ [61], VolSDF generates more
accurate results. One of the limitations of VoISDF is that
it assumes the object is homogeneous with a constant
density. Moreover, its reconstruction time is still high due
to the independent training of the network for each scene.

Recently, SDFStudio [227], which is a framework for
neural implicit surface reconstruction, has been released.
It is built on top of nerfstudio [228] and includes a uni-
fied implementation of VolSDE NeuS, and UNISURE three
popular neural implicit surface reconstruction techniques.
Because of the unified and modular implementation of this
framework, transferring ideas between methods is simple.
The idea from Geo-NeuS can be integrated with VolSDE
bringing about the Geo-VolSDF method.

VI. DISCUSSION AND FUTURE
TRENDS
In Section VI, the latest attempts toward 3-D reconstruc-
tion using DL techniques were reviewed. A summary and
comparison of presented learning-based surface recon-
struction approaches can be found in Table 2. Further-
more, Table 3 contains a quantitative report about the
performance of some of the approaches on the ShapeNet
dataset. There is a qualitative gap between 3-D models
created by learning-based approaches and artist-created
CAD models [43], and there are still open problems in this
scope. Some of these challenges are listed in the following.
In the existing approaches, serious bottlenecks are
caused by computation time and generalization power. The
requirement of long training time is a drawback to the
adoption of some of the DL-based approaches. On the other
hand, there are concerns raised about the environmental
impact of prolonged training periods. To this end, design-
ing models with a reduced number of parameters, less
complexity, and yet high performance can be a target to hit.
In addition, the utilization of transfer learning may serve
as a partial solution. Regarding the generalizability issue,
methods with the capability of multicategory generaliza-
tion, i.e., generalizing well to other topology categories,
should be further investigated. One solution might be
to learn latent shape spaces that are not class-specific.

Consequently, as a future direction, moving toward mod-
els with comparable shorter training time and stronger
generalizability can be an interesting yet reasonable
strategy.

Current methods are highly dependent on an external
supervisor for annotating input data. Reducing the need
for supervision is a desirable trait for a learning-based
approach [40]. Furthermore, there are various large-scale
datasets appropriate for geometric DL tasks. However,
there is still a need for creating datasets with richer 3-D
annotations that are suitable for shape and surface recon-
struction.

On the other hand, some of the current evaluation
metrics fall short of capturing surface properties accurately.
Therefore, it is necessary not to be limited to quantitative
results but to explore qualitative results to gain a deeper
understanding of surface details as well. Moreover, pre-
senting better and more robust evaluation metrics, which
are at the same time computationally efficient and less
complex (in point cloud comparison, CD has quadratic
complexity for instance), is another area that is essential
to focus on.

In the context of volumetric methods, various challenges
exist that should be tackled. Because of the discretization
of data, some input information and details may partially
be lost. Cubic growth in memory and computational costs
with respect to resolution and poor scalability of these
methods with resolution increase lead to difficulty in infer-
ring high-resolution outputs. Considering the influence of
3-D resolution on the performance of volumetric CNNs for
instance, better performance can be achieved by designing
efficient volumetric CNN architectures for instance, which
are able to scale to higher resolutions [128].

For point-based approaches, current methods extract
a fixed and limited number of points from the point
cloud dataset and feed them to their network architecture,
thus affecting the output quality. Overcoming this limi-
tation and implementing models with the ability to han-
dle variable-length input can be ambitious yet interesting
future directions.

In mesh-based approaches, it is challenging to define a
loss on meshes, which is easy to optimize [34]. One of the
limitations of patch-based approaches in the mesh-based
representation category that affects the reconstruction of
fine details is the usage of a fixed scale mesh patch [37]. A
coarse-to-fine approach and extracting mesh patches at dif-
ferent scales might result in more precise outputs. On the
other hand, generating a closed shape using patch-based
methods, and recognizing and segmenting shapes using
these methods are issues that still require solutions [34].

Implicit neural representations have recently gained
popularity due to their performance and favorable prop-
erties. Existing isosurface extraction approaches used for
extracting representations from implicit neural represen-
tations are computationally intensive and, thus, com-
prise a bottleneck. Furthermore, it may be worthwhile
to combine sign-agnostic implicit neural approaches with
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generative methods, such as GANs [52]. Moreover, NeRF-
based approaches mostly suffer from high computational
cost, long training time, and the inability to share knowl-
edge between various scenes, thus being scene-specific
networks. The necessity for more input images in order
to have high-quality outputs should be alleviated. Improv-
ing NeRF-based methods’ time and computation efficiency,
their generalizability to unseen scenes, and their surface
reconstruction ability can be important research questions.

In general, reducing the performance gap between syn-
thetic and real-world data, proposing better and more
representative evaluation metrics for quantifying shape
reconstruction analysis results [49], conducting research in
the challenging task of scene-level reconstruction, empow-
ering proposed methods with multiscale reconstruction
(coarse-to-fine manner) [48], implementing and employ-
ing methods for capturing high-frequency details with
the purpose of reconstructing thin parts of a scene or
object in high-quality, considering the equivariance con-
cept for designing a neural network, and fusing different
approaches mentioned in Fig. 6 in order to enjoy the
benefits of them simultaneously are aspects that should not
be ignored in future studies. In addition, the application
of transformer architectures [208], i.e., a DL model that
is based on the self-attention mechanism, seems to be
promising in 3-D vision [237], [238], [239]. On the other
hand, self-supervised learning [240], which is a technique
for predicting unobserved or hidden part of the input from
observed or not hidden part of the input, can be one
of the interesting approaches for solving reconstruction
and in general computer vision problems with low quality
and a limited amount of data. Furthermore, considering
the current interest, diffusion models [241], [242], [243],
[244], which learn to infer and generate a meaningful
output from pure noise, seem to be another exciting
approach to be used in 3-D generation, completion, and
reconstruction [245], [246].

It is equally expected that surface reconstruction appli-
cations play an increasingly important role. One of the
major uses will be in observational RS-related disci-
plines where surface reconstruction will aid in archeo-
logical discoveries, agriculture, disaster prevention and
response, and cartography. Equally, design- or projection-
based applications have great utilization potential for
learned surface reconstruction, including, but not limited
to, 3-D modeling in games and movies, architecture, or
CAD. Yet, all of the aforementioned scenarios are con-
sidering only (close to) static surfaces. The anticipation
is that accurate reconstruction of dynamically changing
objects and environments, nonrigid objects or scenes, tex-
tureless regions and transparent objects, and overcoming
the challenges of rarely visible regions, occlusions, shad-
ows, and holes in an object or scene will be crucial and
consequential next steps in this field of study. Overall, more
applications of neural learning approaches will emerge
for surface reconstruction, especially in SFX and VFX

animation, human reconstruction, robotics, autonomous
driving, and medicine.

VIII. CONCLUSION

In this article, we provided a review of the state-of-
the-art approaches for learning-based 3-D surface recon-
struction. We have taken no special perspective, making
the manuscript accessible not only to method researchers
but also to applied users seeking to contextualize these
approaches for their domains.

For this, we have reiterated commonly used open and
accessible benchmarking datasets, different input and out-
put data modalities, and some acquisition techniques. To
make processing results comparable, we have highlighted
widely used metrics for evaluating learned models and
detailed their particularities.

The main part of this article has introduced DL-based
3-D surface reconstruction approaches. In summary, these
can be classified into four major categories based on their
output representations: 1) voxel-based; 2) point-based
representation; 3) mesh-based; and 4) implicit neural. For
each of the categories, we listed some well-known meth-
ods, explaining their contributions, challenges, strengths,
and weaknesses.

Although 3-D deep surface reconstruction has made
impressive progress over the last few years, there are sev-
eral remaining challenges. The following nonexhaustive
list will highlight the major open issues:

1) computation time;

2) generalizability;

3) energy consumption and environmental impact;

4) representation compression;

5) resolution;

6) water tightness;

7) nonrigid, dynamic, or transparent object reconstruc-
tion;

8) reconstruction of rarely visible or occluded regions,
shadows, and holes in an object or a scene.

Toward the end of this article, we discussed current
challenges and possible future trends in deep 3-D surface
reconstruction. We assume that coming research will put
a strong emphasis on self-attention-based models due to
their exceling performance in DL in general and 2-D
computer vision problems, i.e., vision transformer and its
derivatives, in particular. Moreover, self-supervision will
be the strong community focus due to its ability to not
only improve reconstructive performance overall but also
to leverage small and potentially domain-specific datasets.
The application of diffusion models seems to be a promis-
ing direction as well. Finally, albeit in a niche setting,
the quantification of reconstruction uncertainties will be
of utmost importance for safety-critical applications and
certain scientific application settings. [ |
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