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Abstract: The prediction of energy-related time series for computer numerical control (CNC) machine
tool axes is an essential enabler for the shift towards autonomous and intelligent production. In
particular, a precise prediction of energy consumption is needed to determine the environmental
impact of a product and the optimization of its production. For this purpose, a novel approach for
predicting high-frequency time series of numerically controlled axes based on the program code to
be executed is presented. The method involves simulative preprocessing of the input NC code to
determine each axis’s acceleration, velocity, and process force. Combined with the material removal
rate, these variables are input for a machine learning (ML) model that delivers axis-specific high-
frequency time series predictions. Compared to common approaches, it is thus possible to make
predictions for the variable energy consumption of machine tools for any tool path or target resolution
in the time domain. Experiments show that this approach achieves a high precision when a robust
learning data basis is available. For the X-, Y-, and Z-axis, errors of 0.2%, −1.09%, and 0.09% for
aircut and of 0.15%, −3.55%, and 0.08% for material removal can be achieved. The potentials for
further improvement are identified systematically.

Keywords: machine tool; CNC; time series prediction; machine learning

1. Introduction

A reduction in harmful greenhouse gases is necessary to counter climate change and
mitigate its consequences. Due to a high energy demand, the manufacturing industry in
particular is forced to make conscious and responsible use of its available resources such
as energy. This results in ever stricter guidelines, such as the greenhouse gas protocol [1],
or extended operating indicators, such as the extended Overall-Equipment-Effectiveness
(OEE) OEE+ [2]. Furthermore, steadily rising industrial electricity prices [3] are increas-
ingly motivating companies to reduce their energy consumption. Thus, the incentives for
companies to monitor and optimize their energy consumption are constantly increasing.

To adapt and improve energy consumption during or after production, more and more
sensors are available during the shift towards Industry 4.0. and digitalization. However,
in a highly individualized production, e.g., with a batch size of one, the prediction and
the optimization must be carried out before the actual production process. The goal
must therefore be to move from a purely reactive adaptation to proactive monitoring
and planning.

Most of the manufacturing operations in today’s factories are executed with machine
tools. In modern machine tools such as milling machines, machining is performed with
the geometrically interpolated movements of computer numerical control (CNC) axes. In
combination with the main spindle, these movements transfer the unmachined workpiece
into the target geometry through material removal. Thus, the process-dependent energy
consumption can be represented using the energy supplied to the axes. The complexity of
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the movement is strongly dependent on the complexity of the workpiece’s geometry and
the planned trajectory. To achieve the highest possible productivity of the machine tools,
extremely high dynamics are targeted. In contrast to stationary operations with constant
process conditions, the energy supplied is also subject to high fluctuations. Particularly in
braking and acceleration processes, this results in short-term but particularly high peaks
in consumption. An exact determination of the energy demand and, thus, optimization
is only possible by precisely mapping these process details. Thus, a step towards energy-
efficient production and optimization is given with the prediction of high-frequency (HF)
energy-related time series with a sampling rate above 1 Hz.

2. State of the Art

According to [4], the energy consumers of a machine tool can be subdivided according
to the main and auxiliary units. The main units are responsible for the injection of the
kinematic energy of all the axes as well as the energy required for material removal.
They include the feed axes and the main spindle. The auxiliary units, on the other hand,
include all the units that are additionally required for the operation of the machine tool.
Depending on the machine, this may include hydraulic units, the cutting fluid supply,
or additional cooling systems. The modeling of the entire machine, therefore, consists
of the here-considered modeling of the CNC axes as well as the auxiliary units. In the
following, publications will be discussed which have the goal of modeling the consumption
of the whole machine. Additionally, relevant publications in which the axis-specific energy
consumption is to be predicted will be addressed.

Borgia et al. developed [5] a reduced model for the analysis of energy consumption
during the milling process. The kinematic quantities were determined and a machine
learning (ML) model was trained based on simple motions. In [6], Pavanaskar and McMains
developed a tool to determine the machine-specific energy consumption for CNC milling
paths based on the material removal rate (MRR). In a validation using linear paths, a
deviation between −6% and +5% could be achieved. Edem and Mativenga [7] investigated
the parameters influencing the energy consumption of the feed axis during the milling
process. A model was derived for a test machine, taking into account the weight of the
axes and the workpiece placed on the machine table. During aircut, the model was able
to achieve deviations of less than 9%. Based on the results, as well as an investigation
of the influence of workpiece and tool orientation on the energy consumption of milling
machines [8], Edem and Mativenga [9] developed an extended prediction model. Here,
their findings were combined with other models for modeling the overall machine tool
consumption. In a simple validation with a small cutting depth (0.5 mm), the model was
able to achieve a deviation of −2% with respect to the energy consumption and −4%
concerning its machining time. It should be noted, however, that due to the small cutting
depth, the influence of the process and, thus, of the axes can be considered rather low. Edem
included this finding in his dissertation [10] on modeling the energy demand of machine
tool axes and tool paths. Altıntaş [11] studied the modeling and optimization of energy
consumption for feature-based milling. A model was developed for estimating the energy
requirement, taking into account linear modeling of the axis influence. In a validation,
deviations of 5% could be achieved. Furthermore, an investigation of milling strategies
for pocket milling using response surface methodology was carried out. To account for
the different proportions of total consumption, Zhang et al. [12] developed a multilevel
approach to map defined milling conditions. Ma et al. [13] developed a model for a milling
process based on the MRR, as well as a model for aircut operations, which could achieve
accuracies of >90%. In [14], Imani et al. modeled a machine tool as a thermodynamic
system to determine its energy consumption. In a validation, the model was able to achieve
a deviation of less than 1%. Simplifications of the model were made. In [15], Lv et al.
merged mechanism analysis modeling with a data-driven model to predict the overall
consumption of a grinding machine. A support vector machine was used to model the
deviation between the actual results and the theoretical model. In a comparison, a pure
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mechanism model achieved an average deviation of 2.41%, while the data-driven model
had an average deviation of 3.13%, and the fused model had an average deviation of 1.98%.
Thus, Lv et al. proved the suitability of a combination of mechanism models with data-
driven models for the modeling of the complex correlations within machining processes.
In [16], Pawar et al. developed a model for circular geometries that achieved deviations
below 5%. Yu et al. developed a model for the prediction of energy consumption, as well
as the surface quality, when milling stainless steel [17]. In a validation, an accuracy for
the prediction of the energy consumption of 98.7% could be achieved. In [18], Brillinger
et al. developed an ML-based approach for predicting energy consumption based on the
NC code of the part to be produced. Several models were investigated and a deviation of
7.16% was achieved for the whole machine tool system using decision trees. Cao et al. also
developed an ML-based prediction of energy consumption [19]. Here, in the first stage, a
parser was used to group the NC code, based on which an ML model predicted the energy
demand for each state group. This achieved an error per NC block of 5% and an error
for the overall program of 0.85%. It can be assumed that the errors in the calculation of
the consumption for the entire production balance each other out. In [20], Pawar et al.
combined analytical models for the cutting power and empirical ones for the idle speed
and auxiliaries to model the energy demand of cam geometries. An error of less than 2.27%
could be achieved with this approach. Duc and Trinh [21] developed an approach for the
prediction of energy consumption for high-speed milling processes. Here, tool wear was
additionally taken into account by calculating the force due to geometry change. In the
prediction with a consideration of the wear condition, average errors of less than 9.2% and,
without it, less than 18.25% could be achieved. This showed that a consideration of a tool’s
condition in the modeling of the energy consumption can lead to better results.

The existing works on modeling the energy consumption of machine tools mostly
focuses on a machine level, i.e., they try to model the total energy consumption. Therefore,
auxiliary units, as large energy consumers, are primarily responsible for the accuracy
of the models. The modeling of the axis-specific energy consumption is only partially
addressed. A specific evaluation of the prognosis quality, as in [18], is only rarely the case.
By combining the process force with the MRR, a prediction of the process-dependent energy
consumption can be made, as shown for example in [13]. However, this is predicted for the
overall machine and is not axis-specific. As shown in [15], a combination of analytical and
data-based models can be useful. In more recent developments, ML approaches [18,19] are
increasingly used for block-wise prediction.

It becomes clear that there is still a need for additional prediction models, especially on
an axis level. However, the energy consumption of the axes represents a relevant interface
between the machine and the machining process. In the existing works, the prediction of
general paths has only marginally been taken into account. In addition, no work is evident
in which the prediction of HF time series is directly addressed, which is necessary for a
detailed evaluation of the effects of a process’ details and high machine dynamics.

Based on the results presented in the existing works, the following questions can be
derived for the present paper:

1. How can one predict HF energy-related time series for machine tool axes for general
paths, based on the NC code?

2. What accuracies can be achieved?
3. What are the requirements and limits of the model and how can they be addressed?

3. Approach

The prediction of HF time series based on the NC code is built on three processing
steps, as shown in Figure 1. During preprocessing, it is ensured that the existing NC code
is given in a standardized form for the subsequent calculations. Thus, the position of the
origin of the raw part coordinate system is adjusted if necessary. In a further step, the HF
time series of intermediate process variables like time, velocity, acceleration, MMR, and
force are simulated. These represent the input for the ML-based prediction of the target time
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series. The ML model represents the final processing step, mapping the simulated input
variables to axis-specific energy-related time series values. The approach aims to make
the best possible use of the predictive capabilities of the ML model through simulative
preprocessing.

Figure 1. Processing steps of the presented approach.

For the training and validation of the machine learning model and the generality of
the approach, various datasets were recorded experimentally.

4. Datasets

The dataset for the time series prediction in milling processes published in [22] was
used for the model development in this publication. The datasets were recorded on a
DMG CMX 600 V with a Siemens Industrial Edge and a sampling rate of 500 Hz. Two
experimental parts were created for steel (S235JR) and aluminum (2007 T4). Figure 2 shows
the tool paths for both parts. Machining was performed using 20 mm, 10 mm, and 5 mm
cutters. During the machining process, the feed rate and spindle speed were varied for
all the tools to obtain the most comprehensive dataset possible. Furthermore, additional
recordings were made without the workpiece (aircut), to be able to specifically investigate
the influences of the process forces and, subsequently, the prediction quality.

Figure 2. Material removal simulation ((left) to (right)) for experimental part one (top) and experi-
mental part two (bottom).

5. Hybrid Model for HF Time Series Prediction

As described in [23], the milling machine is assumed to be a system of rigid bodies. Due
to the equation of motion, the variables acceleration a, velocity v, and process forces Fprocess
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were identified as the primary influences on the energy demand p (Equations (1) and (2))
of a given block b.

pmotion,b,i = α1,i × vb,i + β1,i × ab,i + c1,i (1)

pforces,b,i = α2,i ×
∫

Fprocess,b,i dvb,i + c2,i (2)

The ML model determines the unknown parameters α, β, and c for all the axes i. In
addition, a strong correlation between the material removal rate and the required power
was found in [24]. The MRR is, therefore, used as an additional input variable for the ML
model. Considering the MRR, Equation (3) shows all the relevant parts that influence the
energy demand due to the model.

pprocess,b,i = pmotion,b,i + pforces,b,i + α3,i × MRR + c3,i (3)

The preprocessing NC code simulations are divided into two domains. On the one
hand, the kinematic variables are simulated. When aircut predictions should be made,
these are the only variables needed. On the other hand, the process variables must be
determined. Figure 3 provides an overview of the entire processing steps.

Figure 3. Information flow from the preprocessed NC code to the axis-specific prediction.

The input variables of the ML model are axis-specific except for the MMR. To achieve
the highest possible accuracy, different ML models are used for prediction. Due to the
similar characteristics of the X-axis and Y-axis movement during three-axis milling, they
are represented using a combined model. The Z-axis and spindle are represented with
independent models. The outputs of the ML models are the HF time series for the individual
axes. The chosen approach ensures that it can also be trained on other types of signals, such
as the torque applied to an axis. Taking into account an acceptable computing time with,
simultaneously, a high prediction accuracy, the target frequency is set to 50 Hz.

5.1. Kinematic Simulation

The modeling of the kinematic machine behavior with a machine-specific, characteris-
tic jerk described in [23] is implemented in the kinematic simulations. The simulation can
be used to determine the acceleration, velocity, and position of the tool’s center point in the
raw part’s coordinate system. A case distinction is made for the machine modes “rapid
traverse” (G00) and “linear interpolation” (G01). This is performed because of the different
behaviors of the axis. While in the “rapid traverse” mode the axes are moved to the target
coordinates as fast as possible, independently, in the “linear interpolation” mode the axes
follow a defined path. Therefore, in the “rapid traverse” mode, the machine-specific jerk is
determined for each axis individually (X, Y, Z), while, for the “linear interpolation” mode,
the machine-specific jerk is determined as the vector addition of the translational axes
X, Y, and Z (XYZ). The machine- and case-specific characteristic values for the jerk are
determined by building the frequency distributions of large and representative datasets.
Figure 4 shows the frequency distribution for the combined jerk of the translational axes
(XYZ) for the linear interpolations.
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Figure 4. Frequency distribution for the jerk of the translatory axes (XYZ).

The distribution corresponds approximately to a beta distribution and, thus, can be
described by it. The beta distribution with the adjusted function parameters is also shown in
Figure 4. The characteristic value searched for the jerk is determined by the expected value
of the approximated beta distribution. Using an analogous procedure, the characteristic
values for the machine mode “rapid traverse” are determined in an axis-specific way (X,
Y, Z) due to the described machine behavior. For circular interpolations, the points on the
circle segment are interpolated first. In-between these interpolated points, the sections are
connected with linear interpolations.

The kinematic modeling of the spindle (SP) is analogous to the modeling of the
translational axes. A machine-specific value for the jerk is equally determined by eval-
uating the frequency distributions of large datasets. Figure 5 visualizes the kinematic
simulation procedure.

Figure 5. Flowchart of the kinematic simulation.

5.2. Process Simulation

The process simulation aims to determine the ML input variables of the process forces
and material removal rate. In the first step, the material removal is simulated. The results
of the kinematic simulation for the velocity and position of the tool’s center point are used
for this. The dimensions of the raw part are also required for the simulation. A voxel model
with a variable resolution is implemented. In the present work, the voxel resolution is
set to 0.33 × 0.33 × 1 mm (X × Y × Z). By simulating the path of the milling head, the
voxels of the initialized workpiece are reduced in case of overlapping. The model can be
used to directly determine the material removal rate. In addition, the removal simulation
yields intermediate variables that are required for the process force calculation according
to Kienzle’s formulas. These are the tool’s engagement width, tool’s engagement angles,
and cutting thickness. Further material- and process-specific variables such as the specific
cutting forces, correction factors, or tool diameters must be determined. The literature’s
values are used for these specific variables. Figure 6 gives an overview of the process
simulation procedure.
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Figure 6. Flowchart of the process simulation.

5.3. ML Input

The kinematic and process variables are determined in the raw part’s coordinate sys-
tem as presented in the previous chapters. Depending on the orientation of the workpiece
placed in the machine, a transformation into a machine coordinate system is needed to
generate axis-specific input parameters. Thus, the input vector is composed of the speed,
acceleration, and force signals of all the axes, as well as the MMR. It is assumed that the
system acts with infinite impulse response and that the information processing of the
machine tool can take future values into account (look-ahead). For this reason, the values
of the last 0.5 and the next 0.2 s should be taken into account. To reduce the amount of data,
every second value is used, which leads to a reduced time resolution of 0.04 s or 25 Hz. The
resulting scheme can be seen in Figure 7.

Figure 7. Connection scheme of Input and Output Variables.

Given the input vector with a reduced frequency of 25 Hz (0.04 s intervals), the
original time series (500 Hz) of the training datasets must be smoothed accordingly to
reduce the HF noises and show the highest possible similarity to the idealized, simulated
time series. As the reconstruction of the target signal should be possible, Shanon’s sampling
theorem [25] must be fulfilled. Therefore, the original training time series are smoothed in
a data preprocessing step using a moving average filter in a neighborhood of 20 past and
20 future datapoints.

5.4. ML Model

Artificial neural feedforward networks with two hidden layers implemented in Py-
Torch [26] are used for the HF time series predictions. The hidden layers each have the
same number of neurons as input variables. The number of input variables is 144 for the
aircut predictions and 234 for the predictions considering process forces (see Section 6).
ReLUs (rectified linear units) are used as activation functions. The mean absolute error is
used as a loss function. The batch sizes are set to 64, 128, or 256. As already described, a
total of three models were created for the predictions (XY-axis, Z-axis, spindle).

5.5. ML Output

The power signal of the recorded datasets has a low resolution and is strongly dis-
cretized due to the measurement technology, as shown in Figure 8. It can also be recognized
that there is a strong correlation between the much-higher-resolution current signal and the
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power signal. A calculation between the variables is possible. The current signal is often
used for anomaly detection purposes due to its widespread availability. Therefore, the
current signal for the X-, Y-, and Z-axis and the spindle is taken for the prediction. The ap-
proach can easily be changed to predict the power signal if a high-resolution power signal
is available. By integrating the signal, a prediction can be made regarding the total energy
required to execute an NC code. In the present work, the total electric charge is determined
as a substitute for the total energy which would be received by integrating a power signal.
In this context, the integrated signal serves as a control and evaluation measure.

Figure 8. Current signal vs. power signal of a sample dataset.

6. Validation

A total of eight experiments were carried out to validate the approach and the ML
models. In four experiments, the predictions for aircuts were evaluated, and, in another
four experiments, the process forces were considered. There was a successive increase
in the complexity between the individual experiments so that the function, accuracies,
and limits of the approach and the ML models could be systematically evaluated. For the
experiments, individual learning datasets were specifically combined, and independent
validation datasets were formed. The experiments were performed on steel (exp. a) and
aluminum (exp. b). The following section gives an overview of the experiments carried
out. Experiments 1–4 were executed as aircut experiments, while, in experiments 5–8, tool
process forces were present. It must be considered that the datasets for part one are approx.
six times more voluminous than the datasets for part two.

6.1. Experiment 1: Training on Part One and Two Aircut Data—Validation on Unseen Data of
Part One

For experiment 1, a high characteristic similarity between the learning datasets and
validation datasets is chosen. This constellation should provide the best possible dataset for
the predictions of the ML models. The aim of experiment 1 is the general verification of the
approach and ML models without the consideration of the process forces. This experiment
setup corresponds to a classical validation approach with a training data split.

6.2. Experiment 2: Training on Part One Aluminum/Steel Aircut Data—Validation on Part One
Steel/Aluminum Data (Exp. a/b)

In experiment 2, different velocity ranges for the axis feed occur in the validation
datasets compared to the training datasets. This requires the ML models to perform
interpolations and extrapolations. The aim of experiment 2 is to check whether the ML
models are able to inter- and extrapolate. This is a first step in checking the generalization
capability of the approach.

6.3. Experiment 3: Training on Part One Aircut Data—Validation on Part Two Data

In experiment 3, the characteristics of the training and validation dataset differ. The
aim of experiment 3 is to test whether the models are capable of large-scale transfer.
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6.4. Experiment 4: Training on Part One and Two Aircut Data—Validation on Unseen Data of
Part Two

Experiment 4 is similar to experiment 3, but the training database has been enlarged.
The aim of experiment 4 is to investigate how the enlargement of the learning database
affects the validation results.

6.5. Experiment 5: Training on Part One and Two Process Data—Validation on Unseen Data of
Part One

Experiment 5 represents equivalent investigations to experiment 1, with the difference
that the process forces are taken into account. The aim of experiment 5 is the general
verification of the approach and the ML models considering the process forces. This
experiment setup corresponds to a classical validation approach with a training data split.

6.6. Experiment 6: Training on Part One and Two Process Data—Validation on Unseen Data of
Part One

The same data setup is used for experiment 6. By adding a hidden layer, the model
complexity of the ML models is slightly increased. The aim of experiment 6 is to test
whether small changes in the ML model’s complexity lead to noticeable changes in the
prediction results.

6.7. Experiment 7: Training on Part One and Two Process and Aircut Data—Validation on Unseen
Part One Data

Experiment 7 has the same setup as experiment 5. Additional aircut data are added to
the learning dataset.

6.8. Experiment 8: Training on Part One and Two Process and Aircut Data without Part Two
Steel/Aluminum Data—Validation on Part Two Aluminum/Steel Data (Exp. a/b)

Experiment 8 has an enlarged training database in contrast to experiment 7. Compared
to experiments 5–7, datasets with comparatively unknown characteristics are used for
validation. The aim of experiment 8 is to verify the approach and the ML models in a
realistic application.

7. Results

The evaluation of the prediction results was carried out with different evaluation
measures. Therefore, the predicted current signals were integrated and compared with
the integrated signals of the measurements (total deviation). This was carried out both
axis-specific and for the whole process using the sum of all the axes. Furthermore, a
dynamic evaluation was carried out using Dynamic Time Warping (DTW). The Python
packages dtaidistance [27] and fastdtw [28] were used. With this evaluation method, no
absolute statements can be made. However, a direct comparison can be made between the
experiments with respect to how well the characteristics of the temporal signal course were
predicted. Furthermore, visually comparing the predicted and measured signals provides
a good measure for evaluating the results.

Table 1 gives an overview of the total deviations and the DTW-Distances per data
point of the experiments. The analysis was carried out on steel (S235JR) for experiment Xa
and aluminum (2007 T4) for experiment Xb.

The absolute total deviations for experiment 1 were between 0.09% and 3.74% for the
X, Y, and Z-axis. For the spindle, the deviation was slightly higher at −8.83% and −9.51%.
Across all the axes, the difference between the predicted and measured values was −0.96%
and 0.19%. The visual comparison of the signals showed a high correspondence between
the two signals, as Figure 9 shows for experiment 1a as an example of the Y-axis. The
relatively linear path through the cost matrix of the analysis via DTW is also shown.
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Table 1. Validation results.

Experiment Measure X-Axis Y-Axis Z-Axis Spindle All Axes

1a Total Deviation 0.2% −1.09% 0.09% −8.83% −0.96%
DTW-Distance 69.9 × 10−3 64.81 × 10−3 66.96 × 10−3 93.14 × 10−3 294.91 × 10−3

1b Total Deviation 2.06% 3.74% 0.99% −9.51% 0.19%
DTW-Distance 60.22 × 10−3 71.18 × 10−3 59.97 × 10−3 38.49 × 10−3 229.86 × 10−3

2a Total Deviation −1.59% −2.77% 2.25% −7.66% 0.44%
DTW-Distance 61.79 × 10−3 76.17 × 10−3 86.26 × 10−3 65.76 × 10−3 289.98 × 10−3

2b Total Deviation −1.01% 1.64% 1.32% −10.46% −0.09%
DTW-Distance 67.36 × 10−3 70.93 × 10−3 62.4 × 10−3 59.85 × 10−3 260.54 × 10−3

3a Total Deviation 33.29% 16.66% 8.32% −34.79% 7.05%
DTW-Distance 238.97 × 10−3 197.62 × 10−3 384.75 × 10−3 170.34 × 10−3 991.68 × 10−3

3b Total Deviation 32.46% 33.89% 3.63% −14.9% 7.38%
DTW-Distance 152.35 × 10−3 275.81 × 10−3 335.37 × 10−3 211.69 × 10−3 975.21 × 10−3

4a Total Deviation 16.64% 6.62% −2.95% −14.79% −1.45%
DTW-Distance 130.86 × 10−3 157.92 × 10−3 341.87 × 10−3 233.78 × 10−3 864.43 × 10−3

4b Total Deviation 15.31% 6.05% −4.57% −7.86% −2.02%
DTW-Distance 110.69 × 10−3 167.95 × 10−3 377.53 × 10−3 205.03 × 10−3 861.21 × 10−3

5a Total Deviation 0.15% −3.55% −2.21% −21.55% −8.11%
DTW-Distance 324.85 × 10−3 259.92 × 10−3 223.54 × 10−3 558.08 × 10−3 1366.39 × 10−3

5b Total Deviation 43.87% 44.17% 1.45% 78.76% 22.95%
DTW-Distance 323.84 × 10−3 321.22 × 10−3 226.71 × 10−3 1154.33 × 10−3 2026.10 × 10−3

6a Total Deviation −1.6% −5.05% −3.33% −24.67% −9.95%
DTW-Distance 322.65 × 10−3 270.90 × 10−3 337.00 × 10−3 619.26 × 10−3 1549.81 × 10−3

6b Total Deviation 43.45% 43.83% 1.81% 69.35% 21.45%
DTW-Distance 289.60 × 10−3 311.32 × 10−3 214.04 × 10−3 1119.97 × 10−3 1934.93 × 10−3

7a Total Deviation −19.47% −14.68% −2.77% −40.49% −17.54%
DTW-Distance 395.03 × 10−3 388.46 × 10−3 293.08 × 10−3 1174.27 × 10−3 2250.84 × 10−3

7b Total Deviation 11.48% 36.73% −0.11% 40.26% 11.45%
DTW-Distance 168.99 × 10−3 270.81 × 10−3 145.81 × 10−3 599.64 × 10−3 1185.25 × 10−3

8a Total Deviation 35.37% 78.32% 0.08% 35.26% 18.49%
DTW-Distance 356.31 × 10−3 382.32 × 10−3 203.73 × 10−3 897.44 × 10−3 1839.8 × 10−3

8b Total Deviation 68.44% 106.61% 2.34% 169.98% 41.45%
DTW-Distance 349.48 × 10−3 624.84 × 10−3 176.59 × 10−3 787.27 × 10−3 1938.19 × 10−3

Figure 9. Results of experiment 1a for the Y-axis with a total deviation of −1.09% in time domain
(a) and a DTW-Distance per datapoint of 64.81 × 10−3 (b).

The analysis using DTW confirms that the deviations for the spindle were the highest
compared to the other axes, but that they were comparatively much smaller than the inte-
grated deviations, as Table 1 shows. This indicates a good prediction of the characteristics
of the spindle with a simultaneous systematic underestimation of the predicted values.

Experiment 2 required the ML model to interpolate and extrapolate through the
occurrence of different velocity ranges in the learning and validation data. The total
deviations were of the same order of magnitude as in experiment 1, with 1.01% to 2.77% for
the X-, Y-, and Z-axis. Comparable deviations to experiment 1 were also achieved for the
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spindle. The deviations for the evaluation with DTW were in the same order of magnitude
as in experiment 1. The characteristics of the prediction were also on the same level as in
experiment 1. The results for the spindle are shown in Figure 10.

Figure 10. Results of experiment 2a for the spindle with a total deviation of −7.66% in time domain
(a) and a DTW-Distance per datapoint of 65.76 × 10−3 (b).

In experiments 3 and 4, the transfer ability of the ML model was investigated. The
total deviations in experiment 3 were up to 34.79% higher than in experiments 1 and
2. In experiment 4, the learning dataset was enlarged compared to experiment 3. This
was noticeable in the reduced deviations. A maximum total deviation of −2.02% was
achieved across all the axes in experiment 4, while this value was 7.38% in experiment
3. Nevertheless, in experiment 4, as in experiment 3, the characteristic of the prediction
corresponded only in sections to the characteristic of the measured signal. Figure 11 shows
an example of the comparison of the signals for the X-axis in test 4a. Falsely predicted peaks
and phase-wise clear deviations in the prediction of the amplitude can be seen. Compared
to experiments 1 and 2, the path through the cost matrix is less linear when evaluated
using DTW.

Figure 11. Results of experiment 4a for the X-axis with a total deviation of 16.64% in time domain
(a) and a DTW-Distance per datapoint of 130.86 × 10−3 (b).

The analyses with DTW confirmed the described results of the evaluation using
integration, even if the effects were less strong, as Table 1 shows. The deviations across all
the axes were smaller in experiment 4, with distances of 864.43 × 10−3 and 861.21 × 10−3

per datapoint compared to experiment 3, with 991.68 × 10−3 and 975.21 × 10−3 per
datapoint. Nevertheless, the deviations were still higher than the deviations of experiments
1 and 2, with distances between 229.86 × 10−3 and 294.91 × 10−3 per datapoint.

The results of experiment 5 showed that the approach and the ML model also provided
reliable predictions when process forces were taken into account. Figure 12 shows an
example of the results of experiment 5a for the Z-axis. To indicate the presence of the
process force, blue was chosen for the plot.
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Figure 12. Results of experiment 5a for the Z-axis with a total deviation of −2.21% in time domain
(a) and a DTW-Distance per datapoint of 223.54 × 10−3 (b).

Compared to the aircut experiments, it can be seen that the current signal is affected
by higher oscillations when the process forces are taken into account. The predicted signal
is idealized and exhibits lower oscillations. Furthermore, it can be observed that the
deviations in experiment 5 are higher compared to the equivalent aircut experiment 1 (see
Table 1). While in experiment 1 the total deviations were consistently in the single-digit
percentage area, the deviations of the individual axes in experiment 5 were up to 78.76%.
The deviations across all the axes were also higher. The evaluations using DTW showed that
the distances per datapoint were an order of magnitude higher in experiment 5 compared
to experiment 1.

The comparison of the deviations of experiments 5a and 5b (see Table 1) showed that
the predictions for the current amplitude on the material steel (experiment 5a) tended to
be underestimated, while the current amplitudes on the material aluminum (experiment
5b) were consistently overestimated. A systematic shift of the deviation ranges for the
different materials when evaluated via integration could also be observed for the other
predictions considering the process forces (experiments 6–8). Experiment 6 showed that
minor adjustments to the model complexity did not change the deviations drastically and
led to systematically improved results.

The deviations in experiment 7b were systematically shifted compared to experiment
5b (see Table 1). By adding the aircut training data, the predictions turned out lower
overall. Due to the same setup of experiments 5b and 7b, they can be compared directly, as
Figure 13 shows exemplarily for the X-axis. It can be observed that the predicted values
in experiment 7b are consistently lower compared to experiment 5b. This can be seen
particularly well in the area at the beginning. The comparison of all axes also confirms this
with a total deviation of 22.95% for experiment 5b compared to 11.45% for experiment 7b.

Figure 13. Results of experiment 5b for the X-axis with a total deviation of 43.87% in time domain
(a) and experiment 7b for the X-axis with a total deviation of 11.48% (b).
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The deviations in experiment 8 were comparatively high, with 35.26% to 169.98% for
the X-axis, Y-axis, and spindle. Only the Z-axis deviation was lower, with 0.08% and 2.34%,
respectively. Figure 14 shows the results of experiment 8a.

Figure 14. Results of experiment 8a.

As Figure 14 shows for experiment 8a, the characteristics are not very accurately
predicted. Here, it can be seen that the characteristics of the predictions correspond only
selectively to the measured values. This is also observed for the Z-axis, where the total
deviation is quite small compared to the other axes.

8. Discussion

The kinematic values predicted based on the NC code could be validated by comparing
them with the measured values. The temporal deviation of the prediction was low, at 0.33%.
The presented approach for kinematic modeling by determining a machine-specific jerk,
therefore, appears to be purposeful. The process force simulations could not be validated
experimentally. It is, therefore, not possible to estimate the extent to which deviations exist,
for example, due to the assumption of material substitution coefficients. However, the
simulation of the process forces is only an auxiliary variable on the way to predicting the
target time series. The actual criterion for evaluating the model remains the comparison
of the output signals (here: current signals). The simulated values for the process forces
and material removal rate were used as the training data. The learning data used, thus,
represent a hybrid of measured and simulated data. The associated uncertainties affect the
ML model and, thus, its predictions.

The prediction results of experiments 1, 2, and 5, in particular, show the potential of
the approach and provide a proof of concept. In these experiments, the deviations were
small, and the evaluation of the time series showed that the characteristics of the predicted
signal matched the measured signal very closely. Experiment 2 shows that interpolations
and extrapolations are possible and, thus, validate the generalization potential of the
approach. Experiments 3 and 4 show various problems and opportunities. On the one
hand, it becomes apparent that, with the datasets available, there could be problems with
overfitting, and, thus, that the underlying database is not large enough. This becomes
noticeable as the deviations turn out to be higher when learning and validation data
are characteristically different. On the other hand, the comparison of the deviations of
experiments 3 and 4 shows that a larger data basis leads to considerably improved results.
Nevertheless, even the data basis of experiment 4 is not yet sufficient to be considered a
generalizable application. When process forces are taken into account, increased deviations
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usually occur, which is natural due to the additional input variables with a comparatively
complex prediction.

For experiment 5, a recurring observation was made that systematically shifted devia-
tion ranges occur for the integrated deviations of the materials steel (experiment a) and
aluminum (experiment b). This indicates that the ML model is not able to predict the
different materials purely based on the different scales of the simulated forces. Comparable
differentiation problems appear in the evaluation of experiment 7. By adding aircut data to
the learning datasets, the predictions systematically drop. This is because the amplitudes of
the current signals are lower in the aircut data, because of the missing process forces. Thus,
the ML model is not able to differentiate adequately whether process forces are present or
not and to make a suitably differentiated prediction. Experiment 8 confirms the problems
observed in the previous experiments and shows that with the given database and the ML
models presented, a generalized application of the approach is not yet possible without
accepting high deviations and uncertainties.

The differentiation problems discovered in experiments 5–8, in particular, indicate
that the complexity of the artificial neural networks used so far is not enough to be able to
deliver precise predictions. If no improvement can be achieved even by using more complex
models, the systematic use of case differentiation must be considered. Furthermore, for
all the experiments that were carried out considering the process forces, it is shown that
the predictions by the ML model show idealized characteristics. The oscillations occurring
in the measured values are not represented in the predictions. When evaluating using
integration, no systematic deviation occurs due to compensating effects. For the prediction
of single values or short time intervals, however, larger deviations can appear. Depending
on the purpose of the prediction, this must be considered.

9. Conclusions and Further Work

The present work is dedicated to the prediction of HF energy-related time series of
CNC axes based on the program code to be executed. Through the simulative preprocessing
of the input NC code, the acceleration, velocity, and process forces are determined for each
axis. Together with the simulated material removal rate, these variables form the input
for an ML model that provides axis-specific HF time series predictions. The results of
the predictions show that the approach used has a high precision if a strong training
dataset is given so that the prediction deviations are in the low, single-digit percentage
range. Especially, the executed experiments 1, 2, and 5 prove this. The comprehensive
investigations also show the existing problems of this model. For example, the learning
database should be enlarged, as the comparison of experiments 3 and 4 shows. On the one
hand, this can be achieved through the additional, experimental inclusion of machine data.
On the other hand, further research should also deal with synthetic learning data generation.
In addition, more complex ML models—such as Convolutional Neural Networks, ARIMA,
Random Forest, or Gradient Boosting models—should be investigated to further improve
the prediction accuracy and address the differentiation problems identified in experiments
5 and 7. The specific analysis of weaknesses of previous predictions for increasing learning
efficiency also represents an exciting field of research.

In addition to the mentioned research fields, subsequent works should also focus
on possible fields of application. These could particularly address the optimization of
energy demand or anomaly detection. Ref. [8] describes that the energy consumption of
CNC machine tools is significantly dependent on workpiece and tool path orientation.
An implementation of the approach could try to predict the optimal clamping or tool
path pose. Furthermore, a high resolution in the time domain allows an optimization of
the energy consumption concerning processing details with rapid direction changes. By
adjusting the target position specified with the NC code, energy-optimal paths can already
be found during path planning. An application in the field of anomaly detection could be
the detection of machining irregularities by comparing predicted and measured values.
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