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A B S T R A C T

Reliability assessment refers to the process of evaluating reliability of components or systems during their
lifespan or prior to their implementation. In the manufacturing industry, the reliability of systems is
directly linked to production efficiency, product quality, energy consumption, and other crucial performance
indicators. Therefore, reliability plays a critical role in every aspect of manufacturing. In this review, we
provide a comprehensive overview of the most significant advancements and trends in the assessment of
manufacturing system reliability. For this, we also consider the three main facets of reliability analysis
of cyber–physical systems, i.e., hardware, software, and human-related reliability. Beyond the overview of
literature, we derive challenges and opportunities for reliability assessment of manufacturing systems based
on the reviewed literature. Identified challenges encompass aspects like failure data availability and quality,
fast-paced technological advancements, and the increasing complexity of manufacturing systems. In turn, the
opportunities include the potential for integrating various assessment methods, and leveraging data to automate
the assessment process and to increase accuracy of derived reliability models.
1. Introduction

The manufacturing industry is currently undergoing numerous trans-
formations including shorter development and innovation times, in-
dividualized products, increased flexibility in production and product
development, reduction of hierarchies, and resource efficiency [1]. To
cope with these transformations, industry moves toward a new level of
value chain organization and control, often referred to as Industry 4.0.
This development is being propelled by advancements in a multitude
of technologies, such as the Internet of Things, Cloud Computing,
Big Data, and Artificial Intelligence. These technologies have not only
redefined the way manufacturers operate but also how they respond to
the evolving challenges of the marketplace [2].

The adoption of new technologies and paradigms increases the com-
plexity of manufacturing systems, making it more difficult to maintain
the systems and to identify possible vulnerabilities that affect their
reliability. To this end, reliability assessment includes a number of
techniques for planning and monitoring manufacturing systems and for
detecting such vulnerabilities [3]. The goal of reliability assessment of
any system operated in industry is to ensure a continuous operation
without failures and to restore the system as quickly as possible in the
event of a failure. Thus, overall production costs and downtime can be
kept to a minimum if reliability is maintained at a high level [4].
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Reliability assessment refers to the systematic process of evaluat-
ing the performance of a product, system, or service under specified
conditions to determine its ability to perform its intended function
without failure over a defined period of time [5]. Failures not only
affect the performance of a manufacturing system, but can also cause
accidents [4]. Traditional reliability assessment encompasses various
statistical and probabilistic methods used to understand and quantify
the reliability, availability, and maintainability of a system. To maxi-
mize profit, reliability assessment of such a system must be performed
during the design phase and applied until the system is finally replaced.
Ideally, a new assessment should be performed whenever changes are
made to the system.

In addition to the general, overarching approach to reliability as-
sessment, evaluating mission reliability is critical for many manufactur-
ing systems [6]. Mission reliability assessment focuses on whether the
manufacturing system can successfully accomplish a specific mission or
task without failure. This involves evaluating the system’s performance
under predefined conditions and within a certain time frame, aligning
its reliability with the achievement of particular goals or objectives.
While both assessments aim to enhance the reliability of manufacturing
systems, they differ in their application — one evaluates the overall
reliability in a broad sense, while the other is more task-oriented,
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Nomenclature

AGVs Autonomous Guided Vehicles
AHP Analytic Hierarchy Process
ASEP Accident Sequence Evaluation Program
ATHEANA A Technique for Human Analysis
BBN Bayesian Belief Network
BDDs Binary Decision Diagrams
BNs Bayesian Networks
CBM Condition-based Maintenance
CPT Conditional Probability Table
CREAM Cognitive Reliability and Error Analysis

Method
DBN Dynamic Bayesian Network
DDRA Data-driven Reliability Assessment
FMEA Failure Mode and Effects Analysis
FMECA Failure Mode and Effects and Criticality

Analysis
FMS Flexible Manufacturing System
FTA Fault Tree Analysis
HCR Human Cognition Reliability
HEART Human Error Assessment and Reduction

Technique
HEP Human Error Probability
HFEs Human Factors Experiments
HURA Human Reliability Assessment
HWRA Hardware Reliability Assessment
IIoT Industrial Internet of Things
MDDs Multi-valued Decision Diagrams
MM Markov Modeling
MTBF Mean Time Between Failures
MTTF Mean Time to Failure
MTTR Mean Time to Repair
PHM Prognostics and Health Management
PNs Petri Nets
PSF Performance Shaping Factor
RBDs Reliability Block Diagrams
RMS Reconfigurable Manufacturing System
SLIM Success Likelihood Index Methodology
SPAR-H Standardized Plant Analysis Risk - Human

Reliability Analysis
SWRA Software Reliability Assessment
THERP Technique for Human Error Rate Prediction
UGF Universal Generating Function

concentrating on the accomplishment of specific missions within the
manufacturing process.

In this article, we review the most significant existing approaches
for reliability assessment of manufacturing systems and identify chal-
lenges and opportunities for future research. While the general ap-
proach to reliability assessment is our main focus, we also include
significant studies addressing mission reliability assessment of manu-
facturing systems. We consider manufacturing systems, i.e., systems in
which manufacturing operations take place. The term manufacturing is
used to denote a general activity to transform raw material into con-
sumable products such as cars or smartphones. System refers to a set of
resources involved in this transformation process and their dependen-
cies which allows all resources to work together [7]. These resources
can be grouped into categories, such as hardware (e.g., machines
39
and tools), software (e.g., Supervisory Control and Data Acquisition,
Manufacturing Execution System, Enterprise Resource Planning) and
humans (e.g., operators, maintenance engineers, supervisors).

Other theories, such as 5M1E, consider men (humans), machine
(hardware), method, and measurement (software), as well as envi-
ronment and material as main contributors to manufacturing system
reliability [8]. In this article, however, we specifically focus on the
influence of hardware, software, and humans on manufacturing system
reliability.

We illustrate the types of manufacturing systems and their pro-
duction resources considered in this article in Fig. 1. Within this
system, a production management system, such as a Manufacturing
Execution System (MES), controls the production process. Raw mate-
rials and finished products are stored in a warehouse, and material
handling systems, such as mobile robots, move parts between the ware-
house and an assembly line, which could be a belt conveyor. Various
production cells carry out assembly operations, encompassing scenar-
ios involving human-only interaction, human–machine interaction, or
machine–machine interaction.

The remainder of the paper is structured as follows: In Section 2, we
provide general background on reliability assessment of manufacturing
systems. We discuss related reviews in Section 3. In Section 4, we
present the results of our review of the most significant contributions to
the field of reliability assessment of manufacturing systems. We extract
challenges and opportunities for the field from the reviewed literature
in Section 5. In Section 6, we summarize the findings and provide an
outlook for future research.

2. Reliability assessment of manufacturing systems

As noted in the introduction, manufacturing systems may integrate
hardware, software and human components. All three component types
pose unique challenges to their reliability assessment, which has led
to a variety of methods to address these challenges. Although many
systems integrate two or all three component types, in this paper we
focus mainly on their individual reliability assessment [9].

Furthermore, quality is, while not the main focus of this article,
intrinsically linked to reliability when assessing the performance of
manufacturing systems. Quality denotes the degree to which a system
or component meets specified requirements and delivers the intended
functionality. Reliability mitigates the incidence of defects and devi-
ations, thereby directly influencing the quality of the manufactured
products. Conversely, an enhancement in quality parameters such as
precision and accuracy can improve the reliability of the system by re-
ducing variability and unforeseen failures [10]. Therefore, optimization
of quality and reliability in tandem is important for achieving advanced
performance in manufacturing systems.

Reliability assessment can be carried out using both qualitative and
quantitative methods. Qualitative methods involves the use of models,
diagrams, or other visual representations to analyze and understand the
reliability of a manufacturing system and its components. Qualitative
models are often used to identify potential failure modes and assess
the impact of these failures on system performance. These models are
typically based on the experience of experts in the field, and may
involve the use of fault trees, event trees, or other similar techniques
to evaluate the likelihood of different failure scenarios.

Quantitative methods, on the other hand, involves the use of math-
ematical and statistical tools to evaluate the reliability of a system
and its components. This analysis typically involves the use of data on
system performance, such as failure rates, mean time between failures,
and other relevant metrics, to quantify the likelihood of failure over
time. Quantitative analysis can help identify potential weaknesses in a
system, and can be used to design more reliable systems that can better
withstand the stresses of the manufacturing environment.

One key advantage of qualitative methods is their ability to identify
potential failure modes and assess the impact of these failures on
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Fig. 1. Illustration of a manufacturing system integrating different production resources.
Fig. 2. Bathtub curve for hardware reliability [12].

system performance. Quantitative methods, on the other hand, provides
a more rigorous and precise assessment of system reliability, based
on empirical data and statistical analysis. In practice, both qualitative
and quantitative methods are often used in combination to provide a
comprehensive reliability assessment of manufacturing systems. In the
following, we provide further background on hardware, software and
human reliability assessment.

2.1. Hardware reliability assessment

Hardware reliability is an important criteria for the planning and
operation of manufacturing systems. Manufacturing systems consist of
various interconnected components, such as machinery, equipment,
and tools that are used to produce goods. Each of these components
in itself forms a system, consisting of interconnected parts. These
systems and their components are highly dependent on hardware, and
any failure or malfunction of the hardware can result in significant
downtime, quality issues, and financial losses. Therefore, it is critical
to assess the hardware reliability of both manufacturing systems and
all of their components to minimize the risks associated with failures.

Most hardware systems and components follow the Bathtub curve
which describes the failure rate of hardware over time due to degra-
dation (Fig. 2). The bathtub curve is an important tool for hardware
reliability assessment (HWRA), as it allows manufacturers to analyze
the failure rate of hardware over time and take steps to minimize
the likelihood of failures occurring. By understanding the factors that
contribute to each stage of the bathtub curve, manufacturers can take
appropriate measures to ensure that their hardware is reliable and
long-lasting [11].

The first stage of the bathtub curve is the burn-in stage. This stage is
characterized by a high failure rate, usually attributed to defects, design
flaws, or improper installation. The burn-in stage is critical for HWRA
because it can provide insight into the design of manufacturing systems
and their components to reduce the number of failures.

The second stage of the bathtub curve is the useful life stage.
This stage is characterized by a low and relatively constant failure
40
rate. During this stage, hardware is performing its intended function
correctly and is operating as expected. The useful life stage is ideal
for hardware to operate because it represents the period of optimal
performance.

The third and final stage of the bathtub curve is the wear-out stage.
During this stage, the failure rate of hardware begins to increase again.
This is usually due to the cumulative effects of wear and tear on the
hardware, which eventually lead to system or component failure. The
wear-out stage is the time when the hardware’s useful life has been
exhausted, and it can no longer perform its intended function reliably.

Hardware reliability is a critical aspect of any manufacturing sys-
tem, as it directly impacts the availability, maintainability, and safety
of the system and its components. These factors are closely interrelated
and must be carefully considered for any HWRA activity. According to
the IEEE Standard Computer Dictionary [13], these criteria are defined
as follows:

• Reliability refers to the ability of a hardware system or compo-
nent to function under stated conditions for a specified period of
time. A reliable system or component should be able to operate as
intended without failing, even under stressful conditions such as
high heavy loads or high temperatures. In manufacturing systems,
reliability is critical for minimizing downtime, preventing product
defects, and ensuring consistent product quality.

• Availability is the degree to which a system or component is
operational and accessible when required for use. A highly avail-
able system is one that is always ready to perform its intended
function, with minimal downtime or delays. In manufacturing sys-
tems, availability is important for maintaining production sched-
ules and meeting customer demand.

• Maintainability is the ease with which a system or component
can be modified to correct faults, improve performance, or adapt
to a changed environment. A maintainable system should be
easy to repair or upgrade, without requiring extensive downtime
or costly repairs. In manufacturing systems, maintainability is
critical for minimizing production downtime and reducing repair
costs.

• Safety refers to the ability of a system or component not to
damage the environment or cause harm to personnel during its
operation. A safe system should be designed and operated in
a way that minimizes the risk of accidents or environmental
damage. In manufacturing systems, safety is critical for protecting
workers and minimizing the risk of accidents or product defects.

Formally, reliability can expressed as the probability of success

𝑅(𝑡) = 𝑃𝑟 {𝑇 > 𝑡} = ∫

∞

𝑡
𝑓 (𝑥)𝑑𝑥 (1)

where 𝑓 (𝑥) is the failure probability density function and 𝑡 represents
the period of time. This probability can be estimated using various
methods, such as detailed analysis, historic data, or reliability mod-
eling. For repairable systems, availability is often used as a measure
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of system reliability, which takes into account both the time a system
is available for use and the time it is unavailable due to repairs or
maintenance [4]. Other relevant measures of reliability include the
mean time to failure (MTTF) for non-repairable systems, and the mean
time between failures (MTBF) and mean time to repair (MTTR) for
repairable systems. It is important to note that these measures assume
that both repair times and inter-failure times are exponentially dis-
tributed, with constant rates. However, if failures and repairs follow a
non-exponential distribution, then the concepts of failure distributions
and repair distributions are used to model the system’s reliability [14].

In the manufacturing domain, various methods and techniques are
used to assess the reliability of hardware systems and components .
This article aims to discuss the most commonly used approaches for
modeling system reliability. While structured analysis methods, such
as Failure Mode and Effects Analysis (FMEA), its extension, Failure
Mode and Effects and Criticality Analysis (FMECA), and Hazard and
Operability Study, are commonly used as inputs for reliability modeling
techniques, they are not the focus of this article.

2.2. Software reliability assessment

Software plays an increasingly important role in modern manu-
facturing systems, from controlling automated processes to managing
supply chain logistics. Ensuring the reliability of software is crucial
to maintaining the overall reliability of the system. Software relia-
bility assessment (SWRA) is the process of evaluating the probability
of software failure and its impact on system performance. Software
reliability is the probability that software will function without causing
system failures during a given operating time. In contrast to hardware
reliability, SWRA focuses on design flaws and has a different approach.
Improving software reliability involves error prevention, fault detection
and removal, and measurements to maximize reliability [15].

To prevent errors during software design, it is essential to use well-
defined and standardized development processes, such as the Capability
Maturity Model Integration , which aims to improve the software
development process’s quality and predictability [16]. Another ap-
proach to error prevention is the use of formal methods, which employ
mathematical models to ensure software correctness.

Fault detection and removal refer to the identification and correc-
tion of software defects before they cause failures. This is achieved
through testing and debugging activities. Testing ensures that software
functions correctly under different conditions and scenarios, whereas
debugging aims to identify and eliminate errors in the software code.
Techniques such as model-based testing, fault injection, and code anal-
ysis are commonly used to detect and remove software faults [17].

Measurements to maximize software reliability are critical, par-
ticularly those that support error prevention and fault detection and
removal. These measurements can be quantitative or qualitative and
should be integrated into the software development process to improve
the software’s quality and predictability. Examples of such measures
include code complexity metrics, defect density, and testing cover-
age [18].

The revised bathtub curve is a model that extends the traditional
bathtub curve and provides a useful framework to explain software
reliability and assess the probability of software failure throughout its
lifecycle (Fig. 3). During the integration and test phase, software has
the highest failure rate. As errors are eliminated during the test phase,
the failure rate decreases and stabilizes until the next upgrade. Unlike
hardware components, software does not have a ‘‘wear-out’’ phase in
which the failure rate increases. Instead, the final phase for software
is obsolescence, when components become outdated, and upgrades are
no longer available. One significant difference between software and
hardware reliability is that software reliability is not time-dependent,
whereas hardware reliability is. However, software reliability is highly
sensitive to changes in the environment, such as updates to hardware
41

or software components, as well as other relevant events [14].
Fig. 3. Revised bathtub curve for software reliability [12].

The field of SWRA has seen the development of numerous models
over time, which can be categorized into two main categories: pre-
dictive models and reliability growth models. Predictive models are
designed to estimate future reliability indicators based on the software’s
design features. These models typically use parameters such as lines of
code, loop nesting, external references, and inputs/outputs to predict
the number of errors that may occur in the software.

In contrast, reliability growth models are statistical models that
attempt to correlate error detection data with known functions, such
as an exponential function. The idea behind these models is to use the
correlation between past error detection data and a known function
to predict the future behavior of the software in terms of its reliabil-
ity. If the correlation between the data and the function is positive,
the function can be used to predict the software’s future reliability
performance [19].

It is worth noting that both types of models have their strengths
and weaknesses, and their effectiveness may vary depending on the
context and application. For instance, while predictive models can be
helpful in identifying potential weaknesses in software design, they
may not always accurately reflect the software’s actual behavior during
its lifecycle. Reliability growth models, on the other hand, can provide
more insight into the software’s actual reliability performance over
time, but they may require a significant amount of data to be effective.

2.3. Human reliability assessment

Human reliability assessment (HURA) is a critical aspect of man-
ufacturing systems as humans are often responsible for operating,
maintaining, and repairing equipment. The human element can sig-
nificantly impact the reliability and safety of a system. HURA is the
process of evaluating the likelihood of human error, its contextual
factors and its consequences on system performance [20]. Methods
for HURA evaluate the contribution of human operators to system
reliability, predict human error rates, and assess the degradation of
human-machine systems. HURA draws from a range of disciplines,
including psychology, ergonomics, engineering, reliability assessment,
and systems analysis, highlighting the interdisciplinary nature of this
field [21].

Human reliability is a critical factor in manufacturing systems, and
it is highly dependent on the task being performed. In environments
where workers perform repetitive tasks in shifts, such as automotive
production, the bathtub curve can also be used to explain human
reliability, as it is used in HWRA (Fig. 4). The error rate function of a
human operator during a shift represents the combination of learning,
and fatiguing mechanisms as well as pure random mechanisms.

At the start of a shift, the human error rate decreases due to
changing from rest mode to work mode and with the introduction of
new duties, which is known as the process of ‘‘setting in motion’’. This
decrease is caused by the learning mechanism, as operators become

familiar with the equipment and learn new routines and procedures
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Table 1
Overview of related work.

Contribution Focus Covered system resources

Chlebus & Werbińska-Wojciechowska [22,23] Production process reliability assessment Hardware
Hoffmann Souza et al. [24] Decision making based on system reliability Hardware
Li et al. [25] Influence of production quality and equipment reliability

on manufacturing systems
Hardware

Haase & Woll [26] Product reliability assessment Hardware & Humans
Jardine et al. [27], Vogl et al. [28] Machine diagnostic and prognostic for improved

reliability
Hardware

French et al. [29] Limitations and opportunities for HURA Humans, Software & Hardware
Havlikova et al. [30] Reliability assessment for man-machine systems Humans & Hardware
Di Pasquale et al. [20] HURA in manufacturing Humans
Di Pasquale et al. [31] Reliability assessment for manual assembly systems Humans
Franciosi et al. PSFs for HURA Humans
Petruni et al. [32] Decision support for the selection of reliability assessment

methods
Humans

Hou et al. [33] Bibliometric review of methods for HURA Humans
Fig. 4. Bathtub curve for human reliability [7].

to reduce errors. After the initial decrease, an optimum level of work
is achieved, where the error rate is relatively low due to random
error mechanisms. During this phase, operators have become familiar
with the equipment and have developed routines and procedures to
reduce errors. Finally, the human enters a process of fatiguing, which is
characterized by an increasing error rate. The longer the shift, the more
fatigued the operator becomes, resulting in a higher error rate [7].

The information drawn form the bathtub curve can be used to im-
plement measures to reduce the likelihood and consequences of human
errors. For example, during the learning period, additional training can
be provided to operators, and procedures can be established to reduce
the risk of errors. During the fatigue period, operators can be provided
with rest breaks and other measures to reduce fatigue. Several factors
can influence the shape of the bathtub curve for HURA, including
the complexity of the equipment, the level of automation, and the
experience and training of operators. For example, highly automated
equipment may have a shorter learning period due to reduced operator
interaction.

The ability of a human operator to perform a given task within
specific conditions and time intervals is an essential factor in deter-
mining the overall reliability of a system. This ability is mathematically
defined as Human Reliability, which is the complement of Human Error
Probability (HEP). HEP is the probability that a given task within a
specific time interval was accomplished with errors [34]. Thus, Human
Reliability is mathematically defined as follows:

𝐻𝑢𝑚𝑎𝑛 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −𝐻𝐸𝑃 (2)

Factors which influence the likelihood of a failure occurring are
o called Performance Shaping Factors (PSFs) [35]. These PSFs can be
nvironmental or personal factors that positively or negatively affect
he performance of a human operator. The identification and analysis
f these factors are a fundamental feature of all HURA methods [36]. To
ate, more than 50 different HURA methods have been proposed, which
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can be divided into two generations [30]. The first-generation quanti-
tative methods involve probabilistic modeling of the human operator’s
behavior and the system in which they operate. These methods usually
require significant amounts of data and are often used in industries
with high safety–critical requirements, such as nuclear power plants
and aviation. The quantitative methods use the HEP and other data to
calculate the likelihood of a human error leading to a system failure.
These methods rely on statistical analysis to calculate human error rates
and the impact of these errors on system reliability.

The second-generation qualitative methods, on the other hand,
focus on the analysis of the human operator’s cognitive processes,
decision-making, and problem-solving. These methods are often used in
industries where the human operator’s performance is critical to system
reliability, such as manufacturing. The qualitative methods use a range
of techniques, such as interviews, observations, and task analyses, to
identify the PSFs and their influence on human performance. These
methods allow for a deeper understanding of the factors that influence
human reliability and can be used to develop training programs and
interventions to improve human performance.

3. Related work

The field of reliability assessment has a long history in both academia
and industry. Nevertheless, the interest in this topic has increased as
technologies have evolved. In the following, we present and critically
evaluate relevant publications aiming to review the field of reliability
assessment with the specific focus on manufacturing systems. Table 1
summarizes the publications in terms of their research focus and the
resources covered (i.e. hardware, software and human resources of a
manufacturing system). Based on existing related work, we provide an
updated and extended review of the field in this article. It should be
noted that we could not retrieve any reviews that specifically address
software reliability for manufacturing systems. Although there is a
substantial body of research on software reliability assessment and
many methodologies have been proposed (as elaborated in Section 2.2),
there is a research gap regarding its application to manufacturing
systems.

3.1. Hardware reliability assessment

We discovered a significant number of articles that aim to review
and analyze tools and methods for hardware reliability assessment.
Chlebus & Werbińska-Wojciechowska [22] focus specifically on pro-
duction process reliability assessment. They extend their work in [23]
by classifying previously identified reliability assessment methods and
proposing a method which aims to structure the different phases of
production process reliability assessment. Hoffmann Souza et al. [24]
carry out a survey on decision-making based on system reliability in
the context of Industry 4.0. Haase & Woll [26] conduct an empirical
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survey on the application of assessment methods for product reliability
in manufacturing enterprises. A recent review by Li et al. [25] cov-
ers reliability modeling of manufacturing systems considering product
quality and equipment reliability. Finally, Jardine et al. [27] and Vogl
et al. [28] provide seminal reviews covering diagnostic and prognostic
practices for improved maintenance and reliability. Below, we highlight
the key findings of the mentioned articles.

Chlebus & Werbińska-Wojciechowska [22] state, that production
process reliability is influenced by many factors such as time, quantity,
quality and cost. Thus, many tools and methods have been developed
for its assessment. The authors contribute a comprehensive overview
of these methods and which reliability criteria (e.g., costs, repair time,
lead time) the methods aim to address. Even though a plethora of
reliability assessment methods have been proposed over the last few
decades, the evaluation of their actual application in real world manu-
facturing facilities is only partly possible because of two major reasons.
First, data and results of their application are often classified as private
or secret and are, thus, impossible to be published. Second, such
information is often not stored, which prevents further analysis. In an
extension of their review, Chlebus & Werbińska-Wojciechowska [23]
aim to structure the different phases of production process reliability
assessment by distinguishing between the pre-assessment phase, data
ollection phase, data analysis phase and aggregation phase. The pre-
ssessment phase covers the identification and classification of hazards,
he data collection phase covers the acquisition of statistical and qual-
tative data, the data analysis phase covers the actual analysis of
he actual production process and the aggregation phase covers the
ggregation of results of the previous phase.

The study by Hoffmann Souza et al. [24] emphasizes the impor-
ance of incorporating all aspects along a company’s value chain into
eliability models to realize the full potential of recent trends, such
s the Internet of Things, cyber–physical systems and data mining.
owever, the authors note that many conventional reliability modeling
ethods focus on individual assets, which contradicts the previous

tatement. Identified methods and techniques are classified according
o their technical focus: communication (e.g., sensors, micro-services
nd IoT), ingestion (e.g., data validation, transformation and noise
eduction), analysis (e.g., Petri nets, Weibull analysis and simulation)
nd storage (data storage process). Hoffmann Souza et al. conclude
hat the distance between the three fields of reliability, Industry 4.0
nd decision making is a major obstacle for development of new
eliability modeling methodologies. Reliability is closely linked to the
xact sciences, Industry 4.0 to information technology and decision
aking to administrative management. The study provides interesting

nsights and a taxonomy for reliability in Industry 4.0. However, the
dentified methods are not examined in-depth, and since studies that
o not explicitly mention the term Industry 4.0 were excluded from
he literature corpus, relevant studies may be missing.

In their survey, Haase & Woll [26] differentiate their results by
ndustry, product lifecycle phase, and specific reliability assessment
ethod. Methods such as FMEA, fault trees and RBDs are widely
sed by companies, while Petri nets, fuzzy logic or neural networks
re not widely used, although they potentially yield large benefits
o reliability analysis. The work by Haase & Woll provides useful
uantitative insights on the use of reliability assessment methods in
oday’s companies. However, since the authors focus specifically on
roduct reliability, the impact of their study on reliability assessment
f manufacturing systems is limited.

Li et al. [25] state that there is a complex relationship between
quipment reliability and product quality. Therefore, reliability model-
ng methods that have been specifically developed for product quality
nd equipment reliability as well as methods that consider the interac-
ion between both are examined. Furthermore, optimization methods
or manufacturing system maintenance and production strategy are
eviewed. The authors conclude, however, that the interaction between
43

roduct inherent reliability and manufacturing system reliability have
not been sufficiently defined yet. Furthermore, comprehensive relia-
bility models for complex multi-stage and multi-state manufacturing
systems need to be developed to improve production policies and
preventive maintenance actions.

Prognostics and health management (PHM) technologies are used
to improve maintenance through efficient and cost-effective diagnostic
and prognostic measures [28]. In addition, while not the core fo-
cus of reliability assessment, improved equipment maintenance has a
positive impact on the reliability of a system. In their review, Jar-
dine et al. [27] focus on machinery diagnostics and prognostics by
implementing condition-based maintenance (CBM). The authors re-
view popular methods along the CBM pipeline which consists of three
phases, namely data acquisition, data processing and maintenance de-
cision making. Vogl et al. [28] provide an overview of recent advances
in PHM research and highlight challenges, requirements, methods,
and best practices for the successful application of PHM in manu-
facturing systems. The authors state that areas such as diagnostics,
prognostics, dependability analysis, data management and business
contribute to the successful development of a PHM system. While
both reviews provide useful insights into the field of diagnostics and
prognostics, reliability implications are rarely addressed. Furthermore,
the reviewed methods focus often on specific entities or subsystems but
rarely on compound systems like production lines. We still found it
useful to include these two studies into our work, as they emphasize
the importance and interdependencies between maintenance manage-
ment and system reliability. Especially the evolution of maintenance
paradigms from purely reactive (i.e., fix when it breaks) to preventive
(i.e., maintain based on a schedule) to predictive (i.e., avoid failure
based on condition) has led to significant incremental improvements
in system reliability [28]. The impact of recent developments toward
self-maintenance (i.e., systems monitor themselves) on reliability has
yet to be evaluated, but will likely yield interesting results.

3.2. Human reliability assessment

There are several articles that review and analyze human reliabil-
ity assessment methods and tools in the domain of manufacturing.
French et al. [29] conduced a seminal review of HURA methods without
domain-specific assumptions. Nevertheless, their findings are valuable
and apply to the manufacturing domain as well. Havlikova et al. [30]
discuss HURA methods and their applicability for man-machine sys-
tems. Di Pasquale et al. [20,37] provide a comprehensive overview of
techniques for analyzing human reliability in manufacturing in general
as well as in assembly systems. Franciosi et al. [31] propose a taxonomy
of performance shaping factors for human reliability analysis in indus-
trial maintenance. Petruni et al. [32] introduce a method to support
the choice of a suitable HURA method for automotive manufacturing
systems. A very recent bibliometric analysis and review of human
reliability analysis methods was conducted by Hou et al. [33]. Below,
we highlight the key findings of the mentioned articles.

French et al. [29] critically evaluate established methods and de-
scribe their limitations for current and future challenges in human
reliability analysis. Established HURA methods focus on easily describ-
able, sequential, generally low-level tasks, that are not the primary
source of systemic errors. They also focus on errors rather than the
effects of all forms of human behavior. The authors conclude that
there is a significant need for further research and development of
HURA methods to provide managers with the guidance they need
to safely manage complex systems – "The key question is not how
likely an individual’s behavior is to impact a system, but how well
the organizational structures around and within that system enable the
system to run safely and reliability, and how well they will recover if
an unexpected event threatens or happens".

Di Pasquale et al. [20] review contributions to both generations
of HURA methods that have been used in manufacturing scenarios,

highlighting strengths and weaknesses. In addition, the positive effects
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of rest breaks on human reliability and the potential negative effects
on workflow and task completion are discussed. The authors conclude
that while there is a plethora of HURA methods, most of them lack an
empirical basis and are static, i.e., cannot capture the dynamics of an
ongoing accident or general human behavior. Di Pasquale et al. [37]
extend their previous work by systematically reviewing approaches
for human reliability analysis in manual assembly systems. They show
that HURA methods can be successfully used to predict human error
probability and identify key error influencing factors for such systems.
Furthermore, identified literature emphasizes the role of human error in
causing quality defects. The taxonomy proposed by Franciosi et al. [31]
is based on the two previously described reviews [20,37] and structures
the literature corpus with respect to the PSFs addressed. Factors such as
available time to complete a task, ergonomics and task complexity are
considered. The analysis highlights the relevance of considering human
error in maintenance, as different types of errors occur during the
maintenance process with non-negligible effects on the system under
study.

Petruni et al. [32] use Analytic Hierarchy Process (AHP) to sup-
port the evaluation and choice of a suitable HURA method for the
automotive industry. AHP is a technique to structure a problem in a
hierarchical way and to determine the benefit and cost of a project.
As criteria for the AHP-based HURA method selection the authors
consider the suitability for the automotive sector, economic factors,
usability and utility. Approaches such as that presented by Petruni et al.
are becoming important as the number of available HURA methods
increases.

Recently, Hou et al. [33] extracted a cooperation network to iden-
tify the most productive scientists and groups in the field, a co-citation
network to the most important journals, and a keyword co-occurrence
network to identify important research hotspots and trends. Based
on trends and blind spots in the literature, possible future research
directions are suggested. Although there is no domain-specific focus for
this work, a significant number of the papers reviewed relate to human
reliability analysis for manufacturing systems.

Based on the presented related work, we provide an updated and ex-
tended review of the field in this article. None of the mentioned articles
covers both hardware and human reliability assessment of manufac-
turing systems extensively. Furthermore, we provide a systematization
of the reviewed literature and extract challenges and opportunities for
future research. Finally, we highlight the rising importance of data for
reliability assessment of manufacturing systems.

4. Contributions addressing reliability assessment of manufactur-
ing systems

Building upon the related work discussed in the previous section,
we provide an updated and extended review of the field of reliability
assessment of manufacturing systems in this section. We first outline
our review methodology in Section 4.1 before we present relevant
literature for HWRA 4.2 and HURA 4.3. As mentioned in the previous
section, research on software reliability of manufacturing systems is
scarce, which is why it is not considered as a separate section.

4.1. Review methodology

The goal of this literature review is to provide an overview of the
current state of research on reliability assessment of manufacturing
systems, with a focus on both hardware and human system components.
The review aims to identify the latest trends and developments in
the field (Section 4) and highlight challenges and opportunities for
reliability assessment based on the reviewed literature (Section 5).

To achieve this goal, we have formulated the following guiding
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research questions:
1. What are the current methods and techniques for reliability
assessment of manufacturing systems, particularly those that
consider both hardware and human system components?

2. What are the main challenges and opportunities in assessing the
reliability of manufacturing systems?

To identify relevant literature, we conducted a systematic search
of common computer science and engineering literature databases,
including IEEE Xplore, ScienceDirect, and ACM. Our search strategy
comprised two phases: a broad search and a targeted search.

In Phase 1, we identified key contributions to the field of reliability
assessment of manufacturing systems by using a broad search string
– a combination of reliability assessment and related terms (i.e., reli-
ability modeling, reliability analysis and reliability evaluation) with
manufacturing systems and related terms (i.e., production, industry).
In Phase 2, we narrowed our search to specific methods commonly
used for reliability modeling of manufacturing systems by using a more
targeted search string – a combination of reliability and related terms,
manufacturing and related terms, and a specific method such as fault
tree analysis, petri net or technique for human error rate prediction. In both
phases, the AND operator was used to combine the search terms.

The selection of contributions was based on the title, keywords and
abstract. We focused on the most relevant articles addressing reliability
assessment of manufacturing systems. The identified literature corpus
consists of 33 articles that have been published between 1999 and
2021.

4.2. Hardware reliability assessment of manufacturing systems

This subsection provides a review of relevant literature on hardware
reliability assessment of manufacturing systems, categorized by model-
ing formalisms. Quantitative evaluation methods such as discrete-event
simulation, Monte Carlo simulation, or proxel-based simulation are
not the primary focus of this review. Specifically, we first review
contributions that use specific modeling formalisms such as Reliability
Block Diagrams, Fault Trees, or Petri Nets, before examining those
that use a combination of different modeling formalisms for reliability
assessment of manufacturing systems.

In the appendix, Table 9 provides a comprehensive overview and
systematization of the reviewed literature, including:

• The respective article,
• the applied reliability modeling method,
• the research goal of the study,
• the data sources or expert knowledge used to model the studied

system,
• the used metric to assess reliability,
• and the type of manufacturing system studied.

It is important to acknowledge that many of the reviewed articles
provide only a limited system description of manufacturing system
employed in their research. Although a more detailed categorization
of these systems, such as Flexible Manufacturing System (FMS) or
Reconfigurable Manufacturing System (RMS), could be valuable, we
refrained from including it in the table due to the lack of available
information in the reviewed literature.

4.2.1. Contributions utilizing Reliability Block Diagrams
Reliability Block Diagrams (RBDs) are an effective method for ana-

lyzing and assessing the reliability of complex systems. They provide
a graphical representation of the system and its individual compo-
nents, which enables engineers to identify the weakest links in the
system [38]. RBDs are acyclic graphs that have an entry and exit point,
and the blocks are connected by arcs that reflect the relationships
between different components. The system is considered to be working
if there is a path of success, i.e., a sequence of functioning components

between the entry and exit point. RBDs allow for modeling sequential
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Fig. 5. RBD with system in sequential (a) and parallel (b) configuration.

and parallel systems (Fig. 5). In sequential systems, any component
failure results in system failure, whereas parallel systems continue to
function even if one or more components fail [4].

After modeling the RBD of a system, its reliability can be calculated.
This depends on whether the components of the system are connected
in series or in parallel. For a series of 𝑁 connected components, the
overall reliability of the system is defined as:

𝑅(𝑡) =
𝑁
∏

𝑖=1
𝑅𝑖(𝑡) (3)

For 𝑁 parallel-connected components, the system reliability is de-
ined as:

𝑅(𝑡) = 1 −
𝑁
∏

𝑖=1
(1 − 𝑅𝑖(𝑡)) (4)

RBDs are often used in combination with the Universal Generating
unction (UGF) [39]. The UGF is a mathematical approach used to an-
lyze the performance and reliability of complex systems. It models the
ystem’s state by associating each state with a polynomial coefficient.
ombining RBDs with UGF offers a synergistic approach. While RBDs
rovide a visual representation and a basic understanding of system
eliability structure, UGF provides the mathematical backbone for more
etailed reliability and performance analysis.

Table 2 lists the most significant contributions that utilize RBDs
or hardware reliability assessment of manufacturing systems. Mubarok
t al. [40] propose a framework to evaluate reliability in cloud man-
facturing systems. Liu et al. [41] present a method to jointly assess
he reliability of a manufacturing system and its associated processes.
rozan [42] proposes a method to aid restructuring decisions of man-
facturing systems. Tont et al. [43] use RBDs to analyze critical and
ensitive components of a turbogenerator.

In summary, RBDs enable the evaluation of reliability at different
evels, such as component, machine, and system, and provide compre-
ensive insights into mission reliability and system availability. The
tudies highlight the effectiveness of RBDs in analyzing the reliability of
omponents and systems, identifying critical subsystems, and informing
ecision-making for system design, operation, and restructuring.

.2.2. Contributions utilizing Fault Tree Analysis
Fault Tree Analysis (FTA) is a technique used in risk assessment

nd reliability engineering to analyze and predict the failure of a
ystem or process. FTA was first introduced in the 1960s as a means
o evaluate the safety of complex systems such as nuclear power plants
nd chemical processing facilities. Since then, FTA has been applied in
variety of fields including aerospace, transportation, manufacturing,

nd healthcare [44].
FTA is based on the logic of Boolean algebra and uses a graphical

epresentation known as a fault tree to illustrate the potential causes
f a system failure. A fault tree is a diagram that depicts the various
ombinations of events or conditions that can lead to the occurrence of
n undesired event or top event. The top event is the ultimate undesir-
ble outcome, and the events that contribute to it are represented as
45

ranches on the fault tree.
Fig. 6. Fault tree with top (TE), intermediate (IE) and basic events (BE).

FTA consists of four main steps: system definition, fault tree con-
struction, qualitative evaluation, and quantitative evaluation [44]. Dur-
ing the system definition phase, the undesired event or failed state of
the system is identified, and the system components are determined.
The fault tree (see Fig. 6 for an example) is then constructed using the
following main symbols [45]:

• Top Event (Rectangle): Undesired state of the system caused by
events occurring within the system

• Intermediate Event (Rectangle): Fault event which occurs from
a combination of other events

• Basic Event (Circle): Basic fault event that requires no further
development

• Logic Gates: Operators such as OR (Output fault occurs when at
least one of the input faults occurs) and AND (Output fault occurs
when all input faults occur)

In the qualitative evaluation phase, the fault tree is analyzed to
extract minimal cut sets, minimal path sets, and common cause failures.
This is done using deterministic methods or Monte Carlo simulation.
Minimal cut sets are the minimum combinations of component failures
that can lead to system failure. Minimal path sets are sets of compo-
nents whose functioning ensures the functioning of the system, and
common cause failures are multiple failures that can be caused by a
single component.

Finally, in the quantitative evaluation phase, the actual probability
of the top event is calculated along with reliability-related metrics such
as mean time to failure (MTTF), mean time to repair (MTTR), and
operational availability. This phase provides a quantitative assessment
of the system’s safety and reliability.

Various extensions to conventional FTA have been developed, such
as dynamic fault trees, repairable fault trees, multi-state fault trees,
and fuzzy fault trees. Dynamic fault trees consider the behavior and
interactions of complex system components. Repairable fault trees pro-
vide the ability to describe repairs of system components. Multi-state
fault trees consider components with multiple states and random prob-
abilities. Fuzzy fault trees take into account unreliable factors that are
difficult to predict using fuzzy set theory. These extensions enhance the
applicability and effectiveness of FTA in different domains.

Fault trees are often converted into Binary Decision Diagrams
(BDDs) or Multi-valued Decision Diagrams (MDDs) to streamline their
analysis [46]. BDDs provide a compact representation of Boolean
functions, while MDDs generalize BDDs for functions with multi-valued
input variables, instead of just binary input variables. This simpli-
fies the analysis of fault trees, especially for large-scale systems, and
provides a more efficient means of evaluating system reliability.

Table 3 summarizes the most significant contributions that employ
FTA for hardware reliability assessment in manufacturing systems.
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Table 2
Contributions utilizing RBDs for reliability assessment.

Article Summary and findings

Mubarok et al. (2018) [40] ∙ Propose hierarchical reliability assessment model for cloud manufacturing that evaluates reliability at
component, machine, and system levels.
∙ Use RBDs to analyze reliability of components and systems.
∙ Highlight the importance of considering both manufacturing system and cloud system reliability in
assessing overall reliability of cloud manufacturing.
∙ Demonstrate the effectiveness of the model through a real-world case study.
∙ Identify the need for future research to develop more accurate formulas for dynamic reliability at each
level.

Liu et al. (2013) [41] ∙ Propose method for modeling mission reliability of discrete manufacturing systems using RBDs.
∙ Break down the system into individual processes and models each process considering production
disruptions, inspection errors, and substandard products.
∙ Determine mission reliability of the entire system based on individual process reliability and their
relationships.
∙ Provide a comprehensive approach for evaluating mission reliability, particularly for low-automation
systems.
∙ Proposed method helps identify potential issues and inform decision-making for system design and
operation.

Erozan (2011) [42] ∙ Proposes methodology for restructuring a manufacturing system using fuzzy logic and reliability assessment
with RBDs.
∙ Applies the methodology to a case study of a car component manufacturer and achieve improved system
performance.
∙ Emphasizes the importance of operational continuity and the need for new strategies and structural
reforms in dynamic manufacturing environments.
∙ Suggests the development of a fuzzy expert system program to make the methodology more accessible to
manufacturing system managers.

Tont et al. (2008) [43] ∙ Propose methodology for availability assessment of complex manufacturing systems.
∙ Utilize comparative analysis of different reliability analysis methods, highlighting the accuracy of RBDs
compared to traditional methods like the binomial method.
∙ Suggest the use of Monte Carlo simulations in conjunction with RBDs to evaluate the non-reliability impact
of components on system availability.
∙ Provide case study to demonstrate the methodology’s application in identifying critical and sensitive
subsystems/components and designing strategies for increased system availability.
Specifically, Cheng et al. [47] assess inventory risk, Mhalla et al. [48]
utilize fuzzy FTA to estimate failure probability, Shu et al. [49] propose
an innovative approach to FTA using intuitionistic fuzzy sets for fault
interval calculation, Kumar & Lata [50] evaluate the reliability of
piston manufacturing systems using FTA, and Relkar [51] propose a
methodology for risk analysis of equipment failure using FTA.

In summary, the papers highlight the effectiveness of FTA as a
valuable tool for reliability assessment in manufacturing systems. FTA
enables the identification of root causes, prioritization of improvement
options, and supports decision-making processes. The studies demon-
strate the versatility of FTA in various domains, including inventory
management, failure probability estimation, critical component iden-
tification, and maintenance planning, all contributing to enhanced
system reliability and performance.

4.2.3. Contributions utilizing Petri nets
Petri nets (PNs) are a powerful modeling formalism used to describe

the behavior of discrete-event systems and analyze their performance,
safety and reliability. They were first introduced by Carl Adam Petri in
the 1960s [52] and have since found numerous applications in fields
such as computer science, control engineering, and manufacturing.

PNs consist of a set of places, transitions, and arcs connecting them.
Places represent the states of the system, transitions represent events
that can change the system state, and arcs specify the flow of tokens (or
markings) between places and transitions. Tokens carry the information
in PNs and represent entities (e.g., production orders) or state markers.

In addition to the original place-transition PNs, there are several
extensions that allow for more complex modeling. For example, addi-
tional types of arcs, such as reset arcs (which empty a place when a
connected transition fires) and inhibitor arcs (which disable a transition
when tokens are in a connected place), can be used. Stochastic PNs
allow for non-deterministic firing times of transitions, usually modeled
as exponentially distributed. Colored PNs allow tokens to carry values,
which can represent distinguishable entities in the model.
46
Fig. 7. Failure model of a system component.

Fig. 7 provides an example of a stochastic Petri net used for failure
modeling of a system component. Once the failure transition fires, a
token is created in the down place, blocking the transition representing
the component activity with an inhibitor arc. Once the component is
repaired, the component activity transition becomes unblocked and the
component can continue its operation.

The reliability assessment of manufacturing systems using PN mod-
eling formalism is summarized in Table 4, where the most signifi-
cant contributions are discussed. Arena & Kiritsis [53] introduce an
ontology-driven reliability modeling framework for manufacturing pro-
cesses. Adamyan & He [54] analyze sequential failures in manufac-
turing systems. The authors further improve their work in [55] by
incorporating counters in Petri nets. Wang et al. [56] present a fuzzy
logic and Petri net-based approach for reliability assessment, and Nabi
& Aized [57] employ colored PNs to model flexible manufacturing
systems and evaluate their performance.

In summary, the papers highlight the application of PNs as a pow-
erful tool for reliability assessment of manufacturing systems. PNs
offer modeling capabilities for representing system behavior, analyzing
failure sequences, and evaluating system reliability, safety, and per-
formance. The studies demonstrate the effectiveness of PNs in various
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Table 3
Contributions utilizing FTA for reliability assessment.

Article Summary and findings

Cheng et al.
(2013) [47]

∙ Explore the use of FTA in reducing inventory and improving turnover rate for an aerospace manufacturer.
∙ Identify root causes of inventory issues and prioritize improvement options based on a risk reduction
indicator.
∙ Demonstrate that FTA is an effective tool for inventory management, resulting in a 30% improvement in
inventory turnover rate.
∙ Emphasize the importance of communication and contract management with suppliers and customers,
while avoiding unplanned design changes.
∙ Recommend focusing on risk reduction rather than just probabilities to enhance the inventory management
system.

Mhalla et al.
(2014) [48]

∙ Propose a novel fuzzy probabilistic method for analyzing the failure probability of a milk bottling unit.
∙ Overcome limitations of traditional FTA by incorporating fuzzy set theory and the Buckley approach.
∙ Utilize triangular fuzzy numbers to represent fuzzy characteristics of failure probabilities, providing more
precision.
∙ Demonstrate that the proposed method is more efficient than conventional FTA, enabling identification of
critical components and computation of modified maintenance cost.
∙ Conclude that further research is needed to incorporate maintenance and repair strategies into the
proposed method.

Shu et al. (2006)
[49]

∙ Propose of a new approach to FTA using intuitionistic fuzzy sets.
∙ Intuitionistic fuzzy sets are utilized for fault interval calculation and identification of the most critical
system component.
∙ Apply the proposed method to a printed circuit board assembly (PCBA) failure analysis problem.
∙ Results demonstrate that the proposed method provides more flexible estimation of failure intervals and
effectively identifies the most critical system component in the PCBA manufacturing process.
∙ Reveal areas for improvement to increase reliability and inform managerial decision-making.

Kumar & Lata
(2011) [50]

∙ Examine the reliability of piston manufacturing systems using FTA and the risk reduction worth measure.
∙ Identify insufficient lubrication as the most critical fault event impacting the system’s reliability.
∙ Findings are consistent with the actual performance of the manufacturing system.
∙ Emphasize the importance of proper lubrication to improve the reliability of piston manufacturing systems.
∙ Highlight the significance of reliable piston manufacturing for the proper functioning of internal
combustion engines in automobiles and mechanical machinery.

Relkar (2021) [51] ∙ Propose a methodology for determining critical equipment in manufacturing facilities and reducing failure
probability through maintenance actions.
∙ Utilize FTA to determine the criticality index of available equipment.
∙ Rank equipment based on their impact on production, safety, availability of standby, and equipment value.
∙ Found that the proposed methodology was valuable for maintenance personnel in planning maintenance
activities, mitigating the risk of failure, and identifying critical equipment within the production shop.
aspects of manufacturing systems, including ontology-driven instanti-
ation, risk assessment, dynamic reasoning, and performance evalua-
tion. The findings contribute to improving the reliability, safety, and
efficiency of manufacturing systems.

4.2.4. Contributions utilizing Markov modeling
Markov modeling (MM) is a mathematical technique used to model

systems that change over time, where the probability of a future state of
the system depends only on its current state and not on its past states.
It is based on the Markov property, which states that the probability of
transitioning to a future state is determined only by the current state
and the transition probabilities between states. Markov models can be
used in a variety of applications, such as reliability assessment, finance,
and natural language processing.

Markov models are a popular methodology for reliability assessment
of complex systems, particularly for those with multiple failure modes,
where the probability of failure depends on the current state of the sys-
tem. By using this approach, the system is represented as a set of states,
and the transition probabilities between these states are determined
based on the system’s failure and repair characteristics. This modeling
technique can be particularly useful for reliability assessment of manu-
facturing systems, as it enables the prediction of system behavior over
time and the identification of critical components, determination of
optimal maintenance strategies, and evaluation of system performance
under different scenarios.

Table 5 provides an overview of the most significant contributions
that have utilized MM for assessing hardware reliability in manufactur-
ing systems. Kharoufeh et al. [58] introduce two stochastic fault models
for assessing the reliability of manufacturing equipment operating in
complex environments. Che et al. [59] propose a reliability model
for man-machine systems with mutual dependencies using Markov
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processes. He et al. [60] present a fuzzy multistate manufacturing
system reliability assessment method based on an extended stochastic
flow network. Guo et al. [61] utilize Markov processes to model the
reliability and availability of multistage production systems.

In summary, MM provides a framework for capturing the stochas-
tic degradation, failure, and repair processes in manufacturing sys-
tems, allowing for the evaluation of system reliability and availabil-
ity. The studies present various models and approaches, including
temporally nonhomogeneous continuous-time Markov chains, semi-
Markov processes, Piecewise-deterministic Markov processes, and ex-
tended stochastic flow network models. The findings contribute to un-
derstanding the impact of degradation, human errors, and interdepen-
dencies on system reliability, and provide insights for decision-making
and improvement in manufacturing systems.

4.2.5. Contributions utilizing Bayesian networks
Bayesian networks (BNs) are a powerful tool for modeling and

reasoning under uncertainty in complex systems. In recent years, they
have become increasingly popular in reliability engineering as a means
to assess the performance and safety of manufacturing systems.

One of the main advantages of BNs is their ability to model the
relationships between different components of a system and the poten-
tial sources of failure. This enables them to estimate the probability
of failure of individual components or the system as a whole, given
various environmental and operational conditions.

The core concept of BNs is Bayes’ rule, which enables the probability
of an event to be updated based on new evidence or information. In
a BN, nodes represent variables, and edges represent the conditional
dependencies between them. Each node has a conditional probability
table (CPT) that specifies the probability of the node given its parents
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Table 4
Contributions utilizing PNs for reliability assessment.

Article Summary and findings

Arena & Kiritsis
(2017) [53]

∙ Introduce a methodological framework for ontology-driven instantiation of manufacturing process models
using PNs.
∙ Exploit common ontology models to transform knowledge base elements into PN primitives, enabling the
PN-based representation of automated assembly station knowledge for reliability assessment.
∙ Highlight the effectiveness of inference rules in automatically instantiating PN-based manufacturing system
models, resulting in a semantically enriched PN model with qualitative and quantitative assessment
capabilities.
∙ Present the development of the Automatic Assembly System Ontology (AASO) and the Petri Net Ontology
for Reliability modeling (PNO4R) as two different models within the framework.
∙ Demonstrate the potential of the proposed approach in ontology-based model transformation, PN-based
simulation, and reliability analysis of a manufacturing system.

Adamyan & He
(2008) [54]

∙ Present a novel method for assessing the reliability and safety of manufacturing systems with sequential
failures.
∙ Utilize PN modeling to identify and quantify the probabilities of occurrence of failure sequences.
∙ Provide a comprehensive risk assessment tool for improving safety and efficiency in manufacturing systems.
∙ Demonstrate the method’s effectiveness through an example of an automated machining and assembly
system.
∙ Overcome limitations of current approaches by not assuming given sequences of failures, resulting in a
more accurate assessment of reliability and safety in manufacturing systems.

Adamyan & He
(2004) [55]

∙ Extend their method presented in [54] using PNs and counters for modeling complex systems with
inhibitor arcs and loops.
∙ Advantages of the extended method include the use of fewer variables compared to existing marking-based
methods, accelerated computations, and the ability to handle any distribution of failure times.
∙ Apply the method to the failure analysis of a specific system, the nitric acid cooler with temperature
feedback and pump-shutdown feedforward loops.
∙ The method can be used as a comprehensive risk assessment tool to enhance the safety and efficiency of
manufacturing systems.

Wang et al.
(2020) [56]

∙ Propose a dynamic adaptive fuzzy reasoning PN model for evaluating the reliability of a manufacturing
system with multiple production lines.
∙ Consider the stochastic capacity of each machine and the ambiguity of loading size and buffer level.
∙ Formulate weighted fuzzy PNs to represent imprecise knowledge of reliability levels.
∙ Demonstrate the effectiveness and flexibility of the method through a numerical experiment using a flow
shop manufacturing system.
∙ Highlight the potential extension of the method to other manufacturing systems with parallel, assembly, or
disassembly structures.
∙ Suggest future work to focus on simultaneously optimizing buffer capabilities, input materials, and
machines’ capabilities.

Nabi & Aized
(2020) [57]

∙ Study the performance evaluation of a flexible manufacturing system (FMS) using PN methodology.
∙ Develop a compact and editable FMS model using colored PNs, providing insights into dynamic behavior
and system performance measures.
∙ Identify key factors influencing system performance, including inter-cellular and intra-cellular routing
flexibility, and variation in input factors such as machining and assembly time, material loading and
unloading time, and number of operations between failure.
∙ Recommend virtual commissioning of the proposed FMS system and further research on breakdown modes
of material handling robots and unplanned breakdowns of machines.
∙ Results demonstrate the successful applicability of colored PNs for modeling, simulation, and evaluation of
FMS.
in the graph. These CPTs are derived from prior knowledge or data and
can be updated based on new observations using Bayes’ rule.

Fig. 8 illustrates a Bayesian network for a machine failure, which
shows how nodes can represent variables such as machine age, vi-
bration, and operator competence, and how edges can represent the
conditional dependencies between these variables.

By incorporating prior knowledge and expert opinion into the
model, BNs can also help to quantify and manage uncertainty in the
assessment process. This makes them particularly useful in situations
where data is limited or unreliable, or where the consequences of
failure are severe.

Table 6 provides an overview of the most significant contributions
utilizing BNs to assess hardware reliability in manufacturing systems.
The reviewed papers include Karaulova et al. [62] who present a frame-
work for reliability estimation of manufacturing processes, Görkemli
& Ulusoy [63] who propose a novel approach for modeling reliability
and availability, Jones et al. who use BNs to improve maintenance
planning [64], and Weber & Jouffe [65] who introduce a methodology
for formalizing complex manufacturing processes with dynamic BNs.

In summary, BNs provide a probabilistic graphical modeling ap-
proach for capturing dependencies and uncertainties in complex sys-
48

tems. The studies demonstrate the effectiveness of BNs in fault analysis,
Fig. 8. Bayesian network for a machine failure.

process reliability improvement, reliability and availability assessment,
maintenance planning, and optimal diagnosis and maintenance. The
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Table 5
Contributions utilizing MM for reliability assessment.

Article Summary and findings

Kharoufeh et al.
(2013) [58]

∙ Propose two stochastic models for the reliability assessment of manufacturing equipment in complex
environments with stochastic degradation leading to failure.
∙ The first model utilizes a temporally nonhomogeneous continuous-time Markov chain environment and
the second model assumes a temporally homogeneous semi-Markov process on a finite space.
∙ Derive transform expressions for lifetime distributions and illustrate the models using examples.
∙ Presented mathematical frameworks provide flexibility for scenarios where operating times in different
states are non-stationary or non-exponential.
∙ Suggest that the models can be beneficial in scenarios where effective modeling of the mapping between
environmental conditions and degradation is possible, and can provide a macroscopic view of degradation
that can be refined with guidance from subject matter experts.

Che et al. (2019)
[59]

∙ Present a general reliability model for man-machine systems considering mutually dependent machine
degradation and human errors.
∙ Utilize a Piecewise-deterministic Markov process framework to capture the mutual dependence.
∙ Include a mathematical model for human error rates considering fatigue-recovery and a multi-state
machine degradation model.
∙ Illustrate the model using the example of a lathe operated by a worker.
∙ Findings indicate that mutual dependence results in lower reliability performance.
∙ Suggest future work to incorporate maintenance considerations and expand the human error model to
include mental fatigue and learn-forgetting effects.

He et al. (2020)
[60]

∙ Propose an improved method for evaluating the mission reliability of fuzzy multistate manufacturing
systems using an extended stochastic flow network (ESFN) model.
∙ Consider the operating mechanism of the manufacturing system and analysis of task execution state,
machine degradation state, and product quality state.
∙ The proposed method is suitable to systems with uncertain parameters represented as fuzzy values.
∙ Verify the proposed approach through a case study and sensitivity analysis of the model parameters.
∙ Suggest future research on developing efficient algorithms to reduce the computational complexity of
fuzzy mission reliability, as well as decision-making in production scheduling and preventive maintenance
for fuzzy multistate manufacturing systems based on ESFN.

Guo et al. (2017)
[61]

∙ Focus on defining and measuring reliability and availability in multistage production systems.
∙ Investigate the interdependence between buffer resources/equipment and their reliability performance in
each station and its impact on the overall system.
∙ Propose to utilize Markov processes as models for system reliability and availability and demonstrate the
relationship between these measures and traditional performance metrics such as cycle times and
throughputs.
∙ Verify the effectiveness of the proposed methods through simulation models in complex and varying
multistage production settings.
utilization of BNs enhances decision-making, improves accuracy in
failure rate estimation, and increases overall system reliability.

4.2.6. Contributions utilizing a combination of modeling formalisms
Table 7 lists the most significant papers that utilize a combination of

different modeling formalisms to assess the reliability of manufacturing
systems. Fazlollahtabar & Niaki [66] propose a combination of FTA and
RBD to assess the reliability of complex robot systems. Yan et al. [67]
compare the effectiveness of FTA and PPN modeling for mission relia-
bility assessment. Coban et al. [68] utilize RBDs and MMs to determine
the probability of failure of system components. Chang [69] use Monte
Carlo simulation in combination with stochastic production networks
to estimate reliability of manufacturing processes.

In summary, the studies demonstrate the effectiveness of combining
different modeling approaches in assessing system reliability, fault
detection, maintenance programs, mission reliability evaluation, and
the analysis of human–robot interaction in assembly processes. The
utilization of multiple modeling formalisms enhances the accuracy
and comprehensiveness of reliability assessments, enabling informed
decision-making and identification of potential failure conditions.

4.3. Human reliability assessment

This subsection presents a comprehensive review of the relevant
literature concerning the assessment of human reliability in manufac-
turing systems. In Section 2.3, we discussed the classification of HURA
methods into two generations: first-generation and second-generation
methods. In the following, we describe both generations in more detail
and then review relevant literature. In the appendix, Table 10 pro-
vides a comprehensive overview and systematization of the reviewed
literature, including:
49
• The respective article,
• the applied reliability modeling method,
• the research goal of the study,
• the PSFs used,
• the data sources or expert knowledge used to model the studied

system,
• the used metric to assess reliability,
• and the type of manufacturing system studied.

As with the reviewed articles for HWRA, the reviewed articles for
HURA lack a detailed system description of the manufacturing system
employed in their research (e.g., FMS, RMS, etc.). Consequently, we did
not include this aspect as an additional column in the table.

First-generation HURA methods consider humans as just an-
other mechanical component of systems. Many of these methods,
such as Technique for Human Error Rate Prediction (THERP), Acci-
dent Sequence Evaluation Program (ASEP), Human Cognition Relia-
bility (HCR) and Human Error Assessment and Reduction Technique
(HEART) assume that humans fail to perform tasks because of natural
deficiencies [20]. This assumption prevents consideration of aspects of
dynamic interaction with the work environment, both as a physical
and social environment. In first-generation methods, HEP is usually
assigned based on the characteristics of an operator’s tasks and then
adjusted by PSFs. Swain [70] criticizes that first-generation methods
often lead HURA analysts to deliberately apply higher estimates of
HEPs and larger uncertainty bounds to compensate for the drawbacks
stated above. Despite the criticisms and shortcomings of these methods,
they are widely used because of their ease of use and quantitative
aspects [20].

Fig. 9 displays the analytical tool for the analysis of human reliabil-
ity using the THERP method. The nodes in the event tree correspond
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Table 6
Contributions utilizing BNs for reliability assessment.

Article Summary and findings

Karaulova
et al. (2012)
[62]

∙ Introduce a framework for fault analysis in production processes using an extended Failure Mode
and Effect Analysis (FMEA) approach.
∙ The framework incorporates a fault classifier and Bayesian Belief Network (BBN) to classify faults
and estimate FMEA parameters.
∙ The framework enables companies to analyze production processes comprehensively and identify
critical faults for efficient process improvement.
∙ Highlight the effectiveness of using BBN for modeling process losses and evaluating the effectiveness
of recommendations for process reliability improvement.
∙ Future work includes the development of a reliability analysis module and its integration with an
ERP system to estimate reliability for each manufacturing operation.

Görkemli &
Ulusoy (2010)
[63]

∙ Introduce a novel modeling approach for reliability and availability assessment of production
systems that considers the hierarchy and all components of the system.
∙ Employ a fuzzy Bayesian method to address uncertainties in the production environment and
improve the accuracy of estimates.
∙ Highlight the limitation of considering only machine reliability in calculations and emphasize the
importance of considering all components for accurate reliability and availability assessments.
∙ The proposed approach accounts for imprecision in data and provides more accurate estimates by
considering the entire system and its components.
∙ Future research directions include exploring non-exponential distributions for failure and repair
times of sub-processes and investigating fuzzy multi-state reliability.

Jones et al.
(2010) [64]

∙ Introduce the use of BNs for maintenance planning in manufacturing systems.
∙ Apply the proposed methodology to a case study to determine the failure rate of a system and to
optimize inspection intervals.
∙ Consider influencing events and incorporate available data to update probabilities, leading to
improved accuracy in failure rate estimation.
∙ The study highlights that BNs provide insights into likely causes of failure and offer a more accurate
method for establishing failure rate parameters.
∙ The use of BNs in maintenance planning increases confidence in decision-making, reduces
downtime, and improves overall system reliability.

Weber &
Jouffe (2003)
[65]

∙ Propose a methodology for developing Dynamic Bayesian Networks (DBN) to model complex
manufacturing processes for optimal diagnosis and maintenance.
∙ The DBN model is compared with the classical Markov Chain for reliability estimation using a small
valve system.
∙ Conclude, that the DBN approach is a powerful tool for decision-making aid in maintenance,
providing more compact and readable models and for effectively modeling the dependency between
failure modes and common modes.
∙ Future research should focus on incorporating learning algorithms of BN to model the dynamics of
system reliability and the behavior of parameters in manufacturing systems.
Fig. 9. Structure of a THERP event tree.

o all events that can occur within a system. The root node is the
nitiating event and the branches are consequences of the initiating
vent. Each node has two branches that correspond to either success
lowercase letter; Human Reliability) or failure (uppercase letter; HEP).
y adding the probabilities for the individual events along each path,
he likelihood of the various outcomes can be calculated such as success
ithout any failures (i.e., 𝑆) or failure (e.g., 𝐹𝐵).

While first-generation methods focus on human behavior, second-
generation HURA methods aim for a more conceptual approach.
Such methods focus on cognitive aspects of humans to explain their
behavior, on the causes of errors rather than their frequency, and on the
influence of the interaction of PSFs on the HEP [20]. The development
of second-generation methods began in the 1990s. Popular methods
are Cognitive Reliability and Error Analysis Method (CREAM) [21], A
50
Technique for Human Analysis (ATHEANA) [71], Success Likelihood
Index Methodology (SLIM) and the Standardized Plant Analysis Risk-
Human Reliability Analysis (SPAR-H) [72]. Di Pasquale [20] argues
that any attempt to understand human performance must include the
role of human cognition, which is defined as an "act or process of
knowing including both consciousness and judgment". To account for
human cognition in HURA methods, a new error category, ‘‘cognitive
error,’’ was introduced. Such an error is defined both as a failure of a
predominantly cognitive activity and as a derivative cause of a failed
activity [21].

Several contributions address HURA of manufacturing systems (
Table 8). Ellis et al. [73] focus on the impact of age of workers on
manufacturing system reliability. Myszewski [7] proposes to apply
the bathtub curve to describe human reliability during a work shift
over time. Bubb [34], Aalipour et al. [74], Wang et al. [75], An-
gelopoulou et al. [36], and Torres et al..[76] apply HURA methods such
as THERP, HEART, SPAR-H and BNs to several different manufacturing
environments.

In summary, HURA studies in manufacturing emphasize the influ-
ence of age-related changes, time pressure, lack of experience, poor
procedures, and other PSFs on HEP. Task analysis combined with
knowledge of age-related changes helps identify potential challenges
faced by older workers, while the integration of ergonomic measures,
organizational measures, and education/training measures improves
human reliability.

Simulation models for HURA in manufacturing systems consider the
impact of human error in Industry 4.0, digitized manufacturing, and
complex manual assembly. These models allow for the classification

and quantification of human errors, identification of error modes, and
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Table 7
Contributions utilizing a combination of modeling formalisms for reliability assessment.

Article Summary and findings

Fazlollahtabar
& Niaki (2018)
[66]

∙ Propose an integrated FTA and RBD model for evaluating the reliability of a complex robot system
used in advanced manufacturing systems.
∙ The methodology is implemented in a complex advanced manufacturing system with autonomous
guided vehicles (AGVs) as material handling devices.
∙ The results demonstrate that the reliability of the system is highly dependent on the occupied paths
by AGVs, and filtering these paths can significantly impact system reliability.
∙ The FTA-RBD model provides a hierarchical representation of system components, facilitates fault
detection, and enhances maintenance and repair programs.
∙ The proposed model has the potential to be extended to more complex systems and can assist in
making informed decisions about mission performance acceptability.

Yan et al.
(2017) [67]

∙ Compare FTA and PN modeling for evaluating the mission reliability of AGV systems.
∙ PNs are found to be effective in assessing AGV mission reliability by considering maintenance
influence and dependencies within subsystems and across mission phases.
∙ PNs are considered more suitable for complex systems with multiple mission phases, as FTA
becomes slower and more complex with an increasing number of phases.
∙ The results obtained from PN modeling were comparable to those obtained from FTA, indicating the
effectiveness of PNs in evaluating mission reliability.
∙ Suggest, that PN modeling can be a valuable alternative to FTA for assessing the mission reliability
of AGV systems.

Coban et al.
(2019) [68]

∙ Focus on the reliability analysis of assembly processes involving human–robot interaction in
manufacturing.
∙ Utilize RBDs and MMs to assess the probability of failure conditions in the supporting systems over
a specific period.
∙ An RBD is created to represent the system and determine its reliability value over time, and a MM
is developed to identify fault conditions in the system and calculate the likelihood of their occurrence.
∙ The analysis provides a comprehensive understanding of the reliability of assembly processes with
human–robot interaction and enables the identification of potential failure conditions.

Chang (2019)
[69]

∙ Introduce a novel Monte Carlo simulation approach based on stochastic production networks to
estimate the system reliability of a stochastic production system with finite buffer storage. ∙ The study
demonstrates that assuming infinite buffer storage can result in an overestimation of system reliability.
∙ The findings emphasize the significance of considering finite buffer storage in the evaluation of
demand satisfaction and system reliability.
∙ Suggest future research directions, including evaluating the exact system reliability, exploring buffer
allocation strategies to maximize system reliability, and considering buffer storage size to minimize
total cost while achieving the required system reliability.
evaluation of factors contributing to those errors. Recommendations
include perceptually engaging assembly instructions, improved inspec-
tion processes, better operations tracking, feedback provision, and the
integration of technology in assembly guidance systems.

Overall, the use of HURA in manufacturing systems is essential
for understanding, predicting, and mitigating human errors, thereby
improving system performance, safety, and efficiency.

5. Challenges and opportunities for reliability assessment of man-
ufacturing systems

In this section, we highlight challenges and opportunities for re-
liability assessment of manufacturing systems based on the reviewed
literature. Challenges and opportunities specifically for HWRA and
HURA as well as for reliability assessment of manufacturing systems
in general are presented. The emerging and promising research field
of data-driven reliability assessment of smart manufacturing systems is
covered separately in Section 5.4.

5.1. Challenges and opportunities for hardware reliability assessment

Challenges:

• Data Availability and Quality: Obtaining accurate and reliable
data for HWRA can be a challenge. Manufacturing systems often
generate large amounts of data on hardware components, but
it may not always be readily available or of sufficient quality
for meaningful analysis. Ensuring data completeness, consistency,
and validity is crucial for accurate reliability assessment [63,64].

• Uncertainty and Variability: Manufacturing environments are
inherently subject to uncertainties and variability in operating
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conditions, component behavior, and system dynamics. Account-
ing for these uncertainties and their impact on hardware reliabil-
ity assessment can be challenging, requiring robust modeling and
statistical techniques to handle the variability effectively [41,55,
60,63].

• Technological Advancements and Rapid Changes: Manufac-
turing systems and associated hardware technologies are con-
stantly evolving, with new technologies and advancements be-
ing introduced regularly. Keeping pace with these advancements
and adapting reliability assessment methodologies to incorpo-
rate emerging technologies can be challenging but necessary for
accurate and up-to-date reliability assessments [40,66,67].

• Computational Complexity: Some reliability assessment tech-
niques, such as Monte Carlo simulation, can impose a significant
computational burden, especially for large and complex manufac-
turing systems. Efficient algorithms and computational resources
are required to handle the computational complexity and perform
timely and accurate reliability assessments [43].

• Limited Failure Data: In some cases, there may be limited failure
data available for specific hardware components or subsystems
in manufacturing systems. Insufficient failure data can make it
difficult to accurately estimate failure rates, probabilities, and
other key parameters for reliability assessment.

• Lack of Standardization: The field of hardware reliability assess-
ment in manufacturing systems lacks standardized methodolo-
gies, metrics, and evaluation criteria. The absence of standardized
practices can make it challenging to compare and benchmark
reliability assessments across different systems and industries.

Opportunities:

• Integration of Multiple HWRA Methods: Exploring the integra-
tion of multiple modeling formalisms, such as BNs, PNs, MMs,
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Table 8
Contributions addressing human reliability assessment.

Article Summary and findings

Ellis et al. (1999)
[73]

∙ The paper investigates the performance implications of older workers in technological manufacturing
environments.
∙ Task analysis combined with knowledge of age-related changes can help identify challenges faced by older
workers and incorporate appropriate accommodations.
∙ Aging is associated with a decline in various human performance measures, emphasizing the importance of
qualitative task analysis in recognizing age as a PSF.
∙ Techniques like THERP can be used to prioritize interventions and improve the working conditions for older
workers.
∙ Developing user-friendly manufacturing systems benefits all age groups, promoting independence and
productivity among the older workforce.

Myszewski (2010)
[7]

∙ The paper introduces a mathematical model of human error occurrence in manufacturing processes,
considering continuous and discrete phenomena.
∙ The model incorporates reliability concepts and the bathtub curve to represent learning, fatigue, and task
accumulation in human work.
∙ Inadequate time allocation for operations is linked to special causes of errors in industrial processes.
∙ Improving the work environment, operator skills, and motivation is crucial for reducing error risk.
∙ Graphical representations of error rate functions support intuitive interpretation, workflow organization, and
risk analysis, emphasizing the need for proactive measures beyond operator motivation to address random and
systemic mechanisms of error.

Bubb (2005) [34] ∙ The paper highlights the significance of human reliability in improving manufacturing quality. ∙ Human
actions and PSFs play a crucial role in HEP.
∙ The THERP method is applied to manufacturing scenarios, and experimental research on error prediction is
conducted.
∙ Three primary measures for enhancing human reliability are identified: ergonomic measures, organizational
measures, and education and training measures.
∙ Financial considerations may influence the preference for education and training measures, despite their
effectiveness in improving human reliability.

Aalipour et al.
(2016) [74]

∙ The paper focuses on HURA in maintenance activities in the cable manufacturing industry. ∙ Three HURA
techniques (HEART, SPAR-H, and BN) are used to estimate HEP and assess their consistency.
∙ Time pressure, lack of experience, and poor procedures are identified as the main causes of human errors
during maintenance activities.
∙ The estimated HEPs obtained through the three techniques demonstrate similar behavior and consistency.
∙ Accurate estimation of HEP is crucial for efficient maintenance operations, and updated data and field
evidence are needed to improve analysis robustness. The paper recommends evaluating HURA tools in
different scenarios and using critical analysis to provide safety recommendations for procedures and
equipment, aiming to reduce the risk of accidents.

Wang et al.
(2019) [75]

∙ The paper focuses on using HURA and optimization techniques in manufacturing systems. ∙ A BN model and
Human Factors Experiments (HFEs) are utilized in a flexible intermediate bulk container manufacturing plant.
∙ Physiological and psychological factors are considered as PSFs in the study.
∙ The BN model is used to qualitatively describe the relationship between human factors and human errors
and quantitatively assess their impact on system failures.
∙ Workers’ training based on fault diagnosis results leads to a significant decrease in errors and system failure
rate.
∙ The findings demonstrate the effectiveness of HURA and optimization using the BN model and HFEs in
reducing system failures, with implications for future research and applications in other fields.

Angelopoulou
et al. (2020) [36]

∙ The paper explores the impact of human error on Industry 4.0 systems and proposes a simulation model for
HURA.
∙ The study emphasizes the importance of considering the human factor in digitized manufacturing and
automated processes.
∙ The simulation model incorporates PSFs that influence human work in Industry 4.0 and quantifies human
error in different scenarios.
∙ The components and functionality of the simulation model are presented, highlighting the need for
validation through real-world case studies.
∙ The findings highlight the significance of integrating HURA in Industry 4.0 and suggest future work to
improve the model’s accuracy, expand the factors considered, and provide recommendations for error
reduction.

Torres et al.
(2021) [76]

∙ The paper focuses on classifying and quantifying human error in complex manual assembly within a
manufacturing context.
∙ HURA techniques, specifically SHERPA and HEART, are applied to identify and evaluate potential errors and
contributing factors.
∙ Analysis of critical assembly tasks reveals various error modes, with geometry-related assembly parts having
the highest HEPs.
∙ The findings highlight the importance of perceptually engaging assembly instructions, improved inspection
processes, operations tracking, feedback provision, and technology integration in assembly guidance systems to
reduce error probabilities and enhance overall performance.
∙ The study emphasizes the significance of considering human errors in manufacturing and suggests the
adoption of ergonomic analysis and HURA as crucial steps for improvement.
52
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Table 9
Systematization of reviewed HWRA literature.

Article Method Goal Used data/expert
knowledge

Metric Manufacturing system type

Mubarok
et al. [40]

RBD Assess manufacturing
service reliability in cloud
manufacturing

Component and machine
reliability

System reliability Forklift manufacturing

Liu et al.
[41]

RBD Evaluation and analysis of
mission reliability

Component reliability and
maintenance times

Mission reliability Radar manufacturing

Erozan [42] RBD Support restructuring
decisions

Reliability of components System reliability Motor component
manufacturing

Tont et al.
[43]

RBD, MCS Identify critical
components in system

Failure times, repair times,
maintenance times

System/component
reliability/availability

Turbogenerator

Cheng et al.
[47]

FTA Increase inventory
turnover rate

Probability of basic events Probability of minimal cut
sets/excess inventory

Aerospace parts
manufacturing

Mhalla et al.
[48]

(fuzzy) FTA Increase system reliability Probability of basic events Probability of system
failure (top event)

Milk bottling

Shu et al.
[49]

(fuzzy) FTA Identify most critical
system component

Probability of basic events Probability of system
failure (top event)

Printed circuit board
assembly

Kumar &
Lata [50]

FTA Increase system reliability Probability of basic events System reliability, risk
reduction worth

Piston manufacturing

Relkar [51] FTA, FMEA Determine critical
components, improve
maintenance planning

FMEA insights from
experts, probability of
basic events

Probability of operation
without failure (survival)

Car component
manufacturing

Arena &
Kiritsis [53]

PN (SPN) Translate system
knowledge into executable
models for reliability
assessment

System knowledge, failure
and repair times of
components

System and component
failure probability

Automated assembly shop

Adamyan &
He [54]

PN (SPN) Analysis of sequential
failures

Process/operation times,
failure times

Probability of failure
sequence

Automated machining and
assembly

Adamyan &
He [55]

PN (SPN) Analysis of sequential
failures

Process/operation times,
failure times

Probability of failure
sequence, system failure
rate

Nitric acid cooler

Wang et al.
[56]

(fuzzy) PN Reliability
evaluation/optimization

Machine and buffer
capacity and initial
reliability

System reliability Oil pump manufacturing
(flow-shop)

Nabi & Aized
[57]

PN (CPN) System optimization Failure times, repair times,
operating times

Buffer capacities,
reliability, MTTR

Flexible manufacturing

Kharoufeh
et al. [58]

MM (Markov
chain, Markov
process)

Better estimate component
lifetime

Component degradation
data

Component reliability Generic complex systems

Che et al.
[59]

MM (Markov
process)

Identify factors that affect
human error

Failure times,
degradational states

System reliability Generic man-machine
systems

He et al. [60] MM (ESFN) Identify characteristics of
multistate machines

Machine operational states Mission reliability Shifting unit manufacturing

Guo et al.
[61]

MM (Markov
process)

Better estimate reliability
in multistage production
systems

Failure rates, repair rates System reliability and
availability

Solar module
manufacturing

Karaulova
et al. [62]

BN (BBN), FMEA Find optimal corrective
actions for reduction of
faults

Failure types and their
severity and probability

Error probability Machinery manufacturing

Görkemli &
Ulusoy [63]

(fuzzy) BN More accurate estimation
of system reliability and
availability

Failure rates, repair rates Reliability and availability Yarn production

Jones et al.
[64]

BN Improve maintenance
planning

Component age, inspection
intervals, operator
competence, etc.

Failure probability Carbon black production

Weber &
Jouffe [65]

(dynamic) BN Improve modeling of
complex manufacturing
processes

Failure rates System reliability Generic complex
manufacturing processes

Fazlol-
lahtabar &
Niaki [66]

FTA, RBD Improve maintenance and
repair programs, reliability
evaluation without
excessive data
requirements

Component reliability System reliability Material handling

Yan et al.
[67]

PN, FTA, FMECA Analysis of failure
sensitivity for mission

Component failure rates Mission reliability Material handling

Coban et al.
[68]

RBD, MM Increase reliability of
assembly process

Failure rates, repair rates Process reliability Hybrid (human–robot)
assembly

Chang [69] MCS, Stochastic
Production
Network

Improve buffer size and
allocation

Reliability of components System reliability Printed circuit board
production
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Table 10
Systematization of reviewed HURA literature.

Article Method Goal PSFs Used data/expert
knowledge

Metric Manufacturing
system

Ellis et al.
[73]

THERP and
others

Understand age as PSF;
design systems that better
accommodate needs of
older people

Specific focus on age —
for example, hearing,
vision, reaction time,
motor ability

Weights of PSFs HEP Generic

Myszewski
[7]

Bathtub curve Identify failure
mechanisms of potential
failures associated with
human error

Rush, learning, fatiguing Weights of PSFs HEP Generic

Bubb [34] THERP Quantify human error;
indentify influence of PSFs
on human error; suggest
measures to improve
human reliability

Instructions/training,
ergonomics, workplace
organization

Error probabilities of tasks HEP Electronics
assembly bench

Aalipour
et al. [74]

HEART,
SPAR-H, BN

Identify main causes of
human error during
maintenance activities;
compare different HRA
techniques

Several, depending on
method used

Weights of PSFs acquired
from expert interviews

HEP Cable
manufacturing
system

Wang et al.
[75]

BN, HFE Quantify positive effect of
training on human
reliability

Flexibility, coordination,
memory, attention

Probability of individual
ability shortage and
human error

System failure Bulk container
manufacturing
plant

Angelopoulou
et al. [36]

Simulation
(system
dynamics)

Quantify human error in
Industry 4.0 settings

e.g., standardized
instructions, experience,
equipment, safety culture

Weights of PSFs HEP Generic

Torres et al.
[76]

HEART,
SHERPA

Identify where and why
manual assembly errors
occur

e.g., System feedback, risk
perception, testing of
output, workforce moral

Error probabilities of
assembly tasks

HEP Manual assembly
workstation
-

5

and FTs, can enhance the accuracy and flexibility of HWRA in
manufacturing systems [66–69].

• Dynamic Reliability Modeling: Developing dynamic reliability
models that capture the evolving nature of manufacturing systems
can provide a more realistic representation of system behav-
ior, considering factors such as degradation, aging, maintenance
actions, and environmental conditions [40,42,56,57,65].

• Human–Machine Interaction: Incorporating human factors and
human-machine interaction in hardware reliability assessment
can help identify potential failure points and design system im-
provements to enhance reliability in manufacturing environments
involving human operators [59,68].

• Uncertainty Quantification: Advancing methods for quantifying
and managing uncertainties in hardware reliability assessment,
such as fuzzy logic, probability theory, and Bayesian approaches,
can provide more robust and accurate reliability estimates [42,
48,49,56,60,62–65].

• Consideration of Dependencies and Interactions: Manufac-
turing systems often consist of interconnected components and
subsystems. Future research can focus on modeling and assessing
the reliability of interconnected components, taking into account
the dependencies and interactions between them, to provide a
more realistic evaluation of hardware reliability [59,61,67].

5.2. Challenges and opportunities for human reliability assessment

Challenges:

• Interaction with Automation: The integration of automation
and advanced technologies in manufacturing systems introduces
challenges in understanding the interactions between humans and
machines, as well as assessing the potential for human errors in
these hybrid environments [36,59,68].

• Real-time Decision Making: Manufacturing systems often re-
quire workers to make quick decisions in dynamic and time-
sensitive situations, increasing the risk of human errors due to
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time pressure and cognitive overload [37].
• Workforce Diversity: Manufacturing systems may have a di-
verse workforce in terms of age, experience, cultural background,
and skill levels. Assessing the impact of these diverse factors on
human reliability requires careful consideration [73].

• Lack of Data and Evidence: Obtaining updated and reliable data
for HURA in manufacturing systems can be a challenge, as real-
world case studies and empirical evidence are often limited [73,
74].

• Financial Considerations: Implementing recommendations and
interventions identified through HURA may require significant
financial investments, which can be a barrier for organizations
in adopting and implementing them fully [34].

Opportunities:

• Human Factors Integration: Incorporating human factors and
PSFs that affect modern technologies such as lack of standard-
ized procedures, lack of experience and/or previous training,
insufficient equipment, ergonomics, lack of safety culture, stress,
complexity, and population demography can enhance human re-
liability [34,36]

• Training and Skill Development: Providing comprehensive train
ing programs that focus on human factors, task-specific skills,
and error prevention techniques can enhance the capabilities
and performance of workers, reducing the likelihood of human
errors [7,34,75].

.3. Challenges and opportunities for reliability assessment in general

Challenges:

• Complexity of Manufacturing Systems: Manufacturing systems
can be highly complex, involving numerous interconnected com-
ponents and subsystems. Assessing the reliability of such systems
requires capturing the interactions and dependencies among var-
ious hardware, human, and software elements, which can be
challenging due to the complexity and scale of the systems [40,

43,55,58,60,61,65–67,76].
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• Model Accuracy: The accuracy of reliability models depends
on the accuracy of the input data, such as failure rates and
probabilities. Obtaining accurate data can be challenging, as it
may require extensive testing and analysis.

• Model Maintenance: Manufacturing systems are dynamic, with
components and subsystems constantly changing. Updating a re-
liability model to reflect these changes can be challenging and
time-consuming.

Opportunities:

• Improved Reliability: Reliability assessment can help identify
potential failure points in a manufacturing system, allowing for
proactive maintenance and repairs. This can improve system
reliability and reduce downtime.

• Cost Savings: By identifying potential failure points and imple-
menting proactive maintenance and repairs, reliability assessment
can help reduce the overall cost of maintaining a manufacturing
system.

• System Optimization: Reliability assessment can help identify
areas for improvement in a manufacturing system, allowing for
optimization of system performance and efficiency.

• Integrated Assessment: Integrating hardware, software, and hu-
man reliability assessments can improve the accuracy and com-
prehensiveness of system evaluations [59].

• Big Data Analytics: Harnessing the power of big data analytics
to analyze vast amounts of sensor data, maintenance records, and
historical failure data can uncover hidden patterns and correla-
tions, enabling more accurate reliability assessments and proac-
tive decision-making.

• Condition Monitoring and Predictive Maintenance: Imple-
menting advanced condition monitoring techniques, such as IoT
sensors and predictive maintenance algorithms, can enable real-
time monitoring of hardware health, early detection of potential
failures, and optimized maintenance strategies.

• Collaborative Reliability Assessment: Encouraging collabora-
tion and knowledge sharing among researchers, industry practi-
tioners, and equipment manufacturers can foster innovation and
best practices in reliability assessment for manufacturing systems.

5.4. Data-driven reliability assessment

The development of the industrial Internet of Things (iIoT) has
brought about significant advancements, offering numerous oppor-
tunities for analyzing and assessing the reliability of manufacturing
systems [77]. The iIoT enables the extensive collection of data through-
out all stages of product production, including planning, procurement,
assembly execution, and distribution. Furthermore, enterprise informa-
tion systems such as ERP, MES, and SCM generate data that is relevant
for reliability assessment. Data-driven reliability assessment (DDRA)
aims to leverage this wealth of data to automate or support the process
of reliability assessment [78,79].

For example, Lu et al. [80] propose a Bayesian approach for DDRA
of manufacturing systems. Alsina et al. [81] utilize machine learning
techniques and manufacturing component data to predict reliabilities.
Zou et al. [82] present a novel data-driven stochastic manufacturing re-
liability model that describes production dynamics and identifies causes
of persistent production failures in both deterministic and stochastic
scenarios. Lugaresi et al. [83] employ Process Mining for automated
manufacturing system discovery and digital twin generation. In our
work [84] and [85], we propose an approach for data-driven reliability
modeling of smart manufacturing systems using Process Mining and
SPNs. Additionally, in another sequence of contributions [86–88], we
present an approach for data-driven FTA based on time-series data of a
system. These methods combine various data sources with knowledge
about the physical characteristics of a manufacturing system. Such
55
Fig. 10. Data-driven reliability assessment feedback loop.
Source: Adopted from [77].

approaches facilitate self-diagnosis of a system and offer users a deeper
understanding of the relationships between system status and per-
formance, enabling real-time production control and decision-making
support.

Fig. 10 illustrates the feedback loop enabled by DDRA of manu-
facturing systems. Data capturing manufacturing processes is extracted
from the manufacturing system, utilizing potential data sources such
as ERP, MES, or SCM systems. This data can include information
about material flow, resource states and conditions, or manufactured
products. The extracted data undergoes preprocessing to detect key
reliability-related events (e.g., fault occurrences, repair start and com-
pletion times) and convert it into a format suitable for model generation
algorithms. Next, the data is utilized to generate reliability models,
with the choice of model (e.g., RBD, FT, PN) influencing the preceding
steps. Once a model is extracted, simulation and data analytics support
decision-making processes related to system configuration, purchase
decisions, or maintenance scheduling [77,78].

DDRA offers several advantages and disadvantages compared to
knowledge-driven reliability assessment of manufacturing systems. A
data-driven approach allows for the creation of more realistic models
that better reflect the evolving behavior of manufacturing systems
throughout their lifetimes. Furthermore, data-driven reliability models
can be used to validate or calibrate existing knowledge-driven models.
DDRA also provides manufacturers with deeper insight into the root
causes of failures [78]. Ultimately, data-driven reliability modeling can
assist decision-makers in maintenance planning, machine purchasing,
and plant layout configuration, leading to more efficient resource allo-
cation [89]. However, a key disadvantage of DDRA is the requirement
for available data. The actual data collected by manufacturers varies
depending on the level of digitization and commitment to the iIoT con-
cept. Additionally, integrating and combining data from heterogeneous
sources poses a significant challenge, necessitating the development
of methods to incorporate such data into reliability model generation
algorithms [78].
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6. Conclusion

In this article, we provide a comprehensive overview of the most sig-
nificant advancements and trends in the assessment of manufacturing
system reliability. We review relevant publications addressing relia-
bility assessment of manufacturing systems, distinguishing between
HWRA, SWRA, and HURA. We, furthermore, derive challenges and
opportunities for future research on reliability assessment of manufac-
turing systems based on the reviewed literature.

We identified a notable research gap in the field of SWRA, which
can be attributed to the historical emphasis on hardware and human
reliability within manufacturing systems. Software, being a relatively
newer component, has received less attention in terms of reliability
assessment. Moreover, limited understanding of software reliability
in manufacturing further contributes to this gap. The assessment of
software reliability in manufacturing systems requires a comprehen-
sive understanding of both software engineering and manufacturing
processes. The interdisciplinary nature of this task poses challenges, as
researchers and practitioners may possess expertise in either software
engineering or manufacturing, but not both.

In contrast, HWRA and HURA benefit from numerous established
methods that are continuously being extended. Popular formalisms
for HWRA include Reliability Block Diagrams, Petri Nets, and Markov
Models. Similarly, HURA relies on formalisms such as Technique for
Human Error Rate Prediction, Human Error Assessment and Reduction
Technique, and Bayesian Networks. Furthermore, some publications
highlight the potential of integrating HWRA and HURA to enhance
reliability assessments.

Our review methodology classifies manufacturing system compo-
nents into three categories: hardware, human, and software. This clas-
sification can be extended using the 5M1E theory which considers
Men, Machine, Material, Method, Measurement and Environment as
influencing factors for reliability [8]. In this review, we have captured
the factors Men (HURA), Machine (HWRA), Method, and Measure-
ment (SWRA), but lack the factors ‘‘Environment’’ and ‘‘Material’’. In
upcoming work, we plan to address these gaps to present a more
comprehensive overview of the factors affecting manufacturing system
reliability.

Another important approach to holistically assess manufacturing
systems is mission reliability assessment. While conventional reliability
assessment of a manufacturing system looks at its overall dependability,
mission reliability assessment is focused on ensuring that the system
can achieve specific mission-related goals and objectives. Both ap-
proaches are essential for maintaining efficient and dependable manu-
facturing operations. While we mostly focus on conventional reliability
assessment in this article, a state-of-the-art review of mission reliability
assessment methods would be beneficial to the research community.

Lastly, we recognize data-driven reliability assessment as a promis-
ing approach that complements conventional, primarily expert-based
methods. The wealth of data available in today’s manufacturing sys-
tems can be leveraged to support and enhance reliability assessments.
This data-driven approach opens up new opportunities for improved
understanding and evaluation of manufacturing system reliability.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Lasi H, Fettke P, Kemper H-G, Feld T, Hoffmann M. Industry 4.0. Bus Inf Syst
Eng 2014;6(4):239–42. http://dx.doi.org/10.1007/s12599-014-0334-4.

[2] Zheng P, Wang H, Sang Z, Zhong RY, Liu Y, Liu C, et al. Smart manufacturing
systems for Industry 4.0: Conceptual framework, scenarios, and future perspec-
tives. Front Mech Eng 2018;13(2):137–50. http://dx.doi.org/10.1007/s11465-
56

018-0499-5.
[3] Blischke WR, Murthy DNP. Reliability: Modeling, prediction, and optimization.
John Wiley & Sons; 2011.

[4] Bourouni K. Availability assessment of a reverse osmosis plant: Comparison
between Reliability Block Diagram and Fault Tree Analysis Methods. Desalination
2013;313:66–76. http://dx.doi.org/10.1016/j.desal.2012.11.025.

[5] Bazovsky I. Reliability theory and practice. Courier Corporation; 2004.
[6] Wu X, Hillston J. Mission reliability of semi-Markov systems under general-

ized operational time requirements. Reliab Eng Syst Saf 2015;140:122–9. http:
//dx.doi.org/10.1016/j.ress.2015.04.002, URL https://www.sciencedirect.com/
science/article/pii/S0951832015001143.

[7] Myszewski JM. Mathematical model of the occurrence of human error in
manufacturing processes. Qual Reliab Eng Int 2010;26(8):845–51. http://dx.doi.
org/10.1002/qre.1162.

[8] Li H, Huang H-Z, Yin Y, Zhang K, Huang P. Product quality evaluation method
based on product gene theory. J Shanghai Jiaotong Univ (Science) 2018;23.
http://dx.doi.org/10.1007/s12204-018-1946-5.

[9] Lazarova-Molnar S, Mohamed N. Reliability Analysis of Cyber-Physical Systems.
In: Simulation for Cyber-Physical Systems Engineering: A Cloud-Based Con-
text. Simulation Foundations, Methods and Applications, Springer International
Publishing; 2020, p. 385–405. http://dx.doi.org/10.1007/978-3-030-51909-4_
15.

[10] Birolini A. Quality and reliability of technical systems: Theory, practice,
management. Springer Science & Business Media; 2012.

[11] Klutke G, Kiessler P, Wortman M. A critical look at the bathtub curve. IEEE
Trans Reliab 2003;52(1):125–9. http://dx.doi.org/10.1109/TR.2002.804492.

[12] Pan J. Software reliability. Dependable Embed Syst 1999;18:1–14.
[13] Institute of Electrical and Electronics Engineers. IEEE standard computer dic-

tionary: A compilation of IEEE standard computer glossaries. IEEE Std 610
1991;1–217. http://dx.doi.org/10.1109/IEEESTD.1991.106963.

[14] Lazarova-Molnar S, Mohamed N, Shaker HR. Reliability modeling of cyber-
physical systems: A holistic overview and challenges. In: 2017 workshop on
modeling and simulation of cyber-physical energy systems. Pittsburgh, PA, USA:
IEEE; 2017, p. 1–6.

[15] Rosenberg DL, Hammer T, Shaw J. Software metrics and reliability. 9th
international symposium on software reliability engineering. 1998.

[16] Paulk M, Curtis B, Chrissis M, Weber C. Capability maturity model, version 1.1.
IEEE Softw 1993;10(4):18–27. http://dx.doi.org/10.1109/52.219617.

[17] Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl J, Vouk M. On the
value of static analysis for fault detection in software. IEEE Trans Softw Eng
2006;32(4):240–53. http://dx.doi.org/10.1109/TSE.2006.38.

[18] Fenton N, Neil M. A critique of software defect prediction models. IEEE Trans
Softw Eng 1999;25(5):675–89. http://dx.doi.org/10.1109/32.815326.

[19] Wood A. Software reliability growth models. Tandem Tech Rep
1996;96(130056).

[20] Di Pasquale V, Iannone R, Miranda S, Riemma S. An overview of human
reliability analysis techniques in manufacturing operations. In: Oper Manage.
2013, p. 221–40. http://dx.doi.org/10.5772/55065.

[21] Hollnagel E. Cognitive reliability and error analysis method (CREAM). Elsevier;
1998.

[22] Chlebus M, Werbińska-Wojciechowska S. Issues on production process reliability
assessment – Review. Res Logist Prod 2016;6(6):481–97. http://dx.doi.org/10.
21008/j.2083-4950.2016.6.6.1.

[23] Chlebus M, Werbińska-Wojciechowska S. Assessment methods of production
processes reliability – state of the art. J KONBiN 2017;41(1):247–76. http:
//dx.doi.org/10.1515/jok-2017-0013.

[24] Hoffmann Souza ML, da Costa CA, de Oliveira Ramos G, da Rosa Righi R. A
survey on decision-making based on system reliability in the context of Industry
4.0. J Manuf Syst 2020;56:133–56. http://dx.doi.org/10.1016/j.jmsy.2020.05.
016.

[25] Li K, Yang J, Huang S. A review on reliability modeling of manufacturing systems
considering the production quality and equipment reliability. Recent Pat Eng
2021;15(1):22–9. http://dx.doi.org/10.2174/1872212114999200407105025.

[26] Haase FV, Woll R. Assessment of reliability implementation in manufacturing
enterprises. Manage Prod Eng Rev 2016;7(2):12–20. http://dx.doi.org/10.1515/
mper-2016-0012.

[27] Jardine AKS, Lin D, Banjevic D. A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mech Syst Signal Process
2006;20(7):1483–510. http://dx.doi.org/10.1016/j.ymssp.2005.09.012.

[28] Vogl GW, Weiss BA, Helu M. A review of diagnostic and prognostic capabilities
and best practices for manufacturing. J Intell Manuf 2019;30(1):79–95. http:
//dx.doi.org/10.1007/s10845-016-1228-8.

[29] French S, Bedford T, Pollard SJ, Soane E. Human reliability analysis: A critique
and review for managers. Saf Sci 2011;49(6):753–63. http://dx.doi.org/10.1016/
j.ssci.2011.02.008.

[30] Havlikova M, Jirgl M, Bradac Z. Human reliability in man-machine systems. In:
25th DAAAM international symposium on intelligent manufacturing and automa-
tion, 2014, vol. 100, Procedia Eng In: 25th DAAAM international symposium on
intelligent manufacturing and automation, 2014, vol. 100, 2015;1207–14.http:
//dx.doi.org/10.1016/j.proeng.2015.01.485,

[31] Franciosi C, Pasquale VD, Iannone R, Miranda S. A taxonomy of performance
shaping factors for human reliability analysis in industrial maintenance. J Ind

Eng Manage 2019;12(1):115–32. http://dx.doi.org/10.3926/jiem.2702.

http://dx.doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1007/s11465-018-0499-5
http://dx.doi.org/10.1007/s11465-018-0499-5
http://dx.doi.org/10.1007/s11465-018-0499-5
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb3
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb3
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb3
http://dx.doi.org/10.1016/j.desal.2012.11.025
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb5
http://dx.doi.org/10.1016/j.ress.2015.04.002
http://dx.doi.org/10.1016/j.ress.2015.04.002
http://dx.doi.org/10.1016/j.ress.2015.04.002
https://www.sciencedirect.com/science/article/pii/S0951832015001143
https://www.sciencedirect.com/science/article/pii/S0951832015001143
https://www.sciencedirect.com/science/article/pii/S0951832015001143
http://dx.doi.org/10.1002/qre.1162
http://dx.doi.org/10.1002/qre.1162
http://dx.doi.org/10.1002/qre.1162
http://dx.doi.org/10.1007/s12204-018-1946-5
http://dx.doi.org/10.1007/978-3-030-51909-4_15
http://dx.doi.org/10.1007/978-3-030-51909-4_15
http://dx.doi.org/10.1007/978-3-030-51909-4_15
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb10
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb10
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb10
http://dx.doi.org/10.1109/TR.2002.804492
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb12
http://dx.doi.org/10.1109/IEEESTD.1991.106963
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb14
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb14
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb14
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb14
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb14
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb14
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb14
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb15
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb15
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb15
http://dx.doi.org/10.1109/52.219617
http://dx.doi.org/10.1109/TSE.2006.38
http://dx.doi.org/10.1109/32.815326
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb19
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb19
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb19
http://dx.doi.org/10.5772/55065
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb21
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb21
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb21
http://dx.doi.org/10.21008/j.2083-4950.2016.6.6.1
http://dx.doi.org/10.21008/j.2083-4950.2016.6.6.1
http://dx.doi.org/10.21008/j.2083-4950.2016.6.6.1
http://dx.doi.org/10.1515/jok-2017-0013
http://dx.doi.org/10.1515/jok-2017-0013
http://dx.doi.org/10.1515/jok-2017-0013
http://dx.doi.org/10.1016/j.jmsy.2020.05.016
http://dx.doi.org/10.1016/j.jmsy.2020.05.016
http://dx.doi.org/10.1016/j.jmsy.2020.05.016
http://dx.doi.org/10.2174/1872212114999200407105025
http://dx.doi.org/10.1515/mper-2016-0012
http://dx.doi.org/10.1515/mper-2016-0012
http://dx.doi.org/10.1515/mper-2016-0012
http://dx.doi.org/10.1016/j.ymssp.2005.09.012
http://dx.doi.org/10.1007/s10845-016-1228-8
http://dx.doi.org/10.1007/s10845-016-1228-8
http://dx.doi.org/10.1007/s10845-016-1228-8
http://dx.doi.org/10.1016/j.ssci.2011.02.008
http://dx.doi.org/10.1016/j.ssci.2011.02.008
http://dx.doi.org/10.1016/j.ssci.2011.02.008
http://dx.doi.org/10.1016/j.proeng.2015.01.485
http://dx.doi.org/10.1016/j.proeng.2015.01.485
http://dx.doi.org/10.1016/j.proeng.2015.01.485
http://dx.doi.org/10.3926/jiem.2702


Journal of Manufacturing Systems 72 (2024) 38–58J. Friederich and S. Lazarova-Molnar
[32] Petruni A, Giagloglou E, Douglas E, Geng J, Leva MC, Demichela M. Applying
Analytic Hierarchy Process (AHP) to choose a human factors technique: Choosing
the suitable Human Reliability Analysis technique for the automotive industry.
Saf Sci 2019;119:229–39. http://dx.doi.org/10.1016/j.ssci.2017.05.007.

[33] Hou L-X, Liu R, Liu H-C, Jiang S. Two decades on human reliability analysis: A
bibliometric analysis and literature review. Ann Nucl Energy 2021;151:107969.
http://dx.doi.org/10.1016/j.anucene.2020.107969.

[34] Bubb H. Human reliability: A key to improved quality in manufacturing. Hum
Factors Ergon Manuf Serv Ind 2005;15(4):353–68. http://dx.doi.org/10.1002/
hfm.20032.

[35] Kirwan B. Human error identification techniques for risk assessment of high
risk systems—Part 1: review and evaluation of techniques. Applied Ergon
1998;29(3):157–77. http://dx.doi.org/10.1016/S0003-6870(98)00010-6.

[36] Angelopoulou A, Mykoniatis K, Boyapati NR. Industry 4.0: The use of simulation
for human reliability assessment. In: International conference on industry 4.0
and smart manufacturing, Procedia Manuf In: International conference on indus-
try 4.0 and smart manufacturing, 2020;42:296–301.http://dx.doi.org/10.1016/j.
promfg.2020.02.094,

[37] Di Pasquale V, Miranda S, Neumann WP, Setayesh A. Human reliability in
manual assembly systems: a Systematic Literature Review. IFAC-PapersOnLine
2018;51(11):675–80. http://dx.doi.org/10.1016/j.ifacol.2018.08.396.

[38] Čepin M. Reliability block diagram. In: Assessment of power system reliability.
Springer; 2011, p. 119–23.

[39] Levitin G. The universal generating function in reliability analysis and op-
timization. Springer series in reliability engineering, London: Springer-Verlag;
2005, http://dx.doi.org/10.1007/1-84628-245-4, URL http://link.springer.com/
10.1007/1-84628-245-4.

[40] Mubarok K, Xu X, Ye X, Zhong RY, Lu Y. Manufacturing service reliability
assessment in cloud manufacturing. In: 51st CIRP conference on manufacturing
systems, vol. 72, Procedia CIRP In: 51st CIRP conference on manufacturing
systems, vol. 72, 2018;940–6.http://dx.doi.org/10.1016/j.procir.2018.03.074,

[41] Liu YC, Zhang WJ, Fu GC, Li N. Mission reliability modeling of manufacturing
processes and system. Appl Mech Mater 2013;248:450–5. http://dx.doi.org/10.
4028/www.scientific.net/AMM.248.450.

[42] Erozan I. A hybrid methodology for restructuring decision of a manufacturing
system: A case study. J Manuf Syst 2011;30(2):93–100. http://dx.doi.org/10.
1016/j.jmsy.2011.05.002.

[43] Tont G, Iliescu M, George D. A Methodology of availability assessment for
complex manufacturing systems. WSEAS Trans Syst 2008;7.

[44] Lee WS, Grosh DL, Tillman FA, Lie CH. Fault tree analysis, methods, and
applications - A review. IEEE Trans Reliab 1985;R-34(3):194–203. http://dx.doi.
org/10.1109/TR.1985.5222114.

[45] Vesely WE, Goldberg FF, Roberts NH, Haasl DF. Fault tree handbook. Tech. rep.,
Nuclear Regulatory Commission Washington DC; 1981.

[46] Xing L, Amari SV. Fault tree analysis. In: Misra KB, editor. Handbook of
performability engineering. London: Springer; 2008, p. 595–620. http://dx.doi.
org/10.1007/978-1-84800-131-2_38.

[47] Cheng C-Y, Li S-F, Chu S-J, Yeh C-Y, Simmons RJ. Application of fault tree
analysis to assess inventory risk: a practical case from aerospace manufacturing.
Int J Prod Res 2013;51(21):6499–514. http://dx.doi.org/10.1080/00207543.
2013.825744.

[48] Mhalla A, Collart Dutilleul S, Craye E, Benrejeb M. Estimation of failure
probability of milk manufacturing unit by fuzzy fault tree analysis. J Intell Fuzzy
Systems 2014;26(2):741–50. http://dx.doi.org/10.3233/IFS-130764.

[49] Shu M-H, Cheng C-H, Chang J-R. Using intuitionistic fuzzy sets for
fault-tree analysis on printed circuit board assembly. Microelectron Reliab
2006;46(12):2139–48. http://dx.doi.org/10.1016/j.microrel.2006.01.007.

[50] Kumar A, Lata S. Reliability analysis of piston manufacturing system. J Reliab
Statist Stud 2011;43–55.

[51] Relkar AS. Risk analysis of equipment failure through failure mode and effect
analysis and fault tree analysis. J Fail Anal Prev 2021;21(3):793–805. http:
//dx.doi.org/10.1007/s11668-021-01117-7.

[52] Petri CA. Kommunikation mit Automaten (Ph.D. thesis), Universität Hamburg;
1962.

[53] Arena D, Kiritsis D. a methodological framework for ontology-driven instantiation
of Petri net manufacturing process models, vol. AICT-517. Springer International
Publishing; 2017, p. 557–67. http://dx.doi.org/10.1007/978-3-319-72905-3_49.

[54] Adamyan A, He D. Analysis of sequential failures for assessment of reliability
and safety of manufacturing systems. Reliab Eng Syst Saf 2002;76(3):227–36.
http://dx.doi.org/10.1016/S0951-8320(02)00013-3.

[55] Adamyan A, He D. System failure analysis through counters of Petri net models.
Qual Reliab Eng Int 2004;20(4):317–35. http://dx.doi.org/10.1002/qre.545.

[56] Wang L, Dai W, Ai J, Duan W, Zhao Y. Reliability evaluation for manufacturing
system based on dynamic adaptive fuzzy reasoning Petri net. IEEE Access
2020;8:167276–87. http://dx.doi.org/10.1109/ACCESS.2020.3022947.

[57] Nabi HZ, Aized T. Performance evaluation of a carousel configured multiple
products flexible manufacturing system using Petri net. Oper Manage Res
2020;13(1–2):109–29. http://dx.doi.org/10.1007/s12063-020-00151-2.

[58] Kharoufeh JP, Cox SM, Oxley ME. Reliability of manufacturing equipment in
complex environments. Ann Oper Res 2013-10-01;209(1):231–54. http://dx.doi.
57

org/10.1007/s10479-011-0839-x.
[59] Che H, Zeng S, Guo J. Reliability assessment of man-machine systems subject
to mutually dependent machine degradation and human errors. Reliab Eng Syst
Saf 2019-10-01;190:106504. http://dx.doi.org/10.1016/j.ress.2019.106504.

[60] He Y, Chen Z, Zhao Y, Han X, Zhou D. Mission reliability evaluation for fuzzy
multistate manufacturing system based on an extended stochastic flow network.
IEEE Trans Reliab 2020-12;69(4):1239–53. http://dx.doi.org/10.1109/TR.2019.
2957502.

[61] Guo J, Li ZS, Wang W. Reliability and availability measure and assessment of
multistage production systems. In: 2017 annual reliability and maintainability
symposium. 2017-01, p. 1–6. http://dx.doi.org/10.1109/RAM.2017.7889708.

[62] Karaulova T, Kostina M, Shevtshenko E. Reliability assessment of manufacturing
processes. Int J Ind Eng Manage 2012;3(3):143–51.

[63] Görkemli L, Kapan Ulusoy S. Fuzzy Bayesian reliability and availability analysis
of production systems. Comput Ind Eng 2010-11-01;59(4):690–6. http://dx.doi.
org/10.1016/j.cie.2010.07.020.

[64] Jones B, Jenkinson I, Yang Z, Wang J. The use of Bayesian network modelling
for maintenance planning in a manufacturing industry. Reliab Eng Syst Saf
2010-03;95(3):267–77. http://dx.doi.org/10.1016/j.ress.2009.10.007.

[65] Weber P, Jouffe L. Reliability modelling with dynamic bayesian networks. In:
IFAC proceedings volumes, vol. 36. 2003-06-01, p. 57–62. http://dx.doi.org/10.
1016/S1474-6670(17)36470-4.

[66] Fazlollahtabar H, Niaki STA. Fault tree analysis for reliability evaluation of an
advanced complex manufacturing system. J Adv Manuf Syst 2018;17(01):107–18.
http://dx.doi.org/10.1142/S0219686718500075.

[67] Yan R, Jackson LM, Dunnett SJ. Automated guided vehicle mission reliability
modelling using a combined fault tree and Petri net approach. Int J Adv Manuf
Technol 2017;92(5):1825–37. http://dx.doi.org/10.1007/s00170-017-0175-7.

[68] Coban M, Kaymakci OT, Gelen G. Reliability analysis of assembly processes
performed by human-robot interaction. In: 2019 3rd international symposium
on multidisciplinary studies and innovative technologies. 2019, p. 1–8. http:
//dx.doi.org/10.1109/ISMSIT.2019.8932940.

[69] Chang P-C. Reliability estimation for a stochastic production system with finite
buffer storage by a simulation approach. Ann Oper Res 2019;277(1):119–33.
http://dx.doi.org/10.1007/s10479-017-2580-6, URL http://link.springer.com/
10.1007/s10479-017-2580-6.

[70] Swain AD. Human reliability analysis: Need, status, trends and limitations. Re-
liab Eng Syst Saf 1990;29(3):301–13. http://dx.doi.org/10.1016/0951-8320(90)
90013-D.

[71] Cooper SE, Ramey-Smith AM, Wreathall J, Parry GW. A technique for human
error analysis (ATHEANA). Tech. rep., United States; 1996, p. 111.

[72] Gertman DI, Blackman HS, Marble JL, Smith C, Boring RL, O’Reilly P.
The SPAR-h human reliability analysis method. US Nucl Regul Commission
2005;230(4):9.

[73] Ellis RD. Performance implications of older workers in technological manufac-
turing environments: A task-analysis/human reliability perspective. Int J Comput
Integr Manuf 1999;12(2):104–12. http://dx.doi.org/10.1080/095119299130353.

[74] Aalipour M, Ayele YZ, Barabadi A. Human reliability assessment (HRA) in
maintenance of production process: a case study. Int J Syst Assur Eng Manag
2016;7(2):229–38. http://dx.doi.org/10.1007/s13198-016-0453-z.

[75] Wang Y, Ding Y, Chen G, Jin S. Human reliability analysis and optimization
of manufacturing systems through Bayesian networks and human factors exper-
iments: A case study in a flexible intermediate bulk container manufacturing
plant. Int J Ind Ergon 2019;72:241–51. http://dx.doi.org/10.1016/j.ergon.2019.
05.001.

[76] Torres Y, Nadeau S, Landau K. Classification and quantification of human
error in manufacturing: A case study in complex manual assembly. Appl
Sci 2021;11(2):749. http://dx.doi.org/10.3390/app11020749, URL https://www.
mdpi.com/2076-3417/11/2/749.

[77] Lazarova-Molnar S, Mohamed N. Reliability assessment in the context of industry
4.0: Data as a game changer. Procedia Comput Sci 2019;151:691–8.

[78] Friederich J, Lazarova-Molnar S. Towards data-driven reliability modeling for
cyber-physical production systems. Procedia Comput Sci 2021;184C:589–96.

[79] Friederich J, Jepsen SC, Lazarova-Molnar S, Worm T. Requirements for Data-
Driven Reliability Modeling and Simulation of Smart Manufacturing Systems. In:
2021 Winter Simulation Conference (WSC). 2021, p. 1–12. http://dx.doi.org/10.
1109/WSC52266.2021.9715410, ISSN: 1558-4305.

[80] Lu B, Chen Z, Zhao X. Data-driven dynamic predictive maintenance for a
manufacturing system with quality deterioration and online sensors. Reliab Eng
Syst Saf 2021-08;212:107628. http://dx.doi.org/10.1016/j.ress.2021.107628.

[81] Alsina EF, Chica M, Trawiński K, Regattieri A. On the use of machine learning
methods to predict component reliability from data-driven industrial case studies.
Int J Adv Manuf Technol 2018-02;94(5):2419–33. http://dx.doi.org/10.1007/
s00170-017-1039-x.

[82] Zou J, Chang Q, Arinez J, Xiao G, Lei Y. Dynamic production system diag-
nosis and prognosis using model-based data-driven method. Expert Syst Appl
2017-09;80:200–9. http://dx.doi.org/10.1016/j.eswa.2017.03.025.

[83] Lugaresi G, Matta A. Automated manufacturing system discovery and dig-
ital twin generation. J Manuf Syst 2021;59:51–66. http://dx.doi.org/10.
1016/j.jmsy.2021.01.005, URL https://www.sciencedirect.com/science/article/

pii/S0278612521000054.

http://dx.doi.org/10.1016/j.ssci.2017.05.007
http://dx.doi.org/10.1016/j.anucene.2020.107969
http://dx.doi.org/10.1002/hfm.20032
http://dx.doi.org/10.1002/hfm.20032
http://dx.doi.org/10.1002/hfm.20032
http://dx.doi.org/10.1016/S0003-6870(98)00010-6
http://dx.doi.org/10.1016/j.promfg.2020.02.094
http://dx.doi.org/10.1016/j.promfg.2020.02.094
http://dx.doi.org/10.1016/j.promfg.2020.02.094
http://dx.doi.org/10.1016/j.ifacol.2018.08.396
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb38
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb38
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb38
http://dx.doi.org/10.1007/1-84628-245-4
http://link.springer.com/10.1007/1-84628-245-4
http://link.springer.com/10.1007/1-84628-245-4
http://link.springer.com/10.1007/1-84628-245-4
http://dx.doi.org/10.1016/j.procir.2018.03.074
http://dx.doi.org/10.4028/www.scientific.net/AMM.248.450
http://dx.doi.org/10.4028/www.scientific.net/AMM.248.450
http://dx.doi.org/10.4028/www.scientific.net/AMM.248.450
http://dx.doi.org/10.1016/j.jmsy.2011.05.002
http://dx.doi.org/10.1016/j.jmsy.2011.05.002
http://dx.doi.org/10.1016/j.jmsy.2011.05.002
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb43
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb43
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb43
http://dx.doi.org/10.1109/TR.1985.5222114
http://dx.doi.org/10.1109/TR.1985.5222114
http://dx.doi.org/10.1109/TR.1985.5222114
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb45
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb45
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb45
http://dx.doi.org/10.1007/978-1-84800-131-2_38
http://dx.doi.org/10.1007/978-1-84800-131-2_38
http://dx.doi.org/10.1007/978-1-84800-131-2_38
http://dx.doi.org/10.1080/00207543.2013.825744
http://dx.doi.org/10.1080/00207543.2013.825744
http://dx.doi.org/10.1080/00207543.2013.825744
http://dx.doi.org/10.3233/IFS-130764
http://dx.doi.org/10.1016/j.microrel.2006.01.007
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb50
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb50
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb50
http://dx.doi.org/10.1007/s11668-021-01117-7
http://dx.doi.org/10.1007/s11668-021-01117-7
http://dx.doi.org/10.1007/s11668-021-01117-7
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb52
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb52
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb52
http://dx.doi.org/10.1007/978-3-319-72905-3_49
http://dx.doi.org/10.1016/S0951-8320(02)00013-3
http://dx.doi.org/10.1002/qre.545
http://dx.doi.org/10.1109/ACCESS.2020.3022947
http://dx.doi.org/10.1007/s12063-020-00151-2
http://dx.doi.org/10.1007/s10479-011-0839-x
http://dx.doi.org/10.1007/s10479-011-0839-x
http://dx.doi.org/10.1007/s10479-011-0839-x
http://dx.doi.org/10.1016/j.ress.2019.106504
http://dx.doi.org/10.1109/TR.2019.2957502
http://dx.doi.org/10.1109/TR.2019.2957502
http://dx.doi.org/10.1109/TR.2019.2957502
http://dx.doi.org/10.1109/RAM.2017.7889708
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb62
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb62
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb62
http://dx.doi.org/10.1016/j.cie.2010.07.020
http://dx.doi.org/10.1016/j.cie.2010.07.020
http://dx.doi.org/10.1016/j.cie.2010.07.020
http://dx.doi.org/10.1016/j.ress.2009.10.007
http://dx.doi.org/10.1016/S1474-6670(17)36470-4
http://dx.doi.org/10.1016/S1474-6670(17)36470-4
http://dx.doi.org/10.1016/S1474-6670(17)36470-4
http://dx.doi.org/10.1142/S0219686718500075
http://dx.doi.org/10.1007/s00170-017-0175-7
http://dx.doi.org/10.1109/ISMSIT.2019.8932940
http://dx.doi.org/10.1109/ISMSIT.2019.8932940
http://dx.doi.org/10.1109/ISMSIT.2019.8932940
http://dx.doi.org/10.1007/s10479-017-2580-6
http://link.springer.com/10.1007/s10479-017-2580-6
http://link.springer.com/10.1007/s10479-017-2580-6
http://link.springer.com/10.1007/s10479-017-2580-6
http://dx.doi.org/10.1016/0951-8320(90)90013-D
http://dx.doi.org/10.1016/0951-8320(90)90013-D
http://dx.doi.org/10.1016/0951-8320(90)90013-D
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb71
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb71
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb71
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb72
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb72
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb72
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb72
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb72
http://dx.doi.org/10.1080/095119299130353
http://dx.doi.org/10.1007/s13198-016-0453-z
http://dx.doi.org/10.1016/j.ergon.2019.05.001
http://dx.doi.org/10.1016/j.ergon.2019.05.001
http://dx.doi.org/10.1016/j.ergon.2019.05.001
http://dx.doi.org/10.3390/app11020749
https://www.mdpi.com/2076-3417/11/2/749
https://www.mdpi.com/2076-3417/11/2/749
https://www.mdpi.com/2076-3417/11/2/749
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb77
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb77
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb77
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb78
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb78
http://refhub.elsevier.com/S0278-6125(23)00230-3/sb78
http://dx.doi.org/10.1109/WSC52266.2021.9715410
http://dx.doi.org/10.1109/WSC52266.2021.9715410
http://dx.doi.org/10.1109/WSC52266.2021.9715410
http://dx.doi.org/10.1016/j.ress.2021.107628
http://dx.doi.org/10.1007/s00170-017-1039-x
http://dx.doi.org/10.1007/s00170-017-1039-x
http://dx.doi.org/10.1007/s00170-017-1039-x
http://dx.doi.org/10.1016/j.eswa.2017.03.025
http://dx.doi.org/10.1016/j.jmsy.2021.01.005
http://dx.doi.org/10.1016/j.jmsy.2021.01.005
http://dx.doi.org/10.1016/j.jmsy.2021.01.005
https://www.sciencedirect.com/science/article/pii/S0278612521000054
https://www.sciencedirect.com/science/article/pii/S0278612521000054
https://www.sciencedirect.com/science/article/pii/S0278612521000054


Journal of Manufacturing Systems 72 (2024) 38–58J. Friederich and S. Lazarova-Molnar
[84] Friederich J, Lazarova-Molnar S. Data-driven reliability modeling of smart manu-
facturing systems using process mining. In: 2022 Winter Simulation Conference.
2022, p. 2534–45. http://dx.doi.org/10.1109/WSC57314.2022.10015301.

[85] Friederich J, Francis DP, Lazarova-Molnar S, Mohamed N. A framework
for data-driven digital twins of smart manufacturing systems. Comput Ind
2022;136:103586. http://dx.doi.org/10.1016/j.compind.2021.103586.

[86] Lazarova-Molnar S, Niloofar P, Barta GK. Data-driven fault tree modeling for
reliability assessment of cyber-physical systems. In: 2020 winter simulation
conference. 2020-12, p. 2719–30. http://dx.doi.org/10.1109/WSC48552.2020.
9383882.
58
[87] Niloofar P, Lazarova-Molnar S. Data-driven extraction and analysis of repairable
fault trees from time series data. Expert Syst Appl 2023;215:119345.

[88] Niloofar P, Lazarova-Molnar S. Fusion of data and expert knowledge for fault
tree reliability analysis of cyber-physical systems. In: 2021 5th International
Conference on System Reliability and Safety (ICSRS). IEEE; 2021, p. 92–7.

[89] Akhavan-Rezai E, Haghifam MR, Fereidunian A. Data-driven reliability modeling,
based on data mining in distribution network fault statistics. In: 2009 IEEE
Bucharest PowerTech. 2009-06, p. 1–6.

http://dx.doi.org/10.1109/WSC57314.2022.10015301
http://dx.doi.org/10.1016/j.compind.2021.103586
http://dx.doi.org/10.1109/WSC48552.2020.9383882
http://dx.doi.org/10.1109/WSC48552.2020.9383882
http://dx.doi.org/10.1109/WSC48552.2020.9383882

	Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities
	Introduction
	Reliability Assessment of Manufacturing Systems
	Hardware Reliability Assessment
	Software Reliability Assessment
	Human Reliability Assessment

	Related Work
	Hardware Reliability Assessment
	Human Reliability Assessment

	Contributions addressing Reliability Assessment of Manufacturing Systems
	Review methodology
	Hardware Reliability Assessment of Manufacturing Systems
	Contributions utilizing Reliability Block Diagrams
	Contributions utilizing Fault Tree Analysis
	Contributions utilizing Petri nets
	Contributions utilizing Markov Modeling
	Contributions utilizing Bayesian Networks
	Contributions utilizing a combination of modeling formalisms

	Human Reliability Assessment

	Challenges and Opportunities for Reliability Assessment of Manufacturing Systems
	Challenges and Opportunities for Hardware Reliability Assessment
	Challenges and Opportunities for Human Reliability Assessment
	Challenges and Opportunities for Reliability Assessment in General
	Data-Driven Reliability Assessment

	Conclusion
	Declaration of competing interest
	References


