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ABSTRACT Deep learning has found widespread application in diabetic retinopathy (DR) screening,
primarily for lesion detection. However, this approach encounters challenges such as information loss due to
convolutional operations, shape uncertainty, and the high similarity between different lesions types. These
factors collectively hinder the accurate segmentation of lesions. In this research paper, we introduce a novel
dual-branch U-Net architecture, referred to as Dual-Branch (DB)-U-Net, tailored to address the intricacies
of small-scale lesion segmentation. Our approach involves two branches: one employs a U-Net to capture the
shared characteristics of lesions, while the other utilizes a modified U-Net, known as U2Net, equipped with
two decoders that share a common encoder. U2Net is responsible for generating probability maps for lesion
segmentation as well as corresponding boundary segmentation. DB U-Net combines the outputs of U2Net
andU-Net as a dual branch, concatenating their segmentationmaps to produce the final result. Tomitigate the
challenge of imbalanced data, we employ the Dice loss as a loss function.We evaluate the effectiveness of our
approach on publicly available datasets, including DDR, IDRiD, and E-Ophtha. Our results demonstrate that
DBU-Net achieves AUPR values of 0.5254 and 0.7297 for Microaneurysms and soft exudates segmentation,
respectively, on the IDRiD dataset. These results outperform other models, highlighting the potential clinical
utility of our method in identifying retinal lesions from retinal fundus images.

INDEX TERMS Deep learning, neural network, U-net, computer-aided diagnostic, retinal lesions
segmentation.

I. INTRODUCTION
Diabetes federations predict that the number of people with
diabetes will rise from 463 million to 700 million over
the next 25 years if sufficient measures are not taken to
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combat the spread of diabetes [1]. As a common chronic
complication of diabetes, DR remains one of the top five
causes of irreversible blindness in adults [2]. In clinical
practice, a fundus image is a projection of the fundus
captured by a monocular camera onto a 2D plane. There are
parameters in the fundus image, such as optic disc (OD),
macula, fovea, blood vessels or some lesions related to DR:
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FIGURE 1. Illustration of the retinal image by highlighting normal structures (optic disc) and abnormalities
associated with DR in different color: MAs, HEs, SEs, and EXs.

microaneurysms (MA), hemorrhages (HE), hard exudates
(EX) and soft exudates (SE). Microaneurysms (MAs) are the
first visible signs of DR, which are small swellings in the
tiny blood vessels of the retina that appear as tiny, round,
red spots. HEs form due to blood leakage and appear as a
small white dot or spot. EXs and SEs are bright object [3],
as listed in Figure 1. Fundus images can be acquired non-
invasively and economically, making them more suitable for
large-scale screening. Retinal lesions can be visualized on
fundus images [4]. Thus, ocular screening by fundus images
is important in the diagnosis of DR. It is therefore essential
that treatment can be administered for the prevention of vision
loss.

The analysis of the lesions from the retinal fundus image
is represented with their shape, their texture and their
location of appearance which are the main indicators for
evaluating the evolution of the disease [5]. Quantitative
analysis of fundus images is important, but analysis of the
visualization base has played an important role for disease
diagnosis in the screening process. But Performing a manual
analysis is a laborious task, and the diagnosis of anterior
diabetic retinopathy relies on automated lesion segmentation.
However, there are certain constraints in the automated lesion
detection procedure.

1) The retinal fundus images suffered from various issues
such as noise, uneven illumination and variable low
contrast, as well as abnormalities in their parameters
such as retinal vessels, drusen and optic disc. Another
major issue is that the lesion size of the retinal
fundus image is smaller than the background and it is
challenging to detect the lesion.

2) The shape, texture, and color of the lesion in retinal
fundus images make it challenging to detect the lesion,
since the shape and color of MAs and HEs are almost
identical and appear as red dots in the fundus and other
side images, the SEs and EXs appeared as bright spots.
Many researchers [6], [7], [8] have misclassified lesion
detection, and it is difficult to establish appropriate
classes for lesion detection from retinal fundus images.

Deep learning-based methods especially fully convolu-
tional neural networks have achieved great success in med-
ical image segmentation. The fully convolutional networks
(FCNs) [9] and U-Net [10] played an important role in seg-
mentation especially segmentation on medical images. After
successfully use of U-Net, we implemented a novel approach
to improve the performance of retinal lesion segmentation
from color retinal fundus images. U-Net contains an encoder
and symmetric decoder to perform the segmentation. The
encoder is employed to extract features, while the feature
extraction processes are connected with the decoder. The
stack of convolutional layer, batch normalization, rectified
linear unit layer (ReLU), and the following max-pooling
layer are the basic architecture for extracting features for
segmentation of retinal lesion. With the increasing layers, all
information related to the lesion is extracted as high-level
semantic information while a part of low-level semantics
includes information on color, texture, and shape, and such
information is not the main purpose for segmentation else it
plays an important role for segmentation tiny lesion. Inspiring
by [11], Takikawa et al. propose a new two-stream CNN
architecture for semantic segmentation that explicitly shape
information as a separate processing branch, that processes
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information in parallel to the classical stream. Furthermore,
Zhou et al. propose a Bilateral branch network (BBN) [12],
each branch of which performs its duty separately. The
feature maps from the base network are extracted to perform
different segmentation simultaneously and this method may
work well on other similar types of tasks.

Furthermore, as previously mentioned, John et al.’s
proposal [13], [14] underscores the advantages of auxiliary
information and the dual-branch architecture in augmenting
the acquisition of contextual features. This enhancement
contributes to improved lesion segmentation performance.
We propose an end-to-end dual-branch U-Net architecture
lesion segmentation framework (DB U-Net) that contains
two branches which are composed of U-Net and a modified
U-Net respectively. The output of U-Net is supervised by
red/bright lesions compared with ground truth (GT) to learn
common features among red/bright lesions. The modified
U-Net namely U2Net consists of two decoders: lesions
segmentation biased learning decoder and boundary of lesion
biased learning decoder. To preserve low-level information
that might be lost during the down-sampling process, U2Net
incorporates additional boundary information through an
extra decoder. This involves combining two branches with
an image patch to create feature maps, which are then
inputted into the fusion module as the final step in the
DB U-Net process. The research paper’s novelty lies in its
comprehensive approach to addressing the challenges of reti-
nal lesion segmentation in diabetic retinopathy. It combines
deep learning techniques with innovative architectural mod-
ifications to improve automatic lesion detection’s accuracy
and diagnostic capabilities in retinal fundus images. The
following are the main contributions of this research work.
Our main contributions and novetly are as follows

1) We address the challenges inherent in the automatic
lesion detection process within retinal fundus images,
including image quality, small lesion sizes, and the sim-
ilarity in appearance of different lesions. We introduce
deep learning techniques to overcome these challenges,
specifically focusing on fully convolutional neural
networks (FCNs) and U-Net. This proposed network
aims to enhance accuracy in retinal lesion segmenta-
tion, leveraging the potential of these advanced neural
networks.

2) We present innovative architectural modifications to
improve segmentation performance, including a two-
stream CNN architecture that explicitly considers
shape information and a dual-branch U-Net architec-
ture (DB U-Net) featuring two distinct branches. Addi-
tionally, we propose a supervised learning approach
where the model’s output is guided by specific types
of lesions (red/bright), facilitating improved learning
of common features among these lesions compared to
ground truth (GT).

3) We introduce innovative enhancements to segmenta-
tion models, including incorporating boundary infor-
mation through an extra decoder in U2Net to preserve

low-level details during the down-sampling process,
potentially enhancing segmentation accuracy. Addi-
tionally, in our DB U-Net architecture, we implement
a fusion module at the end, combining feature maps
from two branches and image patches. This integration
aims to improve further the model’s ability to capture
essential features for segmentation.

4) Our evaluation encompasses three publicly accessible
datasets: IDRiD [15], E-Ophtha [16], and DDR [17].
Through ablation studies, we analyze the impact
of various design choices on lesion segmentation
performance. Comparative assessments reveal that DB
U-Net achieves remarkable and competitive results
in comparison to state-of-the-art segmentation models
like U-Net, DeepLab v3+ [18], and other segmentation
models. This stands as a significant contribution,
as our method consistently outperforms alternative
approaches across diverse databases.

This paper is organized as follows. Section II discuss
related works. Section III provides a comprehensive architec-
ture of proposed model. Section IV explains the datasets and
configure for perform an experiments. Section V analyses the
quantitative results and experimental performance. Finally,
we present conclusions in Section VI.

II. RELATED WORK
Table 1 below provides a thorough review of previous
research, presenting a comparative analysis of existing
work. Additionally, a detailed discussion of these earlier
contributions is presented.

Table 1 showcases a comparative analysis that emphasizes
the variety of datasets, lesion types, neural network archi-
tectures, and distinctive features employed across various
studies focused on detecting and segmenting retinal lesions.
Each study employs distinct techniques and innovations to
enhance model accuracy, illustrating the continuous research
and progress in this domain. The subsequent explanations
delve into the specifics of each method, outlining their
contributions and limitations as explained below.

Haloi et al. [19] present a novel method for early diabetic
retinopathy screening, focusing onMAdetection in color fun-
dus images. They employ deep neural networks with dropout
training and max-out activation functions, eliminating the
need for preprocessing and manual feature extraction. While
claiming substantial improvements, quantitative evidence
is lacking. The method achieves state-of-the-art accuracy
on benchmark datasets. Still, it faces limitations, including
data diversity, interpretability, computational demands, false
positives/negatives, dataset-dependent performance, lack of
detailed comparisons, data balance, and robustness to noise-
highlighting the need for further research and refinement.

Chudzik et al. [20] present an innovative approach to auto-
mated MA detection in fundus images, a crucial component
of diabetic retinopathy screening. They employ a patch-based
fully convolutional neural network with batch normalization
layers and use the Dice loss function, simplifying the

VOLUME 11, 2023 130453



M. Yin et al.: Dual-Branch U-Net Architecture for Retinal Lesions Segmentation on Fundus Image

TABLE 1. Summary of several researches for lesion detection/segmentation.

process with just three processing stages, contrasting with
methods requiring up to five. Notably, the paper demonstrates
successful knowledge transfer between datasets within the
MA detection domain, potentially enhancing adaptability
across different data sources. The method’s evaluation on
popular datasets, including E-Ophtha, DIARETDB1, and
ROC, showcases robust performance, surpassing state-of-the-
art methods based on the FROCmetric. It excels in achieving
high sensitivities for low false positive rates, enhancing
its promise for diabetic retinopathy screening. However,
the study does not explicitly address potential limitations
such as further diversity evaluation, model interpretability,
handling class imbalance, and comprehensive comparisons
with existing methods, factors essential for assessing its real-
world relevance.

Kou et al. [21] present the deep recurrent U-Net (DRU-
Net), a deep learning approach for MA segmentation in
diabetic retinopathy diagnosis. MAs are critical indicators,
but manual annotation is cumbersome, prompting the need
for automation. The DRU-Net combines U-Net, deep residual
models, and recurrent convolutions to enhance feature accu-
mulation, addressing low contrast and small MA challenges.
It achieves impressive results on E-Ophtha and IDRiD
datasets, notably an accuracy of 0.9999, an AUC of 0.9943 on
E-Ophtha, and 0.987 AUC on IDRiD. It outperforms
U-Net, FCNN, and ResU-Net, establishing itself as a state-
of-the-art MA segmentation method. However, potential
limitations include computational demands, generalizability,
interpretability, data augmentation, which should be consid-
ered for practical use beyond specific datasets.

Sarhan et al. [22] present a two-stage deep learning
approach for MA segmentation in diabetic retinopathy
detection, underscoring the importance of deep learning in
fundus image analysis. MAs are vital markers of diabetic
retinopathy progression. Their method leverages multiple
input scales, allowing for consideration of features at
various resolutions, crucial for accommodating MA size
variations. Additionally, selective sampling enhances com-
putational efficiency by focusing the model’s attention on
key image regions. Embedding triplet loss is introduced to
enhance classification model discriminative power, resulting
in a significant 30.29% relative improvement over fully

convolutional neural networks (FCNs) in MA segmentation.
However, the study lacks discussion of potential limitations,
including computational complexity, generalizability, inter-
pretability and dataset diversity. These considerations are
vital for assessing the method’s practical applicability beyond
its reported performance.

Theelen et al. [23] present a method aimed at improving
CNN training for medical image analysis, with a focus
on hemorrhage detection in colored fundus images. They
address the challenge of time-consuming CNN training
by introducing selective sampling, dynamically choosing
misclassified negative samples to prioritize informative data
during the learning process. Their results show a substantial
reduction in training time, maintaining or improving perfor-
mance, achieving AUC values of 0.894 and 0.972 on two
datasets, and demonstrating potential for model generaliza-
tion. However, limitations include the method’s application
specificity, questions about generalizability to diverse data
sources, lack of detail on heuristic sampling criteria, and
the need for clinical validation in real healthcare settings.
These considerations are crucial when assessing the method’s
practical applicability beyond its promising yet specialized
performance.

Zheng et al. [24] present a deep learning approach for
detecting retinal exudates, an early indicator of diabetic
retinopathy (DR). They tackle challenges in deep convolu-
tional neural network (DCNN) application by introducing
an ensemble convolutional neural network (MU-net) to cope
with limited labeled data and adopting conditional generative
adversarial networks (cGANs) for mitigating severe class
imbalance. This strategy enhances model robustness and
generalization across diverse datasets and clinical scenarios.
The method demonstrates significant performance improve-
ments, reflected in higher F1 scores at the lesion level and
increased accuracy at the image level compared to non-
cGAN approaches. However, limitations such as the need for
computational resource requirements, dataset diversity, and
model interpretability must be considered when assessing its
practical applicability beyond benchmark datasets.

Yan et al. [25] propose an innovative method for seg-
menting small lesions in high-resolution retinal images.
They acknowledge downsampling and patch-based methods’
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limitations and introduce mutually local-global U-nets to
balance local and global context. While their method shows
promise, quantitative comparisons with existing techniques
are lacking, and they plan to collect more data for future
research. They also suggest the model’s potential for broader
applications beyond retinal lesion segmentation, although
concrete evidence is missing. Further validation and explo-
ration are needed. Guo et al. [26] introduce a significant
contribution to DR and diabetic macular edema diagnosis
by developing the L-Seg multi-lesion segmentation model.
This model addresses challenges related to the diagnosis of
these conditions by simultaneously segmenting four types of
lesions in fundus images. L-Seg is notable for being the first
small object segmentation network capable of concurrently
handling soft exudates, hard exudates, microaneurysms, and
hemorrhages. The method incorporates a multi-scale feature
fusion technique to enhance its performance. It introduces
a multi-channel bin loss to address the class imbalance and
loss-imbalance issues during training. Extensive evaluations
on various datasets showcase L-Seg’s superiority over other
deep learning models and traditional methods, particularly
excelling in small lesion segmentation. The limitations
highlight the need for further research to ensure the model’s
applicability and robustness beyond the evaluated datasets
and challenges.

Wang et al. [27] contribute to the field of diabetic
retinopathy diagnosis by addressing the challenging task
of multiple lesion segmentation. Their work introduces
a scale-aware attention (SAA) block designed to effec-
tively handle variations in lesion scales. Through extensive
experimentation, they establish the superiority of the SAA
block over existing attention mechanisms, achieving state-
of-the-art results in the domain. However, the study falls
short in terms of clinical validation and comprehensive
comparisons with existing methods. Additionally, it does not
delve into considerations related to computational resource
requirements and scalability. These limitations highlight the
necessity for further research and real-world validation to
ascertain the practical applicability of their approach.

Liu et al. [28] introduce a dual-branch network designed
to segment hard exudates in color fundus images. These
exudates vary significantly in size, and class imbalance issues
complicate their segmentation. The dual-branch network
employs two branches with partially sharedweights, allowing
it to effectively learn features and classifiers for hard exudates
of different sizes. During training, they utilize a novel dual-
sampling modulated Dice loss, prioritizing the segmentation
of large exudates before addressing smaller ones. Their
experimental evaluations, conducted on publicly available
datasets for hard exudate segmentation, demonstrate the
superior performance of the dual-branch network compared
to existing methods that use both CBCE (Class Balanced
Cross-Entropy) loss and Dice loss. This suggests their
novel network architecture and loss function significantly
enhance segmentation accuracy. However, it’s important
to acknowledge certain limitations. The study primarily

focuses on showcasing the effectiveness of their dual-
branch network but does not thoroughly explore potential
limitations related to its clinical applicability. Additionally,
the comparison with existing methods is somewhat limited,
warranting further research for a more comprehensive
evaluation of the network’s real-world potential and potential
drawbacks.

The comparative analysis of these methods highlights their
innovative approaches to detecting and segmenting retinal
lesions. Nevertheless, each method comes with its own set
of limitations. Although these approaches show promise, they
frequently lack thorough evaluations and do not fully account
for real-world challenges like diverse datasets, computational
requirements, generalization, and interpretability. In light
of these observations, we will now introduce our proposed
approach, which aims to address the limitations identified in
the existing methods.

III. PROPOSED METHOD
The proposed methods contain different tasks and the model
of proposed methods is shown in Figure 2. Each part of these
methods is elaborated below.

A. PROPOSED ARCHITECTURE
In the architecture section, we explained theDB-U-Netmodel
of our proposed method, as shown in Figure 2. The network
model contained the dual branches of the network with the
fusion module. The first branch of the proposed network is
U-Net and the second branch of the proposed network is
U2Net. The U2Net model is based on a multi-task learning
network that explores the boundaries of information that
can extract lesions and give information about appropriate
boundaries. Next, we used the fusion features based on
the branch feature maps to produce the image patches for
precise segmentation. In the training process, U2Net on
the branch is performed by predicting the target lesion and
the corresponding boundary while the other branch was
supervised by a red and bright lesion label to learn the
common characteristic of a similar lesion and their prediction
process is explained below and in the next section we
elaborate the subnet architecture of our proposed method.

B. U-NET ARCHITECTURE
The main objective is to detect the lesion as much as possible,
and the U-Net branch is used to train the common features
based on the red and bright lesion to detect the required
lesion. TheU-Net is composed of the encoder and the decoder
with a convolutional layer instead of fully connected layers.
This process is used to convert input images into binary
image maps. It takes the image patches with X ∈ ℜ

H×W×3

and it is a process of entering and exiting segmentation of
the red and bright lesion and it is denoted by Ŷ2. In this
proposed method, the residual architecture according to
LinkNet [29] can optimize the final performance and we
modify the residual block [30] replaced by a convolution
block in the typical U-Net. Additionally, we have reduced the
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FIGURE 2. An overview of the proposed segmentation framework by highlighting the three modules in different colors. The two branches of DB
U-Net are composed of U-Net and U2Net, respectively. The fusion module takes segmentation maps from two branches as input and outputs the
final segmentation result, denoted as Ŷ .

number of convolution cores to half of the typical architecture
by proposing to increase the trade-off between speed and
accuracy.

Fconv(X ) = ReLU (BN (Conv(X )). (1)

Xout = Pooling(Fconv(Fconv(X )) + Conv1×1(X )). (2)

where X , Xout are the input and output the residual block in
downsampling path. BN (·) denotes the batch normalization
layer. ReLU (·) denotes rectified linear unit layer. Conv(·)
denotes convolutional layer and Conv1×1(·) is an identity
mapping function. Pooling(·) is a max-pooling function.

C. U2NET ARCHITECTURE
The proposed U2Net architecture is shown in the Figure 3.

The deep neural network acts as a black box to extract the
feature from the input. Downward sampling path depends
on increasing layers to extract low-level information from
exudates such as color, shape. High-level functionality such
as the border is phased out as the [31] pattern is implemented.
In this research work, we designed the modified U-Net model
named U2Net model. The U2Net model is used to overcome
the lack of information, as shown in Figure 3. The decoder
in U2Net is to share the characteristics of its encoder to
predict the lesion and its boundary respectively as shown in
Figure 2. The boundary information in U2Net is introduced
as an auxiliary by an additional decoder to avoid the loss of
low-level information in order to obtain a good segmentation
of the exudates.

The architecture of U2Net is implemented based on U-Net
because it is based on a convolutional block replaced by
the residual block with a number of convolution cores per
convolutional layer reduced by half. The green block in the
Figure 2 represents the input X ∈ RH×W×3 and the output of

U2Net: lesion segmentation map Ŷ1, and the corresponding
boundary segmentation map Ŷb respectively.

D. ARCHITECTURE OF FUSION MODULE
The segmentation map of red/bright lesion and target lesion
are obtained from U-Net and U2Net respectively. The fusion
module takes the image patches and the segmentation map
as the input to get the final segmented lesion. Firstly, the
segmentation of red/bright lesion Ŷ2 is concatenated with
image patch X along the channel dimension in order to
forming a new feature map. In this step, the image X
and segmentation of red/bright lesion Ŷ2 are concatenated
within the fusion module to stack the channels together.
Then we merge the feature map using an Atrous Spatial
Pyramid Pooling (ASPP) [32] which is containing multiple
atrous convolutions with different sampling rates to capturing
the context of the image at multi-scales. It combines
segmentation map from U-Net branch with image patch X
and the output of ASPP Ŷ3 supervised by the target lesion
according to groundtruth.

Finally, we obtain two segmentation Ŷ1 and Ŷ3. Moreover,
we assume the difference betweenŶ1 and Ŷ3 can be viewed as
different regions. So, to highlight these regions, we subtract
Ŷ3 and Ŷ1 element-wise and take its absolute value, which
is contributed to encourage fusion module focus on the
difference between the two feature maps. We concatenate the
aforementioned segmentation map and denote it as Xconcat ∈

RH×W×6 Xconcat ∈ RH×W×5. The following ASPP and 1 × 1
convolution layer transform Xconcat to the final segmentation
Y ∈ RH×W×1. The algorithm for the fusion module is
presented below (see Algorithm 1).

E. LOSS FUNCTION
During the training process, we simultaneously train the
U-Net and U2Net sub-networks, incorporating the fusion
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FIGURE 3. An overview of U2Net. Dual decoders share the same latent representation from the encoder. Two upsampling paths take care of lesion
and boundary segmentation.

Algorithm 1 The Fusion Module Algorithm

Input: Image patch X , Lesion segmentation map Ŷ1
from U2Net, Segmentation map of red/bright
lesion Ŷ2 from U-Net

Output: Final segmented lesion map Ŷ

Ŷ ′

2 = Concat(Ŷ2,X );

Ŷ3 = ASPP(Ŷ ′

2);

Ŷ1|3 = |Ŷ3 − Ŷ1|;

Xconcat = Concat(Ŷ1|3, Ŷ3, Ŷ1,X );

Ŷ = Conv1×1(ASPP(Xconcat ));

module to supervise both segmentation and boundary map
predictions. The total loss function is expressed as follows:

L = LU−Net

(
Yb, Ŷb

)
+ LU2Net

(
Y2, Ŷ2

)
+ LFusion

(
Y , Ŷ

)
.

(3)

where L represents the total loss function.

LU−Net

(
Yb, Ŷb

)
is the loss function specific to the U-Net

sub-network, which measures the error between the ground
truth segmentation data Yb and the predicted segmentation Ŷb.
LU2Net

(
Y2, Ŷ2

)
is the loss function specific to the U2Net

sub-network, which measures the error between the ground
truth Y2 and predicted Ŷ2 values of segmentation.
LFusion

(
Y , Ŷ

)
is the loss function related to the fusion

module, which evaluates the discrepancy between the ground
truth Y and the predicted Ŷ fusion outcomes.

Equation 3 combines these three loss components to create
a comprehensive loss function that guides the training of the
U-Net and U2Net sub-networks with the fusion module. The
objective during training is to minimize this total loss L which
helps improve the accuracy of segmentation and boundary
map predictions.

The modules employ the Dice loss as their loss function.
‘‘The Dice loss, as referenced in [33], serves as a valuable
metric for gauging the extent of overlap between the Ground
Truth (GT) and the segmented output. It relies on the Dice
coefficient for its calculation. This approach obviates the
necessity to meticulously fine-tune the balance between
foreground and background elements within the data.
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Given the inherent imbalance in the distribution of lesion
pixels and background pixels, the adoption of the Dice
loss as the primary loss function is a strategic choice.
Mathematically, the Dice loss is represented as follows:

Ldice = 1 −
2

∑
x∈� pl(x)gl(x)∑

x∈� p
2
l (x) +

∑
x∈� g

2
l (x)

. (4)

In this context, pl(x) represents the probability assigned to
pixel x for belonging to class l and gl(x) corresponds to a
vector indicating the ground truth label, where it assumes a
value of one for the correct class and zero for all other classes.
This formulation of the Dice loss effectively addresses the
challenge posed by unbalanced training data. Consequently,
there is no need to introduce weighting parameters between
various classes, such as the background and the vessel tree,
during training. This makes the loss function particularly
suitable for binary segmentation tasks.

IV. EXPERIMENT
A. DATASET
The Indian Diabetic Retinopathy Picture (IDRiD) [15] is
provided by the 2018 ISBI Grand Challenge on Segmentation
and Classification of Diabetic Retinopathy. It is used in
this research work. Three problems can be solved using
this database: lesion segmentation, disease classification, and
OD detection and segmentation. For lesion segmentation,
the dataset consists of 81 challenging fundus images with
54 images for training and the remaining 27 images for
testing, each having a resolution of 4288 × 2848 and
pixel-level lesion annotations. Specifically, there are 81 MA
frames, 81 EX frames, 80 HE frames, 40 SE frames. For
training data, each image was selected with an ROI of
2, 560 × 3, 840 and then scaled down by t times. For AM
segmentation, the size of the ROI was halved (t = 2).
Each image was divided into 24 patches with 320 pixels for
training. For the other segmentation of the lesion, the cropped
image was reduced by 4 times (t = 4) and was divided into
6 patches with 320 × 320.

DDR [17] is the largest dataset proposed in 2019 for
DR screening, containing 13,673 images obtained from
147 hospitals, covering 23 provinces in China. These images
were captured using 42 types of fundus cameras with a
45 degree field of view and range in resolution from 1088 ×

1920 to 3456×5184. For lesion segmentation, DDR provides
757 fundus images with pixel-level annotation. There are
383 images for training, 149 for validation, and 225 for
testing.We scaled all fundus images by 4 times (t = 4), while
320×320 patches were uniformly cropped from these images
for training.

The E-Ophtha [16] is a publicly available dataset that
consists of two parts: E-Ophtha EX and E-OphthaMA. In our
experience, E-Ophtha MA is adopted only, which consists
of 148 images with MAs or small HEs and 233 healthy
images with resolution ranging from 1440 × 960 to 2544 ×

1696 pixels and provides annotations at the pixel level for AM
segmentation. In our experiments, we used 100 images for

training and the remaining 48 images for testing. For lesion
segmentation, we scaled these images to 1360×2048 and then
cropped the images to 1280×1920. Each cropped image was
divided into 24 patches with 320×320.

B. PREPROCESSING
There are serious challenges such as uneven illumination,
high variability in contrast, and background noise from data
acquisition devices on the original fundus images. To track
these issues, we developed an image enhancement method
inspired by [5] and [34] to mitigate the influence of the
aforementioned challenges. We apply histogram equalization
(HE) and contrast-limited adaptive histogram equalization
(CLAHE) [35] on the brightness channel of the LAB fundus
image. Concretely, a Gaussian filter is used to remove the
noise caused by the device and zoom in at first. Next,
we transform the color space of the images from RGB
to LAB. HE distributes the pixel intensities of the image
according to all the information of the image to improve the
contrast. But it also amplifies background noise. CLAHE can
remove noise and retain detail by limiting contrast. After
pre-processing, the original fundus images are split into
multiple image patches in uniform resolution and used for
data augmentation.

C. DATA AUGMENTATION
Data augmentation is an essential method to improve model
robustness and accuracy by artificially augmenting the
training data available in deep learning. In this article,
there are two methods of data augmentation: geometric and
lightweight. The first includes vertical flip, horizontal flip,
and rotation, which are processed on both the input image
and its corresponding ground truth segmentation. While the
latter adjusts the input brightness based on gamma correction
and only applies to the input image. Before training, several
transformations randomly combine and apply to each input
image patch. In this whole process, We employed publicly
available databases for validation of our proposed, and each
of these databases includes images with ground truth or
pixel-level annotations. These resources were utilized to
validate and compare the effectiveness of the method we have
proposed.

D. EXPERIMENT DETAIL
The experimental environment is single Inter CPU Intel
(R) Xeon (R) CPU e5-2620 V3 @2.40GHz and NVIDIA
GeForce GTX 1080Ti, with 16G video memory. The model
proposed in this paper is implemented in Python 3.5 and
PyTorch 1.12. For training, each model has trained 1,000
epochs. We performed the Adam algorithm with a batch size
of 8, a max iteration of 1,000, a momentum of 0.9, a weight
decay of 5e-4, and an initial learning rate of 1e-3. In the
comparative experiments, we employed ResNet-101 as the
backbone architectures of DeepLab v3+ and adapted COCO
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pretrained weights as the initial weights. The learning rate
was initialized to 1e-4 to fine tune DeepLab v3+.

E. EVALUATION METRICS
The performance of model for lesions segmentation was
evaluated by Area under Precision-Recall curves (AUPR)
[36] as AUPR was used for evaluation by ISBI IDRiD
challenge [15] in 2018. Precision-Recall curves (PR curve)is
used and PR curve is a plot of the PPV (y-axis) and the
Sen (x-axis) for different probability thresholds which is set
as 33 equally spaces instance from 0 to 1 in probabilities
in our experiment. AUPR are recommended for imbalanced
binary classification task where Area under ROC curves
(AUC) may provide an excessively optimistic view of
theperformance [36], [37]. PR curves are recommended for
tasks with imbalanced binary classification models where
ROC curves may provide an excessively optimistic view
of the performance [36], [37]. Other evaluation metrics are
defined in Table 2.

TABLE 2. Definitions of the evaluation metrics [24].

V. EXPERIMENT RESULT
In this section, we introduce the results of our proposals on
three public datasets. Initially, we provide an ablation study to
show the effectiveness of each component. Comparing with
other extensive models and show qualitative results of our
method are also performed. AUPR was used as the main
evaluation metric as same as the 2018 ISBI grand challenge.
And the Illustration of lesion segmentation results on a fundus
image from IDRiD is shown in Figure 4.

A. ABLATION STUDIES
From Table 3 to Table 5, we tested the impact of different
modules on the results on IDRiD, DDR, E-Ophtha MA
datasets respectively.

1) The external decoder was employed in our ablation
studies. We used the conventional U-Net as a baseline
model and utilized the U2Net’s output as a segmenta-
tion result to assess lesion segmentation performance.
When compared to the U-Net, the external decoder,
specifically designed to learn boundary features,
exhibited a significant enhancement in AUPR for
lesions, except for SEs. This observation underscores
the valuable contribution of auxiliary information in
enhancing the network’s performance, particularly in
the context of small-scaled lesion areas.

TABLE 3. Performance of various models on IDRiD dataset. (best AUPR
value are shown in bold).

2) Incorporating the dual-branch architecture into our
research framework, we labeled the final segmentation
output as DB U-Net to evaluate its performance.
In Table 3, it is evident that DB U-Net yielded the
highest AUPR value compared to all the other methods
under consideration. The segmentation results of DB
U-Net, as illustrated in Table 4, effectively distin-
guished similar abnormal regions while maintaining a
high sensitivity to lesions. This architectural approach,
featuring dual branches and a fusion module, improves
performance in balancing detection and classification
tasks. However, when examining the results in 4,
we noticed that U2Net achieved the highest AUPR,
whereas DB U-Net outperformed others in the F1
score. This indicates that our model excelled at a
specific threshold value for achieving the best results.
Nevertheless, it’s important to note that DB U-Net
exhibited some instability when subjected to various
factors, such as changes in illumination, resolution,
or lesion size. This instability may arise due to the
branch responsible for red/bright lesion segmentation,
which introduces information about similar lesions.
Furthermore, in cases of low resolution, the fusion
module may struggle to differentiate the target lesion
from the fused feature map.

3) The highlight of our model output incorporates the
Fusion module, which plays a pivotal role in improving
the performance of DB U-Net, our proposed method.
The Fusion module demonstrates its importance
by exhibiting improved network performance over
alternative methods. Essentially, this module helps
in effectively detecting diseases in input data. The
Fusion module is an essential component that merges
information from different branches or sources within
the network, enabling a holistic understanding of the
data. By integrating this module into the architecture,
DB U-Net gains the ability to extract and utilize
valuable information from multiple sources, leading to
more accurate and robust disease detection capabilities.
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FIGURE 4. Figure (a) displays the original color fundus image. Figure (b) provides a visual representation of segmentation maps, presenting the
outcomes of lesion segmentation on the IDRiD dataset. In this representation, microaneurysms (MAs) are denoted in blue, hard exudates (HEs)
in green, hemorrhages (EXs) in red, and soft exudates (SEs) in yellow. This illustration highlights the results of segmenting four distinct types of
retinal lesions using our proposed deep learning model, organized from left to right: MAs, HEs, SEs, and EXs within fundus images. The
uppermost row of images represents the ground truth (GT) reference. Similarly, the second, third, and fourth rows correspond to lesion
segmentation achieved by the first stage (U-Net), the second stage (U2Net), and the third stage (referred to as Fusion, employing the DB U-Net
model), respectively. The grayscale value assigned to each pixel reflects the probability of the presence of a lesion.

Essentially, the Fusion module serves as a hub in our
model, allowing it to connect the collective power of
its components and deliver superior performance in
disease detection tasks. Its role in information fusion
is instrumental in the overall success of the DB U-Net
model.

B. COMPARATIVE ANALYSIS:PERFORMANCE ON THE
PUBLIC E_OPHTHA_EX DATASET
Our evaluation on the publicly available e_ophtha_EX
dataset reveals that our proposed method outperforms other
state-of-the-art techniques in various aspects as shown
in Table 6. Specifically, our method shows significant

improvements in sensitivity (3.06% to 9.72%), precision
(1.06% to 5.61%), and F1-score (2.02% to 8.08%) compared
to recent studies. While competitive with a leading method
by Zheng et al. regarding specificity and accuracy, there
is a slight gap in sensitivity, precision, and F1-score.
Our method demonstrates superior performance in critical
metrics, making it a strong contender in medical image
analysis applications, albeit with some nuanced differences
compared to the top-performing alternative. We conducted
a computation time analysis, revealing that our proposed
method achieved a swift 0.141second computation time,
whereas no other method in the study reported their
timing.
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TABLE 4. Performance of various models on DDR dataset.

TABLE 5. Performance of various models on E-Ophtha(MA) dataset.

C. COMPARATIVE ANALYSIS WITH TOP 10 IDRID LESION
SEGMENTATION TEAMS
In this section, we employed AUPR (Area under Precision-
Recall curve) as the evaluation metric, aligning with the
criteria used in the IDRiD challenge. The IDRiD challenge,
hosted by the IEEE International Symposium on Biomedical
Imaging (ISBI) conference, focuses on analyzing fundus
images. To gauge the effectiveness of our method, we con-
ducted a comparative analysis against the top 10 teams
participating in the lesion segmentation competition of the
IDRiD challenge. As illustrated in Table 7, our proposed
approach secured the top position in microaneurysms
(MA) segmentation, ranked second in hemorrhage (HE)
segmentation, and achieved first place in both hard exudate
and soft exudate segmentation. Worth noting is that the
top-performing teams in the challenge adopted different
network architectures for each specific segmentation task.
Additionally, they encountered the complexity of fine-
tuning numerous hyper parameters during the training phase.
Consequently, these high-performing teamswere obligated to
test four distinct models for each corresponding segmentation
task during the evaluation phase. In contrast, our study
adopted a single unified network architecture, requiring only
minor adjustments to the hyperparameter settings. Despite
this streamlined approach, our proposed method is able to
achieve results that are on par with the performance of the
top-performing teams.

D. OVERALL COMPARATIVE ANALYSIS
In Table 8 and Table 9, we compared against published state-
of-the-art methods IDRiD, DDR, E-Ophtha (MA) datasets.
In IDRiD, we compare our framework with other published
deep learning methods: L-seg [26], Local-Global U-Net [25],
Multi-scale Net [22], Deeplab v3+, and their AUPR score

are summarized in Table 8. We can observe that Local-Global
U-Net performedwell onHEs, EXs segmentation. The Local-
Global U-Net is an efficient network that combines local
details and the global context by integrating the decoder parts
of a global level U-Net and a patch-level one. It resulted
in an AUPR value of 0.711 and 0.889 higher than that of
the other model. Similarly, Multi-scale Net also introduces
multi-scales information which uses multi-scale input with
embedding triplet loss. The triple loss minimizes the distance
between the lesion patches while increasing the distance
between the lesion patch and the healthy one. Multi-scale Net
report an AUPR value of 0.4196.

DeepLab v3+ [18] extends DeepLabv3 [44] by adding an
effective decoder module and utiles the depthwise separable
convolution to both ASPP and decoder modules. In our
experiments, it takes the ResNet-101 model as a backbone
network. DeepLab v3+ shows poor performance in HEs and
SEs segmentation on IDRiD. From Table 10, we observed
that there is no obvious gap compared with other models on
DDR. Its performance on different datasets may be limited by
the scale of training data. As mentioned before, DDR is the
largest dataset and has enough data for training while IDRiD
provided less data on HEs and SEs segmentation. Table 10
offers a comparative analysis of various segmentation meth-
ods using AUPR (Area Under the Precision-Recall Curve)
values within the DDR dataset. Overall, U-Net and ResUNet
deliver moderate performance, with ResUNet excelling in
HE and SE segmentation. DenseUNet stands out with strong
MA, HE, and SE segmentation results, while UNet++

showcases superior performance in EX and SE segmentation.
Att-UNet exhibits consistent but not outstanding results
across all metrics, while PSPNet falls behind with lower
AUPR values. DeepLab v3+ also registers relatively low
AUPR values, indicating suboptimal performance within
the DDR dataset. L-Seg is referenced but lacks specific
AUPR values. In contrast, EfficientNet-B0+SAA displays
impressive results, especially in EX and SE segmentation.
Dual PSPNet+DSM lacks a specific AUPR value in the
Table 10, making its performance unclear. The proposed
method emerges as a strong contender, particularly excelling
in HE segmentation, albeit with the highest parameter count
among all methods.

IFLYTEK-MIG and VRT are the teams in IDRiD compe-
tition. They resulted in a AUPR value of 0.5017,0.4951 and
ranked No.1 and 2 on the MAs segmentation task of
the competition, respectively. IFLYTEK-MIG proposed a
cascaded CNN-based approach with U-Net containing three
stages: a coarse segmentation model, a cascade classifier,
and a fine segmentation model. VRT modified U-Net, the
upsampling layers of which have the same number of feature
maps with layers concatenated, and they adjusted the number
of downsampling layers according to the type of lesion.

L-Seg is an end-to-end multi-lesion segmentation model
with a multi-scale feature fusion method and proposes a
novel multi-channel bin loss to handle the cases of both
class-imbalance and loss-imbalance problems. In Table 8,
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TABLE 6. Evaluation of Exudate detection on e_ophtha_EX dataset.

TABLE 7. Comparative analysis with top 10 IDRiD lesion segmentation
teams.

L-Seg ranked No. 3 on SE segmentation, No. 4 on HE
segmentation. In Table 8 and Table 10, L-Seg is the only
end-to-end unified framework that generates multi-lesion
segmentation results and shows competitive performance
compared with DeepLab v3+, U2Net, and DB U-Net on
DDR dataset.

There are various evaluation metrics with the current
state-of-the-art methods (e.g., AUC, AUPR, F1). The IDRiD
grand challenge provided a great opportunity to compare our
performance standardized metrics. From Table 8, we observe
that DB U-Net achieved the best performance of 0.5254 and
0.7297 on MAs and SE segmentation and ranked No.3 and
No.2 on HE and EX segmentation respectively. As shown
in Table 10 and Table 9, DB U-Net achieved the highest
AUPR value on MAs, HEs, and EXs segmentation on DDR
and E-ophtha MA. The improvement in fundus lesions
segmentation shows the capability of effectively handling
both data imbalance problems and lesion segmentation under
the complex background.

VI. DISCUSSION
For lesions segmentation, several modified architectures,
as well as effective methods, have been employed. In our
work, we attempt to explore the dual-branch architecture
and auxiliary information improves the performance of our
proposal in terms of precision and sensitivity. There are still
some defects.

Our experiments show that the aforementioned methods
lead to a highly effective architecture that significantly boosts

TABLE 8. AUPR value of other published methods on IDRiD dataset.The
result of iFLYTEK-MIG* and VRT* are borrowed from the Leaderboard of
the IDRiD Challenge.

TABLE 9. Performance of other published methods on E-Ophtha-MA
dataset.

performance on lesion segmentation, especially scatter and
smaller objects. However, our proposal fails to distinguish
target lesions from the background or the other lesions that
belong to the same group (see Figure 4). This indicates that
our work is short of capturing the global context. Introducing
multi-scale information may optimize this issue. Just as [25],
a segmentation framework integrates the decoder parts of a
global-level U-net and a patch-level.

As mentioned before, MAs are the earliest clinical
signs of DR but the ratio of object pixels to background
pixels is approximately 0.10% on IDRiD. In the DDR and
E-ophtha datasets, the ratio is 0.02%, 0.01%, respectively.
Due to PR curve is deployed to evaluate models instead
of ROC curves, the misclassified pixels have an enormous
impact on AUPR value while these are of no consequence to
DR screening in medical practice. A question that the lack of
standardized evaluation metrics naturally arises.

VII. CONCLUSION
As a chronic eye disease, the timely treatment is of great
significance and prospect in terms of the patients with
diabetic retinopathy. Based on deep learning, computer-aided
diagnostic technology plays an important role in disease
screening. In this paper, we propose a network with dual-
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TABLE 10. AUPR value of other published methods on DDR dataset.

branch architecture to improve the segmentation of scattered
and small lesions in fundus images. We introduce edge
information and parallel architecture to address the issue of
segmenting various size lesions. We evaluated our work on
public datasets and obtained competitive performance, which
demonstrates that the efficiency of our proposal network.
However, the fusion module is constricted by the quality
of the segmentation map from branches. We found that
optimizing the feature space through auxiliary information
helps the model focus on small region. Furthermore, the
structure of double branches can compare the prediction
of the network on the two branches, and regard the areas
with differences as easily confused areas. The purpose of
double branches is to mine the complementary information
of features and obtain better feature representation to improve
the final segmentation performance.

There are still many problems of lesion segmentation being
to be solved. More researches are necessary to further explore
the practical application of the automatic diabetic retinopathy
diagnosis system. For example, medical related tasks are
more difficult to obtain labels. Patient privacy, professional
labeling and other factors limit the scale of the dataset. Under
the constraints, weak-supervised learning, semi-supervised
learning, few-shot learning and even zero-shot learning can
reduce the dependence of the model on data. How to use less
data to get a better and more robust model is an expected
research.
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