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Abstract: In today’s manufacturing landscape, Digital Twins play a pivotal role in optimising
processes and deriving actionable insights that extend beyond on-site calculations. These dynamic
representations of systems demand real-time data on the actual state of machinery, rather than static
images depicting idealized configurations. This paper presents a novel approach for monitoring tool
and component wear in CNC milling machines by segmenting and classifying individual machining
cycles. The method assumes recurring sequences, even with a batch size of 1, and considers a
progressive increase in tool wear between cycles. The algorithms effectively segment and classify
cycles based on path length, spindle speed and cycle duration. The tool condition index for each
cycle is determined by considering all axis signals, with upper and lower thresholds established for
quantifying tool conditions. The same approach is adapted to predict component wear progression
in machine tools, ensuring robust condition determination. A percentage-based component state
description is achieved by comparing it to the corresponding Tool Condition Codes (TCC) range. This
method provides a four-class estimation of the component state. The approach has demonstrated
robustness in various validation cases.

Keywords: tool wear; component wear; digital twin; machine tools

1. Introduction

Machine tools are widely used in modern manufacturing industries to produce high-
quality products with increased productivity and efficiency [1]. However, every machine
tool is unique due to its individual characteristics (dynamics and tolerances) [2]. This
individuality results from a complex interplay of different machine components, which may
cause variations in the machine tool’s performance over time. The increasing trend towards
individualism of products leads to smaller batch sizes, which requires production processes
that can adapt quickly and efficiently to changes in product requirements [3]. Digital Twins
are being developed to meet these challenges, enabling real-time process optimisation
and predictive maintenance. However, this requires accurate and up-to-date data. By
monitoring the wear and condition of components and tools, the Digital Twin can predict
potential failures and reduce downtime, thereby increasing productivity [4] However,
the wear and condition of machine tools are influenced by many factors, including the
operating environment, cutting parameters and tool condition. This information must
be transferred from the physical system to the Digital Twin environment. Data transfer
can be a complex and challenging process that requires careful consideration because of
various factors such as the type of data, the frequency of updates and the required level
of accuracy [5]. This complexity demands a robust and adaptable condition monitoring
approach to capture and process the machine’s real-time status accurately.

Machines 2023, 11, 1032. https:/ /doi.org/10.3390/machines11111032

https:/ /www.mdpi.com/journal/machines


https://doi.org/10.3390/machines11111032
https://doi.org/10.3390/machines11111032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-2424-9789
https://orcid.org/0000-0001-7866-8244
https://doi.org/10.3390/machines11111032
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11111032?type=check_update&version=2

Machines 2023, 11, 1032

2 of 27

In addressing the challenge mentioned, this paper introduces an innovative cycle-
based two-stage tool and component condition index tailored for self-adapting Digital
Twins of machine tools. The methodology uses wear cycles to identify anomalies in common
machine signals, enabling the detection of wear conditions in tools and components. These
calculations are executed on machine Industrial Personal Computers (IPCs) and transmitted
as a condensed process wear matrix to a remote Digital Twin. To substantiate the efficacy of
our approach, we conduct six experiments and a long-term wear test on a ball screw drive.
The results demonstrate the robustness and effectiveness of our approach in detecting wear
in cutting tools and wear mechanisms in ball screw drives. This innovative framework
forms the basis for providing real-time insights into the machine’s current capability,
fostering adaptability and enhancing the decision-making capabilities of the Digital Twin.

2. State of the Art and Related Work

Process segmentation of machine tool data is essential for quality control and process
improvement to differentiate varying operation states [6]. These varying operation states
are characterised by sub-sequences which can result in variations in the same time series.
This can influence the data processing or possible predictions. Because of this, the seg-
mentation process divides the time series into sub-sequences to maximise comparability
within a group [7]. Here, two cases have to be differentiated: online and offline pattern
recognition. In offline pattern recognition, the whole time series already exists and is
known to the algorithm. In online pattern recognition, the analysed time series is not fully
known. Because of this, in the instance of recognition, not all possible sub-sequences and
data points are known for comparison [8].

Process segmentation is needed in the first stage to differentiate a number of features
that characterise the time series to recognise the starting point of new sub-sequences. In the
next stage, the endpoint of the sub-sequence and the start point of the next sub-sequence,
respectively, have to be recognised. The last step is the assignment of a group with
maximum comparability. The change in the system behaviour which likely characterises a
different operation state can be either a trigger or an anomaly [9,10]. Anomaly detection in
time series is a well-researched area, with various methods being employed, and they can
be classified into different categories. Ref. [6] presents a comprehensive overview of these
methods, which include pattern matching, clustering and predictions, and distance-based,
andstatistical and probabilistic methods.

In their study, ref. [11] developed an unsupervised anomaly detection system for
industrial control loops using an extreme learning machine classifier. They achieved this
by mapping the data to a two-dimensional space and then setting limits in that space. To
do this, they applied several approaches, including principal component analysis, beta
Hebbian learning and curvilinear component analysis. Of these approaches, beta Hebbian
learning was found to perform the best. Other researchers, such as [12], have developed
approaches that detect point and collective anomalies using sliding windows and autoen-
coders, respectively. Predictive maintenance approaches also focus on feature extraction
using methods like FRESH [13]. These features can be used as high-quality inputs to super-
vised Machine Learning models to achieve high accuracy. However, labelled training data
is needed for supervised learning, which may not always be available. Ref. [14] presented
an approach based on time series segmentation followed by anomaly detection, which
detects anomalies using a combination of a Recurrent Neural Network for feature extraction
and a Convolutional Neural Network-based autoencoder. However, this approach does not
provide a clear division into actual processes, making the clear assignment of anomalies to
subprocesses potentially difficult.

In conclusion, process segmentation of machine tool data is an important step for
process analysis and comparability of operation states. The number of produced parts
can influence the choice of algorithm for process segmentation, especially because most
Machine Learning-based methods need a large training dataset for accurate estimations.
Especially for small production runs, statistical process control methods may be more
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appropriate due to the limited amount of data available [10]. Here, approaches that work
without fixed thresholds to adapt themselves for autonomous usage can enable a broader
usage. This motivates further research into the combination of statistical methods with
self-adapting thresholds for an optimised process segmentation.

2.1. Tool Wear Detection

During machining, the cutting tool experiences different wear mechanisms, which
lead to reduced tool life, poor surface finish and increased tool replacement costs. Therefore,
the development of tool wear detection systems has become a focus point of the machining
process to optimise tool usage and improve manufacturing efficiency [15]. Different types
of wear mechanisms can occur in machining, including abrasive, adhesion, flank and crater
wear. Among these, flank and crater wear are the most relevant wear mechanisms [16].
Flank wear occurs on the flank face of the cutting tool due to rubbing against the workpiece,
while crater wear results from the deformation of the tool surface due to thermal and
mechanical stresses during machining. Flank wear can cause an increase in cutting force
and chatter vibrations, leading to poor surface finish and dimensional accuracy [17]. Crater
wear can cause a reduction in tool strength and stability, leading to tool breakage [16].
Different sensor principles can be used to detect these wear mechanisms.

Ref. [18] used acoustic emission (AE) sensors in combination with a Machine Learning
approach to detect the flank wear during machining processes in relation to the cutting
speed and cutting time. The achieved quality in the prediction of the tool wear highly
correlates with the usage of a feature for the cutting time. Through this feature and
additional information on the cutting speed, a reduction in the mean classification error,
too, in the worst case of 11.19%, could be achieved [18]. In opposition to this feature, the
preprocessing-based approach from [19] used a dynameter to continuously measure the
process force and classify tool wear based on the raw force signal. For this classification, a
Convolutional Neural Network (CNN) classifies three different phases of the tool’s lifetime.
Here, it is differentiated between a rapid initial wear phase, a uniform wear phase and the
end of the useful life of the tool. Figure 1 illustrates the tool lifetime for different cutting
speeds v;,. The different phases are characterised through the different areas in the gradient.
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Figure 1. Lifetime curve for different cutting speeds after [20].

Ref. [19] achieved a classification accuracy of 90% for these classes. Ref. [21] uses
vibration signals of the workpiece in combination with a support vector machine (SVM) as
a classifier. The differentiated classes were also the same three phases as in [18]. Ref. [21]
focused in their research on achievable accuracy through specific combinations of dimen-
sion reduction and varying kernels for the SVM. Through this, they could achieve, in the
optimal case for their experiments, an accuracy of up to 96.13%. Ref. [22] uses a Deep
Learning approach combined with images of different tools to classify in the first stage, the
visible tool, and in the next step the degree of wear. The classification of the toll type [22]
could achieve an accuracy of 95.6%. The results were 73% for the tool wear, but this could
only be achieved on the test data. Unknown and slightly disturbed data could only achieve
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a coefficient of 0.37%. Ref. [23] also uses an indirect approach for the detection of tool wear
through the spindle power. Through the wear progress on the tool, the necessary power for
a constant milling process increases. They acquire the power through an additional sensor
which in the next step will be processed through a neuronal network for a curve fit to
estimate the Remaining Useful Life (RUL). This enables prediction with a mean estimation
error of <2 min for RUL.

The current approaches for tool wear detection have some limitations. AE sensors
are non-invasive and can detect tool wear in real time. However, they can be affected by
environmental noise and may require complex signal processing because of high sample
rates [24]. Force sensors can provide accurate and reliable cutting force measurements,
but they are costly and require contact with the workpiece, limiting their application to
small sizes. Vibration sensors can detect wear in real time and are non-invasive. But
they can be affected like AE sensors through external vibrations and also require complex
signal processing. Optical sensors, in contrast, are non-contact and can provide accurate
measurements of tool deformation, but they require a clear view of the tool surface and may
be affected by ambient light [22]. Additionally, these sensors require frequent calibration
and can be affected by tool geometry changes, which can lead to necessary retraining or
possible modification steps in signal processing. The data processing methods depend
on the application and machining process. Feature extraction and selection can reduce
the dimensionality of the data and improve the accuracy of the wear detection system.
However, they may require prior knowledge of the wear mechanism and the machining
process [18] Machine Learning algorithms can provide accurate and reliable wear detection,
but they require a large amount of labelled data and may require frequent updates as the
machining process changes.

In conclusion, tool wear detection is a critical component of the machining process
to optimise tool usage and improve manufacturing efficiency. However, the addition
of specialised sensors has downsides as an additional cost, and, more importantly, the
addition of a new component increases the failing potential.

2.2. Current-Based Component Wear Detection

Condition monitoring of drive components is important in the industry, and several
approaches have been developed for detecting and characterising wear mechanisms. Two
different approaches are used to monitor these different effects. A distinction is made
between detection by sensors and “sensorless” detection. For the usage of machine tools,
additional sensors should always be avoided, as this results in costs and failure potential. In
addition, there is the necessity of corresponding experts for the integration and evaluation
of results [25]. Sensorless detection in this context describes using existing information,
such as the motor current, position, etc. (soft sensors), that can be extracted from the plc [25].
There are many approaches for condition monitoring of components through investigations
of the motor current [26]. These range from wear detection of motors and bearings to
characterisation [14,27] and system property change monitoring [28] he different system
properties can result from geometrical differences in the components or different forms of
wear [14,29]. Research results in condition monitoring by the motor current of ball screws
drives (BSD) will be reviewed in depth. As an essential high-precision drive component,
subject to high loads and thus wear due to the drive function, ball screws are particularly
relevant for condition monitoring.

The different wear mechanisms in ball screws can be classified into four tribological
categories: adhesion, surface disruption, abrasion and tribochemical reaction [30]. These
mechanisms cause a decrease in ball diameter, which leads to a backlash and loss of preload,
affecting the stiffness of the ball screw [31]. This phenomenon is the basis of condition-
monitoring approaches. Ref. [32] is researching the estimation of ball screw wear based on
the motor current of the actuating servo motor and other control variables such as feedback
position and motor torque. For this purpose, ref. [32] uses quasi-sweep sine wave motions
of varying. By relating the change in position and motor torque amplitudes the degree
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of wear is estimated. However, this approach has optimisation potential due to a high
estimator error of up to 27%. Ref. [33] also deals with the prediction of the wear of a BSD.
The approach also addresses the prediction of wear based on the motor current but without
any additional reference runs. This is achieved with additional compensation current.
Identifying the rapid traverse in the first step and determining the resulting current from
the three phases in the next step enables the evaluation and statistical characterisation
of the signals. By progressively increasing the ratio of the specific band energy, ref. [33]
successfully classify and characterise a normal lifetime phase, an accelerated wear phase
and a strong wear phase. However, this requires the use of external, more expensive
measurement systems. External sensors are also used by [34] to obtain the motor current
signal. The aim of their work is fault diagnosis of BSD in industrial robots based on the
motor current alone. For this purpose, a data processing pipeline using a short-time Fourier
transform and wavelet decomposition is proposed. Statistical parameters are extracted and
selected for further processing within the pipeline based on an evaluation measure. Using
logistic regression, the wear behaviour is classified, thus enabling the diagnosis of faulty
BSDs. Through this, they do not require any special reference runs. The disadvantage
is that only defective conditions can be detected and not predicted. Ref. [28] deals with
detecting preload losses, which can be traced back to wear. Here, too, external sensors
are used, which, in contrast to [33], can be easily retrofitted. These are Hall sensors and
acceleration sensors to detect changes in the natural frequency response of a dynamic feed
axis model. The change in the natural frequency response can be used to infer the change
in stiffness and, ultimately, the loss of preload. For this purpose [28], establish a dynamic
model of the feed axis. Using the test bench, the natural frequencies of the feed axis are
detected through defined motion sequences. The natural frequencies are validated using
other types of excitation. This enables the preload to be classified as low, normal, or overly
high. Thus, the positioning error of the carriage can be traced back to the change in the
natural frequency.

In conclusion, component wear detection is a critical factor in predicting downtimes
or changes in the kinematic characteristics of the drive train. However, the addition of
specialised sensors for wear detection in ball screw drives has the same downside as tool
wear monitoring.

2.3. Self-Adapting Digital Twins

Digital Twins are virtual replicas of physical systems that can be used to simulate,
monitor and control their real-world counterparts. They are typically built by combining
data from sensors, models and other sources to represent the physical system digitally [35].
One potential downside of Digital Twins is that they are typically designed with a fixed set
of parameters and configurations that may not be optimal in all situations [36]. This is where
self-adapting Digital Twins come in. Self-adapting Digital Twins, also known as adaptive
Digital Twins or self-optimising Digital Twins, are designed to adjust their parameters
and configurations in response to changes in their environments or objectives [37]. Using
Machine Learning algorithms and optimisation techniques, self-adapting Digital Twins
can analyse data from sensors and other sources in real time and predict the system’s
behaviour [38]. Without human intervention, they can learn from their experiences and
optimise their performance over time [37]. This ability to adapt to changing conditions
and objectives makes self-adapting Digital Twins a powerful tool for improving physical
systems” efficiency, reliability and safety. Several frameworks exist to implement self-
adapting Digital Twins, including model-based and data-driven approaches. Model-based
frameworks use mathematical models to simulate the behaviour of physical systems
and optimise their performance, while data-driven frameworks use Machine Learning
algorithms to analyse data from sensors and other sources and make predictions about
system behaviour [5]. Realising self-adapting Digital Twins requires a combination of
hardware and software components, including sensors and actuators for collecting data
and controlling physical systems, and Machine Learning algorithms and optimisation
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techniques for analysing and adapting to changes in data and objectives. Advances in
sensor technology, Machine Learning algorithms and Cloud Computing infrastructure
have all contributed to the development of self-adapting Digital Twins [5]. Self-adapting
Digital Twins can realise several positive effects, including improved system performance,
reduced maintenance costs and increased operational efficiency. By adapting to changes in
their environments and objectives, self-adapting Digital Twins can help ensure physical
systems operate at peak efficiency and minimise the risk of failures or downtime.

2.4. Data Transfer for Digital Twins

The direct data dependency shows the necessity of considering the data flow between
the sensor and Digital Twin. Here, two different structures of data flow exist in state of the
art [39]:

(a) Direct data flow from the data source into the Digital Twin;
(b) Indirect data flow from the data source through a processing step into the Digital Twin.

Due to substantial differences in the existing infrastructure, there are significant dif-
ferences in the possible data rate between the data source and Digital Twin. Ref. [39]
distinguishes between volatile and non-volatile data. Volatile data is data with a higher
frequency that results, for example, from axis movement or material flow. Non-volatile
data describes data that presents relatively static information, such as a product or machine
list. The limited processing capacities of a Digital Twin require local (pre)processing for
highly volatile data [5]. The pre-processing function is fulfilled by Edge Computing, which
sits directly at the application through an Edge Device (ED). Edge Computing pursues
the goal of processing data and executing applications closer to the source of the data,
i.e., to the end devices and sensors, to avoid latencies or to realise time-critical processing
in the first place. For this purpose, computing and storage resources are provided as
micro data centres at the network’s edges [40]. The disadvantage of an individualised
and decentralised computing architecture using Edge Computing is, on the one hand, the
efficiency and, on the other hand, the resource commitment [41]. Centralised instances or
defined data centres enable a considerably more efficient operation of the corresponding
computing resources [42]. Additional soft factors, such as the shortage of skilled personnel,
continue to make the local operation of computing resources or an individualised pro-
cessing structure more difficult [43]. On the other hand, there are centralised networks in
the form of cloud infrastructure. This represents a global network in which IT services of
varying complexity and for different user segments can be provided [42]. Infrastructure
and platform providers offer basic services and the necessary application infrastructure,
while application providers enable flexible and easy-to-maintain application operations.
This enables low capital lockup, reduced complexity of IT operations and the ability to
respond quickly and flexibly to changing capacity needs [44].

Digital Twins can be managed centrally in the company or across companies using
a cloud infrastructure structure, for example, or integrated into an Edge Device like the
pre-processing [44]. Ref. [45] argue that the centralisation of different Digital Twins of the
same equipment opens the possibility to exchange information among each other and thus
achieve optimisation of used models. Ref. [41] shows that a combination of edge and cloud
computing can ideally exploit computational and transfer capacities when adequately
distributed. This motivates a combined use of the technologies. In which the Digital Twins
are managed centrally and highly volatile data is processed on edge, i.e., close to the process
for latency reduction, and only the resulting indices can be transferred at a significantly
lower frequency and in a smaller band.

3. Proposed Method
3.1. Concept

For an adaptive digital representation of a machine, its components, and tools as shown
in Figure 2, methods for the continuous synchronisation of the Digital Twin concerning the
state of the actual machine are required. The data should be collected and processed by
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Digital
representation

Real machine

the machine or close to the machine. This can be carried out by Edge Devices placed at the
machine, which compute and provide indices regarding the machine’s state. As a result,
the relevant machine data will never be lost to the machine environment, and the operator
retains control over the raw data. In the future, Digital Twins will increasingly be operated
independently of the machine in cloud structures [41]. For example, the current status
index can be transmitted to these models in the event of a change or on request. In this way,
machines and model operators can be separated. Starting from this model, either in the
form of a digital shadow, inquiries can be made over the current ability of the machine. By
an adjustment of the production in the machine, such as by the initiation of a tool change,
Digital Twins can be realised.
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Figure 2. Approach of updated condition indices for components and tools for continuous mapping
of the machine condition as well as the capability.

One basic assumption of the presented approach is that the production of lot size
one of the highly individualised small batches can be understood as a series of individual
repetitive motion sequences [10]. This will be exploited here by detecting and quantifying
anomalies at a segment level. The models are trained during the offline training phase
using a training dataset. During the online phase, the continuous index calculation and
the update of these occur starting from the signal stored continuously with the respective
machine movement. Common control signals such as position or spindle current are used
for transferability. Starting from the time series, these must be sequenced in the first step.
Based on this, the individual condition cycles are classified in the offline training phase.
Since this involves a long time series and thus many different wear cycles and individual
segments from ramp-up and transfer sections, representing noise in the classification, a
robust algorithm must be used. Furthermore, in the offline training phase, the feature
calculation for the inline classification, the determination of representative features and
the cycle representations for calculating the wear indices are performed. At the end of the
training phase, all relevant information is stored in a database accessed in the inline phase.
The relevant indicators for registering machine and tool conditions depend on the used
signals and can vary depending on these.

In the inline phase, it can be assumed that a time series consists of significantly fewer
condition cycles. Thus, fewer have to be classified so faster algorithms can be used here.
Following the classification, it is determined for each condition cycle found whether there
is a deviation from the representatives stored in the database. If there is one, the deviation
is quantified. Based on this quantification, the condition of the tool is determined for the
respective cycles. The tool index calculation is updated once the tool has completed a life
cycle. In the second stage, the index of all axes is calculated for the cycles. Through this
continuous adaptation, a self-learning component is realised during the online phase. The
calculations of the online and offline phases are to be performed on Edge Devices close to
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buffer

the machine in a decoupled machine network to ensure no direct data access and a high
level of cyber security. These calculations are executed on machine Industrial Personal
Computers (IPCs) and transmitted as a condensed process wear matrix to a remote Digital
Twin. This transfer to the cloud-based Digital Twin can be in the event of an index change
or on request. The machine or production process can be adapted, or the data can be
made available to external interested parties. This allows an early evaluation of the current
machine’s capabilities, or whether it is sufficient for a particular product. This modular
approach as shown in Figure 3 enables also the usage of the developed algorithm without
a digital twin. But for adaptive digital twins, a detection of tool and component wear is
necessary. This interaction and the automated response to the generated predictions of a
wear state will be addressed in future research.

Condition-Cycle
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Condition-Cycle
representation

Offline training phase
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Representations for
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Data Machine
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Inline Condition-Cycle
assignment
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condition-index database

Figure 3. General overview of the presented approach.

This paper presents the approach according to the steps shown in Figure 4. Thus, this
section describes the time series segmentation procedure for obtaining the condition cycles
and the offline classification. Based on this, an approach for a faster inline classification of
the found segments is described. Furthermore, the calculation of the tool and component
conditions based on them will be discussed, considering the condition cycles and the
threshold values. The representative index matrix is derived from the condition cycles and
the key indices of all components and tools. Subsequently, the condition-cycle detection, the
tool condition index and the component condition index are validated using anonymous
data. In the end, the overall approach is discussed.

SR e GE e Tool-condition Component-condition

calculation (3.3) calculation (3.4)

cycle classification and I:>
detection (3.2)

clasgi?i'::‘;lttis::r?:lienline Tool-condition index Component-condition
validation (4.2) index validation (4.3)

detection validation (4.1)

Figure 4. Structure of the paper.

3.2. Unsupervised Condition-Cycle Classification and Detection

The basic assumption of the approach presented here is that individual sequences recur
even in the case of a production run with a batch size of 1 [8,9]. It is further assumed that
the state of the respective tool decreases steadily between the cycles [46]. To compare these
cycles with each other over time, they must first be extracted using a suitable algorithm
and then classified. To apply the approach to as many green and brownfield machines as
possible, independently of the control system and the components installed, only common
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control signals, such as the position of an axis or the spindle rotational speed, are to be
used. In addition, the presented method should not require any additional force sensors
to ensure inline capability. Therefore, the process forces, i.e., when the tool is engaged,
are used.

The algorithms were developed based on custom datasets, in which all tools were
successively worn out based on recurring machining cycles until tool breakage occurred.
The tests were conducted on a 3-axis CNC milling machine, CMD 600 V from DMG Mori,
operated by a Sinumerik control system. In all the tests, an HSS Co 8 end mill with
a diameter of 10 mm was used to machine C45 steel. The depth of cut is 5 mm in all
experiments. The tool path and other experimental data can be seen in Figure 5. The
recurring sequences are straight lines with a length of 30 mm along the Y-axis. The dataset
consists of subgroups for which the technological values were adjusted. In the three tests of
group 1, the machining was performed at a feed rate of 250 mm/min and a spindle speed
of 3200 rpm until tool breakage. For the group two test, the feed rate of 312.5 mm/min and
the spindle speed of 4000 rpm resulted from an overload of 25%. For the group three test,
cooling lubricant was added. All signals were recorded with a sampling rate of 500 HZ.

test feedra'Fe selietiaay lubricant | Test machine (CMX 600V) tool path [mm]
[mm/min] [rpm]
1.1 250 3200 no 150
12 250 3200 no
13| 250 3200 no - - - - - - _ - -
21| 3125 4000 no
22| 3125 4000 no i i | | | | i i i 30
23| 3125 4000 no
31 312.5 4000 yes A L . .

Figure 5. Design of experiments for unsupervised classification of condition cycles, inline detection
and quantification.

A two-stage approach is used for segmenting the individual sections. The starting
point is the current of the main spindle motor. If the tool is not in use, only the movement
of the spindle together with the chuck and the tool must be maintained. This results in a
low and approximately constant current. Thus, by creating a threshold, it is possible to
distinguish between areas outside and inside of a machining operation (see Figure, 6 bottom
left). For the proposed procedure, the time series of the spindle current is examined after
smoothing. A potential segmentation candidate is found if this is in the range of a threshold
value ¢, (red line). If it is also ensured that only one candidate is considered per threshold
value transition, the relevant range always results between two segmentation candidates.

As shown in Figure 6 on the bottom right, the position of the segmentation candidates
shifts as the spindle current progresses through the condition of a tool. For this reason, only
the rough position can be determined via the spindle current. However, this is not suitable
for comparing the segments. For this reason, a constructive step follows. It is assumed that
during machining, at least one of the axes will always move slowly and be repositioned
at the end of the machining operation. This leads from a minimal movement to a rapid
change of position in a rapid traverse. Since this repositioning connects the individual
machining sequences, it is suitable for cutting out the condition cycles. For this, starting
from two related segmentation candidates, a search is conducted for all axes for which
the derivative of the position at the time of the cutting candidate is less than the threshold
value eg. If the result exceeds the threshold, the start or end of the segment is determined.
The yellow arrows illustrate this process in Figure 6, on the left side.
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Figure 6. Procedure for the segmentation of the condition cycles (left) and progression of the signals

during the wear process (right).

The cutting of the individual cycles takes place independently of the training and
the inline application phase. Based on this, classification is carried out in the training
phase by forming representatives of all underlying signals. The path length of the axes, the
average spindle speed and the cycle duration are used to classify the cycles. These features
were chosen because they describe the respective cycle and are position independent. The
plots of individual characteristics can be seen in Figure 7. In the training phase, longer
time series are evaluated, resulting in many sequences, whereby individual sections do
not directly belong to a condition cycle. Accordingly, the method used for unsupervised
learning must be robust concerning outliers. Furthermore, cycles that belong together form
a region of particularly high density in the feature space. Furthermore, since duration plays
a minor role in the learning phase, DBSCAN can be used [47]. As shown in [48], DBSCAN
is well-fitted for anomaly detection and previous work also shows the capability in such
use cases [49].
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Figure 7. Feature space for segmenting the different condition cycles using the 1_1, 2_1 and
3_1 datasets.

As shown in Figure 7, the tuples of individual cycles are arranged closely together
and can therefore be grouped. The number of points per class is nearly equally distributed.
This highlights the capability of the features for classification and cycle 3 differs from cycle
2 only by adding the cooling lubricant, which allows a slightly higher spindle speed. This
allows a difference to be made via its average value (see Figure 6, right).

Finally, the calculation of the required representations for the inline index calculation
is executed. In this case, the time series stored in the buffer is evaluated, which is shorter
and contains fewer cycles. These cycles are now to be assigned to a class. For this purpose,
the mean value and the standard deviation of the classes for each feature are calculated in
the training phase. An assignment is made online if the respective mean lies within the
sixfold standard deviation around the class mean.
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Once the class has been determined, a deviation from the representative should be
determined based on the change in the underlying condition-cycle signals. These must
be determined during the training phase. Depending on the length of the cycle path, tool
wear effects are not negligible, even within the first few cycles. For this reason, the first
nRes cycles should always be used. In the context of this publication, ng,f is chosen to be 3.
Three approaches were examined to describe the deviation. Here, the mean value (a) and
the average distance between all data points in a time series (b) are used. In addition, the
reconstruction error of an autoencoder should be examined. For this purpose, the encoder
consisting of a linear length,, ;, x 128, a ReLU layer, a linear 128 x 32, a ReLU and a linear
32 x 8 layer, as well as an equivalent decoder is used. Due to the small amount of training
data, it can be assumed that the reconstruction error approaches a distance measure. Table 1
shows the correlations between the anomaly dimensions when all signals assigned to a
class are listed one after the other for the axes and the spindle. The high correlation shows
that all distance measures can achieve similar results and are, interchangeable. However,
it should be noted that due to the ng,r and the associated small amount of training, the
correlation with regard to the reconstruction error varies and is therefore only partially
reproducible. Due to the high computational effort for the reconstruction error of the
autoencoder, the average distance between the data points (b) is used in the following.

Table 1. Pearson Correlation coefficient for mean value (a), mean distance between the data points
(b) and the autoencoder reconstruction error (c) for axis and spindle current signals. The coloring
visualizes the correlation with white—no correlation and dark green—ideal correlation.

Corr (a,b) Corr (b,0) Corr (c,b)

1 x-axis

1 y-axis

1 z-axis

1 spindle

2 x-axis

2 y-axis

2 z-axis

2 spindle

3 x-axis

3 y-axis

3 z-axis

3 spindle

-0.04939276 -0.16543531

3.3. Tool Condition Calculation

The starting point for the determination of the tool condition is the course of the
deviation over the identified cycles for the corresponding data signals. In the context of
this paper, the approach is to be developed on the basis of the current signals of all axes,
since here the tool condition has the greatest influence [10]. By lining up the datasets 1_1,
1 2and 1 3,aswellas2_1,2_2 and 2_3, and determining the course for the axes according
to the deviation measure a, Figure 8 is obtained.

As can be seen, the course of the tool wear can be seen in both condition cycles. It
should also be noted that, as expected, the tool wear has an increasing influence on the
torque to be applied to the spindle. This results in an apparent increase in the spindle
current and, thus, the deviation. Furthermore, it can be seen that especially in the second
test series (cf. Figure 6 on the left), an apparent recurring deviation can be seen for the Y-axis.
If this is compared with the deviations of the second dataset, it becomes clear that this does
not necessarily have to be the case. Consequently, it can be stated that for the formation
of the cycle-dependent tool condition index, all axes’ signals should be considered. For
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this reason, the index I¢ 7,,) ; for each cycle, C is calculated by the weighted sum of all
deviations according to Equation (1).

IC,Tool,i = ZN aC,N,TCC'devC,N,j N e {X — Axis, ey szndle} (1)

Here, ac Ny Tcc=1 = 1 is selected as the initial value for the weighting. TCC rep-
resents the current run of the tool state and i the current cycle segment. Since an ad-
ditional overlay with a deviation due to the component additions is assumed (cf. Sec-
tion 2.3), ac N Tcc must be continuously recalculated and adapted to the changed cir-
cumstances. This recalculation is always carried out when the tool is replaced by the
operator or tool breakage i = ic peak.- This is indicated by a rapid change in spindle
deviation, dev, N—Tpo1,i—1—A€Vc,N=Tool,i> €break- When this occurs, the weighting is to be
recalculated using the Spearman correlation of the deviations with an equivalent line
We,rce = (0. ..., lengthpe-_q — 2). This line represents the equivalent course of the tool
wear in the stationary range [20]. According to this, ay in cycle c is cycle dependent
according to Equation (2).

ac,N,Tcc = &c,N,rcc—1-(1 = fnrec)

+COTspear (%C,N,chfler,TCC> “fNTCC @)
N € [X — Axis, . ..., Spindle]

The cycle-specific weighting factor ac y Tcc of the current tool condition cycle TCC
for the axis or spindle N is calculated from the factor of the last cycle ac N, Tcc—1 and the
Spearman correlation between the deviations of the last cycle devc y rcc—1 and @ using
the ratio fy rcc. Here, the values of the components, which show a high correlation, are
to be strengthened by the exponent . In the context of this paper, = 3 was chosen to
realise a slight amplification. In the first calculation, the ratio fxrcc=1 = 1 is chosen. In the
following new recalculations, fy 7cc = 0.1 is chosen in the context of this paper to consider
the new cycle with a weighting of 10%.

Furthermore, the current upper and lower thresholds are calculated for the quantifica-
tion of the tool condition. In the initial calculation, the lower threshold 7,1 c 10wer = 0 and
the upper threshold ¢, 1o01,upper = CTOOZ/C/iC,breuke_z are used. In the recalculation, the val-
ues are calculated according to Y701, lower = VTool,C,lower (1 = fihrs)+ CTool,C,iC,bmkeH fthrs
where Cryp i Creater1 18 the first value after the last recalculation. Further, v roo1,upper =
e, Toolupper (1 = finrs) & CTool,Cic yrere—2"fthrs fOT the rotation of the threshold ratio fyys.
Here, fi,,s = 0.5 is chosen.
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Figure 8. Deviation from the references of the classes for current signals of all axes and the spindle
when using the1.1,1.2,1.3,2_1,2_2,2_3 and 3_1 datasets.

Figure 9 shows the course of the tool condition index for cycle 1 (top) and cycle 2
(bottom). Here, the adjustment of the index value as a result of the respective recalculation
can be seen after passing through TCC = 1. Furthermore, after the first run of the tools,
the calculated upper and lower limit values (green areas) are shown. This shows an
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condition index cycle 1

condition index cycle 2

overestimation of the limits or an underestimation of the tool condition as a result of the
calculation of the values derived from the first tool using the initial index calculation.
Accordingly, depending on the application, the question arises whether the limit values
of the first cycle should be included in the calculation. As a result of the high value for
finrs = 0.5, an adaptation to the real conditions takes place relatively quickly.
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Figure 9. Tool condition index for the 1_1,1.2,1_3,2_1,2_2,2_3 and 3_1 datasets with updated
upper and lower limits.

In the following, the algorithm for determining the cycle-specific tool condition index
based on segmented and classified condition cycles and the component condition index is
described as pseudo-code. The description of the component condition index calculation
takes place in the following Section.

3.4. Component Condition Calculation

The effects of component wear, like tool wear, lead to a deviation from the respective
cycle-specific reference signal. Accordingly, a superposition of the deviations occurs here.
As shown in Section 2.3, several effects occur here. As a result of the loss of preload,
there is a reduction in the input torque and, thus, in the current signal. The increase in
friction, on the other hand, leads to an increased current signal. These effects superpose

and form a combined deviation curve devc , ;. It is assumed that the superposition of all
wear w effects for w — oo will also result in a dominant curve in the form of a lifetime
curve [50]. Since the wear of a component progresses much more slowly than a tool’s,
the respective component wear will become apparent over many cycles. Therefore, the
component-specific deviation is overlaid with the function

N T 5 T
devc i =devc,N,i + (SCOC - 1) +1+ % TCC € [1,100] ©)

to simulate the deviation due to a superimposed lifetime curve. According to Equation (3),
a superposition of the mean of the y-axis current signal deviation of datasets 3_1, 3_2 and
3_3 will lead to the curve shown in Figure 10.

Since slower effects are present here as described, the mean value is calculated for
the determination of the component state for all associated signals of the axes N after
completion of a TCC in the context of the recalculation. Based on this, two possibilities are
proposed here to determine the current state. The starting point is the nature of the service
life curve. In this case, there is a steep slope at begin. Subsequently, a steady wear condition
with minimum slope is established. Towards the end of the life cycle, however, the slope
increases again. Since these gradient transitions are characteristic, states can be assigned to
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Y-Current

Mean Y-Current

them, as shown in Figure 10. This is, therefore, only a rough, qualitative additional estimate
based on discrete stages. Quantification is possible if a state is assigned to the respective
transitions (area 0 to 1, 1 to 2 and 2 to 3).

1000 2000 3000 4000
cycle iteration i

Area 0

/ Area 2 Area 3

Area 1 /

e
I

T T T T

20 40 60 80 100
TCC iteration

Figure 10. Superposed deviation of the y-axis current signal (top) and mean (bottom) based on TCC
change for the 3_1 dataset.

In order to ensure a robust determination of the condition, a pre-processing is required.
For this purpose, the mean value over 15 TCC is determined based on the last 20 TCC.
Based on this, the maximum of the change is determined in a neighbourhood of 5 TCC.

For simplification, the auxiliary variables devc n TcC max and deve N T min are introduced.
devc N TCC,max is obtained from the mean value of the maximum derivative in a neighbour-

hood of 5 TCC. dé.vC,N,chrmin represents the mean value of the minimum derivative in the
same neighbourhood.

The rules for determining the respective transitions are shown in Table 2. Here,
for the transition €4y, 0,1 = —0.001, €40, 152 = —0.001 und €4, 5,3 = —0.001. The
quantification of the axis state Cy . ; is performed by the comparison with the change of an
area and the comparison with the corresponding TCC. Here, 940, 051 = 0.2, 9gep152 = 0.6
und 9d4.2,3 = 80 were chosen. It should be noted that the percent depends on the
superposition condition and therefore must be defined together.

Table 2. Component condition areas.

Area Transition Condition Percentage
Otol deve N, TCCmin > €deo, 01 Odev, 01
1to2 dévC,N,TCC,max > €40, 152 e, 152
2to3 deve N, TCCmax > €den, 253 9dev, 23

Figure 11 shows above the course of the averaged deviation of the TCC cycles for the
current signal of the y-axis for dataset 3_1. Based on these, the transitions of the ranges
were determined as described above. The division into ranges represents a course four-step
estimation of the component state. A percentage condition description is possible if the cur-
rent value is compared with the transition values. As shown in Figure 11, no quantification
is possible in condition area 0, but this is provided from the transition onwards.

To better understand the tool-state calculation (cf. Section 3.3) and the component-state
calculation (cf. Section 3.4) described here, the two-step procedure is explained in the form
of pseudo-code in the following. The condition cycles cut out and assigned according
to Section 3.2 are the starting point for the calculations. The condition cycles extracted
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from the current buffer data and assigned according to Section 1 are the starting point for
the calculations. Based on the data now added to the database, the current index matrix

is calculated.

If the condition for a recalculation and the associated component condition calculation
is triggered by an operator-indicated tool change or tool breakage, the logic described in

the following is executed for the condition cycle.

1. Repeat for Inline class c¢ from 1 to C (Inline classes)

2. Repeat for signal s from 1 to S (data signals)

3. Repeat for timeseries t from 1 to T (timeseries)

4. Calculate the current deviation for the specific signal using
the representation (b)

5. Update the Signal s Database based on timeseries t for Class ¢
update index matrix Load requirement matrix

6. Repeat form =1, ..., M (samples)

7. Repeat for z = 1, ..., Z (teeth)

—
L

Mean Y-Current
N

75 A
condition area 0
condition area 1
condition area 2
condition area 2

50 4

251

Y-Axis index [%]

TCC iteration

Figure 11. Superposed deviation mean of the y-axis current signal (top) with condition areas and

derived condition index (bottom) based on TCC change for the 3_1 dataset.

8. Repeat for class ¢ from 1 to C (classes)

9. Repeat for cycle iteration i from 1 to I (added cycles)

18. If deven=roori — A€Ven=rooli > Ebreak-

11. Recalculate Index basis

12. Calculate the component condition index

13. Else

14. Calculate the current tool index Cip=reoi; (Equation (1))
15. Calculate the Tool condition as percentage based on the
16. upper and the lower threshold

17. Return the current index matrix
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18. If first calculation

19. Override fyrec

20. Else use specivic fyrcc

21. Update acyrec (Equation (2))

22. Calculate the current tool index C.p-ro0r; (Equation (1))
23. Update the tool thresholds yrosiciower @nd ¥Yroolcupper

24. Repeat for component n from 1 to N (Componets)

25. Calculate deveyrccmin and deVeyrecmax

26. Determine the condition area and percentage basis (Table 3)

3.5. Cycle-Based Condition Indices

As described in Section 3.4, the cycle-specific component conditions are determined in
the form of a discrete condition classification and as a percentage. According to Section 3.3,
the cycle-specific tool condition Cr,,; c; is characterised by the deviation index and the
associated upper and lower threshold values y1y,1,c 10wer a0d YToo1,Cupper- FOr minimal
effort data transfer according to Section 2.4, however, one index should always be sufficient
for the condition description. If the current tool condition index is normalised by the
use of Y101 C Jower and YTool,Cupper, @ percentage value can be obtained. Figure 12 shows

this conversion.
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Figure 12. Tool condition index for the 1_1, 1_2 and 1_3 datasets with updated upper and lower limit
(top) and as percentage (bottom).

At this point, the machine’s tools and components have specific conditions for each
cycle, represented by a percentage value. This can be represented in the combined form of
a matrix, as shown in Figure 13.

The state of the tool for processing the cycle ¢ for the cycle iteration i is given by
the tool state index Cr,o c;. Further, the index of the component 7 is given by C.,, ;.
Accordingly, the component-specific index can be given cycle independently as a column
vector by outputting a column; if, on the other hand, the current capability is required for
the execution of a specific state cycle, this is given by row ¢ of the matrix. Here, due to the
features representing a condition cycle, it is not bound to a specific axis position to be able
to map a general and pose-independent capability. The cycle-specific capability is then in
the form of a row vector. In addition, each index can be output individually. For each cycle
iteration, the update of the index matrix is performed.
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Cczl,Tool,... CC:L
CC:C,Tool,... Cc: -
Tool Component 1 Component N
Condition-Cycle 1 CC=1,TOOl,i CC=1,n=1,i cee CC=1,Tl=N,i
i . . oo . Cycle specific
Condition-Cycle C [ CC=C,TOOl,l Cg:C[k:l,l LCC=C,n=N,l condition index

Component specific
condition index

Figure 13. Proposed condition index format.

As described in Section 3.1, index monitoring is to be performed at IPCs close to the
machine to ensure data sovereignty. The IPC continuously provides the current condition
matrix. Its transmission can be carried out in several ways, depending on the requirements
of the Digital Twin. On the one hand, a transmission can be made to the Digital Twin
in case of an index change. On the other hand, the Digital Twin can make a request if
necessary. On the one hand, the entire matrix can be transmitted. However, depending
on the subscriber and its needs, transmitting only the cycle-specific condition vector, the
composition-specific condition vector or specific indices is possible. This way, the amount
of data to be transmitted can be minimised according to the specific application.

4. Validation
4.1. Condition Cycle Classification and Inline Detection

New validation datasets were created for the validation. For this purpose, HSS Co
8 end mills with a diameter of 8 mm were worn by the recurrent machining of C45. The
tests were conducted on the 3-axis CNC milling machine type CMD 600 V from DMG Mori.
Two series of tests were carried out with three tests each. Machining was performed at
a 400 mm/min feed rate and a spindle speed of 4975 rpm. In tests 1_1, 1_2 and 1_3, the
30 mm thick steel was machined by moving the Y-axis, followed by the X-axis and then by
moving both axes together. No cooling lubricant was used in this process. For datasets 2_1,
2_2 and 2_3, machining was performed by moving the X and Y axes. At this moment, a
cooling lubricant was used. The test data, as well as sketches of the movement, can be seen
in Figure 14.

test feedrat_e epinele st lubricant | Test machine (CMX 600V) tool path [mm]
[mm/min] [rpm]

150

Vi1l 400 4975 no
> » » I‘ » » »

V12 400 4975 no N\ “
V13 400 4975 no

150
V2 1 400 4975 yes

T 7 7 Ed 7 Ed 7 7

V22 400 4975 yes / w0
V2 3 400 4975 yes

Figure 14. Design of experiments for the validation datasets.
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If the datasets V1_1 and V2_1 are used for the training of the presented approach,
and the extracted features of the travelled distance in the X-direction, as well as the aver-
age rotational speed of the spindle, are plotted over the duration of the sections, a clear
clustering of the relevant cycles can be seen (cf. Figure 15). Hereby, it was not necessary
to adjust the cutting parameters €, and €g. Thus, the transferability of the approach for
cutting and the assignment to other condition cycles could be demonstrated. Since no
threshold value adjustment was necessary, it is further shown that a transfer can be carried
out with minimal effort. This is possible as long as the inertia of the spindle drive train
does not deviate significantly. Thus, the selected characteristics are sufficient in this case. In
particular, the cycle duration and the differences in the distance covered in the Y-direction
represent the relevant features. Furthermore, it is shown that the segmentation algorithm
can reliably find the corresponding segments. If the 6 simple features reach their limits,
they can easily be extended. For example, derivatives or tool parameters can be used for
additional differentiation.
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Figure 15. Feature space for the segmentation of the different condition cycles using the V1_1,
V2_1 dataset.

The current signal curves belonging to the extracted condition cycles can be taken from
Figure 16. Here, clear differences can be seen. In the recordings of datasets V1_1, drops in
the spindle current intensity as a result of the change in direction can be seen. There are
also rapid changes in the X- and Y-axis curves. In the case of dataset V2_1, approximately

constant current curves are formed.
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Figure 16. Current signal for the extracted condition cycles of the V1_1, V2_1 dataset.

4.2. Tool Condition Index

For the validation of the approach to determine the tool condition, all evaluation series
(V1_.1,V1_2,V1_3,V2_1,V2_2 and V2_3) are evaluated together. Analogous to Section 3.3,
the deviation from the references is determined using the distance measure (b). Figure 17
plots the deviations for the axes” and spindle current signals over the extracted state cycles.
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For the evaluation of the deviation measure, a strong correlation to the tool wear condition
is shown for the spindle and the deviation of the Y-axis. For all three tools, a continuous
increase in the deviation can be seen. If breakage occurs, these deviations decrease abruptly.
In the data of the second series of tests, the tool wear effect can be observed throughout. In
the course of the deviations for the spindle current, the course of the tool life curve can be
recognised. On the other hand, there is a slightly exponential course for the deviation of the
Y-axis. This can also be recognised in the course of the deviation of the X-axis. Furthermore,
the effect of an increasing deviation can be seen for the Z-axis. Here, however, the levels are
rather discrete, probably caused by the change in the raw material blocks to be processed.
Nevertheless, a clear tendency can be recognised over a tool’s lifetime. In general, it can be
seen that the progression for the second validation series is more detailed than the first one.
This can be explained by the significantly increased lifetime of the tool as a result of the

added cooling lubricant.
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Figure 17. Deviation from the references of the classes for current signals of all axes and the spindle
when using the V1_1, V1_2, V1_3 on the left side and V2_1, V2_2, V2_3 as validation datasets on
the right.

If the tool index is calculated for the first validation dataset using Equations (1) and
(2), the curve shown in Figure 18 at the top is obtained. None of the introduced parameters
had to be adjusted here. Nevertheless, it can be seen that the changes in the used tools
were recognised correctly. The adjusted curves show reduced noise, which significantly
improves the derivation of the tool condition. A strongly linear mapping of the condition
emerges for the first validation dataset. The formation of the threshold values is also
successive. Thus, for this dataset, it is shown that the approach can lead to a suitable
mapping of the condition state without further adjustment.

If the condition of the tool is determined for the second validation dataset without an
adjustment of the parameters, the course and the threshold values from the middle plot
are drawn. It can be seen that the peaks in the deviation, which are caused by the change
of the workpiece, lead to an incorrect evaluation. In this case, the occurring deviation is
interpreted as a tool change. As a result, the first re-evaluation is carried out. This can be
suitably compensated for in calculating the index by the subsequent re-evaluations. In
the case of the thresholds, however, this erroneous recalculation leads to problems, since
the upper threshold 71y,1,c upper and the lower threshold o1, ¢ j0wer Of the next TCC are
calculated incorrectly. This error can be compensated for by the next TCCs. Thus, erroneous
recalculations can be compensated by continuously updating the thresholds. However, it
remains to be checked whether better results can be achieved by adjusting the threshold
€preak Of the recalculation. If €y, = —0.3 is changed to €y, = —0.4, the plot in Figure 18
at the bottom can be obtained. Here, the change could be detected correctly. As a result, the
recalculation and the thresholds are calculated at the correct cycle, which already leads to
more suitable thresholds from the beginning.

In summary, it can be stated that the approach to the validation datasets with adjust-
ment of the threshold value €y, was possible in both cases. It should be ensured that the
tool break or its change always causes the difference. Thus, this must be aligned with the
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maximum change. Under the assumption of superimposed axis effects, however, absolute
values must be assumed here, since the total deviation level increases, while the change
remains approximately constant.
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Figure 18. Tool condition index for the V1_1, V1_2,V1_3,V2_1,V2_2 and V2_3 datasets with updated
upper and lower limits (top, middle) and using an adapted €y, for the V2_1, V2_2 and V2_3
datasets (bottom).

4.3. Component Condition Index

Ball screws were worn out in long-term tests to validate the component indices. For
this purpose, a ball screw of type BASA 32 x 20 R x 3.969 — 3 was clamped into a test
stand. In the test scenario, a Force F;,, = 13.5 KN was applied on the components which
represents a relative load of ~40% of Cy = 33,700 KN. The axis was periodically moved
over a distance of 650 mm with a rotational speed of n,, = 400rpm, so various wear effects
became apparent in this area. These test conditions lead to an analytical lifetime estimation
through equations 4 and 5 of 259.6 h. An iteration in Figure 19 correlates to a duration
of 1.35 x 103 h through the linear distance, rotational speed and incline. Therefore, the
analytical end of the component life is expected after 192,296 iterations.

2
Lip= (g‘)) 10° 4)
m
Ly
L,=—%
= 60 5)

The most relevant effect, in the beginning, is the relatively higher loss of preload,
which initially leads to a sharp drop in the required torque. This effect decreases in the early
phase of the component life. Further, friction increases and damage occurs on the spindle
surface. All three effects affect the spindle current to be applied by the drive. Figure 19 on
the left shows the average current over each period, which must be applied within a period.
The strong peak in the middle of the time series, where the nut ruptured, is particularly
noticeable here. Additionally, in the early phase of the curve from Figure 19, there is a larger
noise that results from lubrication cycles executed every 4000 iterations. After ~215,000
iterations first microparticles could be seen in the lubricant through a finger sample. The
number and size increased until the end of the useful component life was classified through
a manual inspection after 290,000 iterations.
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Figure 19. Mean feed current of the ball screw drive during the wear experiments.

After the end of the useful component life, no further lubrication cycles were per-
formed, resulting in the significantly less noisy signal in Figure 19. The buildup of damage
in the contact area of the balls (pittings) and a corresponding degradation of the balls led to
the destruction of the rolling elements. This destruction significantly influenced the rolling
capacity of other balls, which in the next step led to the rupturing of the nut. This also
explains the subsequent drop in current. In the following, the occurrence of the component
failure is defined as the end of the component life, and the time series is thus shortened.
Furthermore, by forming the mean value over 3000 periods, the current signal is smoothed
in order to depict the long-term course of the effects.

If the signal curves of the deviations are superimposed with the influence of the
components as described in Section 3.4, the curve shown in Figure 3 above results for the
Y-axis in test X, for example. It should be noted that datasets V2_1, V2_2 and V2_3 were
used iteratively. It can be clearly seen that the cycles of the tool and the global component
influence lead to separate effects. It has to be checked whether the tool condition can still
be mapped and the component condition can be extracted. The third and fourth plots in
Figure 20 show the recurring status of the tool. In the first cycle, the percentages mapping
starts around 60% but widens to the entire 100%. Corrective actions can be over the course
of the process.

When considering the course of the component-related signal change in Figure 20,
it can be seen that the first characteristic transition, which represents the initiation of
the constant progression of the wear process, is pronounced. However, based on this, a
clearly more linear phase cannot be detected. Accordingly, only the transition between
the areas 0 to 1 and 2 to 3 is suitable. The transitions detected according to Section 3
without adjustments can be seen in the third image in Figure 20. The transition between
the 0 to 1 range occurs here after 23.239% and therefore corresponds to the expectation.
The transition between ranges 2 to 3 is detected at the first significant slope change. This
corresponds to a local increase after 57.042% which is equivalent to ~239,576 iterations in
Figure 20, interceding the end of useful component life. If, for example, 0., 91 = 25%
and 9., 2,3 = 60% are specified, then the index progression is obtained in the image
below in Figure 20. In summary, it can be stated that the transition from 0 to 1 is recognised
somewhat too late, whereas the phase transition between 2 to 3 is recognised correctly.
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Figure 20. Superimposed deviations of the Y-axis current signal with the course of the current signal
of the long-term test, the mapped component index, the reconstructed component course with the
detected areas and the index course derived from it using the V2_1, V2_2 and V2_3 validation datasets.

5. Discussion
5.1. Wear-Cycle Detection

The algorithm for detecting wear cycles needs a minimum cutting depth for threshold-
ing. This results in a dependence on the milling tool and machine. However, this threshold
can be adjusted through the training phase on the machine. Here, adaptive thresholding
can be used to generalise this approach. These intelligent approaches for adaptive threshold
selection would show significant potential in optimisation. Without this, the proposed
approach is very static, with a minimum cutting depth, which makes it robust in these
cases. The static threshold selection of the approach only works in instances where the
tool passes through a component and not during changes in milling depth. Furthermore,
there is no segmentation for complex multi-axis shapes. However, adaptive thresholding
approaches can address this issue and expand the algorithm’s scope. The segmentation
algorithm is stable and promising in a possible generalisation to other paths. However,
further experiments are needed to analyse the interaction between the path and threshold,
and approaches for transfer to other dynamics are required. Nevertheless, for the given
and investigated cases, the segmentation performed well.

5.2. Tool Wear Detection

The parameter selection for tool wear detection is crucial in functional performance. It
must be tested for generalisability, as demonstrated by the need for adaptive parameter
selection in €p,.x. The interactions between parameters and their effects on prognostic
errors and interactions between segmentation and tool wear detection have not been
considered, leaving optimisation potentials. However, the change in €p,.,x shows the
possibility of reacting stably to trajectory changes with adapted parameters. This leads to
the conclusion that special approaches for intelligent parameter selection should be further
focused on. As previously mentioned, there is also the question of whether the first cycle
should be considered, as it can strongly shift weights. Nevertheless, it can be concluded
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that the approach presented in this paper enables reliable detection of the wear state during
operation solely through control signals.

5.3. Component Wear Detection

The test for detecting component wear was validated through a test rung on a test
bench. This reduces the complexity of the super-positioned wear progress. Here, averaging
was performed over several iterations to reduce the noise caused by lubrication cycles. This
raises the question of the influence of the averaging and the calculation over n TCC and the
resulting effects. Further experiments are recommended to quantify or at least estimate the
relationship. The same applies to the test wench for the wear of ball screws.

The existing results show a stable classification from the second to the third range.
Still, the timing of the transition between 0-1 occurred later than expected, which raises
the question of the validity of a single experiment. In addition, the superposition between
component and tool is a new approach that can close the existing gap. Still, questions
remain regarding the possible interaction of the wear mechanisms between the tool and
components and between the different components within the machine. But for the given
experiments and the corresponding data, the algorithm for detecting superpositioned tool
and component wear classifies the end of the useful component life as reliable.

5.4. Cycle-Based Two-Stage Tool and Component Condition Index

This paper proposed an approach that is a promising solution to detect and quantify
the condition of components and tools without sensors during operation. This can combine
with edge-based calculation and pure index transmission to cloud-based Digital Twins,
providing data security. While the results are promising, there are still questions about the
robustness of the approach in different machines and the impact of parameter selection in
TCC on component wear and segmentation quality. Additionally, the interactions between
individual modules have not yet been investigated, which offers further research potential.

6. Conclusions and Outlook

In conclusion, this paper presents a novel approach for segmenting and classifying
individual machining cycles using common control signals to monitor tool and component
wear in CNC milling machines. The proposed method assumes that individual sequences
recur even with a batch size of 1 and that the state of the tool decreases steadily between
cycles. The algorithms were developed based on custom datasets obtained from a 3-
axis CNC milling machine, and the approach was shown to be effective in segmenting
individual cycles and classifying them based on path length, average spindle speed and
cycle duration. To form a cycle-dependent tool condition index, all signals of the axes
should be considered, and the index is calculated using a weighted sum of all deviations.
The upper and lower thresholds are calculated to quantify the tool condition. The same
algorithm was adapted to also predict the component wear progress for a superimposed
case as seen in machine tools. A pre-processing method is used to equalise tool wear
influence on the underlying component wear curve to ensure the robust determination
of the condition. The component state is quantified by comparing it with the change of a
range of the corresponding TCC, and a percentage condition description is possible based
on this. The proposed method provides a four-class estimation of the component state. In
summary, the proposed method can estimate the wear in green and brownfield machines
and does not require additional sensors to ensure inline capability. The approach has been
tested and demonstrated robustness in various validation cases. The modular approach
allows for the application of the developed algorithm even in the absence of a digital twin.
However, to facilitate adaptive digital twins, it is crucial to identify tool and component
wear. Future research will delve into addressing the interaction and automated response to
the predicted wear states.

As it stands, the presented approach still has optimisation potential to further increase
the wear estimation’s precision. Future work will focus on incorporating Machine Learning
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techniques to determine threshold values for the proposed approach, which could help
improve the estimations” accuracy. Through this, it can be expected to see a significant
improvement in the proposed approach’s precision, making it an even more valuable
tool for optimising processes with Digital Twins. Furthermore, incorporating additional
signal inputs in the presented approach is another perspective. Here, the control error
between the motor encoder and the direct position is a promising factor in supporting the
estimation of component wear. This additional position information could also enable the
consideration of position-specific conditions. Integrating the approach into adaptive Digital
Twins should also be explored to automate data mapping and transmission. This will
allow for seamless integration with different machines and systems and enable real-time
optimisation of processes. Finally, a mechanism that only triggers a recalculation of wear
metrics in case of a failure or replacement of tools or components is considered, not when
initiated by the Digital Twin. This will minimise unnecessary calculations and improve
the efficiency of our approach. We believe that this integration will be a significant step
towards achieving autonomous production in Industry 4.0.
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Abbreviations

Parameter Value

IPC Industrial PC

€ Spindle current threshold for relevant sections

€p Axis position derivative threshold for a relevant section
NRef Number of condition cycles used for the reference
lengthcyd B Length of a condition cycle

deviation measurea Mean value
deviation measureb  The mean distance between the data points
deviation measure ¢ Autoencoder reconstruction error

I Tool i it" condition index calculation for the tool in condition cycle ¢

i it" condition index calculation

C Condition-cycle number

N Axis or spindle reference, N € [X — Axis, ...., Spindle]

&C,N,TCC Weight for the deviation of component C during tool run TCC

devc N i Current deviation for component N in cycle C during the i
Condition index calculation

TCC Lifecycle of a tool

€break Threshold for tool replacement indicating a recalculation

fnrce Ratio factor for the weight recalculation

corr Spem(. ) Spearman correlation

B Correlation exponent

Y Tool,C,lower Lower tool condition threshold

YC,Toolupper Upper tool condition threshold
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dévC,N,TCC,mi,, Second derivatives for component N in condition cycle C during
TCC using the local minimum

dévC,N,TCC,max Second derivatives for component N in condition cycle C
TCC using the local maximum

€den, 0—1 Threshold for a change from stage 0 to 1
€den, 12 Threshold for a change from stage 1 to 2
€de, 233 Threshold for a change from stage 2 to 3
Odev, 0—1 Percentage for a change from stage 0 to 1
Odev, 152 Percentage for a change from stage 1 to 2
Odev, 23 Percentage for a change from stage 2 to 3

References

1. Xu, X. Machine Tool 4.0 for the new era of manufacturing. Int. |. Adv. Manuf. Technol. 2017, 92, 1893-1900. [CrossRef]

2. Iglesias, A.; Taner Tung, L.; Ozsahin, O.; Franco, O.; Munoa, J.; Budak, E. Alternative experimental methods for machine tool
dynamics identification: A review. Mech. Syst. Signal Process. 2022, 170, 108837. [CrossRef]

3. Riifimann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The Future of Productivity
and Growth in Manufacturing Industries. 2015. Available online: https://inovasyon.org/images/Haberler /bcgperspectives_
Industry40_2015.pdf (accessed on 16 February 2023).

4. Chabanet, S.; El-Haouzi, H.B.; Thomas, P. Toward a self-adaptive Digital Twin based Active learning method: An application to
the lumber industry. IFAC-PapersOnLine 2022, 55, 378-383. [CrossRef]

5. Dalibor, M.; Michael, J.; Rumpe, B.; Varga, S.; Wortmann, A. Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits. In Proceedings of the International Conference on Conceptual Modeling, Vienna, Austria, 3-6 November 2020; Springer:
Cham, Switzerland, 2020; pp. 377-387.

6. Cook, A.A; Misirli, G.; Fan, Z. Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet Things J. 2020, 7, 6481-6494.
[CrossRef]

7. Seevers, ].-P.; Johst, J.; Weifs, T.; Meschede, H.; Hesselbach, J. Automatic Time Series Segmentation as the Basis for Unsupervised,
Non-Intrusive Load Monitoring of Machine Tools. Procedia CIRP 2019, 81, 695-700. [CrossRef]

8. Netzer, M.; Palenga, Y.; Goennheimer, P; Fleischer, J. Offline-Online pattern recognition for enabling time series anomaly detection
on older NC machine tools. . Mach. Eng. 2021, 21, 98-108. [CrossRef]

9.  Netzer, M.; Palenga, Y.; Fleischer, J. Machine tool process monitoring by segmented timeseries anomaly detection using
subprocess-specific thresholds. Prod. Eng. Res. Devel. 2022, 16, 597-606. [CrossRef]

10. Putz, M.; Frief, U.; Wabner, M.; Friedrich, A.; Zander, A.; Schlegel, H. State-based and Self-adapting Algorithm for Condition
Monitoring. Procedia CIRP 2017, 62, 311-316. [CrossRef]

11. Jove, E.; Casteleiro-Roca, J.-L.; Quintian, H.; Méndez-Pérez, ].A.; Calvo-Rolle, J.L. A fault detection system based on unsupervised
techniques for industrial control loops. Expert Syst. 2019, 36, €12395. [CrossRef]

12.  Theumer, P,; Zeiser, R.; Trauner, L.; Reinhart, G. Anomaly detection on industrial time series for retaining energy efficiency.
Procedia CIRP 2021, 99, 33-38. [CrossRef]

13.  Christ, M.; Kempa-Liehr, A.W.; Feindt, M. Distributed and parallel time series feature extraction for industrial big data applications.
Neurocomputing 2017, 307, 72-77. [CrossRef]

14. Zhang, Z.; Wu, X,; Liu, T,; Liu, X. Fault diagnosis of planetary gear backlash based on motor current and Fisher criterion optimized
sparse autoencoder. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 7529-7545. [CrossRef]

15. Teti, R.; Jemielniak, K.; O’'Donnell, G.; Dornfeld, D. Advanced monitoring of machining operations. CIRP Ann. 2010, 59, 717-739.
[CrossRef]

16. Hatt, O.; Crawforth, P; Jackson, M. On the mechanism of tool crater wear during titanium alloy machining. Wear 2017, 374-375,
15-20. [CrossRef]

17.  Siddhpura, A.; Paurobally, R. A review of flank wear prediction methods for tool condition monitoring in a turning process. Int. J.
Adv. Manuf. Technol. 2013, 65, 371-393. [CrossRef]

18. Twardowski, P; Tabaszewski, M.; Wiciak-Pikuta, M.; Felusiak-Czyryca, A. Identification of tool wear using acoustic emission
signal and Machine Learning methods. Precis. Eng. 2021, 72, 738-744. [CrossRef]

19. Gouarir, A.; Martinez-Arellano, G.; Terrazas, G.; Benardos, P.; Ratchev, S. In-process Tool Wear Prediction System Based on
Machine Learning Techniques and Force Analysis. Procedia CIRP 2018, 77, 501-504. [CrossRef]

20. Neslusan, M.; Turek, S.; Brychta, J.; Cep, R.; Tabatek, M. Experimental methods in splinter machining. EDIS ZU Zilina 2007, 343.
Available online: https://scholar.google.com/citations?user=ipt-rlqaaaaj&hl=deé&oi=sra (accessed on 15 February 2023).

21. Wang, G.E; Yang, YW.; Zhang, Y.C.; Xie, Q.L. Vibration sensor based tool condition monitoring using v support vector machine
and locality preserving projection. Sens. Actuators A Phys. 2014, 209, 24-32. [CrossRef]

22. Bergs, T.; Holst, C.; Gupta, P.; Augspurger, T. Digital image processing with deep learning for automated cutting tool wear
detection. Procedia Manuf. 2020, 48, 947-958. [CrossRef]

23. Drouillet, C.; Karandikar, J.; Nath, C.; Journeaux, A.-C.; El Mansori, M.; Kurfess, T. Tool life predictions in milling using spindle

power with the neural network technique. J. Manuf. Process. 2016, 22, 161-168. [CrossRef]


https://doi.org/10.1007/s00170-017-0300-7
https://doi.org/10.1016/j.ymssp.2022.108837
https://inovasyon.org/images/Haberler/bcgperspectives_Industry40_2015.pdf
https://inovasyon.org/images/Haberler/bcgperspectives_Industry40_2015.pdf
https://doi.org/10.1016/j.ifacol.2022.04.223
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1016/j.procir.2019.03.178
https://doi.org/10.36897/jme/132248
https://doi.org/10.1007/s11740-022-01120-3
https://doi.org/10.1016/j.procir.2016.06.073
https://doi.org/10.1111/exsy.12395
https://doi.org/10.1016/j.procir.2021.03.006
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1177/09544062211070160
https://doi.org/10.1016/j.cirp.2010.05.010
https://doi.org/10.1016/j.wear.2016.12.036
https://doi.org/10.1007/s00170-012-4177-1
https://doi.org/10.1016/j.precisioneng.2021.07.019
https://doi.org/10.1016/j.procir.2018.08.253
https://scholar.google.com/citations?user=ipt-r1qaaaaj&hl=de&oi=sra
https://doi.org/10.1016/j.sna.2014.01.004
https://doi.org/10.1016/j.promfg.2020.05.134
https://doi.org/10.1016/j.jmapro.2016.03.010

Machines 2023, 11, 1032 26 of 27

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

Zhou, Y.; Sun, W. Tool Wear Condition Monitoring in Milling Process Based on Current Sensors. IEEE Access 2020, 8, 95491-95502.
[CrossRef]

Walther, M. Antriebsbasierte Zustandsdiagnose von Vorschubantrieben. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany,
2011. Heimsheim: Jost-Jetter (ISW /IPA Forschung und Praxis, 183).

Han, Y.; Song, Y.H. Condition monitoring techniques for electrical equipment-a literature survey. IEEE Trans. Power Deliv. 2003,
18, 4-13. [CrossRef]

Corne, B.; Knockaert, J.; Desmet, J. Misalignment and unbalance fault severity estimation using stator current measurements. In
Proceedings of the IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives
(SDEMPED), Tinos, Greece, 29 August-1 September 2017.

Nguyen, T.L.; Ro, S.-K.; Park, J.-K. Study of ball screw system preload monitoring during operation based on the motor current
and screw-nut vibration. Mech. Syst. Signal Process. 2019, 131, 18-32. [CrossRef]

Jamshidi, M.; Chatelain, J.-F.; Rimpault, X.; Balazinski, M. Tool condition monitoring based on the fractal analysis of current and
cutting force signals during CFRP trimming. Int. . Adv. Manuf. Technol. 2022, 121, 8127-8142. [CrossRef]

Czichos, H. Tribologie-Handbuch. Tribometrie, Tribomaterialien, Tribotechnik; iberarbeitete und erweiterte Auflage; Vieweg+Teubner:
Wiesbaden, Germany, 2010.

Zhao, J.; Lin, M.; Song, X.; Guo, Q. Analysis of the precision sustainability of the preload double-nut ball screw with consideration
of the raceway wear. Proc. Inst. Mech. Eng. Part | |. Eng. Tribol. 2020, 234, 1530-1546. [CrossRef]

Sato, R. Wear Estimation of Ball Screw and Support Bearing Based on Servo Signals in Feed Drive System. In Proceedings of
the International Conference on Leading Edge Manufacturing in 21st Century, Nagoya, Japan, 19-22 October 2011; Volume 6,
p- _3233-1_.

Liu, X.; Mao, X.; He, Y,; Liu, H.; Fan, W,; Li, B. A new approach to identify the ball screw wear based on feed motor current.
In Proceedings of the International Conference on Artificial Intelligence and Robotics and the International Conference on
Automation, Control and Robotics Engineering, Kitakyushu, Japan, 13-15 July 2016; ACM: New York, NY, USA, 2016.

Yang, Q.; Li, X.; Wang, Y.; Ainapure, A.; Lee, ]. Fault Diagnosis of Ball Screw in Industrial Robots Using Non-Stationary Motor
Current Signals. Procedia Manuf. 2020, 48, 1102-1108. [CrossRef]

Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and
classification. IFAC-PapersOnLine 2018, 51, 1016-1022. [CrossRef]

Bibow, P,; Dalibor, M.; Hopmann, C.; Mainz, B.; Rumpe, B.; Schmalzing, D. Model-Driven Development of a Digital Twin for
Injection Molding. In Proceedings of the International Conference on Advanced Information Systems Engineering, Grenoble,
France, 8-12 June 2020; Springer: Cham, Switzerland, 2020; pp. 85-100. Available online: https://link.springer.com/chapter/10.1
007/978-3-030-49435-3_6 (accessed on 1 March 2023).

Bolender, T.; Burvenich, G.; Dalibor, M.; Rumpe, B.; Wortmann, A. Self-Adaptive Manufacturing with Digital Twins. In
Proceedings of the International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
Madrid, Spain, 18-24 May 2021.

Hribernik, K.; Cabri, G.; Mandreoli, F; Mentzas, G. Autonomous, context-aware, adaptive Digital Twins—State of the art and
roadmap. Comput. Ind. 2021, 133, 103508. [CrossRef]

Uhlemann, T.H.-J.; Schock, C.; Lehmann, C.; Freiberger, S.; Steinhilper, R. The Digital Twin: Demonstrating the Potential of Real
Time Data Acquisition in Production Systems. Procedia Manuf. 2017, 9, 113-120. [CrossRef]

Costantini, A.; Di Modica, G.; Ahouangonou, J.C.; Duma, D.C.; Martelli, B.; Galletti, M. IoTwins: Toward Implementation of
Distributed Digital Twins in Industry 4.0 Settings. Computers 2022, 11, 67. [CrossRef]

D’Agostino, D.; Morganti, L.; Corni, E.; Cesini, D.; Merelli, I. Combining Edge and Cloud computing for low-power, cost-effective
metagenomics analysis. Future Gener. Comput. Syst. 2019, 90, 79-85. [CrossRef]

Asim, M.; Wang, Y.; Wang, K.; Huang, P.-Q. A Review on Computational Intelligence Techniques in Cloud and Edge Computing.
IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 742-763. [CrossRef]

Shi, W.; Cao, J.; Zhang, Q.; Li, Y,; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things ]. 2016, 3, 637-646.
[CrossRef]

Hu, L.; Nguyen, N.-T,; Tao, W.; Leu, M.C,; Liu, X.F,; Shahriar, M.R.; Al Sunny, S.M.N. Modeling of Cloud-Based Digital Twins for
Smart Manufacturing with MT Connect. Procedia Manuf. 2018, 26, 1193-1203. [CrossRef]

Jiang, Y,; Yin, S.; Li, K.; Luo, H.; Kaynak, O. Industrial applications of Digital Twins. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
2021, 379, 20200360. [CrossRef] [PubMed]

Salgado, D.R.; Alonso, EJ. An approach based on current and sound signals for in-process tool wear monitoring. Int. ]. Mach.
Tools Manuf. 2007, 47, 2140-2152. [CrossRef]

Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P,; Xu, X. DBSCAN Revisited. ACM Trans. Database Syst. 2017, 42, 19. [CrossRef]
Zhang, C.; Liu, J.; Chen, W.; Shi, J.; Yao, M,; Yan, X.; Xu, N.; Chen, D. Unsupervised anomaly detection based on deep autoencoding
and clustering. Secur. Commun. Netw. 2021, 2021, 7389943. [CrossRef]


https://doi.org/10.1109/ACCESS.2020.2995586
https://doi.org/10.1109/TPWRD.2002.801425
https://doi.org/10.1016/j.ymssp.2019.05.036
https://doi.org/10.1007/s00170-022-09860-3
https://doi.org/10.1177/1350650119883484
https://doi.org/10.1016/j.promfg.2020.05.151
https://doi.org/10.1016/j.ifacol.2018.08.474
https://link.springer.com/chapter/10.1007/978-3-030-49435-3_6
https://link.springer.com/chapter/10.1007/978-3-030-49435-3_6
https://doi.org/10.1016/j.compind.2021.103508
https://doi.org/10.1016/j.promfg.2017.04.043
https://doi.org/10.3390/computers11050067
https://doi.org/10.1016/j.future.2018.07.036
https://doi.org/10.1109/TETCI.2020.3007905
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1016/j.promfg.2018.07.155
https://doi.org/10.1098/rsta.2020.0360
https://www.ncbi.nlm.nih.gov/pubmed/34398651
https://doi.org/10.1016/j.ijmachtools.2007.04.013
https://doi.org/10.1145/3068335
https://doi.org/10.1155/2021/7389943

Machines 2023, 11, 1032 27 of 27

49. Netzer, M. Intelligente Anomalieerkennung fiir Hochflexible Produktionsmaschinen: Prozessiiberwachung in der Brownfield
Produktion. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2022.

50. 50. Zhang, L.; Gao, H.; Dong, D.; Fu, G.; Liu, Q. Wear Calculation-Based Degradation Analysis and Modeling for Remaining
Useful Life Prediction of Ball Screw. Math. Probl. Eng. 2018, 2018, 2969854. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1155/2018/2969854

	Introduction 
	State of the Art and Related Work 
	Tool Wear Detection 
	Current-Based Component Wear Detection 
	Self-Adapting Digital Twins 
	Data Transfer for Digital Twins 

	Proposed Method 
	Concept 
	Unsupervised Condition-Cycle Classification and Detection 
	Tool Condition Calculation 
	Component Condition Calculation 
	Cycle-Based Condition Indices 

	Validation 
	Condition Cycle Classification and Inline Detection 
	Tool Condition Index 
	Component Condition Index 

	Discussion 
	Wear-Cycle Detection 
	Tool Wear Detection 
	Component Wear Detection 
	Cycle-Based Two-Stage Tool and Component Condition Index 

	Conclusions and Outlook 
	References

