
1.  Introduction
The fifth and sixth Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC) state that a 
human-induced global warming trend is clear, but that changes to the hydrological cycle are difficult to quantify 
and project due primarily to model biases and intermodel spread (IPCC, 2014, 2021). As changes in tempera-
ture and precipitation significantly alter the water cycle, understanding the impact of climate change on water 
resources remains challenging but necessary for developing adaptive strategies (Green, 2016; Green et al., 2011; 
Henley et al., 2019; Taylor et al., 2013). Many factors can impact groundwater availability, such as pumping for 
agricultural irrigation, land use and land cover change, natural climate variability, and anthropogenic climate 
change (Amanambu et al., 2020; Atawneh et al., 2021; Jiménez-Cisneros et al., 2014). Due to the confounding 
influence of multiple drivers and limited data availability, “detection of changes in groundwater systems and attri-
bution of those changes to climatic changes are rare” (IPCC, 2014) and “no confident assessment of groundwater 

Abstract  Groundwater response to climate variations is often pivotal to managing groundwater sustainably. 
However, this relationship is rarely explicitly examined because of the complexity of surface to subsurface 
processes and the diverse impacts of multiple drivers, such as groundwater pumping and land use changes. In 
this paper, we address this challenge by proposing methods to quantify the sensitivity of groundwater level 
and recharge to temporal climate variability across Australia. Using the HydroSight groundwater hydrograph 
toolbox we first identify 1,143 out of a total of 4,350 bores as climate-driven, where historically, head was 
primarily driven by climate variations. Streamflow elasticity measures are then adapted to groundwater to 
quantify the long-term head and recharge sensitivity. We find that the national median sensitivity of head 
and recharge to precipitation change are 42 and 0.43 mm mm −1, respectively (interquartiles: 20–77 and 
0.30–0.55 mm mm −1); both of which are ∼8 times that of potential evapotranspiration. Nationally, the results 
are spatially correlated, suggestive of large-scale effects. The responses of head and recharge appear to be 
primarily related to climate type and hydrogeology. The more arid the climate, the higher the head sensitivity 
but the lower the recharge sensitivity. Porous media generally show higher head sensitivity than fractured media 
due to smaller aquifer specific yield, and again contrarily for that of recharge. These findings contribute to 
understanding the long-term impact of climate change on groundwater and thus provide valuable insights for 
sustainable groundwater management.

Plain Language Summary  In this study, we assess the response of groundwater to meteorological 
variations by using long-term groundwater level records across Australia. We first identify the sites where 
the groundwater level has been primarily impacted by climate variations alone. The changes in groundwater 
level and replenishment rate (also called “recharge”) at the natural sites are simulated under a range of 
precipitation and evapotranspiration shifts and their relationships are statistically quantified. Results show that 
the national median groundwater level changes by 42 mm and the recharge changes by 0.43 mm per 1 mm 
change in precipitation. The response of groundwater level and recharge are found to be primarily governed 
by the inherent properties of the sites, such as climate type and hydrogeology. This study provides valuable 
insights into climate change impacts on groundwater availability and contributes to developing adaptive water 
management strategies.
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projections is made” to date (IPCC, 2021). Hence, the impact of climatic change on groundwater remains an open 
question.

Numerous studies have attempted to project groundwater level changes by calibrating a physically based model 
(e.g., MODFLOW) forced with meteorological data of future climate change scenarios (Allen et  al.,  2004; 
Kumar, 2016; Toews & Allen, 2009b). This approach provides the opportunity to estimate how the future climate 
may influence groundwater level changes, but such projections are highly uncertain because (a) the calibrated 
models generally lack cross-validation (Isaaks & Srivastava, 1990) and differential split sample tests (Refsgaard 
et al., 2014); (b) many assumptions of stationarity are made, such as land cover and land use, which have recently 
been challenged (Peterson et  al.,  2021); (c) limited observational monitoring and deficient knowledge of the 
subsurface (Oreskes et al., 1994); and (d) uncertainty in the predicted climate derived from both General Circu-
lation Models and Regional Climate Models (Toews & Allen, 2009a).

Predicting groundwater level changes is challenging (Oreskes et al., 1994), and anthropogenic climate change 
makes this task even more onerous. As a precursor to exploring future projections, quantifying the historic impact 
can potentially inform understanding of the future response of groundwater to climate change. Furthermore, given 
that groundwater is the only widely monitored hydrological state variable (Peterson & Western, 2014) and often 
has a long memory (Fowler et al., 2020), better understanding the historic response of groundwater to climate can 
potentially provide insights into impacts on streamflow. Analyzing groundwater hydrographs therefore presents 
an opportunity to examine the cumulative impacts of climatic changes on groundwater and broader hydrology.

There are however a few obstacles to using groundwater hydrographs for sensitivity quantification including: 
(a) the fact that hydrographs are often short and irregularly sampled; (b) the complexity of surface to subsurface 
processes; (c) the heterogeneity of subsurface properties; and (d) the impacts of non-climatic drivers on the 
head, such as pumping for agricultural irrigation and land use change, most of which are rarely quantified and 
time-variant. In this study, we address the following challenges:

1.	 �Identifying climate-driven sites: Many bores have been impacted by pumping at some point in the past, so 
identifying sites which are free from direct anthropogenic impacts is key, that is, the sites with groundwater 
hydrographs which have been driven primarily by climate variations rather than irrigation/land-use changes.

2.	 �Assessing a large number of sites: Previous studies selected climate-driven sites based on site environ-
ment, groundwater metadata (e.g., land use and pumping records), and researchers' experience (Bloomfield 
et al., 2019; Cuthbert et al., 2019). However, a methodology does not exist to identify climate-driven sites 
among a large number of unfamiliar sites with limited prior knowledge.

3.	 �Accounting for groundwater memory: There is a time delay of the head response to meteorological change 
(Cuthbert et al., 2019; Opie et al., 2020). That is, the observed change in the head is a cumulative response, 
which relates not only to the rainfall on the observed day but also to those events months or even years ago 
(Domenico & Schwartz, 1998; Von Asmuth et al., 2002).

4.	 �Quantifying sensitivity: No known study and methodology quantifies groundwater level and recharge sensi-
tivity to climate variations.

In light of the above challenges, here we aim to answer the two research questions: (a) in which regions of 
Australia is groundwater most sensitive to climate variability? We then generalize the findings to understand (b) 
in which types of aquifers and environments is groundwater most and least sensitive to climate variations? To 
achieve this aim, we develop an approach to identify climate-driven groundwater sites across the country and to 
quantify the sensitivity of groundwater level and recharge to climate variables and their interactions.

To expand, we aim to introduce methods to derive a first-order estimate of the sensitivity of groundwater level 
and recharge to climate variations in Australia. Both groundwater level and recharge sensitivity are quantified as 
they are impacted by different subsurface properties. The recharge is a partitioning of the infiltrated precipitation 
and the generation of recharge depends on the properties of the unsaturated zone (e.g., soil and vegetation roots). 
The groundwater level change however also depends on aquifer hydraulic properties, such as specific yield, which 
represents the effective porosity of the saturated zone where the water is able to flow (Kotchoni et al., 2019). 
Australia is chosen as study site because of its extensive groundwater borehole observational networks (>230,000 
bores), the availability of continent-wide multi-decadal to centennial length meteorological observations, the 
variety of climate types (tropical, arid, and temperate) across the continent, and the incidence of recent droughts 
which have caused severe groundwater depletion (Australian Government Bureau of Meteorology, 2012; Van Dijk 
et al., 2013).
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Below, we first describe the methods developed to identify the climate-driven sites and to quantify their ground-
water level and recharge sensitivity. The spatial distributions of climate-driven sites, the sensitivity results, and 
the likely governing factors (e.g., climate type, hydrogeology, land use, depth to water table, aquifer property) 
of groundwater sensitivity are analyzed and presented in Section 3. In Section 4, we discuss the adequacy of the 
methods, the sensitivity results, and the implications for groundwater management under climate change. The key 
findings of the study are summarized in Section 5.

2.  Data and Methods
2.1.  Data

2.1.1.  Groundwater Level and Borehole Data

Groundwater level time-series data, bore coordinates, elevations, and construction depths are obtained from 
the Australian Government Bureau of Meteorology (available at http://www.bom.gov.au/water/groundwater/
explorer/map.shtml) for 232,141 bores in Australia. Under the assumptions that (a) unconfined aquifers are most 
likely to respond to climate variability and (b) long-term records are required to produce reliable results, a subset 
of bores that fulfill the following criteria are selected for use: (a) at least 200 observations per hydrograph; (b) 
observations covering the entire period of the Millennium Drought (Van Dijk et al., 2013) in Australia between 
1997 and 2010; and (c) the bore screening minimum depth of ⩽50 m (or where the screen depth is unavailable, a 
bore depth ⩽50 m). Application of these criteria results in 5,076 sites identified for use.

2.1.2.  Climate Data

The daily precipitation (P) and potential evapotranspiration (PET) from 1960 to 2018 are required to simulate 
past meteorological variations. The daily precipitation, maximum and minimum air temperature, relative humid-
ity, vapor pressure, and solar radiation at each bore location are estimated using bilinear interpolation of the 
0.05° × 0.05° gridded national meteorological data (Jones et al., 2009) with an R-package AWAPer (Peterson 
et al., 2020). The interpolated climate variables are then adopted to calculate Morton (1983)'s wet environment 
areal PET using the method outlined by Guo et al. (2016).

Australia has a variety of climates (12 subcategories) ranging from tropical, arid, and temperate climates. The 
climate type at each bore location is obtained from the Köppen-Geiger climate map updated by Peel et al. (2007).

2.1.3.  Land Use Data

The land use at groundwater sites is sourced from the Australian Department of Agriculture, Water and the 
Environment (Australian Bureau of Agriculture and Resources Economics and Sciences (ABARES), 2021). The 
national map has a spatial resolution of 50 × 50 m and contains six primary categories: conservation and natu-
ral environments (shortened to “natural”), relatively natural environments (shortened to “relatively natural”), 
dryland agriculture and plantations (shortened to “dryland”), irrigated agriculture and plantations (shortened to 
“irrigation”), intensive uses, and water bodies (e.g., rivers and lakes).

2.1.4.  Hydrogeology Data

The hydrogeology of the sites is obtained from the Australian Bureau of Mineral Resources (Jacobson & Lau, 1987; 
Lau et al., 1987). The aquifers in Australia are divided into five classes according to the media (porous or frac-
tured), distribution (extensive or local), and productivity (high or low-moderate). High productivity denotes those 
producing good quality of water at a high yield and from a shallow depth. The aquifer types include porous exten-
sive highly productive aquifers, porous extensive aquifers with low-moderate produc tivity, fractured or fissured 
extensive highly productive aquifers, fractured or fissured extensive aquifers with low-moderate productivity, and 
local aquifers with generally low productivity.

2.2.  Time-Series Groundwater Hydrograph Modeling

The groundwater modeling is undertaken using HydroSight (Peterson & Fulton, 2019; Peterson & Western, 2014)  
which is a nonlinear transfer function noise time-series model (available at https://github.com/peterson-tim-j/ 
HydroSight). Before building the time-series models, each of the 5,076 hydrographs is analyzed for erroneous 
observations and outliers using HydroSight (Peterson & Western,  2018). The following quality checks are  
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undertaken: (a) observations are within the bore construction and termination dates; (b) there are no duplicate 
observations; (c) daily maximum head change ⩽10 m; (d) head cannot be constant for a duration of >120 days; and 
(e) observations must be less than 4 times the noise standard deviation of the model simulation. After removing 
any erroneous and outlier observations, only the sites that still fulfill the criteria listed in Section 2.1.1 are used for 
modeling.

The daily P and PET are input forcings of the groundwater models. The meteorological variables are first 
non-linearly transformed through a two-layer soil moisture storage (SMS) module in HydroSight. Compared 
with the one-layer module, the two-layer module restricts solutions to those giving a plausible estimate of actual 
evapotranspiration given the long-term site aridity, the benefit of which is improved estimates of average gross 
recharge (Peterson & Fulton, 2019). The climate forcings are first transformed through the upper soil layer with 
Equation 1 and then the deep soil layer with Equation 2 (Peterson & Fulton, 2019):

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑃𝑃inf −𝐷𝐷shallow − 𝐸𝐸shallow� (1)

𝑑𝑑𝑑𝑑deep

𝑑𝑑𝑑𝑑
= 𝐷𝐷shallow −𝐷𝐷deep − 𝐸𝐸deep� (2)

𝐷𝐷shallow = 𝑘𝑘sat

(

𝑆𝑆

SMSC

)𝛽𝛽

� (3)

𝐷𝐷deep = 𝑘𝑘sat

(

𝑆𝑆deep

SMSCdeep

)𝛽𝛽

� (4)

𝐸𝐸shallow = PET

(

𝑆𝑆

SMSC

)𝛾𝛾

� (5)

𝐸𝐸deep = (PET − 𝐸𝐸shallow)

(

𝑆𝑆deep

SMSCdeep

)𝛾𝛾

� (6)

where Pinf and PET are daily infiltrated precipitation and potential evapotranspiration at time t; Dshallow and Ddeep 
are the drainage of the upper and deep layers of the two-layer SMS module at t; Eshallow and Edeep are the evapo-
transpiration of both layers at t; S and Sdeep are the soil moisture of both layers at t; SMSC and SMSCdeep are the 
SMS capacity of both layers; ksat is the vertical saturated hydraulic conductivity; β and γ are the parameters of the 
non-linear infiltration equations. To increase the calibration efficiency, the ksat, β, and γ of the deep layer are set 
to the same as the upper layer. The applied assumptions are that the soil is vertically homogeneous except for the 
SMSC, and all precipitation infiltrates when the upper soil layer is not full (Peterson & Fulton, 2019).

The drainage of the deep soil layer (Ddeep) is conceptualized as the gross groundwater recharge (a likely slight over-
estimation due to omission of possible phreatic evapotranspiration and unsaturated zone lateral flow) (Peterson 
& Fulton, 2019). The recharge is then weighted with a Pearson type III distribution function (Equation 7) and 
integrated to give the groundwater level over time relative to a datum (Peterson & Western, 2014; Von Asmuth 
& Bierkens, 2005). The groundwater memory is accounted for by the weighting function which represents the 
historic time-series climate impact on the observed head.

𝜃𝜃(𝑡𝑡) = 𝐴𝐴
𝑏𝑏
𝑛𝑛
𝑡𝑡
𝑛𝑛−1

exp(−𝑏𝑏𝑏𝑏)

Γ(𝑛𝑛)
� (7)

where A, b, and n are the calibration parameters that define the shape of the weighting function and Γ represents 
a gamma function (Peterson & Western, 2014).

2.2.1.  Model Calibration

Each model has nine parameters to calibrate, with five parameters (SMSC, SMSCdeep, ksat, β, γ) for the two-layer 
SMS module and four parameters for the weighting function (A, b, n) and the exponential noise function (α). 
More details of the model structure and parameters are described in Peterson and Fulton (2019) and Peterson 
and Western (2014). Each model is calibrated to the observed hydrograph with a global calibration scheme shuf-
fled complex evolution with principal components analysis–University of California at Irvine (SP-UCI) (Chu 
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et al., 2011) with 36 complexes (4 complexes per parameter). The percentage change allowed in the objective 
function before convergence is set to 1 × 10 −5 and the calibration stops when at least 10 evolution loops meet 
the convergence criteria. The calibrations are performed on a high-performance computer at the University of 
Melbourne (Lafayette et al., 2016).

2.3.  Climate-Driven Sites Identification

After modeling each site, we identify which bores are likely to be primarily influenced by climate variability and 
not by anthropogenic factors. A good fit of a HydroSight model built only with meteorological data is potentially 
helpful to indicate the sites where groundwater level fluctuations can be well explained by climate variations 
alone. Using a high threshold of model performance thus provides an opportunity to identify the sites where the 
water level changes have been primarily driven by climate variations. Here we use the Nash-Sutcliffe efficiency 
(NSE) (Nash & Sutcliffe, 1970) as the measure of goodness-of-fit:

NSE = 1 −

∑𝑁𝑁

𝑡𝑡=1
(𝐻𝐻obs,𝑡𝑡 −𝐻𝐻sim,𝑡𝑡)

2

∑𝑁𝑁

𝑡𝑡=1

(

𝐻𝐻obs,𝑡𝑡 −𝐻𝐻obs

)

2� (8)

where N is the length of the simulation period; Hobs,t and Hsim,t are the observed and simulated heads at time t; 𝐴𝐴 𝐻𝐻obs 
is the mean observed head over the length N. The NSE ranges from −∞ to 1; 1 denotes a perfect performance and 
0 denotes an estimate no better than the mean head.

We adopt an NSE ⩾ 0.80 as our criteria for identifying climate-driven sites, which equates to more than 80% of 
the groundwater level variance being explained by climate forcings alone (impacts of other factors are slightly 
possible). Different NSE thresholds (e.g., 0.85, 0.90) are explored to understand the impact of the threshold on 
the sensitivity results. The spatial consistency of the modeling results is assessed and compared to the maps of 
land use and hydrogeology.

2.4.  Groundwater Level and Recharge Sensitivity Quantification

Local sensitivity is a well-established hydrological method to examine the response of streamflow to climate and 
the behavior of distributed groundwater models (Chiew, 2006; Hill & Tiedeman, 2006; Saltelli et al., 2019). As 
no known study quantifies groundwater sensitivity, we propose to adapt existing methods for streamflow sensitiv-
ity, which are often referred to as streamflow elasticity metrics, to quantify groundwater sensitivity. Streamflow 
elasticity quantifies the change in streamflow discharge for a unit change in a climate variable (Andréassian 
et al., 2016; Chiew, 2006). A regression measure is often used and built between the modeled discharge changes 
(with a rainfall-runoff model) and a range of plausible climate shifts (e.g., precipitation), and the slope is taken 
as the elasticity (Vano et al., 2012). To account for the joint impact of multiple climate variables (e.g., precip-
itation and evapotranspiration) on streamflow, a multiple linear regression (MLR) approach is often adopted 
(Andréassian et al., 2016; Chiew, 2006). The streamflow elasticity measures however cannot be used directly for 
groundwater as (a) the groundwater head responds to climatic changes with time lags (Peterson & Western, 2014), 
and (b) the portion of the precipitation which ultimately impacts the head is time-variant depending on the 
precondition of the soil.

Here we adapt the MLR method to estimate groundwater level and recharge sensitivity (a) by using the long-
term mean changes (instead of instant changes due to the delayed response of the head) in the head, recharge, 
and climates at each climate-driven site, and (b) by using HydroSight to simulate the head changes since it can 
account for the delayed response of the head to climate variations and transform the infiltrated precipitation into 
the head based on the soil conditions (Equations 1–4). Both are absolute sensitivities which quantify the change 
(mm) in the head or recharge per 1 mm change in P or PET:

Δ𝐻𝐻𝑖𝑖𝑖𝑖𝑖 = 𝜖𝜖P,H ⋅ Δ

(

∑

𝑃𝑃𝑖𝑖

)

+ 𝜖𝜖PET,H ⋅ Δ

(

∑

PET𝑗𝑗

)

+ 𝜔𝜔H� (9)

Δ

(

∑

𝑅𝑅𝑖𝑖𝑖𝑖𝑖

)

= 𝜖𝜖P,R ⋅ Δ

(

∑

𝑃𝑃𝑖𝑖

)

+ 𝜖𝜖PET,R ⋅ Δ

(

∑

PET𝑗𝑗

)

+ 𝜔𝜔R� (10)

where
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�𝐴𝐴 Δ

(
∑

𝑃𝑃𝑖𝑖

)

 is the average of the annual total precipitation changes (mm) over the record length for the daily P shift-
ing by i% (i ⩽ ±15%);

�𝐴𝐴 Δ

(
∑

PET𝑗𝑗

)

 is the average of the annual total PET changes (mm) for the daily PET shifting by j% (j ⩽ ±10%);
�𝐴𝐴 Δ𝐻𝐻𝑖𝑖𝑖𝑖𝑖 is the average of the annual mean head changes (mm) between the simulated daily hydrographs with the 

observed climate and with P and PET shifts;
�𝐴𝐴 Δ

(
∑

𝑅𝑅𝑖𝑖𝑖𝑖𝑖

)

 is the average of the annual total recharge changes (mm) between the simulated daily recharge with the 
observed climate and with P and PET shifts;

�ϵP,H and ϵPET,H are MLR coefficients that represent the head sensitivity to P and PET in a unit of mm mm −1;
�ϵP,R and ϵPET,R are MLR coefficients that represent the recharge sensitivity to P and PET in a unit of mm mm −1;
�ωH and ωR are regression residuals and all regressions are ordinary least-square solutions (ωH  ∼  N(0, σH), 

ωR ∼ N(0, σR), σH and σR are the standard deviations)).

In the model simulation, the daily P shifts between ±15% (n = 31) and the daily PET between ±10% (n = 21), 
based on their historic range of changes (Liu et al., 2021; Ukkola et al., 2019), with an increment size of 1%. In 
total, 651 (i.e., 31 × 21) daily groundwater hydrographs are simulated for each climate-driven site. The recharge 
as an intermediate output of the model (Equation 4) is also simulated. The simulations are the same lengths as the 
observed hydrographs and are on a daily scale (not only on the irregularly observed days of the head) to provide 
an uninterrupted estimate of the head and recharge changes. The MLRs with a coefficient of determination 
R 2 ⩾ 0.80 are included in the sensitivity analysis.

While we do acknowledge value in exploring more complex and realistic climate scenarios, and HydroSight can 
explore such scenarios, we contest that examining the groundwater head and recharge response to finer-scale 
meteorological shifts (e.g., increased rainfall intensity) is a second-order issue behind our examination of long-
term climate sensitivity. The sensitivity of head to a single precipitation event could be analytically derived but it 
would require prior knowledge of the soil moisture. Furthermore, even if possible, this would not provide insight 
into the long-term sensitivity of groundwater to climate variability. Also, we further argue that the regression 
step is required because the rate of head changes with P and PET has some nonlinearity, which could have been 
ignored by exploring a single small climate increment or undertaking a finer scaled increment within the broader 
range of changes. By exploring a large range of increments and using the MLR to represent the overall picture, 
we strike a balance between breadth and practicality in the analysis.

2.5.  Specific Yield Estimation

The heterogeneous aquifer specific yields could be a main cause of the spatial discrepancy of the groundwater level 
and recharge sensitivity because of its role in controlling the response of the head to recharge. Specific yield is a 
fundamental aquifer hydraulic property that has been highly desirable for estimating the rate of drawdown and recov-
ery from groundwater pumping. Since not all water contained in the saturated zone is freely movable and available 
for the wells, specific yield defines the ratio of the volume of water that can be drained by gravity to the total porosity 
of the saturated zone (Johnson, 1967). It is frequently used with the head data in the Water-Table Fluctuation method 
to estimate groundwater recharge (Fu et al., 2019; Healy & Cook, 2002; Kotchoni et al., 2019; Meinzer, 1923):

𝑅𝑅𝑡𝑡 = 𝑆𝑆y

Δ𝐻𝐻

Δ𝑡𝑡
� (11)

where Rt is the recharge (mm) over time t, ΔH is the head change (mm) during the defined period of time Δt, and 
Sy is the specific yield (-) and usually expressed in percentage.

Estimating specific yield in practice, however, involves costly aquifer pumping tests (Healy & Cook,  2002), 
highly precise groundwater level observations, and subsequent earth-tide analysis (Chowdhury et  al.,  2022). 
Consequently, estimates are rare and often have an order of magnitude uncertainty (Crosbie et al., 2019; Healy & 
Cook, 2002). To overcome this challenge, we propose that the long-term mean sensitivity of head and recharge 
be used to estimate aquifer specific yield:

𝑆𝑆y =

𝑅𝑅𝑡𝑡

Δ𝐻𝐻𝑡𝑡

⇒
Δ𝑅𝑅𝑡𝑡∕Δ𝑃𝑃

Δ𝐻𝐻𝑡𝑡∕Δ𝑃𝑃
⇒

𝜖𝜖P,R

𝜖𝜖P,H

� (12)

where ΔRt is the recharge change (mm) over time t; ΔHt is the corresponding head change (mm), and ΔP is 
the precipitation change (mm) over t; ϵP,R and ϵP,H are the long-term mean sensitivities of recharge and head to 
precipitation (mm mm −1) in Equations 9 and 10. Note that this estimated specific yield is only a measure over the 
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range of depths for which the water table fluctuates, and is not necessarily an estimate of the entire (esp. deeper 
portion of the) aquifer.

2.6.  Examination of Groundwater Sensitivity and Specific Yield

To examine the plausibility of the sensitivity results and the aquifer specific yield, the spatial correlations of these 
properties of all sites are analyzed. The thinking here is that the sensitivity of aquifer (recharge, level) and specific 
yield should be spatially correlated because physically (a) the aquifer hydrogeological properties have spatial 
coherence and (b) the climate variables influencing recharge and level are highly spatially correlated. Given that 
each site is modeled separately from other sites, a lack of spatial correlation in any of the results would warrant 
their rejection. The empirical variogram fitted with an isotropic spherical model (Cressie, 2015) is adopted to 
examine the spatial correlations: the range of the variogram represents the maximum distance within which the 
sites are spatially correlated; the nugget-effect ratio (=nugget/sill) of the variogram indicates the randomness or 
noise in the data, that is, a lower nugget-effect ratio suggests that the majority of the variance arises from the 
separation distance between sites rather than randomness.

To understand how aquifer types and environments influence groundwater sensitivity, we examine the head and 
recharge sensitivity distribution across the following categorical variables: climate type, hydrogeology, land use, 
depth to water table, and land surface elevation. The sensitivity distributions are compared between subgroups 
within each category (e.g., arid vs. temperate climates) by using the non-parametric Wilcoxon-Mann-Whitney 
test (Mann & Whitney, 1947; Wilcoxon, 1945) (which identifies differences in the median) at the 5% significance 
level. To further quantify the role of climate type, we analyze the head and recharge sensitivity versus the aridity 
of the climate (also called humidity index) which is calculated as the mean annual total P divided by PET at each 
site (Cooper et al., 2018). A P/PET < 1 represents a water-limited condition and >1 indicates an energy-limited 
condition. The impacts of specific yield on the sensitivity are analyzed using ordinary least squares linear regres-
sion which is built between the log-transformed specific yield and the log-transformed head and recharge sensi-
tivity individually (the logarithms use base 10).

3.  Results
3.1.  Groundwater Hydrograph Simulation

Figures 1a–1c show groundwater hydrographs modeled with only meteorological forcing data and the corre-
sponding observed hydrographs at three sites in Australia. Each site is known not to be impacted by pumping, 
with water level changes primarily driven by climate. All three modeled hydrographs closely fit the observations 
before, during and after the Millennium Drought (Van Dijk et al., 2013) with an NSE > 0.90. That is, over 90% 
of the observed groundwater level variance is explained by only climate variations. The long-term trends of the 
observed hydrographs are well simulated at all sites, despite slight underestimation of intra-annual variability 
(Figure 1a) which is acceptable, given that we focus on the long-term mean sensitivity of groundwater level.

In contrast, Figure 1d shows the observed and modeled hydrographs at a site known to be influenced by groundwa-
ter pumping (from 1996 onward). Initially there is a rapid drawdown (∼2 m) in head which subsequently remains 
1–2 m below the pre-pumping level, though continues to display apparent seasonal fluctuations. Modeling results 
show that without including pumping data, the model performance decreases by 23% (NSE: 0.87 cf. 0.67) and the 
uncertainty increases by ∼1.5 m as shown by the 95% confidence interval. More significantly, modeling the site 
using only climate data produces an NSE below our threshold of 0.8 for the identification of a climate-driven site, 
and thus the correct exclusion of a site influenced by pumping. Further confirmation of this is provided by the 
climate-only model having a worse Akaike Information Criteria than that using both climate and pumping data 
(AIC: 75.5 cf. −33.7); thus suggesting the latter is a more parsimonious model. Overall these results indicate that 
this modeling approach and NSE criterion can successfully identify sites where the groundwater level is primarily 
driven by climate forcing and exclude those where other drivers have a significant influence.

3.2.  Climate-Driven Groundwater Bores in Australia

Application of the selection criteria (Section 2.1.1) and outlier removal (Section 2.2) results in 4,350 bores being 
selected for groundwater modeling. Their locations and model performance (evaluated with NSE) are shown in 
Figure 2. Around 64% (n = 2,782) of the sites have an NSE ⩾ 0.50. More importantly, 26% (n = 1,143) have an 
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NSE equal to or greater than the threshold for being primarily climate-driven (i.e., ⩾0.80), and 11% (n = 479) 
have an NSE ⩾ 0.90. That is, climate forcing alone is able to explain at least 80% of the groundwater level vari-
ance at 26% of bores.

Figure 2.  The Nash-Sutcliffe efficiency (NSE) distribution of 4,350 modeled groundwater hydrographs in Australia and each state. The sites with an NSE ⩾ 0.80 are 
selected as climate-driven sites. (a) Australia. (b) Northern Territory. (c) Queensland. (d) Western Australia. (e) South Australia. (f) New South Wales, Victoria, and 
Tasmania. (g) Cumulative distribution function and histogram of the NSE of all modeled sites in the country. Each dot on the maps denotes an observed borehole and 
the dot color denotes the NSE value.

Figure 1.  Long-term observed and modeled groundwater hydrographs in Victoria, Australia. (a–c) The hydrographs of three sites known to have no pumping and 
modeled with meteorological data alone: (a) bore ID 20054348 (Nash-Sutcliffe efficiency [NSE] = 0.94), (b) bore ID 20156664 (NSE = 0.99), and (c) bore ID 6416 
(NSE = 0.99). (d) The hydrograph of a site with known pumping (bore ID 86656) and modeled with meteorological data alone (NSE = 0.67) as well as with both 
meteorological and pumping data (NSE = 0.87). The brown bars represent the annual pumping rate at the site; the black lines denote the observed hydrographs; the red 
lines denote the hydrographs modeled with meteorological data alone; the blue line is the hydrograph modeled with both meteorological and pumping data; the gray 
shading denotes the 95% confidence interval of the modeled hydrographs; and the orange shading denotes the Millennium Drought (∼1997–2010).
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Of these 1,143 climate-driven sites, 75% (n = 861) are in southeast Australia (SEA) including the states of Victo-
ria (VIC, n = 747), New South Wales (NSW, n = 28), and South Australia (SA, n = 86); 11% (n = 121) are in 
southwest Australia (SWA) including the state of Western Australia (WA) only; and 14% (n = 161) are in north-
east Australia (NEA) including the states of Queensland (QLD, n = 143) and Northern Territory (NT, n = 18). 
Furthermore, the spatial consistency of the NSE results (e.g., WA and NSW in Figures 2d and 2f), despite each 
bore being modeled independently, supports the validity of the results.

The distributions of climate-driven sites (n = 1,143) in each land use, hydrogeology, and climate are shown in 
Figures 3a–3c. Figure 3a shows that the number of climate-driven bores in the less human-impacted (natural, rela-
tively natural, and dryland areas) versus human-impacted areas (irrigation, intensive use) is 3:2 (n = 694:449). 
Additionally 44% (n = 287/656) of the bores in the natural area are identified as climate-driven sites, whereas 
only 20% (n = 245/1,247) of those in the irrigation area are identified as climate-driven. Within the natural 
area the median NSE of all modeled sites is 0.75, which is 25% higher than that (0.60) for the irrigation area 
(Figure 3d). The Wilcoxon-Mann-Whitney test also finds that the null hypothesis of the natural and irrigation 
areas having the same NSE distribution can be rejected at the 5% significance level (p-value < 0.001). Overall, 
these results show that the adoption of an NSE criterion for the identification of climate-driven sites meets the 
reasonable expectation that such sites are more likely in natural and dryland agricultural regions and less likely 
in intensively used and irrigated regions.

Figure  3b shows that the number of climate-driven sites identified at porous versus fractured aquifers is 6:1 
(n = 984:156). Around 25% (n = 984/3,865) of porous aquifers and 34% (n = 156/463) of fractured aquifers are 
identified as climate-driven. The number of climate-driven sites identified in tropical, arid, and temperate climates 

Figure 3.  The distribution and statistics of all modeled groundwater sites in Australia. (a–c) The number of all modeled sites in each (a) land use, (b) hydrogeology, 
and (c) climate type. (d) The Nash-Sutcliffe efficiency (NSE) distribution of all modeled sites in each land use. (e, f) The time-series length and the depth to water table 
of all modeled hydrographs. The blue bars represent the climate-driven sites (NSE ⩾ 0.80); the orange bars represent the rest of the sites (NSE < 0.80). The percentage 
on top of the bar represents the proportion of the climate-driven sites relative to the total number of modeled sites of that bar. Note, rela. natural means “relatively 
natural” and NA means unavailable information.
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is 1:10:25 (n = 32:311:795) (Figure 3c). Around 11% (n = 32/296) of the sites in tropical climates are identified 
as climate-driven, whereas 27%–28% of the sites in arid (n = 311/1,172) and temperate (n = 795/2,805) climates 
are identified. Overall, these results show that the selection of climate-driven sites across Australia is relatively 
unbiased with respect to the dominant aquifer type and likewise for climate, despite a modest under-representation 
of sites within tropical regions, the cause of which is unknown and may arise from the deficient performance of 
HydroSight within energy-limited environments.

The length of all modeled hydrographs is between 13 and 58  years (1960–2018). The climate-driven sites 
have a length of 16–53 years with a median of 33 years (Figure 3e). Around 26% of the sites are identified as 
climate-driven at each time length on average: a slightly higher rate for those sites with ⩽25 years and slightly 
lower for those with >40 years. All modeled sites have a depth to water table (DTW) between 1.2 and 50 m. 
The DTW at climate-driven sites ranges 2.1–50 m with a median depth of 20 m. The ratio of the climate-driven 
sites identified at each DTW is relatively similar between 20% and 30%, except the top 5 m where 9% of the 
climate-driven sites are identified. These results show that the climate-driven sites are successfully identified at 
a variety of time-series lengths and depths to water table, despite a modest bias toward shorter record lengths, 
possibly because those with longer records are influenced by historic land clearing post-colonial settlement; and 
a modest omission of sites with a shallow water table, most likely because of the more complex vadose zone 
processes and the omission of such from HydroSight.

3.3.  Groundwater Level and Recharge Sensitivity and Specific Yield Estimation

To illustrate the estimation of groundwater level sensitivity, Figure 4a shows the groundwater head simulated 
using three increments of reduced precipitation, as well as with no change. The modeled internal fluxes (e.g., 
SMS and deep drainage) of this site are provided in Figure S1 in Supporting Information S1. With a 1% decrease 
in the daily P (i.e., the average of the annual total P reduced by 4.5 mm), the daily head decreases on average by 
0.24 m over the record length. When PET is constant, the mean head change is linearly related to the P change 

Figure 4.  Groundwater head (H) changes with P and potential evapotranspiration (PET) variations at a climate-driven site (ID 20120288, Nash-Sutcliffe 
efficiency = 0.92) in Victoria, Australia. (a) Simulated daily groundwater head for a decline in daily P of 1%, 2%, and 3% (i.e., the average of the annual total P 
decreases by 4.5, 9.0, and 13.5 mm). (b, c) The average of the annual mean head changes (ΔH) against the average of the annual total P changes (ΔP) for constant 
ΔPET, and that against the average of the annual total PET changes (ΔPET) for constant ΔP. The solid line represents an ordinary least squares linear regression fitted 
between the variables. (d) The average of the annual mean head changes against the averages of the annual total P and PET changes. The grid line represents a multiple 
linear regression fitted between them with a R 2 = 0.99.
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(R 2 = 0.99), with only minor curvature apparent at large P changes (Figure 4b). The slope provides an estimate 
of the long-term mean head sensitivity to P, which is a head change of 54 mm per 1 mm change in P. However, 
if the slope is quantified for the positive and negative P change separately, the head is found to be slightly more 
sensitive to a positive P change than a negative change (56.3 cf. 51.5 mm mm −1).

Similarly, when PET is varied and P is constant, the head changes by −8.6  mm per 1  mm PET change 
(Figure 4c). Again, the head is slightly more sensitive to a negative PET change than a positive change (−9.0 cf. 
−7.4 mm mm −1). To jointly quantify the head changes with both P and PET, we fit Equation 9 to the plane in 
Figure 4d. The final result for the site shows that the groundwater head is ∼6 times more sensitive to P than to 
PET (54.1 cf. −8.6 mm mm −1 respectively).

We find that 95% (1,081/1,143) of the climate-driven sites in Australia have an MLR model fit (R 2) more than 
0.80. The head and recharge sensitivity of these sites are shown in Figure 5. All sites are found, as expected, to 
have a positive sensitivity to P and negative sensitivity to PET. The groundwater level sensitivity to P varies from 
⩽40 mm of head change per 1 mm of P change at 48% (n = 518) of sites, 40–80 mm mm −1 at 28% (n = 306) 
of sites, and >80 mm mm −1 at 24% (n = 257) of sites (Figure 5a). For PET, the absolute value of the ground-
water level sensitivity varies from ⩽5 mm of head change per 1 mm of PET change at 42% (n = 452) of sites, 
5–10 mm mm −1 at 30% (n = 323) of sites, and >10 mm mm −1 at 28% (n = 306) of sites (Figure 5b).

Spatially, the groundwater level sensitivity to precipitation is the highest in SEA, followed by SWA and NEA 
in a ratio of 3:2:1 (48.5:38.5:17.2 mm mm −1) when comparing the regional median (Figure 6a). The ground-
water level sensitivity to PET in SEA and SWA is slightly higher than that in NEA in a ratio of 1.8:1.7:1 
(−6.6:−6.2:−3.7 mm mm −1 in median) (Figure 6b). The national median of the groundwater level sensitivity to 
P is ∼42 mm mm −1 and that to PET is around −6.4 mm mm −1.

Similarly, the groundwater recharge also responds positively to P and negatively to PET changes (Figures 5c and 5d). 
The recharge sensitivity to P varies from ⩽0.3 mm of recharge change per 1 mm of P change at 25% (n = 271) of 
sites, 0.3–0.5 mm mm −1 at 41% (n = 440) of sites, and >0.5 mm mm −1 at 34% (n = 370) of sites. For PET, the 
absolute value of recharge sensitivity varies from ⩽0.05 mm of recharge change per 1 mm of PET change at 38% 
(n = 407) of sites, 0.05–0.08 mm mm −1 at 33% (n = 359) of sites, and >0.08 mm mm −1 at 29% (n = 315) of sites. 
The groundwater recharge sensitivity to P is the highest in SWA, followed by SEA and NEA in a ratio of 1.4:1.1:1 
(0.55:0.43:0.40 mm mm −1 in median) (Figure 6c). The groundwater recharge sensitivity to PET is slightly higher 
in SWA and NEA compared with SEA in a ratio of 2:2:1 (0.10:0.10:0.05 mm mm −1 in median) (Figure 6d). The 
national median sensitivity of groundwater recharge to P is 0.43 mm mm −1 and that to PET is −0.06 mm mm −1.

Overall, the head and recharge sensitivity results are physically plausible and justify their use in estimating aquifer 
specific yield ([%]) shown in Figure 5e. Results show that around 55% (n = 595) of sites have a specific yield 
less than 1%; 32% (n = 347) of sites have a specific yield between 1% and 4%; and 13% (n = 139) of sites have a 
specific yield more than 4%. The 95th percentile of the specific yield is 10% with a maximum of 42% (Figure 6j). 
The national median specific yield is 0.9% and that in SWA, SEA, and NEA are 1.6%, 0.8%, and 2.1% (Figure 6e).

Figure 7a shows that both groundwater level and recharge sensitivity to P are around 8 times that of PET, which 
supports the assumption that precipitation plays a dominant role in driving water level and recharge changes. 
The groundwater level and recharge sensitivity however show a very low correlation (R 2 < 0.1), probably due to 
the extra influential factors of the head such as aquifer hydraulic properties. The groundwater level sensitivity 
is strongly negatively correlated with the specific yield with a slope of −0.6 to −0.7 in their log-correlations 
(R 2 > 0.7, Figure 7b), which is as expected given that a lower specific yield physically equates to a larger head 
reduced per unit of water extracted from an aquifer. The specific yield however also shows a slight positive corre-
lation with recharge sensitivity (R 2 ≈ 0.4), possibly because the recharge sensitivity is used to estimate specific 
yield in the derivation method (Equation 12).

Additionally, in understanding the uncertainty in the sensitivity results and specific yield due to the adopted NSE 
threshold (⩾0.80) in climate-driven sites selection, our results may slightly underestimate the head sensitivity by 
8%–11%, overestimate the recharge sensitivity by 2%–4% and specific yield by ∼10% compared with adopting 
a higher NSE (e.g., ⩾0.85, Figure S2 in Supporting Information S1). However, a slight compromise in model 
performance, from an NSE of 0.85 to 0.80, increases the spatial coverage of the selected climate-driven sites by 
∼40% (1,143 cf. 818 sites). We therefore judge that the application of an NSE ⩾ 0.80 is sensible for balancing the 
trade-off between the results accuracy and spatial coverage (i.e., to avoid spurious spatial correlations).
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To examine the plausibility of the sensitivity results and specific yield, empirical and model isotropic variograms 
of each result are shown in Figure 8. The sensitivity results show that around half of the spatial variability is 
explained by the distance between bores; whereas the remaining variability is random and independent of loca-
tion (i.e., nugget). More importantly, the variogram range is from tens to hundreds of kilometers. The recharge 

Figure 5.  The sensitivity of groundwater level and recharge to P and potential evapotranspiration (PET) and the estimated specific yield in Australia (AUS). (a, b) 
The groundwater level (H) sensitivity to P and PET. (c, d) The recharge (R) sensitivity to P and PET. (e) The estimated aquifer specific yield (Sy) for all sites. The 
zoomed-in maps show the clusters of the sites in southwest Australia and Victoria (VIC). Note, southeast Australia includes VIC, South Australia, New South Wales, 
and Tasmania; northeast Australia includes Queensland and Northern Territory.

 19447973, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035036 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

FAN ET AL.

10.1029/2023WR035036

13 of 22

sensitivity to PET has the largest range (651 km) followed by that to P (268 km), which is as expected given 
precipitation is more spatially variable than PET and often a stronger driver within the model. The ranges of the 
variograms of head sensitivity however contract to about 30 km. This is lower than expected given that the head 
sensitivity is a function of the aquifer hydraulic properties, but may be explained by the head sensitivity incorpo-
rating many factors (in addition to soil and climate) such as bore screening depth and proximity to other omitted 
drivers such as water bodies. Finally, the specific yield estimates have a nugget close to 0, suggesting very low 
random noise in the data, and a range of 204 km. Given that its derivation is a function of both recharge and head 
sensitivity, a range between the two is sensible. Overall, given each site is analyzed independently of others, the 

Figure 6.  Boxplots and cumulative distribution functions of (a, b, f, and g) head sensitivity and (c, d, h, and i) recharge sensitivity to P and potential evapotranspiration, 
and (e, j) the specific yield of all sites in Australia and each region. The regional divisions are shown in Figure 5e.

Figure 7.  (a) Relationships of groundwater level and recharge sensitivity to P and potential evapotranspiration and (b) the 
log-correlated relationships of the sensitivity with specific yield of all sites in Australia. The logarithms use base 10.
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emergence of spatial correlations consistent with the scale of relevant climate and aquifer factors suggest that the 
results are reasonable.

3.4.  Explanatory Factors for Groundwater Sensitivity

The magnitudes of groundwater level and recharge sensitivity are found to vary across climate types 
(Figures 9a–9d). The head sensitivity to P is highest in arid climates (58 mm mm −1 in median), followed by 
temperate and tropical climates (40 and 5 mm mm −1 median respectively, see Figure 9a); and similarly so for 
that to PET (Figure  9b). In contrast, the recharge sensitivity to P shows an opposite order with the highest 
sensi tivity in the tropical climates (0.51 mm mm −1 in median), followed by temperate and arid climates (0.45 and 
0.36 mm mm −1 median, see Figure 9c); and again similarly so for that to PET (Figure 9d).

Looking at the catchment properties, the median head sensitivity at porous aquifers is twice that at fractured 
aquifers (46 cf. 23 mm mm −1 for sensitivity to P, and −7 cf. −4 mm mm −1 for that to PET, see Figures 9e–9h). In 
contrast, the median recharge sensitivity of fractured aquifers is slightly greater than that of porous aquifers (0.47 
cf. 0.42 mm mm −1 for sensitivity to P, and −0.09 cf. −0.05 mm mm −1 for that to PET). With regards to land use, 
at the irrigation areas the median head sensitivity to P and PET are 62 and −8 mm mm −1, which are slightly higher 
than those at other categories (Figures 9i and 9j). The recharge sensitivity to P and PET however show no clear 
relationship with different land uses (Figures 9k and 9l). Similarly, the head and recharge sensitivity show no clear 
relationship with the depth to water table or land surface elevation (Figure S3 in Supporting Information S1).

To examine the spread within each climate and catchment property category, Figure 10 shows the results from the 
non-parametric Wilcoxon-Mann-Whitney tests comparing the distribution from a combination of each climate 
type, hydrogeology and land use. It shows that the head sensitivity to P and PET is significantly different between 
climate types; however, only porous against fractured aquifer type appears to be significant; for land use, irri-
gation again appears to be significantly different from other uses while natural and relatively natural uses often 
differ to the agricultural categories (dryland, irrigation, intensive). With regards to recharge sensitivity, again the 
climate type is very often a significant factor; however, unlike for head, all combinations of aquifer type differ 
from one another. Land use, though, does not appear to control recharge sensitivity.

Overall, these results suggest that climate and hydrogeology are the major controllers of head and recharge sensi-
tivity, with recharge being the most sensitive to hydrogeology. Practically this suggests that the head is generally 

Figure 8.  Empirical and model isotropic variograms of (a, b) recharge sensitivity, (c, d) head sensitivity to P and potential evapotranspiration, and (e) aquifer specific 
yield in Australia. The nugget-effect ratio = nugget/sill.
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most sensitive to precipitation within more water-limited climates (arid and some temperate climates such as 
Csa and Csb) and within sedimentary aquifers. However, recharge appears most sensitive to precipitation within 
tropical and all but one (Cwa) temperate climate and within fractured aquifers. Looking at the major climate and 
aquifer types across Australia, this suggests that the sedimentary aquifers within the arid zones of northern VIC 
are most sensitive to rainfall changes, along with those at temperate sedimentary sites in southern SA and WA 
(Figure 5). For recharge, the tropical regions in northern Australia and temperate regions in southern VIC, WA, 
and SA are most sensitive to rainfall changes, particularly so within fractured aquifers. Land use however plays 
a minor role in recharge sensitivity, especially to P, probably because all sites are climate-dominated, where the 
land use impact is minimal and the recharge is primarily driven by P. The head however shows a different sensitiv-
ity between the agricultural uses and natural areas likely because of the anthropogenic activities that were active 
at some points in the past have altered the subsurface structures and properties.

To further understand how the head and recharge sensitivity changes with the aridity of the climate, Figure 11 
shows that nearly all sites in Australia are in water-limited conditions (P/PET < 1). With the increasing aridity 
(i.e., decreasing P/PET), the head sensitivity increases significantly and there appear to be P/PET step changes at 

Figure 9.  The distributions of groundwater level and recharge sensitivity to P and potential evapotranspiration in each (a–d) climate type, (e–h) hydrogeology, and (i–l) 
land use category in Australia. Note, rela. natural means “relatively natural.”
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thresholds of around 0.3 and 0.5 (Figures 11a and 11b). The median head sensitivity to P between the thresholds 
are 57, 25, and 8 mm mm −1 (P/PET between 0 and 0.3, 0.3 and 0.5, and 0.5 and 1.0, respectively); similarly, that 
to PET are −7, −5, and −2 mm mm −1 (Figures 11e and 11f). The recharge sensitivity however shows a gradual 
decrease with increasing climate aridity. Using the same P/PET thresholds, the median recharge sensitivity to P 
are 0.4, 0.5, and 0.6 mm mm −1 for each interval, and that to PET are −0.05, −0.10, and −0.16 mm mm −1, respec-
tively. Overall, these results show that the higher the aridity of the climate, the higher the head sensitivity (large 
step changes) whereas the lower the recharge sensitivity (more gradual changes).

4.  Discussion
4.1.  Climate-Driven Sites Selection

The insights into the groundwater head and recharge sensitivity across Australia, and the generalization to hydro-
climatic regions, are contingent on (a) the adequacy of the HydroSight groundwater time-series modeling and 
(b) the set of climate-driven sites being unbiased with respect to site attributes and groundwater level monitoring 
duration and frequency.

In examining the adequacy of the modeling, the sites identified as climate-driven are found to be relatively unbi-
ased with respect to aquifer type, record length, depth to water table, and climate; though tropical zones appear 
under-represented and possibly because of deficiencies in modeling of such energy-limited environments. Most 
climate-driven sites are within relatively natural regions or those with non-irrigated agriculture, though ∼20% 
are within irrigation areas, possibly because pumping at those sites is less intense (Peterson & Fulton, 2019)) 
or only active for a short period in the decadal long data (⩾16 years) and their impact turns out to be minimal. 
Conversely, 56%–70% of sites within natural and dryland agricultural regions are rejected as climate-driven. This 

Figure 10.  Differences of groundwater level and recharge sensitivity to P and potential evapotranspiration between each (a–d) climate type, (e–h) hydrogeology, 
and (i–l) land use category assessed with the non-parametric Wilcoxon-Mann-Whitney tests in Australia. A p-value < 0.05 means that the sensitivity is significantly 
different between two categories. Note, the abbreviations are the same as those in Figure 9.
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might be a result of a deficient model structure for the vadose zone processes (e.g., the non-linear complexity of 
water infiltration and interflow) (Collenteur et al., 2021); omission of a transfer function for phreatic evapotran-
spiration, which could be useful for sites with long-term trends (Peterson & Western, 2014); or additional drivers 
omitted from the model such as land cover change, most notably plantation forestry which may decrease model 
performance at the sites with a shallow water table (Figure S4 in Supporting Information S1), or interaction with 
surface waters. Despite these challenges, the recharge estimated with HydroSight are found to be comparable with 
the estimates with independent methods or a slight overestimation in small number of bores (Crosbie et al., 2019; 
Kong et al., 2021; Peterson & Fulton, 2019). The estimated recharge and recharge sensitivity could hence be an 
upper limit. Overall, given the relatively unbiased identification of climate-driven sites, a large number of such 
sites (n = 1,143), the spatial consistency of the regions of high NSE, the relationships of the groundwater sensitiv-
ity with various climate-catchment attributes, and the propensity for non-climate driven sites to be located within 
intensively irrigated regions, we conclude that the approach for identification of climate-driven sites is reasonable 
and that the selected sites are a representative sample of bores across Australia.

4.2.  Groundwater Level and Recharge Sensitivity and Specific Yield Estimation

The national median head sensitivity to P is 42 mm head change per 1 mm P, with an interquartile range of 
20–77 mm mm −1. Only ∼1% (n = 11) sites show an extremely high head sensitivity of >500 mm mm −1, suggest-
ing a low specific yield. At all sites the head has a positive sensitivity with P, which is as expected given the 
physics. Given that an aquifer having a specific yield of 1%, 10% of precipitation going to recharge would have a 
head sensitivity to P of 10 mm mm −1 (see Equation 12). The results of head sensitivity to P are plausible though 
slightly higher than expected. With regards to head sensitivity to PET, the median is −6 mm mm −1, with an inter-
quartile range of −3 to −11 mm mm −1. As expected, all sites have a negative sensitivity with PET. Looking at 
the spatial consistence of the head sensitivity (P and PET), sites within 30 km of each other show a clear spatial 
correlation and ∼60% of the variability is explained by this separation distance; with the remaining ∼40% arising 
from very local scale soil and aquifer heterogeneity and variability introduced by the modeling. Overall, given 
that the head sensitivity are within a plausible range, have the correct sign and are spatially correlated despite 
being individually derived, the results are considered reasonable.

The national median recharge sensitivity to P is 0.43  mm recharge change per 1  mm P (interquar-
tile: 0.30–0.55  mm  mm −1). Again, only ∼1% (n  =  10) sites show an extremely high recharge sensitivity 
(>0.90 mm mm −1). All sites have a positive sensitivity with P and more importantly less than 1 mm mm −1, which 

Figure 11.  The sensitivity of (a, b, e, and f) groundwater level and (c, d, g, and h) recharge to P and potential evapotranspiration (PET) versus the aridity index (P/
PET). The dashed lines denote the P/PET thresholds where the head sensitivity shows step changes.
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is again as expected given the physics. Given that rainfall partitioning is often dominated by PET and runoff, 
rather than recharge, and that one additional millimeter of P should produce significantly less than one additional 
millimeter of recharge, this further supports the physical validity of the results. Looking at the spatial consistence 
of the recharge sensitivity to P and PET, sites within 268 and 651 km respectively of each other show a clear 
spatial correlation. Nearly all (98%) of the variability is explained by the separation distance for the sensitivity to 
PET, in spite of ∼40% for that to P because of the higher spatial variability of precipitation than evapotranspira-
tion. Despite that recharge is inferred from the modeling and is not measured like head, the physical validity of 
the results and their high spatial correlation suggest that the results are reasonable.

The ratio of the head sensitivity to recharge sensitivity to P (Equation  12) enables estimation of the aquifer 
specific yield (Sy). The national median is 0.9% with an interquartile range of 0.5%–2.0%. Encouragingly the 
Sy is between the physical limits of 0% and 100% at all sites. Further evaluation of the validity of the results is, 
however, difficult given that very few independent estimates exist nationally, most likely because of the high costs 
of pumping tests and those that exits have a high uncertainty (Chowdhury et al., 2022; Crosbie et al., 2015). That 
said, for northern Australia it is estimated at 1.7%–3.6%, while in SA it is estimated at 7.5%–30%, and globally 
at 0%–43% (Crosbie et al., 2015, 2019; Lv et al., 2021). While the median estimate here is below this range for 
Australia, the distribution of results shown in Figure 6j is well within this range. Importantly however, the results 
presented here and the national estimates are unlikely to be directly comparable because the former is an estimate 
of Sy at the water table-unsaturated zone intersection while the latter is generally a vertically integrated average 
estimate of the entire aquifer; a difference which needs to be considered if applying these results.

Unsurprisingly the head sensitivity (P and PET) is positively highly correlated with Sy (Figure 7b); that is, lower 
Sy should result in a greater head change per millimeter of recharge. However, the recharge sensitivity is posi-
tively, but weakly, correlated with the Sy. This has no obvious physical explanation other a possible correlation 
between vadose zone vertical conductivity and Sy (i.e., more vertically conductive soils have a higher aquifer 
porosity) (Chen et al., 1999, 2010) or a spurious correlation arising from recharge sensitivity being used to esti-
mate Sy.

Looking at the spatial consistence of the Sy estimates, sites within 204 km of each other show a clear spatial 
correlation and 99% of the variability is explained by this separation distance. The spatial correlation is broadly 
consistent with the extent of aquifers, which supports the finding that the estimate is representative of the physical 
properties of the aquifers. This is highly encouraging given that each estimate of Sy is derived independently of 
other estimates. Overall, despite the difficulties in independently evaluating individual Sy estimates, there is no 
evidence to invalidate them and considerable regional scale supporting evidence.

4.3.  Governing Factors of Groundwater Level and Recharge Sensitivity

The groundwater level and recharge sensitivity to P and PET are found to significantly differ with climate types 
and hydrogeology (Figures 9 and 10). The inherent properties of the sites thus play a crucial role in governing 
groundwater sensitivity.

The head is most sensitive in arid climates and porous media and least sensitive in tropical climates and fractured 
media. The porous aquifers show higher head sensitivity than the fractured ones, probably because porous media 
have a lower specific yield which causes a larger head change per unit change of recharge (Johnson, 1967). In 
contrast, fractured aquifers show higher recharge sensitivity likely because of the impact of hydrogeology on 
the generation of recharge (e.g., matrix-flow only in porous media compared with dual-process of matrix- and 
fracture-flow in fractured media) (Manna et al., 2017). For the impact of climate type, the head sensitivity to P 
and PET is found to significantly increase with climate aridity (Figures 11e and 11f). Given that the aridity is 
projected to expand globally and become more severe in many countries and regions under climate change, such 
as Australia and Mediterranean regions (Feng & Fu, 2013; Lickley & Solomon, 2018), the head sensitivity may 
increase over the coming decades, especially in the arid zone with porous media.

Additionally, land use also has a modest impact on the head sensitivity (Figures 9 and 10). For example, areas 
with agricultural activities show a higher head sensitivity than the natural sites. Interestingly, the depth to water 
table however does not show a clear relationship with the head and recharge sensitivity (Figure S3 in Support-
ing Information S1), indicating that the declining water level will likely not significantly change the sensitivity. 
Together, these findings suggest that agricultural activities may increase the head sensitivity, not because of 
a decreasing groundwater level (e.g., water extraction) but possibly because of disturbance to the subsurface 
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properties and processes; that said, the differences may arise simply because of the locations chosen for agricul-
ture being hydrologically different from nature regions.

4.4.  Implications for Groundwater Management

Quantifying the groundwater level and recharge sensitivity is practically useful for protecting groundwater-dependent 
ecosystems (GDEs) and managing groundwater resources under the impact of climate change. For example, 
quantifying and overlaying the groundwater level sensitivity map with that of the GDEs allows the vulnerable 
GDEs to be identified. That is, the GDEs where the head sensitivity to precipitation is high may likely respond 
quickly to droughts, such as the ones located in central Victoria (Figure S5 in Supporting Information S1) and 
will need more attention and protection. Second, understanding recharge sensitivity to climate variations is valu-
able as water managers need this information to regulate groundwater extraction rates, which are often set as a 
fraction of the recharge (times the capture area) (White et al., 2016). Besides that, regions with a high recharge 
sensitivity to precipitation could be more vulnerable to groundwater pumping, especially during droughts due to 
the significantly declined recharge with precipitation.

Here we also introduce an approach to estimate the specific yield, which is a key aquifer hydraulic property and 
highly desirable for groundwater management. Given how sparse such estimates often are and their high utility in 
estimating the aquifer response time to pumping (Chowdhury et al., 2022; Crosbie et al., 2015), our results offer a 
considerable opportunity to the management of groundwater usage. The introduced approach enables to estimate 
specific yield at any site using long-term head and climate records, therefore avoiding the logistical and economic 
challenges of obtaining specific yield estimates through in situ measurement. Compared with the specific yield 
reported in other studies (Crosbie et al., 2015, 2019; Lv et al., 2021), this method provides a plausible estimate. 
A caveat of the method is that the estimated specific yield is only for the top part of the aquifer where the head 
fluctuates, and not an estimate of the entire (especially the deeper portion of the) aquifer.

5.  Conclusions
Climate change is projected to impact water resources in many countries, but the predictions are highly uncertain 
because of the significant uncertainty in future rainfall projections and that they are heavily dependent upon 
model structures, climate change scenarios, and assumptions about the stationarity of hydrological processes 
(Oreskes et al., 1994; Peterson et al., 2021; Toews & Allen, 2009a). Given that groundwater has a long memory of 
historic climate variability and trends, analyzing groundwater hydrographs at climate-dominated sites potentially 
allows for estimating its long-term mean sensitivity to climate variations, which is an essential first step toward 
understanding climate change impact.

In this study, we aim to investigate (a) groundwater level and recharge sensitivity to climate variations across 
Australia and (b) in which environments is groundwater most sensitive to climate variations. In doing this, 
we first identify 1,143 climate-driven sites using a time-series groundwater toolbox HydroSight (Peterson & 
Fulton, 2019; Peterson & Western, 2014). We then adopt a MLR approach, adapted from streamflow elasticity 
studies, to quantify groundwater sensitivity. Results show that the head and recharge sensitivity to P is around 
8 times that to PET. The national median changes in head and recharge per 1 mm P change are 42 and 0.43 mm 
respectively. Southeast Australia shows the highest head sensitivity, whereas SWA shows the highest recharge 
sensitivity. Overall, the sensitivity and specific yield estimates are found to be highly consistent with available 
independent evidence. Results also show that climate type and hydrogeology are the primary controlling factors, 
with the highest head sensitivity in arid climates and porous media and the highest recharge sensitivity appear-
ing in tropical climates and fractured media. Moreover, land use change has a modest influence. Practically, the 
results contribute to identification of GDEs and groundwater engagement areas that are vulnerable to climate 
variability.

Additionally, the sensitivity results enable estimation of the possible impacts of climate change on groundwa-
ter. For example, head sensitivity is found to increase with climate aridity and given that arid climate zones are 
projected to expand and intensify in many regions and countries globally, such as Australia and Mediterranean 
regions (Feng & Fu, 2013; Lickley & Solomon, 2018), the groundwater head in such regions is likely to become 
more temporally variable. More generally, multiplication of a head sensitivity estimate by a predicted change in 
rainfall enables a first order estimate of the possible impact of climate change on head; and similarly for recharge 
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sensitivity. Climate change is, however, likely to produce more complex and nonlinear changes to head and 
recharge sensitivity than studied here and others are encouraged to develop and apply techniques to quantify the 
change in sensitivity over time.

Data Availability Statement
The time-series groundwater level data, bore coordinates, and bore depths across Australia are available on the 
Groundwater Explorer of the Australian Government Bureau of Meteorology, available at http://www.bom.gov.au/
water/groundwater/explorer/map.shtml, under the Creative Commons Attribution 4.0 Australia Licence, retrieved 
in March 2019. The climate data at any given bore coordinates in Australia are extracted using a R-package 
AWAPer version 0.1.46 (Peterson et al., 2020) from the gridded Australian national meteorological data reposi-
tory (Jones et al., 2009), available at http://www.bom.gov.au/climate/. The Morton CRAE potential evapotranspi-
ration (Morton, 1983) is calculated with the R package Evapotranspiration version 1.16 (Guo et al., 2016). The 
Australian land use data are obtained from the Australian Bureau of Agriculture and Resources Economics and 
Sciences (ABARES) (2021), available at https://www.agriculture.gov.au/abares/aclump/land-use/data-download. 
The Australian hydrogeology data are sourced from the Australian Bureau of Mineral Resources (Jacobson & 
Lau, 1987; Lau et al., 1987), available at pid.geoscience.gov.au/dataset/ga/32368. The groundwater hydrograph 
modeling software HydroSight version 1.40.2.1 (Peterson & Fulton, 2019; Peterson & Western, 2014) is used and 
deposited at Peterson (2022) and actively maintained at https://github.com/peterson-tim-j/HydroSight.
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