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Abstract Ultra-high-energy (UHE) cosmic neutrinos inter-
acting with the Moon’s regolith generate particle showers that
emit Askaryan radiation. This radiation can be observed from
the Earth using ground-based radio telescopes like LOFAR.
We simulate the effective detection aperture for UHE neutri-
nos hitting the Moon. Under the same assumptions, results
from this work are in good agreement with previous analytic
parameterizations and Monte Carlo codes. The dependence
of the effective detection aperture on the observing param-
eters, such as observing frequency and minimum detection
threshold, and lunar characteristics like surface topography
have been studied. Using a Monte Carlo simulation, we find
that the detectable neutrino energy threshold is lowered when
we include a realistic treatment of the inelasticity, transmis-
sion coefficient, and surface roughness. Lunar surface rough-
ness at large scales enhances the total aperture for higher
observation frequencies (ν ≥ 1 GHz) but has no significant
effect on the LOFAR aperture. However, roughness at scales
small compared to the wavelength reduces the aperture at all
frequencies.

a e-mail: gkrampah@vub.be (corresponding author)

1 Introduction

The observation of ultra-high energy cosmic rays (UHECRs)
suggests the existence of UHE cosmic neutrinos which are
produced via the interaction of UHECRs with photons of
the ubiquitous 2.73 K cosmic background radiation, either
through photo-pion production for cosmic-ray protons, e.g.,
(p + γ → π+ + n) or photo-disintegration for cosmic-ray
nuclei, resulting in the well-known GZK cutoff [1,2]. It has
also been suggested that UHE neutrinos can be produced
from topological defects, the so-called top-down models [3–
9]. These models predict the existence of super-heavy parti-
cles as produced by cosmic strings or relics from the early
universe. Due to their high mass, these particles can undergo
annihilation, decay, or interaction to create a range of high-
energy particles. Due to the extremely low flux and small
interaction cross-section of UHE neutrinos, searches so far
have only been able to place upper limits on their flux. Detect-
ing a significant number of these particles requires build-
ing giant detectors or remotely monitoring large naturally
occurring detection targets such as the Moon (with a near-
surface area of 1.9 × 107 km2). One effort to detect these
particles involves observing a burst of Askaryan radio emis-
sion [10] with Earth-based radio telescopes. Dagkesamanskii
and Zheleznykh suggested this method [11]. Several exper-
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iments [12–19] have used this technique but have so far not
managed to detect the emission. The non-detection of the
Askaryan radio emission from the interacting neutrinos can
place an upper limit on the UHE neutrino flux. This requires
an accurate knowledge of the effective lunar aperture – the
aperture (i.e., area times solid angle) of the near-surface of
the Moon, multiplied by the detection probability of UHE
neutrinos interacting with it – which is the subject of this
paper.

Different experiments have done several independent
Monte Carlo calculations to determine the effective lunar
aperture for UHE neutrinos interacting with the Moon. The
initial lunar observations occurred in 1996 at Parkes, Aus-
tralia [12]. Since simulations were unavailable then, the
absence of detection did not yield an upper limit on the
UHE neutrino flux. Subsequent lunar observations were car-
ried out, accompanied by the development of separate Monte
Carlo simulations [20–23]. Later, a Monte Carlo simulation
was developed for the Parkes experiment [24,25]. This simu-
lation drew upon the previous works of the Goldstone Lunar
Ultrahigh Energy Neutrino Experiment (GLUE) at NASA’s
Goldstone Deep Space Communications Complex, USA [22]
and the Kalyazin experiment at the Kalyazin Radio Astro-
nomical Observatory, Russia [23]. In the NuMoon experi-
ment, which was the pioneering low-frequency lunar exper-
iment [26], a semi-analytic calculation of effective aperture
was carried out. The present study incorporates parameter-
izations derived from these earlier Monte Carlo and semi-
analytic calculations. In the previous NuMoon semi-analytic
aperture calculation [26], the impact of surface roughness
was not taken into account. In the simulation conducted by
James and Protheroe [25], only the large-scale roughness of
the lunar surface was considered. However, in this study,
we have considered both the small-scale roughness (based
on [27]) and the large-scale roughness of the lunar surface,
which will be discussed in detail later. Another important
aspect is the relevance of the lunar density profile. The refrac-
tive index varies with the density profile of the Moon, which,
in turn, affects the hadronic shower length and the result-
ing Askaryan Cherenkov radiation. Scholten investigated this
effect and demonstrated that calculations considering pure
rock or pure regolith yielded similar limits at 100 MHz while
differing at 2.2 GHz [26]. In their calculations, the regolith
was modeled as a uniform layer with a constant index of
refraction and a depth of 500 m. In the simulation by James
and Protheroe, the Moon was divided into two layers: regolith
and sub-regolith [25]. However, in this current work, we have
modeled the Moon as a single uniform layer with a constant
index of refraction based on the arguments presented in [26].
Furthermore, James and Protheroe included secondary show-
ers from secondary particles in their simulation. However,
in this study, secondary showers were not simulated because
they do not significantly contribute at low frequencies (i.e. for

LOFAR observations), as the signal is dominated by down-
going showers dominate us. Because the showers are down-
going, the secondary showers occur at great depths within the
Moon and are not detectable, as was also assumed in [24].

A standard simulation, calculation, or analytic parame-
terization of the effective aperture with similar underlying
assumptions or physics is necessary to compare experimental
results. A parameterization has been created by Gayley et al.
[28] (see also [29, App. B]) taking into account all the known
experimental effects, including surface roughness. Several
approximations were used to derive this analytic expression.
In this work, we study the validity of these approximations
in different frequency ranges using a full Monte Carlo simu-
lation we have developed. This work is part of the NuMoon
experiment [26], a low frequency (∼ 150 MHz) search for
UHE neutrinos hitting the Moon. At this frequency, the lunar
regolith is relatively transparent to the emission and has a
more extensive angular acceptance, giving a higher potential
event rate [30]. The previous observations for the NuMoon
experiment were carried out using the Westerbork Synthesis
Radio Telescope array [17]. In this work, we use the LOFAR
telescope. LOFAR, the LOw Frequency ARray, is a radio
observatory with stations scattered all over Europe [31]. The
core stations of the observatory are located in the Nether-
lands. The core comprises 24 stations, each containing 2 sub-
fields. Each sub-field consists of 24 tiles. Each of these tiles
comprises 16 high band antennas (HBA) on 4 × 4 grid (i.e.,
a total of 18,432 HBA dipole antennas at the LOFAR core).
The frequency range for the HBAs we are interested in is
110–190 MHz (other frequency bands were not considered
for this work). The observations are carried out in a beam-
formed mode by applying geometrical delays or weights to
each antenna to cancel out sensitivity in some (undesirable)
directions and enhance it towards a user-defined direction.

This paper is organized as follows. In Sect. 2, we discuss
the physics of particle interactions within the Moon, the radio
emission process and the parameterization of the roughness
of the lunar surface as well as the effects of propagation on the
radio signal and the signal detection threshold for LOFAR.
In Sect. 3, we describe the Monte Carlo simulation set-up
for computing the effective aperture in detail. In Sect. 4, we
present the entire simulation, and the results are compared
to those of the analytic parameterization [28]. We replicate
some of the assumptions made in the analytic parameteriza-
tions in the simulation to validate the simulation. We also
study and present the results of including surface rough-
ness on the effective lunar aperture for different frequencies.
We discuss the advantages of low-frequency observations in
Sect. 4.3. In Sect. 5, we summarize the main result of this
paper.
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2 Physics of UHE neutrino interactions and radio
Askaryan Cherenkov emission in the lunar regolith

A UHE neutrino interacting with the Moon produces a par-
ticle cascade in the lunar regolith. An excess of electrons
develops in the cascade, resulting in radio emission that is
strongest at the Cherenkov angle. The radio waves are attenu-
ated as they propagate through the Moon and are refracted at
the lunar surface. Depending on the shower geometry, lunar
surface topography, and trigger threshold, some emissions
can be detected on Earth. A detailed discussion of these pro-
cesses will be given in the subsequent subsections.

2.1 UHE neutrino interaction with the regolith

Lunar regolith, which is the upper layer of the lunar surface,
consists of an aggregation of small rocks and fine particles
made of iron and titanium compounds, believed to be ejecta
from meteor impacts with the Lunar surface [32]. Our current
best knowledge of the lunar regolith is based on [32]. Here
we adopt the values of ρ ≈ 1.7 g cm−3 for density and
ni = 1.73 for an index of refraction. UHE neutrinos interact
with baryons in the lunar regolith with an energy-dependent
mean-free path given as [30]:

Lν = 130

[
1020

Eν

] 1
3

[ km], (1)

which comes from summing the cross-sections for both
charged- and neutral-current interactions, as both processes
generate similar hadronic showers at ultra-high energies [30].
The particle showers initiated by UHE neutrinos depend on
the interaction type: either charged-current (with a branch-
ing ratio of ∼ 2/3) or neutral-current (with a branching ratio
of ∼ 1/3) interaction. In both cases, ∼ 20% of the initial
neutrino energy goes into creating a hadronic shower. In the
charged-current interaction, ∼ 80% of the primary neutrino
energy produces a charged lepton (electron, muon, or tau).
These charged leptons may contribute to the cascade depend-
ing on their flavor. Muons produced in the charged-current
interaction travel long distances before decaying and losing
much of their energy. The produced taus also travel large
distances from the initial hadronic shower before decaying,
producing a second distinct cascade [33]. Due to its high
mass, the tau can decay into a lighter-charged lepton or a
hadron, producing either an electromagnetic or a hadronic
shower. These secondary showers are ignored in the simula-
tion as they are assumed to develop deep inside the Moon and,
therefore, cannot be detected. On the other hand, the electrons
initiate electromagnetic showers, which are elongated by the
Landau–Pomeranchuk–Migdal (LPM) effect [34]. This nar-
rows the shower emission cone width, making a negligible
contribution to the total emission as the emission cone scales

inversely with the shower length. In the neutral-current inter-
action, on the other hand, the remaining 80% of the neutrino
energy is retained in a highly forward-scattered neutrino. The
scattered neutrinos interact infrequently, losing their energy
to the cascade.

Due to the high multiplicity of initial collisions in hadronic
showers, the initial energy is divided quickly, mitigating
against any LPM effects (i.e., π0 interactions dominate over
decay). The LPM effect is caused by the increasing interac-
tion distance with energy to orders of the typical separation
distance between atoms. At very high energies, the screen
field of all nuclei in the nearby region comes into play in
reducing the cross-section, which falls as

√
E above ELPM,

for both bremsstrahlung and pair production [35], thereby
affecting the static electric field responsible for the interac-
tion. The LPM effect only affects the early stages of shower
development. For this work, we consider only the hadronic
showers and neglect the small LPM effect on them. It should
be noted that by ignoring emissions from secondary show-
ers and electromagnetic showers, we only obtain conserva-
tive values for the effective aperture; hence, a slightly higher
aperture may be expected when including this in future sim-
ulations.

The hadronic shower produced by the initial interaction
takes ∼ 20% of the initial neutrino energy. Askaryan pointed
out that a developing hadronic shower in a dielectric medium
acquires about 20% to 30% negative charge excess of the
total charged particles N , due to electron entrainment (e.g.,
γ +e−

atoms → γ +e−) and positron annihilation into photons
(e+ + e−

atoms → γ γ ) [10]. Thus, the shower evolves into
a short transient current source, which produces coherent
radio Askaryan radiation. Note that changing current always
radiates independently of a medium. The radiation is emitted
in a cone of half opening angle (i.e., Cherenkov angle or
opening angle of the Cherenkov cone):

θc = arccos
( 1

βni

)
≈ 55◦. (2)

The radiation is strongest at θc due to the time compression of
emissions from the entire cascade (more on this in Sect. 4.3).
Askaryan’s predictions were later verified at the Stanford
Linear Accelerator by shooting electron beams at ice, salt,
and silica sand targets [36,37].

Additionally, Askaryan pointed out that at wavelengths
comparable to the shower dimensions, the emitted radiation
from particles in the cascade is coherent, and hence the power
of the radiation scales as:

P ∝ (Δq N q)2, (3)

where Δq is the fractional charge excess (20–30% as above),
N the total number of particles in the shower and q the parti-
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cle charge. Due to the radio emission’s coherency, the power
in the radio waves scales quadratically with N and hence
with the shower energy. This makes radio detection of UHE
neutrinos an attractive option. The density of a medium con-
strains the dimensions of a developing shower and, hence,
the possible range of frequencies for which the radiation is
coherent. In a dense medium like the regolith, the total width
of a shower is of the order of a few centimeters, so coherency
extends to GHz frequencies. This is where most of the power
is available because the coherency of the radiated wave is
proportional to frequency. At lower frequencies, the emis-
sion is still detectable due to the Askaryan (or coherence)
effect and its wider Cherenkov cone width.

It should be noted that Askaryan and Cherenkov emissions
are not the same mechanisms. Cherenkov emission is usually
defined as the radiation of a constant charge moving at a con-
stant velocity that exceeds the speed of light in the medium.
It comes from the near-field term of the Lienard–Wiechert
potential. For Askaryan emission, the moving charge is time-
dependent, and the emission is derived from the far-field
term of the Lienard–Wiechert potential as described in [35].
Both mechanisms emit most strongly at the Cherenkov angle;
hence, it is adequate to refer to this radiation as either the
Askaryan radiation or the Askaryan Cherenkov radiation [38]
and not as a Cherenkov radiation.

2.2 Parameterization of the spectral electric field from
hadronic showers in the regolith

The peak spectral electric field and angular width of the
Askaryan Cherenkov radiation produced by a hadronic
shower depend on the primary neutrino energy, E , and
the observation frequency, ν. The e−1 half width of the
Cherenkov cone (i.e., describing the thickness of the spread
of the radiation around the Cherenkov angle, θc), Δc for radio
emission from hadronic showers in the regolith and valid for
energies above 10 EeV is [28]:

Δc = 0.05

[
GHz

ν

] [
1 + 0.075 log

(
Es

1019 eV

)]−1

[rad],
(4)

where Es is the hadronic shower energy (i.e. ≈ 20% of
the primary energy, E). This equation is obtained by mul-
tiplying the angular width constant, CH = 2.4◦ from [25]
by 1/

√
log 2 = 1.2, which converts Δc to e−1 half width

instead of the half width at half maximum. As stated in [25],
Eqs. 4 and 5 were built by scaling the parameterization of
[39], which is a parameterization based on an in-ice simu-
lation of hadronic showers valid up to 10 EeV. This scaling
was done to extend the validity of their parameterization for
hadronic showers in the regolith with energies above 10 EeV.

At frequencies as low as 100 MHz, the cone width from Eq. 4
ranges between 30◦ and 25◦ for energies between 1019 eV
and 1024 eV.

The electric field (assuming no attenuation losses in the
regolith), Ec(≡ Ec(Es, ν)) at Earth along the Cherenkov
angle from a hadronic shower in the regolith is parameterized
by [25]:

Ec = 0.0845
V

mMHz

[m

d

] [
Es

EeV

] [ ν

GHz

]
[

1 +
( ν

2.32 GHz

)1.23
]−1

, (5)

where d is the average Earth–Moon distance (i.e., distance
from the shower), and 2.32GHz is the decoherence frequency
determined by the lateral dimensions of the shower. The
radio emission from a particle cascade is the coherent sum
of the radiation of all charges in the shower. Due to multi-
ple scattering – the dominant interaction process responsible
for the transverse spread of particles in a shower – particles
spread transversely or laterally with respect to the shower
axis [35]. The transverse spread increases as the shower
develops and more interactions occur. For observers at the
Cherenkov angle, radiation from all points along the longitu-
dinal extent of the shower arrives simultaneously. In this case,
the decoherence frequency is determined by the lateral size
of the shower. However, further away from the Cherenkov
angle, the turnover frequency is determined by the longitu-
dinal dimension of the shower [20].

A parameterization for the angular spread of the emission
around the Cherenkov angle, θc from a hadronic shower is
given by equation 12 in [40]:

E(Es, θ, ν) = Ec exp
[

−
(θ − θc

Δc

)2]( sin θ

sin θc

)
(6)

where Ec and Δc are given in Eqs. 5 and 4 respectively. θ

is the ray path angle with respect to the hadronic shower
axis. The angular distribution for the spectral electric field for
frequencies: 150 MHz and 1.5 GHz are shown in Fig. 1 (top)
for a neutrino of primary energy, 1024 eV. As shown in the
figure, the angular spread of the spectral electric field scales
inversely with frequency. In Fig. 1 (bottom), the spectra of
the electric field as a function of angular distance from the
Cherenkov angle are shown. On the Cherenkov angle, θc =
θ = 54.7◦, the emission is coherent up to ≈ 5 GHz when
it departs from its linear frequency dependence. Away from
the Cherenkov angle (i.e., θ > 54.7◦), decoherence sets in at
lower frequencies, as shown.

2.3 Electric field attenuation in the regolith

The attenuation of a radio signal can be understood as a loss in
its amplitude or intensity as it propagates through a medium.
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Fig. 1 Top: angular distribution or behavior of the emitted electric
field by a hadronic shower relative to the shower axis in the regolith by
a neutrino of primary energy, 1024 eV and for frequencies: 150 MHz
and 1.5 GHz. Bottom: frequency spectrum of the emitted electric field
as a function of observation angle with θc = θ = 54.7◦ being the
Cherenkov angle

The attenuation loss varies between different materials and
is both frequency and range-dependent. Radio signals propa-
gating in the regolith are attenuated. To model the attenuation
loss, we use the mean value of the radio attenuation length,
L r from [32], which is given by:

L r = 9 ·
[1GHz

ν

]
[m]. (7)

The radio attenuation length describes the distance in the
regolith where the intensity or amplitude of the emitted radio
signal has decreased to e−1 of its initial value. This rela-
tion comes from the loss tangent measurements carried out
on samples from the Moon during the Apollo mission. It
can vary widely depending on the iron and titanium content
of the material [32]. The distance-corrected field strength,

E(Es, θ, ν, r) due to attenuation losses is given by:

E ≡ E(Es, θ, ν, r) = E(Es, θ, ν)e−r/Lr(ν), (8)

where r is the distance an emitted electric field traversed from
its emission point up to the lunar-vacuum interface.

2.4 Total internal reflection (TIR) and transmission
coefficient at the lunar-vacuum interface

Radio waves arriving at the lunar-vacuum interface from
within the regolith are either internally reflected or refracted
out of the regolith, depending on whether the angle of inci-
dence is greater or less than the critical angle, respectively.
The relationship between the angle of incidence and the
refraction at the lunar-vacuum boundary is given by Snell’s
law (assuming an idealized smooth lunar surface):

ni sin(i) = nt sin(t), (9)

where ni is the refractive index of regolith, nt (= 1) is the
refractive index of vacuum, t is the angle of refraction to the
local surface normal in vacuum (outside the regolith) for a
transmitted ray, and i is the angle of incidence in the regolith
to the local surface normal. To avoid total internal reflection,
the radio waves must satisfy the condition:

ni
nt

sin(i) < 1. (10)

Due to the divergence of rays after refraction, the observed
spherical waves emanating from within the regolith in the far
field are weaker than expected from the R−2 law, where R is
the distance to the observer point. This requires modifying
the standard Fresnel transmission coefficients to obtain the
transmission coefficient for radiation polarized parallel to the
plane of incidence [3,41]:

t‖ = nt cos(t)

ni cos(i)

2 sin(t) cos(i)

sin(i + t) cos(i − t)
= 2nt cos(t)

ni cos(t) + nt cos(i)
(11)

and the transmission coefficient for radiation polarized per-
pendicular to the plane of incidence [3,41]:

t⊥ = nt cos(t)

ni cos(i)

2 sin(t) cos(t)

sin(i + t)
= 2nt cos(t)

ni cos(i) + nt cos(t)
.

(12)

Figure 2 displays the transmission coefficients t‖ and t⊥ as
a function of angle of incidence, i . Following from Eqs. 11
and 12, the transmitted electric field, Etransmitted on which we
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Fig. 2 A plot of the modified transmission coefficient, t‖, t⊥ versus
angle of incidence, i . The critical angle of the lunar surface is indicated in
a black dot. Parallel and perpendicular components of the transmission
coefficient are indicated with red and blue lines, respectively

trigger is given as:

Etransmitted =
√

(E⊥ · t⊥)2 + (E‖ · t‖)2, (13)

where E⊥ and E‖ are the perpendicular and parallel compo-
nents of the incident spectral electric field strength inside the
regolith. They both depend on (Es, θ, ν, θr , r).

2.5 Minimum detectable spectral electric field

The coherent Cherenkov radiation from a shower in the
regolith is expressed in terms of spectral electric field
strength, Υrms in units of V/m/Hz where rms stands for
the root-mean-square. The sensitivity of a radio telescope
is characterized by the system equivalent flux density

〈
F

〉
in

units of Jy. The rms spectral electric field for a specific signal
bandwidth is related to the system equivalent flux density via
[29]:

〈
F

〉 = Υ 2
rmsΔν

Z0
, (14)

where Δν = 80 MHz is the bandwidth of the LOFAR HBA.
The relation for Υrms is given by:

Υrms =
√

κTsysZ0

ηAeffΔν
, (15)

where κ , Tsys (comprising the instrumental noise of 200 K
and the thermal emission from the Moon at the central fre-
quency of the LOFAR HBA band, 270 K [29]), Z0, Aeff

are Boltzmann’s constant, system thermal noise temperature,
impedance of free space (377 Ω) and effective aperture of a

telescope. Aeff of an HBA dipole is limited by the available
area in a tile and is given by [42]:

Aeff = min
(λ2

3
, 1.5625

)
[m2], (16)

where λ is calculated using the center frequency, 166 MHz of
the LOFAR HBA. Aeff = 20, 063 m2 for all the 24 LOFAR
core stations. Since LOFAR HBA has no movable parts, it
maintains a fixed orientation on the ground. As a result, it
will have a reduced projected area, Aeff = 16, 636 m2 for
the Moon at a maximum elevation of 56◦ from the LOFAR
site. The threshold spectral electric field strength, Υmin above
which a signal is triggered is given by equation 8 in [29]:

Υmin(θ) = fC
nσ

α

√
η

β(θ)
Υrms, (17)

where η is the ratio between the total pulse power and the
power in the chosen polarisation channel, α is the fraction of
the original pulse amplitude recovered after inefficiencies in
pulse reconstruction, (and it simulates the phase as a phase
of an Askaryan pulse is close to π/2 leading to a loss in the
pulse amplitude by a factor of

√
2, dispersion, for which the

pulse is smeared out in time in the ionosphere reducing its
amplitude and sampling of the coherent Askaryan pulse such
that the peak amplitude in the analog signal is missed due to
finite sampling as described in [29]), β(θ) is the beam power
at an angle θ from its axis, normalized to β(0) = 1 and fC
accounts for the improvement in sensitivity from combining
C independent channels with a threshold of nσ in each. Υmin,
was calculated in Sect. 3.9 of [29] for LOFAR using the
following values: Tsys = 470 K, α = 1, η = 2, fC = 1,
Δν = 80 MHz, nσ = 12.6 and Aeff = 16636 m2. Using
these values Υmin = 0.024 μV/m/MHz.

2.6 Parameterization of lunar surface roughness

Surface roughness is significant for detecting UHE neutri-
nos and must be included in our simulation. Signals from
showers created by downward-directed interacting neutrinos
(i.e., neutrinos incident at angles between 0◦ and 90◦ to the
local lunar surface normal) which might otherwise be totally
internally reflected over a smooth surface as shown in Fig. 3
are transmitted due to surface roughness as shown in Fig. 4.

Surface roughness in the scope of this simulation charac-
terizes the shape and features of the lunar surface variability
(i.e., topographic expression of the lunar surface) at hori-
zontal scales from a few centimeters to a few meters. The
most commonly used roughness parameters are rms height,
rms deviation, rms slope, auto-correlation length, effective
slope, median and absolute slope, and power spectrum. A
detailed discussion of these methods can be found in [43].
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Fig. 3 A figure showing the transmission of signals for downward interacting neutrinos, ν, over a smooth lunar surface at high and low frequencies.
a Neutrino interacting parallel to the lunar surface (i.e. 90◦ to the lunar surface) at 1 GHz. b Downward neutrino at 1 GHz, c downward neutrino
at 100 MHz

Fig. 4 A figure showing the different scales of the Lunar surface rough-
ness

With a backscattered radar experiment, Shepard et al. [44]
showed that self-affine (or fractal model of) rough surfaces
manifests a wavelength-dependent radar reflection and pro-
posed the dependence of rms slope, srms on the wavelength
as a power-law via:

tan srms = s(Δx0)
( Δx

Δx0

)H−1

≈ s0

( Δx

Δx0

)H−1

≈ 0.29(λ[cm])−0.22

≈ 0.14(ν[GHz])0.22.

(18)

Their method depends on the Hurst exponent, H (≈ 0.78
for the Moon [44] with typical values between 0 and 1),
which relates the rms slope to the horizontal scale variation
with respect to some reference value, s0. Here s0 is the rms
slope at one reference step size, Δx0 (1 cm in this case),
λ is wavelength in cm and ν is frequency in GHz. A sur-
face for which a change, L , along the x and y axes, must
be compensated for along the z axis by a factor, LH , for
the surface to remain statistically identical is referred to as a
self-affine surface. From Eq. 18, the Lunar surface is rougher
on smaller length scales (i.e., at higher frequencies, e.g.,
srms = 8.7◦ at 1.5 GHz) than on larger length scales (i.e.
lower frequencies, e.g. srms = 5.3◦ at 150 MHz). In general,
surface roughness (in the context of general simulations) can

be characterized in three ways: large-scale roughness (left),
medium-scale roughness (middle), and small-scale rough-
ness (right), as shown in Fig. 4. Here, we considered only the
large-scale (left) and the small-scale (right) roughness (i.e.,
the two extremes that accurately inculcate surface effects in
the simulation).

2.6.1 Large scale roughness

The large-scale roughness is simulated by randomly tilting
the shower axis with respect to the local surface normal such
that the transmitted part of the emission cone is different
from what it originally was without any roughness. (i.e., the
angular deviation of the shower axis with respect to the hor-
izontal local surface). This produces the same effect as ran-
domly tilting the local surface normal from the perpendicular
(i.e., perpendicular here refers to the z-axis), which leads to a
change in the angle of incidence the rays make with the local
surface normal as is shown in Fig. 4 (left). For large-scale
roughness, the slope or tilt remains constant across the entire
shower emission cone or region length. As pointed out in
[44], the tangent of the slope (tan s) is normally distributed,
not the slope s itself. We, therefore, sampled the slope tan-
gents tan s from a Gaussian distribution. From this, we obtain
the slope, s, for simulating the large-scale roughness.

2.6.2 Small scale roughness

Small-scale roughness – features that are smaller than the
wavelength of the radio signal – destroys the coherence of
the Askaryan Cherenkov pulse due to scatter, making the
signal difficult to detect because of the loss of signal power.
This can potentially reduce the effective lunar aperture and
increase the energy threshold for detection. Small-scale sur-
face roughness is typically treated with a fractal model. For a
stationary dielectric surface with roughness given by a Gaus-
sian distribution, the reflected electric field, Ereflected is [45]:
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Ereflected = E × e−2κ2ξ2 cos2 i , (19)

where ξ is the height deviation from the smooth local lunar
surface and 2κξ cos i is a phase retardation or variation fac-
tor (also called the Rayleigh roughness parameter) of the
reflected electric field. It is usually called the Kirchhoff
Approximation or sometimes the physical optics approxi-
mation. κ is a wave number (≈ λ−1), and i is the angle of
incidence to the surface normal. An extension of the Rayleigh
roughness parameter is needed to accommodate transmitted
rays across a rough Lunar surface and is given as [27]:

Etransmitted = E × e−2κ2ξ2(ni cos i−nt cos t)2
, (20)

where t is the angle of transmission of the incident ray to the
surface normal. 2κξ(ni cos i−nt cos t) is the Rayleigh rough-
ness parameter for a transmitted electric field, Etransmitted.
This parameter considers the refractive index, ni in the
regolith and nt in a vacuum, via the products ni cos i and
nt cos t . The rms height, ξrms is defined here as the square
root of the variance of all points on the lunar surface about
the mean value and is given by [43]:

ξrms =
[ 1

n − 1

n∑
i=1

(z(xi ) − z̄)2
]− 1

2
. (21)

Here, z(xi ) represents the height of the lunar surface at point
xi , z̄ is the mean height, and n represents the total number of
points. As shown in [43] (equation 6), the best-fit power law
to data gives the relation:

ξ(L) = ξ0L
H , (22)

where L is the profile length, H the Hurst exponent (a scaling
parameter) and ξ0 is rms height of the reference profile. For
the Moon, the rms height is taken as:

ξrms = ξ0L
H = Δx · tan srms = 0.29(λ[cm])0.78 (23)

where tan srms (≈ Δz
Δx ) is taken from Eq. 18. λ is wavelength

and is taken as the profile length. This equation is derived by
using a simple trigonometric identity. Height deviations, ξ ,
are sampled from a Gaussian distribution with mean 0 and
standard deviation ξrms and used in Eq. 20.

3 Monte-Carlo simulation of the effective aperture for
UHE neutrinos

Sketches illustrating the geometry of the simulation setup are
shown in Fig. 5 for the ‘global’ geometry and Fig. 6 for the
‘local’ geometry. Simulated neutrinos arriving from the same

Fig. 5 A sketch illustrating this simulation’s ‘global’ geometry. Point
A is the neutrino entry point in the Moon, point B is the center of the
spherical Moon, point C is the interaction point with impact parameter

defined as |−→BC |, point D is the penetration point and radio emission
point of the neutrino inside the Moon with penetration depth defined as

|−→AD| and point E is the point on the surface directly above the penetra-
tion point. Top: when D lies between A and C, the neutrino direction
is tilted downwards with respect to the local surface point E. Bottom:
when D lies past point C, the neutrino direction is pointed upwards with
respect to the local surface. Because radio waves are attenuated inside

the Moon, neutrinos are only observable if the distance, |−→
DE |, is small

(of the order of tens of meters)

direction (Θ = 0◦, Φ = 0◦) in the ‘global’ geometry while
integrating over the locations of Earth in the ‘local’ geome-
try. Thus, we calculate which part of the lunar sky receives
a detectable signal. This effectively means that we can sim-
ulate many neutrino arrival directions simultaneously. We
adopted this setup because it gives a non-zero chance for an
emitted ray from the regolith to hit a detector at Earth (e.g.,
LOFAR) despite the latter’s relatively small projected solid
angle. The Monte Carlo code for this simulation is wholly
written with Python. The various parts of the simulation setup
are discussed sequentially in the subsections below.

3.1 Event generator

In the first stage of the simulation, all the event parame-
ters are determined. These parameters include the primary
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neutrino energy, inelasticity, the impact parameter on the
Moon, the penetration depth inside the Moon, the calculated
depth below the local lunar surface, and the shower propaga-
tion direction. Note that over extra-galactic distance scales,
a complete neutrino flavor mixing is expected due to oscilla-
tions; hence, equal proportions of νe, νμ, and ντ are assumed
throughout the simulation [46]. Also, the simulation treats
neutrinos and anti-neutrinos equally as they produce similar
hadronic showers and signals. The generated neutrino event
parameters are discussed in detail as follows:

– Neutrino energy: The primary neutrino energy is speci-
fied for each simulation run.

– Inelasticity: An essential parameter in determining the
electric field strength of the Askaryan emission in the
regolith is the energy of the induced hadronic shower.
The fraction of the primary neutrino energy that goes
into the hadronic shower is the inelasticity y. The induced
hadronic shower will have energy Esh = yEν where the
average inelasticity yavg ≈ 0.2. The inelasticity distribu-
tion is taken from [47–49] and is shown in Fig. 7 (top).
Since the maximum spectral electric field strength of the
Askaryan Cherenkov radiation depends on the energy of
the hadronic shower, the inelasticity plays a crucial role in
determining the minimum energy threshold for detecting
neutrinos.

– Impact parameter, |−→BC |: Here, radial points, C are sam-
pled randomly along the lunar radius as illustrated in
Fig. 5. The radial distance between points, B (lunar cen-
ter) and C, is the impact parameter, |−→BC |. A sampled
distribution of the impact parameters is shown in Fig. 7
(bottom). As expected, the distribution is right-skewed
towards increasing radial distance (since the circular area
grows with radial distance).

– Penetration depth, |−→AD|:D is the interaction point of
the neutrino inside the regolith. It is the point where
the shower develops, and the radio emission is emit-
ted. Therefore, the penetration depth is the vector’s mag-
nitude,

−→
AD shown in Fig. 5. Depending on the energy

and arrival direction of a neutrino in the ‘global geome-
try,’ it has a certain weight or probability wν(E,Θ ′,D).
In this simulation, instead of calculating this weight
wν(E,Θ ′,D), we rather sample D from an exponential
distribution:

D ≡ D(z) = 1/Lν(E) exp −z/Lν(E) (24)

which depends on an energy-dependent neutrino mean-
free-path Lν(E). L−1

ν is the scale parameter and z > 0
along the Z-axis as shown in Fig. 5. Neutrinos with pene-
tration depths greater than the lunar radius are designated

Fig. 6 A sketch illustrating the ‘local’ geometry of the neutrino shower

with respect to the ‘local’ lunar surface.
−→
DE is the depth below the

‘local’ lunar surface when we move from the ‘global geometry.’ Points
D and E are the same points shown in Fig. 5 for the ‘global geometry.’ Θ

is the angle between the vectors,
−→
AD and

−→
DE and denotes the direction

of the incoming neutrino

upward-directed neutrinos with arrival directions in the
‘local’ geometry Θ > 90◦.

– Depth below ‘local’ lunar surface, |−→
DE |: This is the neu-

trino depth below the ‘local’ lunar surface (see Fig. 6) cal-
culated using simple trigonometric identities. To do this,
we move to a different reference frame (i.e., from ‘global’
to ‘local’ geometry). Secondly, the impact parameter,
|−→BC |, the penetration depth, | AD| and the magnitude of
the vector,

−→
BD must be known. We discard events found

to “interact” outside the Moon. The depth distribution is
energy-dependent, with the lower energy neutrinos pen-
etrating deeper into the regolith and having a wider dis-
tribution.

– Shower propagation direction, Θ: All neutrinos are
assumed to be coming from the single direction, (0◦, 0◦)
(in the ‘global’ geometry). To calculate the shower prop-
agation direction, we move to a different reference frame
(i.e., from the ‘global’ geometry in Fig. 5 to the ‘local’
geometry in Fig. 6). In the ‘local’ geometry, the shower
propagates in the same direction as the neutrino’s travel
direction. The distribution of the calculated Θ in the
‘local’ geometry is energy dependent, with an angular
spread of this distribution scaling inversely with the pri-
mary neutrino energy. Events with Θ > 90◦ are des-
ignated as upward-directed neutrinos and downward-
directed if Θ ≤ 90◦. Figure 8 shows the distribution
of calculated Θ (this angle is illustrated in Fig. 6) as a
function of primary neutrino energy before detection.
From Fig. 8, it can be seen that as the neutrino energy
increases, the contribution from the upward-directed neu-
trinos decreases due to the increasing cross-section with
energy (i.e., corresponds to a shortening of the neutrino
mean-free-path which scales inversely as the cubic root
of the primary neutrino energy; see Eq. 1).
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Fig. 7 Top: probability distribution for the inelasticity y. The average
inelasticity is ∼ 21%. Bottom: distribution of randomly sampled impact

parameters, |−→BC | for simulated neutrino events

Fig. 8 A histogram of calculated Θ as a function of the primary neu-
trino energy before detection. The threshold line separates the down-
ward and upward-directed neutrinos

3.2 Signal generation, propagation and triggering

A 4π emission (or solid angle) is associated with a neutrino
interacting with the regolith. The emission is concentrated
at the Cherenkov cone at high frequencies (above 1GHz)
but much more isotropic at low frequencies. The Askaryan
Cherenkov emission is represented as bundles of rays (after a
million rays were used in the simulation, there was no change
in the final result; hence, a safe choice of five million rays
was used in the final work), with each ray having associated
with it a direction, solid angle (dΩi ), spectral electric field
strength, and polarization. At the neutrino penetration point
D, which is assumed to be where both the shower develops,
and the emission emanates (see Fig. 6), rays are generated
randomly into the upper hemisphere (i.e. 2π sr emission).
The remaining 2π sr emission in the lower hemisphere is
discarded as it does not escape the Moon. The associated
spectral electric field strength (calculated from Eq. 6) and
polarization are calculated for each of the simulated rays. We
assume that the refractive index, ni , is constant throughout
the regolith. Thus, all inhomogeneities introduced by varying
ni are ignored. This means the ray path remains rectilinear
between the neutrino radio emission point and the vacuum-
regolith interface. At the lunar-vacuum interface, the angles
of incidence, i , and refraction, t , are calculated using Snell’s
law. We then account for the total internal reflection of the
rays with i greater than the critical angle (refer to Sect. 2.4 for
detailed discussion). Due to the divergence of the rays after
refraction, we modify each ray’s standard Fresnel transmis-
sion coefficient before applying it to the emerging ray. Know-
ing how far the ray has traversed between the emission point,
D and the lunar-vacuum interface, we account for the radio
attenuation losses as explained in Sect. 2.3. At this point,
we also take into account the lunar surface topography. For
the surface roughness, we consider the large and small-scale
roughness. For small-scale roughness, for each interacting
neutrino, a height deviation, ξ , is taken from the Gaussian
distribution and used in Eq. 20 for all transmitted rays. For
the large-scale roughness, a different local surface slope s is
taken from a distribution and applied as a deviation of the
surface normal for each interacting neutrino. After account-
ing for all these factors, we trigger on the transmitted rays
for which the spectral electric field strength is greater than a
threshold spectral electric field (i.e. E > Υmin).

3.3 Solid angle of rays and their magnification factor after
refraction

The associated solid angle, dΩregolith for each simulated ray
inside the regolith is given by:

dΩregolith = 4π

number of simulated rays
. (25)
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Note that Eq. 25 considers simulated rays distributed over
all possible directions. However, after refraction, the solid
angle for each ray changes as a function of the angle of inci-
dence, i , to the surface normal. Thus, the solid angle for
each ray stretches or is magnified upon refraction due to the
divergence of the ray after moving into a less dense medium
(vacuum). The modification or stretching factor, ξ(i, t) given
as [23]:

ξ(i, t) = dΩ ′

dΩregolith
(26)

= (
ni

)2 cos(i)

cos(t)
(27)

= (
ni

)2 cos(i)√
1 − n2

i sin2(i)
, (28)

where i is the angle of incidence inside the regolith, t is
the angle of refraction outside the regolith and dΩ ′ is the
modified solid angle outside. In Fig. 9, the variation of the
emerging modified solid angle, dΩ ′ with i for emanating
rays from the regolith is shown. dΩ ′ grows with increasing
i up to the critical angle. Therefore, the magnification of the
solid angle increases the acceptance of Earth-based detection.

To test the accuracy of the magnification factor, ξ(i, t) for
the emerging solid angle of the rays, the detection threshold
was set to 0, and all the emerging solid angles summed up
to 2π as expected. Close to the critical angle, the magnifica-
tion factor, ξ(i, t) is very large, but the power in the signal
reduces significantly due to the smaller transmission coeffi-
cient (to conserve energy) at these angles as shown in Fig. 2.
Hence, the total emerging solid angle (that goes into comput-
ing the effective aperture) is not dominated by the magnified
solid angles close to the critical angle, particularly at lower
energies.

3.4 Computation of effective lunar aperture

From the fraction of triggered rays, an effective aperture (i.e.
product of the effective area (πR2) and solid angle (4π ) with
units of km2sr) of the Moon for neutrino detection can be
calculated. Accurate knowledge of an effective aperture –
fraction of the maximum lunar aperture, Amax(E) that con-
stitutes our detectable aperture – is necessary for establishing
an upper limit on the flux of UHE neutrinos in the instance of
null detection or to calculate the flux if neutrinos are detected.
If we assume the Moon is a perfect sphere, then the maxi-
mum possible aperture for which neutrinos can be detected
is given by:

Amax(E) = 4π2R2, (29)

Fig. 9 A plot of the modified solid angle, dΩ ′ and magnification factor
as function of incidence angle, i . The solid angle of each ray inside the
regolith, dΩi = 2.5 × 10−6 and TIR condition given by Eq. 10 is
imposed, hence the angle incidence, i lower than the critical angle of
35◦

where R is the lunar radius. This is just a product of the
geometric cross-section, πR2, and the entire 4π steradians of
illumination. In determining the probability, P1(E,Θ, |−→

DE |)
of detecting a neutrino of energy, E interacting in the Moon
at a penetration point D, we sum the emergent modified solid
angles, dΩ ′

k of all the triggered rays, k and normalized by
4π as given by:

P1(E,Θ, |−→
DE |) = 1

4π

∑
triggered rays

dΩregolithξk(i, t),

= 1

4π

∑
triggered rays

dΩ ′
k(i, t)

(30)

By summing all dΩ ′
k , we are, in effect, fixing the location

of a shower in the Moon while randomizing the orientation
of the observer and asking what is the probability that a ran-
domly located observer at some Earth–Moon distance over
the solid angle of the lunar sky could detect the radio signal,
without specifying the viewing angle. The detection proba-
bility PN (E) per energy, E is now found by averaging over
N neutrino events generated by the Monte Carlo code and is
given by:

PN (E) = 1

N

N∑
j=1

P1(E,Θ j , |−→
DE | j ). (31)

The effective aperture, Ae for N events is therefore given as:

AN
e (E) = Amax(E) × PN (E)

= 4π2R2 × PN (E),
(32)
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In our simulation, lowering the detection threshold to zero
results in PN (E) being exactly 0.5, as we exclude downward-
facing rays with respect to the ‘local’ lunar surface. Conse-
quently, Eq. 32 becomes exactly half of Amax as shown in
Eq. 29.

4 Results of simulation

4.1 Reproduction of analytical calculations

To check for consistency with previous efforts, we first try
to reproduce the results of the analytical parameterization
of Gayley et al. [28] as implemented by [29] (App. B). To
do this, we assume a smooth lunar surface and fix several
stochastic parameters to the values used in the analytical
equations. These fixed parameters are: transmission coeffi-
cient t‖ = 0.6 (over reasonable conditions Gayley et al. [28]
chose to model t‖ as a constant), inelasticity y = 20% and
refractive index ni = 1.73. The analytical parameterization
is given by [28]:

A(E) ∼= Amax
(n2

i − 1)

8ni

Lr

Lν

f 3
0 Δc(Ψds + Ψdr + Ψu), (33)

where Ψds, Ψdr and Ψu respectively account for downward-
directed neutrino detection without roughness, downward-
directed neutrino detection with roughness, and upward-
directed neutrino detection without roughness. These three
parameters are taken from Eqs. 55–57 in [28]. Equation 33 is
called ‘analytic rough’ (AR) in this paper. A second equation
is defined as:

A(E) ∼= Amax
(n2

i − 1)

8ni

Lr

Lν

f 3
0 Δc(Ψds + Ψu), (34)

is what is referred to as ‘analytic smooth’ (AS) in this paper
(i.e. Eq. 33 without Ψdr term). A dimensionless parameter,

f0 =
√

log
[ Ect‖

Υmin

]
is used as trigger parameter [28]. The

effective lunar aperture as a function of primary neutrino
energy calculated using Eqs. 33 and 34 is shown in Fig. 10.

We used the same fixed values for these parameters in
our simulation to validate our code before including a more
realistic treatment of the transmission coefficient and inelas-
ticity. At this point, surface roughness effects are ignored in
the analytical parameterization and the simulation. In Fig. 11,
the simulated and analytic effective lunar aperture for UHE
neutrinos, assuming a smooth lunar surface, is shown.

Both simulation and analytic expression predict a larger
effective lunar aperture at 150 MHz than 1.50 GHz since the
Cherenkov cone width scales inversely with frequency. In
general, there is a good agreement between the simulation
and the analytic parameterization [28]. The neutrino energy

Fig. 10 Neutrino effective lunar apertures as a function of primary neu-
trino energies made using the analytic model stated in Eq. 33 (legend:
total AR) and Eq. 34 (legend: total AS) for frequencies: Top: 0.15 GHz,
bottom: 1.50 GHz. Also plotted are the three individual contributions
to the total effective aperture. This plot is made using a threshold radio
pulse strength of 0.024 µV/m/MHz

threshold, which coincided with the point of most significant
difference between the two results occurs at E = 6.74 ×
1021 eV and 1.06 × 1021 eV where their ratios, r sim

analytic are
2.0 and 1.4 at 150 MHz and 1.50 GHz respectively.

As explained in Sect. 3.1, neutrinos are classified as either
downward-directed or upward-directed depending on the
shower propagation direction Θ (in the ‘local’ geometry). We
simulated the relative contributions of these two classes of
neutrinos to the overall aperture for frequencies of 150 MHz
and 1.5 GHz. Results are compared with the analytic expres-
sion and shown in Fig. 12. The following observations are
made for both the simulation and the analytical expression:

– At 150 MHz, the downward-directed neutrinos dominate
over the upward-directed neutrinos across all energies.

– At 1.50 GHz, the upward-directed neutrinos become
increasingly important at lower energies.
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Fig. 11 Plot of effective lunar aperture (for both simulation and ana-
lytic smooth) versus primary neutrino energy for a smooth lunar sur-
face, a constant transmission coefficient, 0.6 and inelasticity, 20%. Top:
150 MHz bottom: 1.50 GHz

There is an excellent agreement between the downward-
directed contribution from the simulation and analytic
expression as shown in Fig. 8. As shown in the same figure,
the contribution of upward-directed showers decreases with
increasing energy. This implies that increasing primary neu-
trino energy should reduce the fraction of upward-directed
neutrinos contributing to the total effective aperture. In the
analytical solution (see Fig. 12), upward-directed showers’
relative contribution decreases with energy, but their abso-
lute contribution rises monotonously. In the Monte Carlo
results, however, we find a decrease even in the absolute
contribution (see the turnover of the curve at an energy of
E ∼ 1023 eV). The reason for this difference lies in the ‘near
surface approximation’ made for the analytical result, which
assumes that neutrinos creating horizontal showers (i.e. par-
allel to the smooth surface) do not suffer attenuation. This
approximation becomes unreliable at low frequencies, for
which the radio attenuation length is larger, so larger depths
are probed. The error the approximation introduces will grow

Fig. 12 Plot of the effective lunar aperture as a function of primary
neutrino energy for upward-directed (Ψu for analytic) and downward-
directed (Ψds for analytic) neutrinos, assuming a smooth lunar sur-
face, a constant transmission coefficient, 0.6 and inelasticity, 20%. Top:
150 MHz. Bottom: 1.50 GHz

with energy, mainly because the neutrino cross-section grows
and because observable radio waves could emerge from even
larger depths. Gayley et al. [28] were aware of this and stated
that their results are reliable as long as Lr/R � (Lν/R)2 (see
Eq. (24) in [28] and shown in Fig. 13. This is the threshold
above which the analytic and Monte Carlo results in Fig. 12
start to diverge.

4.1.1 Large scale roughness with constant transmission
coefficient and inelasticity

Again, we validate our simulation against the analytic model
by including large-scale surface roughness. To do this, we
account for large-scale surface roughness in our simulation
and keep the transmission coefficient, 0.6, and the inelasticity
20% constant. We simulate two scenarios here:
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Fig. 13 A plot showing the condition for the near-surface approxima-
tion, Lr/R � (Lν/R)2 as a function of primary neutrino energy

1. take the same constant slope srms that was used in Gayley
et al. [28] to compare results.

2. uses a distribution of slopes s sampled from a normal
distribution.

Figure 14 shows a plot of the effective lunar aperture as a
function of the primary neutrino energy for the two scenarios
where we keep the transmission coefficient and inelasticity
constant. We can see that the large-scale roughness in both the
simulation and the analytic parameterization [28] enhances
detection and, consequently, the effective lunar aperture for
UHE neutrinos hitting the Moon. The large-scale surface
roughness did not change the neutrino energy threshold in
both the simulation and the analytic parameterization. By
sampling slopes from a normal distribution in the simula-
tion, we see a good agreement between the simulation and
the analytic expression. The neutrino energy threshold occurs
at E = 6.74 × 1021 eV and 1.06 × 1021 eV for the frequen-
cies 150 MHz and 1.50 GHz respectively. At these threshold
energies, the ratio r sim

analytic are 1.47 and 1.5 at 150 MHz and
1.50 GHz respectively.

By incorporating an rms slope, denoted as srms, in the
simulation, we can compare the results with the analytic
expression at the neutrino threshold energy. This threshold
energy is observed at E = 6.74×1021eV and 1.06×1021eV
at 150 MHz and 1.50 GHz respectively. At frequencies of
150 MHz and 1.50 GHz, the ratios r sim

analytic are found to be
2.30 and 2.33 respectively for the threshold energies.

In summary, there is a good agreement between the sim-
ulation and the analytic expression with large-scale surface
roughness when surface slopes in the simulation are sampled
from a realistic normal distribution. Note that when using a
single rms slope, srms in the simulation, the rotation of the
shower axis about a rotation axis is varied randomly between
clockwise and anti-clockwise directions.

Fig. 14 Plot of the effective lunar aperture as a function of primary
neutrino energy with a constant inelasticity, 20% and transmission coef-
ficient, 0.6 and taking into account large scale surface roughness sam-
pled from a distribution (rough distribution)) or a single rms slope, srms
(rough srms = 7.5◦ at 150 MHz, 12.3◦ at 1.5 GHz). Top: 150 MHz.
Bottom: 1.50 GHz. Smooth in the legend implies surface roughness
was not taken into account

Figure 15 shows a histogram of surface slopes, s of the trig-
gered neutrinos. The rms of these slopes are 5.47◦ and 11.23◦
at 150 MHz and 1.50 GHz respectively, which are smaller
than the single rms slope srms. This, therefore, explains why
the aperture calculation using a distribution of slopes is rel-
atively smaller.

4.2 Effect of transmission coefficient and inelasticity

Transmission coefficient and inelasticity are crucial in deter-
mining the minimum detectable neutrino energy. Choos-
ing to model the transmission coefficient as a constant, as
was done in the analytic parameterization via the relation:

f0 =
√

log
[ Ect‖

Υmin

]
, leads to a loss in accuracy of the aperture

calculation since it influences the detectable spectral elec-
tric field and consequently the minimum detectable neutrino
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Fig. 15 A histogram of surface slopes of triggered neutrinos of energy,
1022 eV for frequencies: 150 MHz and 1.50 GHz

energy. This necessitates a proper treatment of the transmis-
sion coefficient. A realistic treatment for the inelasticity is
implemented by sampling the inelasticity from a distribution
as shown in Fig. 7 (right). Four scenarios are considered for
this study:

– A constant inelasticity y = 20% and a constant trans-
mission coefficient, t = 0.6.

– A realistic inelasticity sampled from a distribution and
realistic transmission coefficient correctly calculated.

– A constant inelasticity, y = 20% and realistic transmis-
sion coefficient correctly calculated.

– A realistic inelasticity sampled from a distribution and
constant transmission coefficient, t = 0.6.

In all four scenarios, we assume a smooth lunar surface.
Shown in Fig. 16 is a plot of effective lunar aperture versus
primary neutrino energy considering the effect of transmis-
sion coefficient and inelasticity. From this Fig. 16, it is clear
that the energy threshold varies for the different scenarios.
This explains why it is necessary to model these parame-
ters correctly properly. At 1.5 GHz, the results from using a
constant transmission coefficient and inelasticity are in good
agreement with the case of a realistic transmission coefficient
and inelasticity at higher energies. Thus, the values taken for
the constant inelasticity and the transmission coefficient have
been chosen so that the results agree with the complete cal-
culation at the highest energies in the analytic expression.

4.2.1 Large scale roughness with realistic transmission
coefficient and inelasticity

Figure 17 is similar to Fig. 14 except that the transmission
coefficient has appropriately been calculated and the inelas-
ticity sampled from a realistic distribution in the simulation.

Fig. 16 Plot of effective lunar aperture versus primary neutrino energy
over a smooth lunar surface for different treatments of transmission
coefficient t and inelasticity y. Top: 150 MHz. Bottom: 1.50 GHz

Aside from an enhancement in the effective aperture due
to the large-scale surface roughness, the energy threshold
has changed. The cumulative effect of these three factors,
surface roughness, transmission coefficient, and inelasticity,
when appropriately modeled in the simulation, improves the
detection probability of lower energy neutrinos.

When the transmission coefficients and inelasticities are
modeled adequately for a smooth lunar surface, we observed
that the energy threshold in the simulation is lower than in the
analytic parameterization (see Fig. 17). The energy thresh-
old is further lowered with the inclusion of large surface
roughness. Thus, surface roughness increases the effective
aperture and significantly determines (i.e. lowers) the energy
threshold when the transmission coefficient and inelasticity
are correctly modeled.
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Fig. 17 Plot of effective lunar aperture versus primary neutrino energy
with realistic inelasticity, transmission coefficient, and large-scale sur-
face roughness. Top: 150 MHz. Bottom: 1.50 GHz. The analytic param-
eterization includes only the large-scale roughness

4.2.2 Small scale roughness with realistic transmission
coefficient and inelasticity

The effect of both small and large-scale roughness has been
included in the simulation and plotted out in Fig. 18. Also, the
transmission coefficients and inelasticities have been appro-
priately modeled in the simulation. As seen in this figure, the
small-scale surface roughness reduces the effective aperture
due to the loss in the coherency of the signal. Like large-scale
roughness, the effect of the small-scale roughness is more
pronounced at 1.50 GHz, consequently leading to a change
in the energy threshold. In our report, we have highlighted the
statistical errors associated with the simulation conducted for
both large and small-scale roughness in Fig. 18. These errors
have been calculated by taking the inverse square root of
the number of events that were detected or contributed to
the effective aperture. It is important to note that the lowest

Fig. 18 Plot of effective lunar aperture versus primary neutrino energy
considering both the small and large scale surface roughness, calculated
transmission coefficient, and inelasticity sampled from a realistic dis-
tribution. Top: 150 MHz. Bottom: 1.50 GHz. The analytic parameteri-
zation includes only the large-scale roughness

energy at 1.50 GHz in Fig. 18 is most affected by the low
statistics.

4.3 Merits of low- and high-frequency observations

There are advantages to both low and high frequencies, trad-
ing off between effective aperture and energy threshold, and
other pros and cons on the experimental side as depicted in
Fig. 19 for different radio detection thresholds.

The Cherenkov cone width Δc (Eq. 4) scales inversely
with frequency, implying that at lower frequencies, there is
a wider angular spread around the Cherenkov angle. Given
that the refractive index of the regolith is quite large, 1.73,
the Cherenkov angle – which occurs at 55◦ – is consequently
large too. Interestingly, the Cherenkov angle is the comple-

ment of the critical angle, sin−1
(

1
ni

)
≈ 35◦. Radiation is

only transmitted from the regolith if it is incident at an angle
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Fig. 19 Plot of effective lunar aperture versus primary neutrino energy
considering both the small and large scale surface roughness, calcu-
lated transmission coefficient, and inelasticity sampled from a realis-
tic distribution. Results for two frequencies: 150 MHz and 1.50 GHz
and two different radio sensitivity thresholds: 0.024 µV/m/MHz and
0.24 µV/m/MHz

less than or equal to the critical angle. This means that show-
ers developing parallel to the flat lunar surface will produce
little to no emission that escapes into free space with a sig-
nal strength above a detection threshold such that they can
be observed on Earth. This is particularly true at high fre-
quencies where the Cherenkov cone is narrow. This require-
ment imposes stringent restrictions on only specific shower
geometries for detecting an emitted signal. Most radiation
close to the Cherenkov angle suffers total internal reflection,
particularly for the downward-directed neutrinos. This situ-
ation is even worse at higher frequencies where the width of
the Cherenkov cone is narrower. The significant advantage
of a lower frequency observation is the larger Cherenkov
cone width and, hence, the broader emission spread around
the Cherenkov angle – where the signals remain coherent
– allowing for detectable radiation (above a trigger thresh-
old) outside the Moon. It is worth noting that reducing the
frequency also results in a decrease in the peak spectral elec-
tric field strength, as demonstrated in Eq. 5. It’s important
to remember that the peak spectral electric field strength is
directly proportional to the hadronic shower energy. There-
fore, this implies that the larger angular spread around the
Cherenkov angle is much more crucial at sufficiently high
shower energies. The larger Cherenkov cone width, together
with the low attenuation loss at lower frequencies, implies
the following:

– A larger fraction of the lunar surface falls within our
detection area, which in this work translates into having
a wider range of impact parameters, |−→BC | as shown in
Fig. 20 (top). This is a histogram of the distribution of

impact parameters for neutrinos with signals above the
detection threshold. It should be noted that |−→BC | = 1
corresponds to the rim of the Moon, and |−→BC | = 0 is
the lunar center. At 1.5 GHz, only the narrow rim of the
Moon contributes to the detectable aperture.

– As demonstrated in Fig. 20 (middle), a broader Cherenkov
cone width indicates a larger angular acceptance. This
means we can detect neutrinos arriving from a wider
range of angles, especially at lower frequencies, allowing
us to identify more shower geometries with varying Θ .
At 1.5 GHz, we are most sensitive to skimming neutrinos
(i.e. arriving with Θ nearly greater or less than 90◦ ). It’s
important to note that we are referring to the calculated
shower propagation direction, Θ , in the ‘local’ geometry.

– Based on the data presented in Fig. 20 (bottom), we have
increased sensitivity to neutrinos that interact at greater
depths in the regolith due to lower radio attenuation loss.
The figure illustrates that our capability to detect neutri-
nos is limited to depths of approximately 20 m at 1.5 GHz
and around 100 m at 150 MHz for a neutrino with an
energy level of roughly 1022 eV.

When observing neutrinos, there is a trade-off between
low- and high-frequency observations. The benefit of low-
frequency observations is that they can detect high-energy
neutrinos through a larger aperture. On the other hand, high-
frequency observations can detect lower-energy neutrinos.
The specific outcome of this trade-off for an experiment
is dependent on the instrument’s characteristics, such as
its observing frequency and radio detection threshold, as
demonstrated in Fig. 19.

5 Summary and conclusion

We used a Monte Carlo simulation to determine the effec-
tive aperture for ultra-high energy (UHE) neutrinos hitting
the Moon. This is crucial for low-frequency observations
(∼ 150 MHz) like those conducted by LOFAR, where the
small angle approximations in the analytic expression [28]
fail. We explored the various assumptions that went into the
analytic expressions [28] and studied their impact on the
effective aperture. Assuming a smooth lunar surface, a con-
stant transmission coefficient of 0.6, and an inelasticity of
20%, our simulation results agreed with the analytic param-
eterization indicated in Fig. 11. However, the largest differ-
ence between the two apertures occurred at an energy of
E = 6.7×1021 eV at 150 MHz, with a ratio of r sim

analytic = 2.0.
At 1.50 GHz, the energy corresponding to the largest differ-
ence was 1.1×1021 eV, with r sim

analytic = 1.4. These two ener-
gies corresponded with the neutrino threshold energy for the
two frequencies we considered. Additionally, we simulated
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Fig. 20 A histogram of Top: impact parameters, |−→BC | where 1 cor-
responds to the rim of the Moon and 0 to the Moon center. Middle:
shower propagation direction Θ and Bottom: depth below the local

lunar surface, |−→
DE | for detected neutrinos of energy, 1022 eV. Realistic

inelasticity and the transmission coefficient used and both small and
large-scale surface roughness are factored in

the effective aperture for downward and upward-directed
neutrinos to understand the slight difference between the
simulation and the analytic expression [28]. We observed
good agreement with the analytic expression for downward-
directed neutrinos, while upward-directed neutrinos from
the simulation diverged from the analytic expression with
increasing energy, as shown in Fig. 12. We attribute this to the
near-surface approximations in the analytic expression (see
Fig. 13). It has been demonstrated that assuming a constant
transmission coefficient and inelasticity can result in inac-
curacies in aperture calculations since they impact the min-
imum energy needed for detectable neutrinos, as shown in
Fig. 16. By modeling the transmission coefficient and inelas-
ticity more accurately in the simulation for a smooth lunar
surface, we lowered the energy threshold for the same trig-
ger and reduced inaccuracies in the aperture calculations, as
depicted in Fig. 17.

In this study, we have modeled the lunar surface topogra-
phy at both small and large scales, as discussed in Fig. 4, and
examined its impact on the effective aperture. Our simulated
results have been validated against the analytic expression
from [28], using a constant transmission coefficient of 0.6
and an inelasticity value of 20% for large-scale roughness.
We have observed a good correlation between the simulated
and analytic results in Fig. 14. Our findings demonstrate that
both low and high frequencies are affected by large-scale
roughness, which increases the effective aperture, as shown
in Figs. 14, 17, and 18. When the large-scale roughness is
sampled from a realistic Gaussian distribution, the maximum
ratio of simulated to analytic apertures r sim

analytic is approxi-
mately 1.47 at 150 MHz and 1.50 at 1.5 GHz. In contrast,
using a single rms slope as in the analytic expression yields a
ratio r sim

analytic ∼ 2.30 at 150 MHz and 2.44 at 1.5 GHz. Taking
into account the large-scale roughness, adequately modeled
transmission coefficient, and inelasticity, we have seen that
the effective aperture is heightened, and the energy threshold
is lowered, as compared to the analytic expression’s predic-
tion, as shown in Fig. 17. Furthermore, we have incorporated
small-scale roughness in our simulation and found that it
reduces the effective aperture enhancement caused by large-
scale roughness, as seen in Fig. 18. Despite this, the overall
effect of both large and small-scale roughness still enhances
the effective aperture and decreases the energy threshold.

We have demonstrated that one of the merits of a lower
frequency observation is to increase the detection probabil-
ity by having a larger effective aperture, as shown in Fig. 11
with a trade-off on lowering the detectable energy thresh-
old. It has also been shown that because the Cherenkov cone
width scales inversely with frequency, observing at a lower
frequency translates to having a more significant fraction of
the lunar surface forming part of the detection area instead
of the narrow lunar rim at higher frequencies (see Fig. 20
(top)). For a lower frequency observation, we have shown
that the angular range over which we are sensitive to UHE
neutrinos is wider (i.e., a more extensive range of geometries
for UHE neutrino showers) in comparison to when observ-
ing at a higher frequency as is shown in Fig. 20 (middle).
We have also demonstrated that since radio attenuation loss
is inversely proportional to frequency, we are sensitive to
deeper penetrating neutrinos at a lower frequency (see Fig. 20
(bottom)).

To optimize the designs of our experiments for detect-
ing neutrinos with specific energies through the radio lunar
Askaryan technique, we must understand the primary fac-
tors that impact the threshold for energy detection. Our
research has revealed that two main factors affect this thresh-
old: inelasticity and transmission coefficient (as depicted in
Fig. 16). By accurately modeling these factors in simulations,
we have observed a significant increase in the energy thresh-
old for lower energies (Fig. 18). While lunar surface topogra-
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phy does have some impact, it is not nearly as significant as
the aforementioned factors (Fig. 14). Additionally, we have
found that accurately modeling inelasticity and transmission
coefficient, rather than treating them as constants, is espe-
cially crucial for low-frequency observations like LOFAR
(Fig. 16).
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