KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhanced strength-ductility synergy of a partially recrystallized Al$_6$Cr$_{25}$Fe$_{34}$Ni$_{35}$ multi-principal element alloy

Lu, Kaiju ORCID iD icon 1; Shi, Hao 2; Weisenburger, Alfons 2; Aktaa, Jarir 3,4
1 Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI), Karlsruher Institut für Technologie (KIT)
2 Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM), Karlsruher Institut für Technologie (KIT)
4 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Co-free and Al-alloyed FCC multi-principal element alloys (MPEAs) have attracted increasing interest due to their low-cost, high potential to show excellent corrosion/oxidation resistance and mechanical properties. Here we report the mechanical deformation behavior of a single face-centered cubic (FCC) and partially recrystallized Al6Cr25Fe34Ni35 (at.%, AlCrFeNi) MPEA at room temperature and 550 °C with comparisons to other model MPEAs (including CoCrFeMnNi, CoCrNi and CrFeNi). The AlCrFeNi alloy exhibits higher strength-ductility synergy than the CoCrFeMnNi MPEA tested at the same conditions, especially at elevated temperature. Besides, it also shows higher yield strength than the CoCrNi and CrFeNi MPEAs. Microstructural investigations unveiled that, the deformed microstructures manifest a high density of dislocations (in the form of tangles and walls/cells). These tangles and walls/cells contributed to the AlCrFeNi's stage I and II strain hardening behaviors, respectively, as well as to the enhanced strength-ductility synergy. Further analyses also pinpointed the origins of higher yield strength in AlCrFeNi than in other MPEAs.


Postprint §
DOI: 10.5445/IR/1000165860
Frei zugänglich ab 01.02.2025
Originalveröffentlichung
DOI: 10.1016/j.matchar.2023.113578
Scopus
Zitationen: 5
Web of Science
Zitationen: 2
Dimensions
Zitationen: 5
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien (IAM)
Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM)
Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2024
Sprache Englisch
Identifikator ISSN: 1044-5803
KITopen-ID: 1000165860
HGF-Programm 32.12.01 (POF IV, LK 01) Design Basis Accidents and Materials Research
Erschienen in Materials Characterization
Verlag Elsevier
Band 207
Seiten Art.-Nr.: 113578
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page