KIT | KIT-Bibliothek | Impressum | Datenschutz

Ca2+ Pre-Intercalated Bilayered Vanadium Oxide for High-Performance Aqueous Mg-Ion Batteries

Fu, Qiang 1; Wu, Xiaoyu; Luo, Xianlin ORCID iD icon 1; Ding, Ziming ORCID iD icon 2; Indris, Sylvio ORCID iD icon 1; Sarapulova, Angelina 1; Meng, Zhen 3; Desmau, Morgane 4; Wang, Zhengqi 5; Hua, Weibo 1; Kübel, Christian K. U. ORCID iD icon 2; Schwarz, Björn ORCID iD icon 1; Knapp, Michael ORCID iD icon 1; Ehrenberg, Helmut 1; Wei, Yingjin; Dsoke, Sonia ORCID iD icon 1
1 Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)
4 Deutsches Elektronen-Synchrotron (DESY)
5 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The “oxygen-rich” Ca2+ pre-intercalated bilayered vanadium oxide (CaVOnH) was synthesized via hydrothermal method and determined as a monoclinic structure with reasonable lattice parameters. CaVOnH achieves a first discharge capacity of 273 mAh g−1 with capacity retention of 91% at 50 mA g−1 in 0.8 m Mg(TFSI)2-85%PEG-15%H2O (polyethylene glycol, PEG), but limited rate capability due to the low ionic conductivity of electrolyte. Dimethyl sulfoxide (DMSO) is used as a co-solvent to tune the physical-chemical properties of aqueous Mg-ion electrolyte (AME), resulting in the reorganization of Mg2+ solvation and hydrogen bond network. The AME containing DMSO shows improved ionic conductivity, low viscosity, and high Mg2+ diffusion coefficient and allows CaVOnH and V2O5 to achieve a much-improved rate capability and capacity. Moreover, the reaction mechanism and reversibility of CaVOnH are elucidated by combining in operando and ex situ techniques. The results demonstrate that CaVOnH undergoes 2-phase reaction and solid solution, the variation of oxidation state and the local environment of vanadium, and reversible formation/decomposition of MgF2 cathode electrolyte interface during Mg2+ (de)intercalation, where MgF2 originated from the decomposition of TFSI-.


Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Forschungsdaten
Publikationsdatum 04.01.2024
Erstellungsdatum 20.12.2023 - 20.12.2023
Identifikator DOI: 10.35097/1858
KITopen-ID: 1000165884
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Lizenz Creative Commons Namensnennung – Nicht kommerziell – Weitergabe unter gleichen Bedingungen 4.0 International
Vorab online veröffentlicht am 23.12.2023
Schlagwörter Aqueous Mg-ion batteries; vanadium oxide cathode; aqueous Mg-ion electrolyte; in operando synchrotron diffraction; in operando X‑ray absorption spectroscopy
Liesmich

The data include electrochemistry data, XRD, XPS, XAS, and magnetic data, which was plotting using Origin software.
The emd. file can be opened and proceeded with Velox software.
The dm4. file can be opened and proceeded with DigitalMicrograph software.

Art der Forschungsdaten Dataset
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page