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1 | INTRODUCTION

Strain-gradient elasticity and nonlocal elasticity theories are challenging generalized continuum theories to model crys-
tals at small scales like the Angstrom-scale (see, e.g., [1, 2]), where classical elasticity is not valid and leads to unphysical
singularities. The theory of first strain-gradient elasticity in its modern form dates back to Toupin [3] and Mindlin [4].
Gradient elasticity has many advantages, since it provides a regularization based on higher-order partial differential equa-
tions and non-singular Green functions, and it possesses characteristic internal lengths able to describe size effects. For
general anisotropic materials, the Toupin-Mindlin first strain-gradient elasticity contains three constitutive tensors. A
mathematical modeling of the elastic properties of cubic crystals with centrosymmetry at small scales by means of the
Toupin-Mindlin anisotropic first strain gradient elasticity theory has been given in Lazar et al. [2]. In this framework, two
constitutive tensors are involved, a constitutive tensor of fourth-rank of the elastic constants and a constitutive tensor of
sixth-rank of the gradient-elastic constants. The 14 material parameters (3 elastic and 11 gradient-elastic constants) and the
corresponding three characteristic lengths are given. All material parameters of gradient elasticity can be determined from
interatomic potentials. The numerical values of all material parameters are computed for aluminum as representative
cubic material using a second nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic potential
[2, 5]. Moreover, the isotropy conditions of first strain-gradient elasticity are given and discussed. A generalization of the
Voigt average toward the sixth-rank constitutive tensor of the gradient-elastic constants is given in order to determine the
five averaged isotropic gradient-elastic constants [2].

2 | TOUPIN-MINDLIN FIRST STRAIN-GRADIENT ELASTICITY

The Toupin-Mindlin first strain-gradient elasticity theory is an important generalized continuum theory of higher order.
From a crystallographic point of view, crystals are anisotropic due to their crystal structure. Therefore, we consider first
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the general anisotropic case and afterward, the cubic case. The isotropic case is also examined as an approximate case (see

[2]).

2.1 | Field theoretical framework and general anisotropy
The strain energy density of anisotropic first strain-gradient elasticity theory reads
1 1
W(e,Ve) = 5 Cijrieijer + Eijkineijoner + 5 D jmkinOmeijOnexi » @

where e;; is the elastic strain tensor which is given in terms of the displacement vector u;:

N =

eij = (aiuj +6ju[). (2)
The partial derivative 0/0x; with respect to the spatial coordinate x; is denoted by Jy, and the indices run from 1 to 3,
i,j,k,l,m,n=1,..,3. In Equation (1), there are three constitutive tensors C, E, and D of rank 4, 5, and 6, respectively,
with the properties

* Chas 2l independent components:  C;ji; = Ceijykiy
* E has 108 independent components:  E;jxim = Egjykiym »
* D has 171 independent components:  D;jiin = D jym|kiyn -

Symmetrization over two indices is denoted by parenthesis, Agj) := (4;; + A;j;)/2, which indicates a minor symmetry
and one vertical bar denotes the major symmetry as for C;jy 1y and D jymkiyn- Eij)kiym does not possess any major
symmetry, but only minor symmetries.

The constitutive equations for the Cauchy stress tensor o and the double stress tensor T are given by

ow

9ij = 34 = Cijiaeit + EijiinOnert (3)
el'j
ow
U 3 Gmer) Extijmexi + DijmkinOneri - ©)

In the presence of body forces, the Lagrangian density reads
L=-W-V, (5)
where
V=—fiu (6)

is the potential density of the body force density f;. The Euler-Lagrange equation for first strain-gradient elasticity (or
gradient elasticity of grade two with respect to the displacement field u;) is given by

sc . or ac ac

0L 295y, + 0,0, =0 7
5ul- aui Jd(ajui) m 16(6m6jui) ( )

In terms of the Cauchy stress and double stress tensors, Equation (7) leads to the force equilibrium condition in first strain-
gradient elasticity

8;(0ij = OmTijm) + fi = 0. ®)

Substituting the constitutive equations (3) and (4) and the elastic strain tensor (2) into the equilibrium condition (8), the
following field equation for the displacement vector is obtained

L?]/{[uk = _fi’ (9)
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where
LY = Cyj110;0; + (Eijiim — Ekiijm)d;019m — D jmkind;019m0n (10)

is the Mindlin operator, which is a linear differential operator of fourth order.

2.2 | Cubic crystals with centrosymmetry of point group m3m

Important examples for cubic crystals with centrosymmetry of point group m3m are aluminum (Al), copper (Cu), iron
(Fe), and tungsten (W). The three constitutive tensors of rank 4, 5, and 6, respecting minor and major symmetries, are
given by [2]:

* The constitutive tensor of rank 4, C, has three elastic constants, Cy, C;,, Ca4, and reads
Cijki = C126ij6k1 + Caa (88 j1 + 8udjic) + (C11 — C1z — 2Cas) 811 1)

with
ukl Z e(S)e(S)e(S)e(S) (12)

where e, e?, e are the (orthogonal) unit vectors of the cubic system.
* For crystals with centrosymmetry, the constitutive tensor of rank 5, E, is zero: E; j;, = 0.
* The constitutive tensor of rank 6, D, has 11 gradient-elastic constants, ay, ..., a7, and reads

a
IDijmkln = é(éijakmaln + 5ij5kn51m + 5k151m5jn + 5k15in5jm) + 2a, 5ij5klamn

a
+ 23 (5]k51m51n + 51k5]m51n + 5116]m5kn + 5}161m5kn) + a4(5115]k5mn + 61k5115mn)

+ 28 8inSim + 8uBjuSim + 816 Gin + GG

+ aé(5ik5jlmn + 618 jkmn + 6 jiSitmn + 5jl5ikmn)

+ a7 (8kmSijin + SimSijkn + Sind jkim + S jnSikim)

+ a3 8,8y jk1 + Ao (81 Skimn + 6k18ijmn)

+ a10(8im8 jkin + 8 jmSikin + SknSijim + 1nSijim)

+ @11 8ijkimn 13)

with
ljklmn z e(S)e(S)e(s)e(s)e(s)e(s) (14)

For cubic crystals with centrosymmetry of point group m3m, the Mindlin operator (10) reduces to
LI\]/(I = (CIZ + 2C44) [1 - f%A] aiak + C44 [1 - f%A] (5ikA - aiak)
+(C11 — Cip — 2Ca)[1 — €3A]8;ja8;0,
— Qg 5ik5jlmnajalaman - a115ijklmnajalaman

- (a6 +as;+ a9+ alO)(aklmnai + ailmnak)alaman > (15)
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where it can be seen that it is given in terms of three modified Helmholtz operators

Ly=[1-¢7A], 1=1,23 (16)
with three characteristic lengths €1
2(01 +a,+as+ay+ a5)

¢ = , 17
! Cro+2Cy (1)
az +2ay4 + as
(=220 18
5 Co (18)
ag + 2a7 + ag + 2a
2= 96 7 8 10 (19)

3 C11 —Cip—2Cy

and three purely nonclassical parts given in terms of gradient-elastic constants.

2.3 | Atomistic representation of the constitutive tensors C and D

In elasticity, the atomistic representation of the constitutive tensor C dates back to Born and Huang [6]. In first strain-
gradient elasticity, the atomistic representation of the constitutive tensors of rank 4, 5, and 6 was given by Admal et al. [7].
The atomistic representation of the constitutive tensors C and D reads [6, 7]

Otﬁ Oﬂﬁ y5_y8 ap apf af_ af
P T rrr
k'l 1 y ik
Cijia = —— =5 ) o, (20)
ij az Z aﬁyé raf 1242 2 = aB (raﬁ)_%
cx;éﬁ y#f? a#p
r“ﬁr“ﬁrza ;’5 ba g OB 01 | 05
a#ﬁ}'#cs
(2D
apf af af aff ¢ ¢
_12 el T e rﬁla-i_rmﬁrfla-i_rnﬁ_'__ qoﬁ apt ~apt
2 (paﬁ (ror[a’)3 2 2 2 aﬁ pijm ™~ pkln
a, ap
a#B a#B
with
¢ B ta 4 OB ¢ B B
apt _ 1l s W + T N ag’i T iy rt&+r,) aﬁl “tr,
pijm = 2| %P T T3 T'm = | %" T3 'm —
B (22)
ta ta tB
5 |l T gl +r;
Ol Tt ||

where r*f is the vector connecting atom « to atom f and €, is the volume of the primitive lattice cell. The bond force goi 5

and the bond stiffness Kg gy ar€ defined by
v’ 3*v*
¢ _ ¢ _
Pop = 3F and Kopys = Pl (23)
where the generic pair functional reads
1
=3 2 40P+ U, (24)
B
B#t

with ¢ being the pair potential and U being the embedding function.
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TABLE 1 Elastic constants for Al (fcc) computed from second
nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic

potential.
Cy, [ev/A3] Cy, [eV/A3] C,, [eV/A3]
0.71366 0.38649 0.19704

TABLE 2 Gradient-elastic constants for Al (fcc) computed from second
nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic
potential.

a,[eV/A] a,[eV/A] a;[eV/A] a,[eV/A]  as[eV/A]  aq[eV/A]

—0.02287  0.35854 024815 0.16786 030012 0.08229
a; [eV/A]  ag[eV/A] as[eV/A] ay[eV/A]  ay [eV/A]

—0.13198 —0.21058 —0.54849 0.41893 —0.19492

TABLE 3 Characteristic lengths for Al (fcc) computed from second
nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic

potential.
¢, [A] ¢, [A] 5 [A] a[A]
1.19303 0.99186 2.58079 i 4.04950

2.4 | Numerical values of the material parameters using 2NN MEAM

In Toupin-Mindlin’s first strain-gradient elasticity theory, the elastic constants and the gradient-elastic constants are char-
acteristic material parameters which can be computed from interatomic potentials. Using the atomistic representation of
the constitutive tensors C and D, Equations (20) and (21), and the OpenKIM (Knowledgebase of Interatomic Models,
E. Tadmor et al.) implementation of the 2NN MEAM interatomic potential, the material constants are computed (see
[2, 5, 7]). For aluminum (Al), the numerical values of the 3 elastic constants, the 11 gradient-elastic constants, and the 3
characteristic lengths are given in Tables 1, 2, and 3, respectively, where a is the lattice constant. It is noticed that the 3
elastic constants given in Table 1 and the 11 gradient-elastic constants given in Table 2 satisfy the conditions for positive
definiteness of W given in [2].

Using a Voigt representation in first strain gradient elasticity [2, 5, 7], the constitutive tensors of rank 4, C, of elastic
constants and rank 6, D, of gradient-elastic constants can be represented as a symmetric (6 X 6) matrix and a symmetric
(18 x 18) matrix, respectively. A graphical representation of them is given in Figure 1 for Al using the numerical values
given in Tables 1 and 2 computed from 2NN MEAM interatomic potential.

2.5 | Isotropic first strain-gradient elasticity

In the isotropic first strain-gradient elasticity, the constitutive tensors C and D, respecting minor and major symmetries,
are given by (see [2, 8-10]):

* The constitutive tensor of rank 4, C, has two elastic constants and reads
Cijir = 46611 + M(aikfsjl + 5il5jk) (25)
with the two Lamé constants

1
p=Cyy = E(Cu -Cn), 1=Cpy. (26)
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FIGURE 1 Voigt representation of the constitutive tensor C of elastic constants as (6 X 6) matrix and the constitutive tensor D of
gradient-elastic constants as (18 x 18) matrix for Al (fcc) computed from second nearest-neighbor modified embedded-atom-method (2NN
MEAM) interatomic potential.

* The constitutive tensor of rank 6, D, has five gradient-elastic constants ay, ..., a5 and reads
Dijmkin = %(aijakmaln + 618kn81m + Sk18imSjn + Sk18inSm) + 202 8;6x18mn
+ %(6jk5im51n + 6ik 8 jmbin + 6118 jmbin + 5j16im5kn) + aq(8:8 1S mn + Sikdﬂémn)
+ 22 (8 81n0im + 818 juBim + E1kmBin + GuSim ) - 27)
For isotropic first strain-gradient elasticity, the Mindlin operator (10) reduces to
Ll = (A +2w[1 - €74]0;0k + u[1 — £3A] (S A — 6;0,) , (28)
where it can be seen that only two modified Helmholtz operators appear
Ly=[1-¢a], 1=1,2 (29)

with two characteristic lengths ¢; and ¢,:
_2a+aytaztagtas)

¢ = , 30

1 A+2u (30)
2 _ as +2a4+a5

=" - (3D

2.6 | Isotropy conditions

Comparing the constitutive tensor C for cubic crystals given in Equation (I11) and for the isotropic case given in
Equation (25), the isotropy condition for C reduces to

H=—(C;; —C1; —2Cy) =0. (32)

H is nothing but the anisotropy factor given by Hirth and Lothe [11]. Therefore, the isotropic condition for C means that
the anisotropy factor must be zero. Next, comparing the constitutive tensor D for cubic crystals given in Equation (13) and
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TABLE 4 Voigt-type averaged isotropic gradient-elastic constants and
corresponding characteristic lengths for Al (fcc).

a, [eV/A] a, [eV/A] a; [eV/A] a, [eV/A] a5 [eV/A]
—0.13862 0.22500 0.10877 0.15309 0.21632
€, [A] 175 [A] t,/a t,/a a [A]
1.20272 1.26566 0.2970 0.3125 4.04950

for the isotropic case given in Equation (27), the six isotropy conditions for D read
a6=a7=a8=a9=a10=a11=0. (33)

For aluminum, it holds: H = 0.067 and ay = a; = ag = a9 = a;o = a;; # 0. Therefore, aluminum is nearly isotropic with
respect to the 4th-rank constitutive tensor C, but anisotropic with respect to the 6th-rank constitutive tensor D. For that
reason, an average is needed for the constitutive tensor of rank 6, D, which is given in the next section.

2.7 | Voigt-type average of the 6th-rank constitutive tensor D

For the calculation of the Voigt-type average of the 6th-rank constitutive tensor D, its five linear invariants are used
I? = Dyjjee I =Dijicj> I3 = Dijijie> 19 = Dijrijie> 15 = Dyjicjii - (34)

Based on the condition that the five linear invariants of the constitutive tensor of 6th-rank D ., representing the single
cubic crystal must be equal to the linear invariants of the corresponding averaged isotropic 6th-rank constitutive tensor

D jmkin» the following relations must hold:

~
=]
Il
~
— @‘
~
=]
Il
O3,
~
=]
Il
~
WS
~
=]
Il
;S
—~
=]
Il
~
w5

(35)

The relations (35) provide the five Voigt-type averaged isotropic gradient-elastic constants, d, ..., ds, in terms of the 11
gradient-elastic constants, ay, ..., a1, of the cubic crystal:

_ 2 2
a1=a1+§(a7+a9+a10)+§a11’ (36)
_ 1 1
a2:a2+ﬁ(a8+2a9)+%a11, (37)
a;=a +%(a +2a )+ia (38)
3 =03+ 7 (s 10 35 411>
as=a +l(2a +a)+ia (39)
4 — U4 5 6 8 35 11>
_ 2 2
as=as+§(a6+2a7)+§a11. (40)

Using the values given in Table 2, the numerical values for the five Voigt-type averaged isotropic gradient-elastic constants
and the corresponding characteristic lengths are given in Table 4. It is noticed that the five averaged isotropic gradient-
elastic constants given in Table 4 satisfy the conditions of positive definiteness of W given in [2] and the conditions of
strong ellipticity given in [10].

3 | CONCLUSIONS

In this work, first strain-gradient elasticity has been presented as a generalized continuum field theory valid at small
scales. For cubic materials of point group m3m, Toupin-Mindlin’s anisotropic first strain-gradient elasticity contains:

* 3 elastic constants
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* 11 gradient-elastic constants
* 3 characteristic internal lengths.

On the other hand, Toupin-Mindlin’s isotropic first strain-gradient elasticity contains:

* 2 elastic constants
* 5 gradient-elastic constants
* 2 characteristic internal lengths.

All material parameters can be computed from interatomic potentials like 2NN MEAM. A Voigt-type average is needed
for the constitutive tensor of rank 6, D, of the 5 isotropic gradient-elastic constants. The characteristic internal lengths are
in the range of Angstrém, which is the region where nonlocality is dominant. Therefore, strain-gradient elasticity leads
to Angstrom mechanics.
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