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Abstract
The Toupin–Mindlin anisotropic first strain-gradient elasticity is a generalized
continuum field theory valid at small scales. The field theoretical framework, the
constitutive tensors, and thematerial parameters are given for anisotropic, cubic,
and isotropic materials in first strain gradient elasticity. Since the characteristic
lengths are in the unit-range of Ångström, first strain-gradient elasticity leads to
Ångström mechanics, in a straightforward manner.

1 INTRODUCTION

Strain-gradient elasticity and nonlocal elasticity theories are challenging generalized continuum theories to model crys-
tals at small scales like the Ångström-scale (see, e.g., [1, 2]), where classical elasticity is not valid and leads to unphysical
singularities. The theory of first strain-gradient elasticity in its modern form dates back to Toupin [3] and Mindlin [4].
Gradient elasticity has many advantages, since it provides a regularization based on higher-order partial differential equa-
tions and non-singular Green functions, and it possesses characteristic internal lengths able to describe size effects. For
general anisotropic materials, the Toupin–Mindlin first strain-gradient elasticity contains three constitutive tensors. A
mathematical modeling of the elastic properties of cubic crystals with centrosymmetry at small scales by means of the
Toupin–Mindlin anisotropic first strain gradient elasticity theory has been given in Lazar et al. [2]. In this framework, two
constitutive tensors are involved, a constitutive tensor of fourth-rank of the elastic constants and a constitutive tensor of
sixth-rank of the gradient-elastic constants. The 14material parameters (3 elastic and 11 gradient-elastic constants) and the
corresponding three characteristic lengths are given. Allmaterial parameters of gradient elasticity can be determined from
interatomic potentials. The numerical values of all material parameters are computed for aluminum as representative
cubic material using a second nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic potential
[2, 5]. Moreover, the isotropy conditions of first strain-gradient elasticity are given and discussed. A generalization of the
Voigt average toward the sixth-rank constitutive tensor of the gradient-elastic constants is given in order to determine the
five averaged isotropic gradient-elastic constants [2].

2 TOUPIN–MINDLIN FIRST STRAIN-GRADIENT ELASTICITY

The Toupin–Mindlin first strain-gradient elasticity theory is an important generalized continuum theory of higher order.
From a crystallographic point of view, crystals are anisotropic due to their crystal structure. Therefore, we consider first
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the general anisotropic case and afterward, the cubic case. The isotropic case is also examined as an approximate case (see
[2]).

2.1 Field theoretical framework and general anisotropy

The strain energy density of anisotropic first strain-gradient elasticity theory reads

(𝒆, 𝛁𝒆) =
1

2
ℂ𝑖𝑗𝑘𝑙𝑒𝑖𝑗𝑒𝑘𝑙 + 𝔼𝑖𝑗𝑘𝑙𝑛𝑒𝑖𝑗𝜕𝑛𝑒𝑘𝑙 +

1

2
𝔻𝑖𝑗𝑚𝑘𝑙𝑛𝜕𝑚𝑒𝑖𝑗𝜕𝑛𝑒𝑘𝑙 , (1)

where 𝑒𝑖𝑗 is the elastic strain tensor which is given in terms of the displacement vector 𝑢𝑖:

𝑒𝑖𝑗 =
1

2

(
𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖

)
. (2)

The partial derivative 𝜕∕𝜕𝑥𝑘 with respect to the spatial coordinate 𝑥𝑘 is denoted by 𝜕𝑘, and the indices run from 1 to 3,
𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛 = 1,… , 3. In Equation (1), there are three constitutive tensors ℂ, 𝔼, and 𝔻 of rank 4, 5, and 6, respectively,
with the properties

∙ ℂ has 21 independent components: ℂ𝑖𝑗𝑘𝑙 ≡ ℂ(𝑖𝑗)|(𝑘𝑙) ,
∙ 𝔼 has 108 independent components: 𝔼𝑖𝑗𝑘𝑙𝑚 ≡ 𝔼(𝑖𝑗)(𝑘𝑙)𝑚 ,
∙ 𝔻 has 171 independent components: 𝔻𝑖𝑗𝑚𝑘𝑙𝑛 ≡ 𝔻(𝑖𝑗)𝑚|(𝑘𝑙)𝑛 .

Symmetrization over two indices is denoted by parenthesis, 𝐴(𝑖𝑗) ∶= (𝐴𝑖𝑗 + 𝐴𝑗𝑖)∕2, which indicates a minor symmetry
and one vertical bar denotes the major symmetry as for ℂ(𝑖𝑗)|(𝑘𝑙) and 𝔻(𝑖𝑗)𝑚|(𝑘𝑙)𝑛. 𝔼(𝑖𝑗)(𝑘𝑙)𝑚 does not possess any major
symmetry, but only minor symmetries.
The constitutive equations for the Cauchy stress tensor 𝝈 and the double stress tensor 𝝉 are given by

𝜎𝑖𝑗 =
𝜕

𝜕𝑒𝑖𝑗
= ℂ𝑖𝑗𝑘𝑙𝑒𝑘𝑙 + 𝔼𝑖𝑗𝑘𝑙𝑛𝜕𝑛𝑒𝑘𝑙 , (3)

𝜏𝑖𝑗𝑚 =
𝜕

𝜕(𝜕𝑚𝑒𝑖𝑗)
= 𝔼𝑘𝑙𝑖𝑗𝑚𝑒𝑘𝑙 + 𝔻𝑖𝑗𝑚𝑘𝑙𝑛𝜕𝑛𝑒𝑘𝑙 . (4)

In the presence of body forces, the Lagrangian density reads

 = − −  , (5)

where

 = −𝑓𝑖𝑢𝑖 (6)

is the potential density of the body force density 𝑓𝑖 . The Euler–Lagrange equation for first strain-gradient elasticity (or
gradient elasticity of grade two with respect to the displacement field 𝑢𝑖) is given by

𝛿

𝛿𝑢𝑖
∶=

𝜕

𝜕𝑢𝑖
− 𝜕𝑗

𝜕

𝜕(𝜕𝑗𝑢𝑖)
+ 𝜕𝑚𝜕𝑗

𝜕

𝜕(𝜕𝑚𝜕𝑗𝑢𝑖)
= 0 . (7)

In terms of the Cauchy stress and double stress tensors, Equation (7) leads to the force equilibrium condition in first strain-
gradient elasticity

𝜕𝑗

(
𝜎𝑖𝑗 − 𝜕𝑚𝜏𝑖𝑗𝑚

)
+ 𝑓𝑖 = 0 . (8)

Substituting the constitutive equations (3) and (4) and the elastic strain tensor (2) into the equilibrium condition (8), the
following field equation for the displacement vector is obtained

𝐿M
𝑖𝑘

𝑢𝑘 = −𝑓𝑖 , (9)
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where

𝐿M
𝑖𝑘

= ℂ𝑖𝑗𝑘𝑙𝜕𝑗𝜕𝑙 + (𝔼𝑖𝑗𝑘𝑙𝑚 − 𝔼𝑘𝑙𝑖𝑗𝑚)𝜕𝑗𝜕𝑙𝜕𝑚 − 𝔻𝑖𝑗𝑚𝑘𝑙𝑛𝜕𝑗𝜕𝑙𝜕𝑚𝜕𝑛 (10)

is theMindlin operator, which is a linear differential operator of fourth order.

2.2 Cubic crystals with centrosymmetry of point group𝒎𝟑𝒎

Important examples for cubic crystals with centrosymmetry of point group 𝑚3𝑚 are aluminum (Al), copper (Cu), iron
(Fe), and tungsten (W). The three constitutive tensors of rank 4, 5, and 6, respecting minor and major symmetries, are
given by [2]:

∙ The constitutive tensor of rank 4, ℂ, has three elastic constants, 𝐶11, 𝐶12, 𝐶44, and reads

ℂ𝑖𝑗𝑘𝑙 = 𝐶12 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐶44

(
𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

)
+ (𝐶11 − 𝐶12 − 2𝐶44) 𝛿𝑖𝑗𝑘𝑙 (11)

with

𝛿𝑖𝑗𝑘𝑙 =

3∑
𝑠=1

𝑒
(𝑠)

𝑖
𝑒
(𝑠)

𝑗
𝑒
(𝑠)

𝑘
𝑒
(𝑠)

𝑙
, (12)

where 𝒆(1), 𝒆(2), 𝒆(3) are the (orthogonal) unit vectors of the cubic system.
∙ For crystals with centrosymmetry, the constitutive tensor of rank 5, 𝔼, is zero: 𝔼𝑖𝑗𝑘𝑙𝑛 = 0.
∙ The constitutive tensor of rank 6, 𝔻, has 11 gradient-elastic constants, 𝑎1, … , 𝑎11, and reads

𝔻𝑖𝑗𝑚𝑘𝑙𝑛 =
𝑎1

2

(
𝛿𝑖𝑗𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑙𝑚 + 𝛿𝑘𝑙𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑘𝑙𝛿𝑖𝑛𝛿𝑗𝑚

)
+ 2𝑎2 𝛿𝑖𝑗𝛿𝑘𝑙𝛿𝑚𝑛

+
𝑎3

2

(
𝛿𝑗𝑘𝛿𝑖𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑗𝑙𝛿𝑖𝑚𝛿𝑘𝑛

)
+ 𝑎4

(
𝛿𝑖𝑙𝛿𝑗𝑘𝛿𝑚𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑙𝛿𝑚𝑛

)

+
𝑎5

2

(
𝛿𝑗𝑘𝛿𝑖𝑛𝛿𝑙𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑛𝛿𝑙𝑚 + 𝛿𝑗𝑙𝛿𝑘𝑚𝛿𝑖𝑛 + 𝛿𝑖𝑙𝛿𝑘𝑚𝛿𝑗𝑛

)

+ 𝑎6

(
𝛿𝑖𝑘𝛿𝑗𝑙𝑚𝑛 + 𝛿𝑖𝑙𝛿𝑗𝑘𝑚𝑛 + 𝛿𝑗𝑘𝛿𝑖𝑙𝑚𝑛 + 𝛿𝑗𝑙𝛿𝑖𝑘𝑚𝑛

)
+ 𝑎7

(
𝛿𝑘𝑚𝛿𝑖𝑗𝑙𝑛 + 𝛿𝑙𝑚𝛿𝑖𝑗𝑘𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑘𝑙𝑚 + 𝛿𝑗𝑛𝛿𝑖𝑘𝑙𝑚

)
+ 𝑎8 𝛿𝑚𝑛𝛿𝑖𝑗𝑘𝑙 + 𝑎9

(
𝛿𝑖𝑗𝛿𝑘𝑙𝑚𝑛 + 𝛿𝑘𝑙𝛿𝑖𝑗𝑚𝑛

)
+ 𝑎10

(
𝛿𝑖𝑚𝛿𝑗𝑘𝑙𝑛 + 𝛿𝑗𝑚𝛿𝑖𝑘𝑙𝑛 + 𝛿𝑘𝑛𝛿𝑖𝑗𝑙𝑚 + 𝛿𝑙𝑛𝛿𝑖𝑗𝑘𝑚

)
+ 𝑎11 𝛿𝑖𝑗𝑘𝑙𝑚𝑛 (13)

with

𝛿𝑖𝑗𝑘𝑙𝑚𝑛 =

3∑
𝑠=1

𝑒
(𝑠)

𝑖
𝑒
(𝑠)

𝑗
𝑒
(𝑠)

𝑘
𝑒
(𝑠)

𝑙
𝑒
(𝑠)
𝑚 𝑒

(𝑠)
𝑛 . (14)

For cubic crystals with centrosymmetry of point group𝑚3𝑚, the Mindlin operator (10) reduces to

𝐿M
𝑖𝑘

= (𝐶12 + 2𝐶44)
[
1 − 𝓁2

1
Δ
]
𝜕𝑖𝜕𝑘 + 𝐶44

[
1 − 𝓁2

2
Δ
]
(𝛿𝑖𝑘Δ − 𝜕𝑖𝜕𝑘)

+ (𝐶11 − 𝐶12 − 2𝐶44)
[
1 − 𝓁2

3
Δ
]
𝛿𝑖𝑗𝑘𝑙𝜕𝑗𝜕𝑙

− 𝑎6 𝛿𝑖𝑘𝛿𝑗𝑙𝑚𝑛𝜕𝑗𝜕𝑙𝜕𝑚𝜕𝑛 − 𝑎11𝛿𝑖𝑗𝑘𝑙𝑚𝑛𝜕𝑗𝜕𝑙𝜕𝑚𝜕𝑛

− (𝑎6 + 𝑎7 + 𝑎9 + 𝑎10)(𝛿𝑘𝑙𝑚𝑛𝜕𝑖 + 𝛿𝑖𝑙𝑚𝑛𝜕𝑘)𝜕𝑙𝜕𝑚𝜕𝑛 , (15)
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where it can be seen that it is given in terms of threemodified Helmholtz operators

𝐿𝐼 =
[
1 − 𝓁2

𝐼
Δ
]
, 𝐼 = 1, 2, 3 (16)

with three characteristic lengths 𝓁𝐼 :

𝓁2
1
=

2(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)

𝐶12 + 2𝐶44
, (17)

𝓁2
2
=

𝑎3 + 2𝑎4 + 𝑎5

2𝐶44
, (18)

𝓁2
3
=

𝑎6 + 2𝑎7 + 𝑎8 + 2𝑎10

𝐶11 − 𝐶12 − 2𝐶44
(19)

and three purely nonclassical parts given in terms of gradient-elastic constants.

2.3 Atomistic representation of the constitutive tensors ℂ and 𝔻

In elasticity, the atomistic representation of the constitutive tensor ℂ dates back to Born and Huang [6]. In first strain-
gradient elasticity, the atomistic representation of the constitutive tensors of rank 4, 5, and 6 was given by Admal et al. [7].
The atomistic representation of the constitutive tensors ℂ and 𝔻 reads [6, 7]

ℂ𝑖𝑗𝑘𝑙 =
1

Ω𝓁

⎡⎢⎢⎢⎣
1

4

∑
𝛼,𝛽
𝛼≠𝛽

∑
𝛾,𝛿
𝛾≠𝛿

𝜅𝓁
𝛼𝛽𝛾𝛿

𝑟
𝛼𝛽

𝑖
𝑟
𝛼𝛽

𝑗

𝑟𝛼𝛽

𝑟
𝛾𝛿

𝑘
𝑟
𝛾𝛿

𝑙

𝑟𝛾𝛿
−

1

2

∑
𝛼,𝛽
𝛼≠𝛽

𝜑𝓁
𝛼𝛽

𝑟
𝛼𝛽

𝑖
𝑟
𝛼𝛽

𝑗
𝑟
𝛼𝛽

𝑘
𝑟
𝛼𝛽

𝑙

(𝑟𝛼𝛽)3

⎤⎥⎥⎥⎦
, (20)

𝔻𝑖𝑗𝑚𝑘𝑙𝑛 =
1

Ω𝓁

⎡⎢⎢⎢⎣
1

4

∑
𝛼,𝛽
𝛼≠𝛽

∑
𝛾,𝛿
𝛾≠𝛿

𝜅𝓁
𝛼𝛽𝛾𝛿

𝑟
𝛼𝛽

𝑖
𝑟
𝛼𝛽

𝑗
𝑟
𝛾𝛿

𝑘
𝑟
𝛾𝛿

𝑙

𝑟𝛼𝛽𝑟𝛾𝛿

𝑟𝓁𝛼
𝑚 + 𝑟

𝓁𝛽
𝑚

2

𝑟
𝓁𝛾
𝑛 + 𝑟𝓁𝛿

𝑛

2

−
1

2

∑
𝛼,𝛽
𝛼≠𝛽

𝜑𝓁
𝛼𝛽

𝑟
𝛼𝛽

𝑖
𝑟
𝛼𝛽

𝑗
𝑟
𝛼𝛽

𝑘
𝑟
𝛼𝛽

𝑙

(𝑟𝛼𝛽)3

𝑟𝓁𝛼
𝑚 + 𝑟

𝓁𝛽
𝑚

2

𝑟𝓁𝛼
𝑛 + 𝑟

𝓁𝛽
𝑛

2
+

1

2

∑
𝛼,𝛽
𝛼≠𝛽

𝜑𝓁
𝛼𝛽

𝑟𝛼𝛽
𝐺

𝛼𝛽𝓁

𝑝𝑖𝑗𝑚
𝐺

𝛼𝛽𝓁

𝑝𝑘𝑙𝑛

⎤⎥⎥⎥⎦

(21)

with

𝐺
𝛼𝛽𝓁

𝑝𝑖𝑗𝑚
=

1

2

⎡⎢⎢⎣
𝛿𝑝𝑖

⎛⎜⎜⎝
𝑟
𝛼𝛽

𝑗

𝑟𝓁𝛼
𝑚 + 𝑟

𝓁𝛽
𝑚

2
+ 𝑟

𝛼𝛽
𝑚

𝑟𝓁𝛼
𝑗

+ 𝑟
𝓁𝛽

𝑗

2

⎞⎟⎟⎠
+ 𝛿𝑝𝑗

⎛⎜⎜⎝
𝑟
𝛼𝛽

𝑖

𝑟𝓁𝛼
𝑚 + 𝑟

𝓁𝛽
𝑚

2
+ 𝑟

𝛼𝛽
𝑚

𝑟𝓁𝛼
𝑖

+ 𝑟
𝓁𝛽

𝑖

2

⎞⎟⎟⎠

−𝛿𝑝𝑚

⎛⎜⎜⎝
𝑟
𝛼𝛽

𝑖

𝑟𝓁𝛼
𝑗

+ 𝑟
𝓁𝛽

𝑗

2
+ 𝑟

𝛼𝛽

𝑗

𝑟𝓁𝛼
𝑖

+ 𝑟
𝓁𝛽

𝑖

2

⎞⎟⎟⎠
⎤⎥⎥⎦
,

(22)

where 𝑟𝑟𝑟𝛼𝛽 is the vector connecting atom 𝛼 to atom 𝛽 andΩ𝓁 is the volume of the primitive lattice cell. The bond force 𝜑𝓁
𝛼𝛽

and the bond stiffness 𝜅𝓁
𝛼𝛽𝛾𝛿

are defined by

𝜑𝓁
𝛼𝛽

=
𝜕𝓁

𝜕𝑟𝛼𝛽
and 𝜅𝓁

𝛼𝛽𝛾𝛿
=

𝜕2𝓁

𝜕𝑟𝛼𝛽𝑟𝛾𝛿
, (23)

where the generic pair functional reads

𝓁 =
1

2

∑
𝛽

𝛽≠𝓁

𝜙(𝑟𝓁𝛽) + 𝑈(𝜌𝓁), (24)

with 𝜙 being the pair potential and 𝑈 being the embedding function.
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5 of 8

TABLE 1 Elastic constants for Al (fcc) computed from second
nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic
potential.

𝑪𝟏𝟏 [eV/Å𝟑] 𝑪𝟏𝟐 [eV/Å𝟑] 𝑪𝟒𝟒 [eV/Å𝟑]

0.71366 0.38649 0.19704

TABLE 2 Gradient-elastic constants for Al (fcc) computed from second
nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic
potential.

𝒂𝟏 [eV∕Å] 𝒂𝟐 [eV∕Å] 𝒂𝟑 [eV∕Å] 𝒂𝟒 [eV∕Å] 𝒂𝟓 [eV∕Å] 𝒂𝟔 [eV∕Å]

−0.02287 0.35854 -0.24815 0.16786 0.30012 0.08229
𝒂𝟕 [eV∕Å] 𝒂𝟖 [eV∕Å] 𝒂𝟗 [eV∕Å] 𝒂𝟏𝟎 [eV∕Å] 𝒂𝟏𝟏 [eV∕Å]

−0.13198 −0.21058 −0.54849 0.41893 −0.19492

TABLE 3 Characteristic lengths for Al (fcc) computed from second
nearest-neighbor modified embedded-atom-method (2NN MEAM) interatomic
potential.

𝓵𝟏 [Å] 𝓵𝟐 [Å] 𝓵𝟑 [Å] 𝒂 [Å]

1.19303 0.99186 2.58079 i 4.04950

2.4 Numerical values of the material parameters using 2NNMEAM

In Toupin–Mindlin’s first strain-gradient elasticity theory, the elastic constants and the gradient-elastic constants are char-
acteristic material parameters which can be computed from interatomic potentials. Using the atomistic representation of
the constitutive tensors ℂ and 𝔻, Equations (20) and (21), and the OpenKIM (Knowledgebase of Interatomic Models,
E. Tadmor et al.) implementation of the 2NN MEAM interatomic potential, the material constants are computed (see
[2, 5, 7]). For aluminum (Al), the numerical values of the 3 elastic constants, the 11 gradient-elastic constants, and the 3
characteristic lengths are given in Tables 1, 2, and 3, respectively, where 𝑎 is the lattice constant. It is noticed that the 3
elastic constants given in Table 1 and the 11 gradient-elastic constants given in Table 2 satisfy the conditions for positive
definiteness of given in [2].
Using a Voigt representation in first strain gradient elasticity [2, 5, 7], the constitutive tensors of rank 4, ℂ, of elastic

constants and rank 6, 𝔻, of gradient-elastic constants can be represented as a symmetric (6 × 6) matrix and a symmetric
(18 × 18) matrix, respectively. A graphical representation of them is given in Figure 1 for Al using the numerical values
given in Tables 1 and 2 computed from 2NNMEAM interatomic potential.

2.5 Isotropic first strain-gradient elasticity

In the isotropic first strain-gradient elasticity, the constitutive tensors ℂ and 𝔻, respecting minor and major symmetries,
are given by (see [2, 8–10]):

∙ The constitutive tensor of rank 4, ℂ, has two elastic constants and reads

ℂ𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇
(
𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

)
(25)

with the two Lamé constants

𝜇 = 𝐶44 =
1

2
(𝐶11 − 𝐶12) , 𝜆 = 𝐶12 . (26)
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LAZAR and AGIASOFITOU 6 of 8

F IGURE 1 Voigt representation of the constitutive tensor ℂ of elastic constants as (6 × 6) matrix and the constitutive tensor 𝔻 of
gradient-elastic constants as (18 × 18) matrix for Al (fcc) computed from second nearest-neighbor modified embedded-atom-method (2NN
MEAM) interatomic potential.

∙ The constitutive tensor of rank 6, 𝔻, has five gradient-elastic constants 𝑎1, … , 𝑎5 and reads

𝔻𝑖𝑗𝑚𝑘𝑙𝑛 =
𝑎1

2

(
𝛿𝑖𝑗𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑙𝑚 + 𝛿𝑘𝑙𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑘𝑙𝛿𝑖𝑛𝛿𝑗𝑚

)
+ 2𝑎2 𝛿𝑖𝑗𝛿𝑘𝑙𝛿𝑚𝑛

+
𝑎3

2

(
𝛿𝑗𝑘𝛿𝑖𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑗𝑙𝛿𝑖𝑚𝛿𝑘𝑛

)
+ 𝑎4

(
𝛿𝑖𝑙𝛿𝑗𝑘𝛿𝑚𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑙𝛿𝑚𝑛

)

+
𝑎5

2

(
𝛿𝑗𝑘𝛿𝑖𝑛𝛿𝑙𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑛𝛿𝑙𝑚 + 𝛿𝑗𝑙𝛿𝑘𝑚𝛿𝑖𝑛 + 𝛿𝑖𝑙𝛿𝑘𝑚𝛿𝑗𝑛

)
. (27)

For isotropic first strain-gradient elasticity, the Mindlin operator (10) reduces to

𝐿M
𝑖𝑘

= (𝜆 + 2𝜇)
[
1 − 𝓁2

1
Δ
]
𝜕𝑖𝜕𝑘 + 𝜇

[
1 − 𝓁2

2
Δ
]
(𝛿𝑖𝑘Δ − 𝜕𝑖𝜕𝑘) , (28)

where it can be seen that only two modified Helmholtz operators appear

𝐿𝐼 =
[
1 − 𝓁2

𝐼
Δ
]
, 𝐼 = 1, 2 (29)

with two characteristic lengths 𝓁1 and 𝓁2:

𝓁2
1
=

2(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)

𝜆 + 2𝜇
, (30)

𝓁2
2
=

𝑎3 + 2𝑎4 + 𝑎5

2𝜇
. (31)

2.6 Isotropy conditions

Comparing the constitutive tensor ℂ for cubic crystals given in Equation (11) and for the isotropic case given in
Equation (25), the isotropy condition for ℂ reduces to

𝐻 = −(𝐶11 − 𝐶12 − 2𝐶44) = 0 . (32)

𝐻 is nothing but the anisotropy factor given by Hirth and Lothe [11]. Therefore, the isotropic condition for ℂmeans that
the anisotropy factor must be zero. Next, comparing the constitutive tensor𝔻 for cubic crystals given in Equation (13) and
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TABLE 4 Voigt-type averaged isotropic gradient-elastic constants and
corresponding characteristic lengths for Al (fcc).

�̄�𝟏 [eV∕Å] �̄�𝟐 [eV∕Å] �̄�𝟑 [eV∕Å] �̄�𝟒 [eV∕Å] �̄�𝟓 [eV∕Å]

−0.13862 0.22500 0.10877 0.15309 0.21632
�̄�𝟏 [Å] �̄�𝟐 [Å] �̄�𝟏∕𝒂 �̄�𝟐∕𝒂 𝒂 [Å]

1.20272 1.26566 0.2970 0.3125 4.04950

for the isotropic case given in Equation (27), the six isotropy conditions for 𝔻 read

𝑎6 = 𝑎7 = 𝑎8 = 𝑎9 = 𝑎10 = 𝑎11 = 0 . (33)

For aluminum, it holds:𝐻 = 0.067 and 𝑎6 = 𝑎7 = 𝑎8 = 𝑎9 = 𝑎10 = 𝑎11 ≠ 0. Therefore, aluminum is nearly isotropic with
respect to the 4th-rank constitutive tensor ℂ, but anisotropic with respect to the 6th-rank constitutive tensor 𝔻. For that
reason, an average is needed for the constitutive tensor of rank 6, 𝔻, which is given in the next section.

2.7 Voigt-type average of the 6th-rank constitutive tensor 𝔻

For the calculation of the Voigt-type average of the 6th-rank constitutive tensor 𝔻, its five linear invariants are used

𝐼𝔻
1

= 𝔻𝑖𝑖𝑗𝑗𝑘𝑘 , 𝐼𝔻
2

= 𝔻𝑖𝑖𝑗𝑘𝑘𝑗 , 𝐼𝔻
3

= 𝔻𝑖𝑗𝑖𝑗𝑘𝑘 , 𝐼𝔻
4

= 𝔻𝑖𝑗𝑘𝑖𝑗𝑘 , 𝐼𝔻5 = 𝔻𝑖𝑗𝑘𝑗𝑘𝑖 . (34)

Based on the condition that the five linear invariants of the constitutive tensor of 6th-rank𝔻𝑖𝑗𝑚𝑘𝑙𝑛 representing the single
cubic crystal must be equal to the linear invariants of the corresponding averaged isotropic 6th-rank constitutive tensor
�̄�𝑖𝑗𝑚𝑘𝑙𝑛, the following relations must hold:

𝐼𝔻
1

= 𝐼�̄�
1

, 𝐼𝔻
2

= 𝐼�̄�
2

, 𝐼𝔻
3

= 𝐼�̄�
3

, 𝐼𝔻
4

= 𝐼�̄�
4

, 𝐼𝔻5 = 𝐼�̄�5 . (35)

The relations (35) provide the five Voigt-type averaged isotropic gradient-elastic constants, �̄�1, … , �̄�5, in terms of the 11
gradient-elastic constants, 𝑎1, … , 𝑎11, of the cubic crystal:

�̄�1 = 𝑎1 +
2

5
(𝑎7 + 𝑎9 + 𝑎10) +

2

35
𝑎11 , (36)

�̄�2 = 𝑎2 +
1

10
(𝑎8 + 2𝑎9) +

1

70
𝑎11 , (37)

�̄�3 = 𝑎3 +
2

5
(𝑎6 + 2𝑎10) +

2

35
𝑎11 , (38)

�̄�4 = 𝑎4 +
1

5
(2𝑎6 + 𝑎8) +

1

35
𝑎11 , (39)

�̄�5 = 𝑎5 +
2

5
(𝑎6 + 2𝑎7) +

2

35
𝑎11 . (40)

Using the values given in Table 2, the numerical values for the five Voigt-type averaged isotropic gradient-elastic constants
and the corresponding characteristic lengths are given in Table 4. It is noticed that the five averaged isotropic gradient-
elastic constants given in Table 4 satisfy the conditions of positive definiteness of  given in [2] and the conditions of
strong ellipticity given in [10].

3 CONCLUSIONS

In this work, first strain-gradient elasticity has been presented as a generalized continuum field theory valid at small
scales. For cubic materials of point group𝑚3̄𝑚, Toupin–Mindlin’s anisotropic first strain-gradient elasticity contains:

∙ 3 elastic constants
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LAZAR and AGIASOFITOU 8 of 8

∙ 11 gradient-elastic constants
∙ 3 characteristic internal lengths.

On the other hand, Toupin–Mindlin’s isotropic first strain-gradient elasticity contains:

∙ 2 elastic constants
∙ 5 gradient-elastic constants
∙ 2 characteristic internal lengths.

All material parameters can be computed from interatomic potentials like 2NNMEAM. A Voigt-type average is needed
for the constitutive tensor of rank 6,𝔻, of the 5 isotropic gradient-elastic constants. The characteristic internal lengths are
in the range of Ångström, which is the region where nonlocality is dominant. Therefore, strain-gradient elasticity leads
to Ångström mechanics.
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