Leistungsdeterminanten im Mittelstreckenlauf

Neue Erkenntnisse aus der SimProRun- Studie

SCHWARZ YM, NOLTE S, FUCHS M, GEHLERT G, SLOWIG Y, SCHIFFER A, FOITSCHIK T, ABEL T, QUITTMANN OJ

What is new?!

REVIEW ARTICLE

Sports Med. 19 (4): 268-277, 1995 0112-1642/95/0004-0268/\$05.00/0

© Adis International Limited. All rights reserved.

Physical Fitness and Performance

Determinants of 800-m and 1500-m Running Performance Using Allometric Models

STEPHEN A. INGHAM¹, GREGORY P. WHYTE², CHARLES PEDLAR³, DAVID M. BAILEY¹, NATALIE DUNMAN³, and ALAN M. NEVILL⁴

¹English Institute of Sport, Loughborough University, Loughborough, Leicestershire, UNITED KINGDOM;

²Research Institute for Sport and Exercise Science, Liverpool John Moores University, Henry Cotton Campus, Truman Road, Liverpool, UNITED KINGDOM;

³English Institute of Sport, Studies, University of Wolverhampton, Walsall Campus, Walsall, UNITED KINGDOM;

⁴Department of Sports Studies, University of Wolverhampton, Walsall Campus, Walsall, UNITED KINGDOM

Ingham et al. (2008) Phys Fit Perf

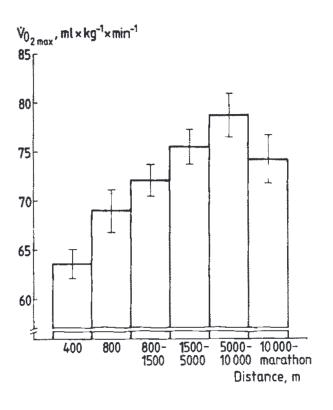
Physiological Factors Associated with Middle Distance Running Performance

L. Jerome Brandon

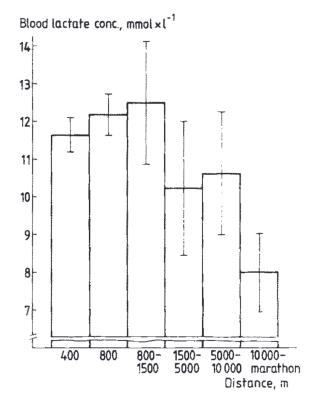
Brandon (1995) Sports Med

Georgia State University, Atlanta, Georgia, USA

J Appl Physiol 107: 478–487, 2009. First published May 28, 2009; doi:10.1152/japplphysiol.91296.2008.


Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run

Véronique Billat,¹ Laurence Hamard,¹ Jean Pierre Koralsztein,² and R. Hugh Morton³


¹Faculty of Sport Sciences, University of Evry-Val d'Essonne, Evry, France; ²Sport Medicine Center CCAS, Paris, France; and ³Institute of Food, Nutrition, and Human Health, Massey University, Palmerston North, New Zealand

Submitted 28 September 2008; accepted in final form 26 May 2009

Vorherige Studien untersuchten meist physiologische Charakteristiken von Spezialisten auf Hochleistungsniveau

VHIa 4,0. m×s-1 5,5 5,0 800 800-1500-5000- 10000-5000 10000 marathon Distance, m

VO₂max

Schwelle (4-mmol/l)

La_{max}

"Bei der ausschließlichen Untersuchung von Hochleistungssportlern besteht die Gefahr einseitige Ergebnisse zu produzieren"

"Using samples restricted (truncated) to contain only elite athletes or highly trained individuals may result in biased results."

Borgen (2018) Sports Med

Einleitung Methodik Ergebnisse Diskussion Fazit

Probanden

Sprinter (n = 6)

Mittel-/ Langstreckenläufer (n = 16)

(Ultra-)marathonläufer (n = 3)

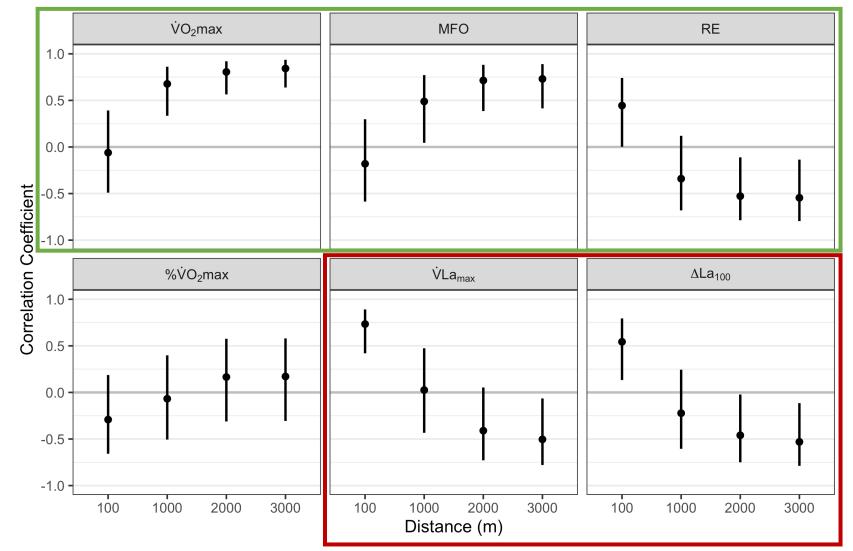
Deskriptive Daten

Alter: 25.5 ± 4.7 Jahre Körpergewicht: 69.2 ± 6.4 kg Körperfettanteil (%): 11.3 ± 2.2 %

VO₂max: $66.0 \pm 5.71 \text{ mL·min}^{-1} \cdot \text{kg}^{-1}$ **Laufökonomie:** $222.0 \pm 11.1 \text{ mL·kg}^{-1} \cdot \text{km}^{-1}$

Untersuchte Parameter

Physiologie


- 1. Maximale Sauerstoffaufnahme ($\dot{V}O_2$ max)
- 2. Maximale Fettoxidation (MFO)
- 3. Laufökonomie (RE)
- 4. Fraktionelle Ausschöpfung der VO₂max am MLSS (%VO₂max)
- 5. Maximale Laktatbildungsrate (VLa_{max})*
- 6. Differenz zwischen der maximalen Laktatkonzentration nach 100-m Sprint und in Ruhe (ΔLa_{100})

Leistung

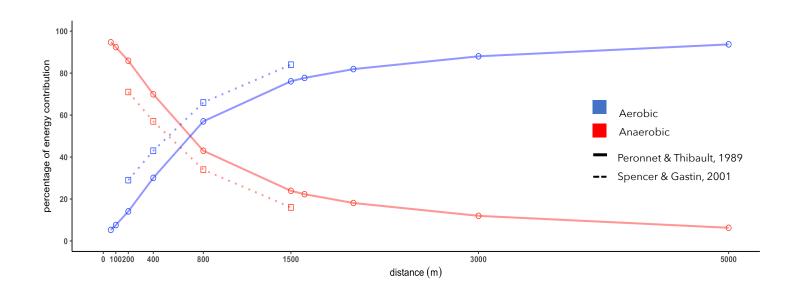
- 7. Geschwindigkeit beim Erreichen der VO2max (vVO2max)
- 8. Maximales Laktatgleichgewicht (MLSS)
- 9. Critical Velocity (CV)
- 10. Geschwindigkeit bei MFO (Fat_{max})
- 11. Begrenzte Energieabgabe oberhalb von CV (D')
- 12. Anaerobic speed reserve (ASR)
- 13. Speed reserve ratio (SRR)

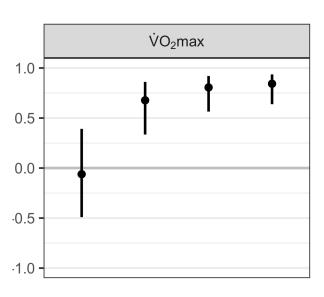
Studiendesign

Abbildung 1 Korrelationskoeffizienten (Punkte) und Konfidenzintervalle (vertikale Streifen) der untersuchten physiologischen Parametern mit 100-m Sprintleistung and 1, 2, and 3 km TT-Leistung.

- Positiver Einfluss aerobe
 Parameter (VO₂max, MFO, RE)
 mit steigender Distanz
- Zunehmend negativer Einfluss anaerober Parameter (\dot{V} La_{max}, Δ La₁₀₀) mit steigender Distanz
- Kein Einfluss von %VO₂max

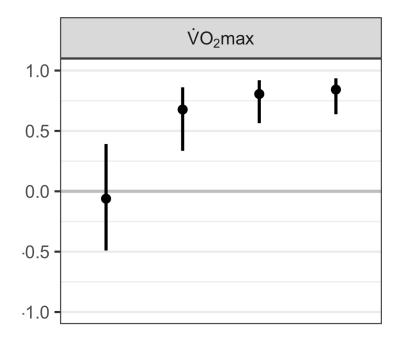
Time-trial	Modell	R ²	ΔR^2	Std. Fehler	р	AIC
100 m	VLa _{max}	0.60		0.31	< 0.0001	-45.22
	$VLa_{max} + \Delta La_{100}$	0.97	0.12	0.08	< 0.0001	-96.96
1000 m	VO_{2max}	0.46		0.26	0.001	-52.56
	$VO_{2max} + VLa_{max}$	0.53	0.07	0.25	0.003	-53.39
	$VO_{2max} + VLa_{max} + MFO$	0.58	0.05	0.24	0.004	-53.52
	$VO_{2max} + VLa_{max} + MFO + RE_{MLSS}$	0.62	0.05	0.23	0.004	-53.88
2000 m	VO _{2max}	0.65		0.20	< 0.0001	-61.86
	$VO_{2max} + MFO$	0.78	0.13	0.16	< 0.0001	-69.55
	$VO_{2max} + MFO + RE_{MLSS}$	0.83	0.05	0.15	< 0.0001	-72.36
	VO_{2max} + MFO + RE _{MLSS} + VLa_{max}	0.85	0.02	0.14	< 0.0001	-73.28
3000 m	VO_{2max}	0.71		0.21	< 0.0001	-61.32
	$VO_{2max} + MFO$	0.83	0.12	0.16	< 0.0001	-70.53
	$VO_{2max} + MFO + RE_{MLSS}$	0.88	0.05	0.14	< 0.0001	-75.33
	$VO_{2max} + MFO + RE_{MLSS} + %VO_{2max}$	0.93	0.05	0.11	< 0.0001	-83.00

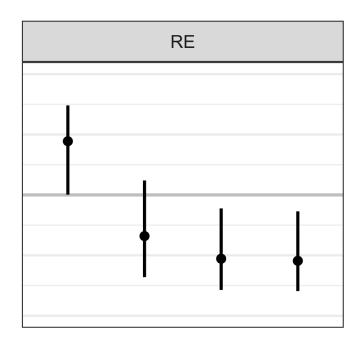

Abbildung 2 Schrittweise multiple Regressionsmodelle für 100, 1000, 2000, 3000 m inklusive Bestimmtheitsmaß (R^2), Veränderung des Bestimmtheitsmaßes ($\Delta R2$), Standardfehler ($m \cdot s^{-1}$), Wahrscheinlichkeit eines Alphafehlers (p). Akaike's Information Criterion (AIC) wurde für die schrittweise Selektion genutzt


Relevante physiologische Parameter stehen in engem Zusammenhang mit der Energiebereitstellung

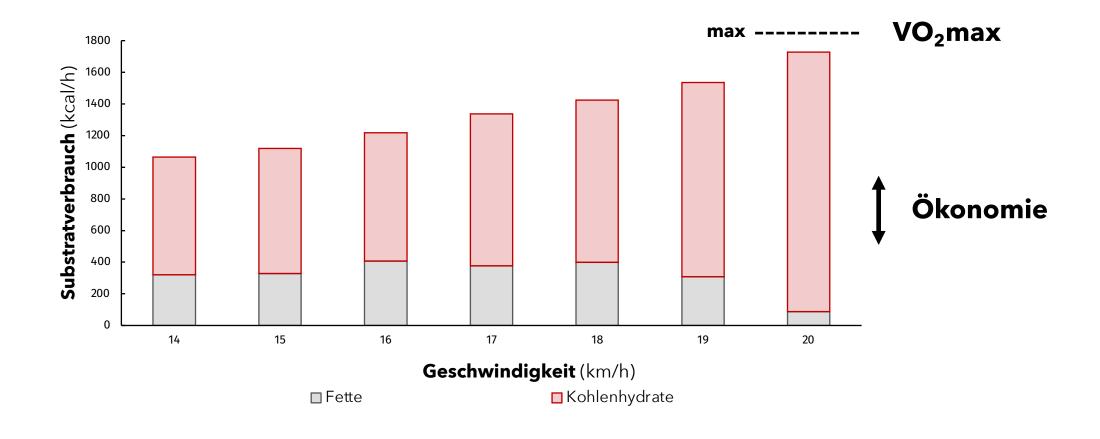
Hohe Relevanz der VO₂max für den Mittelstreckenlauf ist

übereinstimmend mit aktueller Studienlage

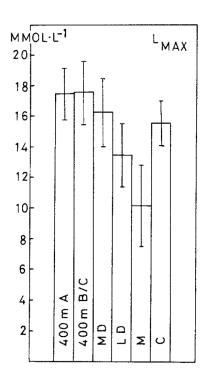
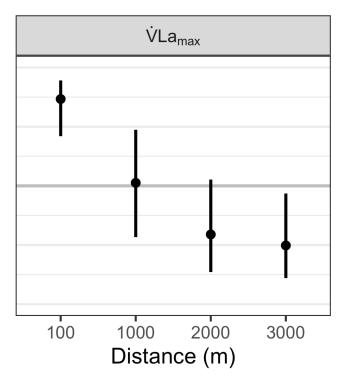

(Brandon, 1995; Ingham et al., 2008; Billat et al., 2006)

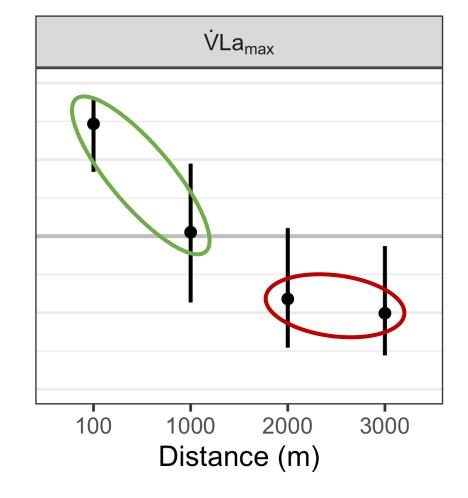


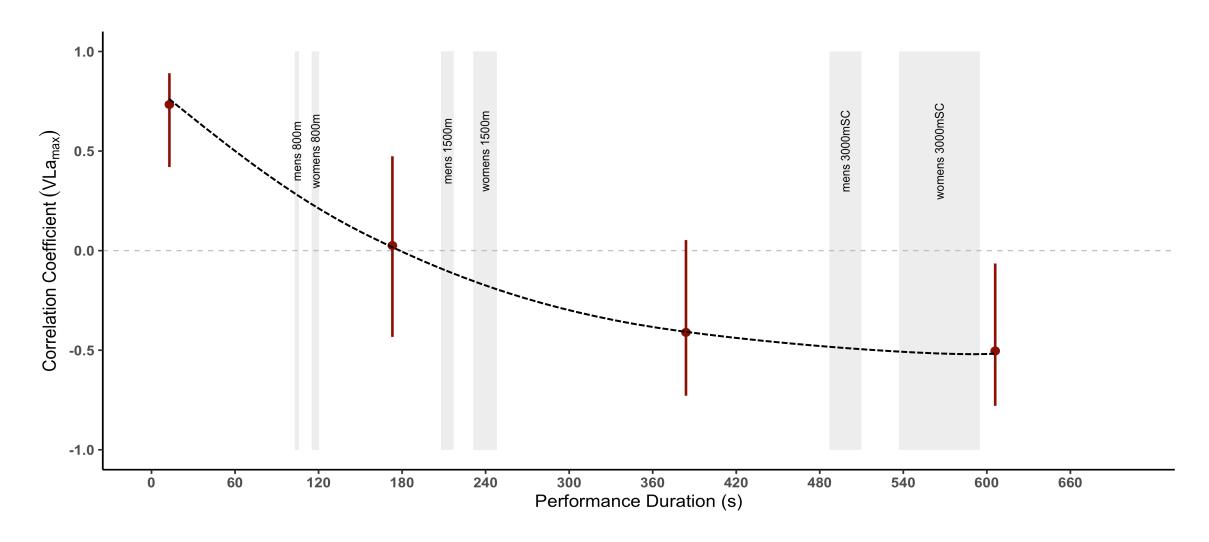
Geringer Sauerstoffverbrauch (Laufökonomie) ist auch für Mittelstreckler wichtig...


... scheint **aber weniger relevant als** die Fähigkeit viel Energie auf aerobem Weg freizusetzen (**VO₂max**)

Wenige Studien haben den direkten Einfluss der anaeroben Energiebereitstellung auf Mittelstreckenleistung untersucht


Fig. 2. Maximal arterial lactate in the max. test (mean \pm SD)


(Schnabel & Kindermann, 1983; Sandford et al., 2019a, Sandford et al., 2019b, Bellinger et al., 2021)

Einfluss des anaeroben Stoffwechsels auf Sprint- und Time-Trial-Leistung

- Eine höhere Gesamtmenge an Energie kann mit Hilfe des anaeroben Stoffwechsels freigestzt werden
- Muskuläre Azidose als Resultat der anaeroben Energiebereitstellung hat negative Auswirkungen auf Ausdauerleistung

Abbildung 4 Konzeptionelle Darstellung von Korrelationskoeffizienten and Konfidenzintervallen respektive der mittleren Leistungen (Zeit) über 100, 1000, 2000 und 3000m. Graue Zonen kennzeichnen TOP50 (World Athletics, 2022) Männer und Frauen Leistungen für 800 m, 1500 m and 3000 m Hindernis.

Limitationen

- Anwendung f
 ür homogenere Athletengruppe bisher unklar
- Schwierigkeiten bei der validen Messung von anaerober Kapazität (Pufferkapazität) und Energiebereitstellung (Flussrate)

(Noordhof et al., 2018, Buchheit & Laursen, 2013)

• Reflektieren untersuchte "anaerobe" Parameter wirklich den anaeroben Stoffwechsel oder andere Charakteristika wie Muskeltypologie?

(Lievens et al., 2020)

Ausblick

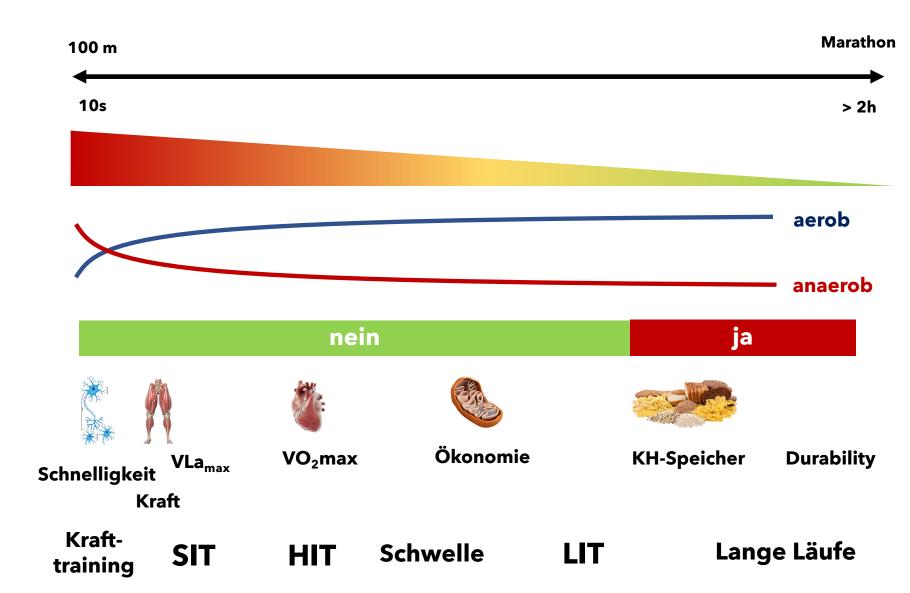
- Interventionsstudien zur Untersuchung systematischer Modulation anaerober Parameter durch Training
- Detailierte Untersuchung zum des Einfluss anaerober Parameter auf die Ausdauerleistungsfähigkeit und der damit verbundenen Mechanismen
- Talentsichtung und Förderung individueller Stärken und Potentiale

Zusammenfassung

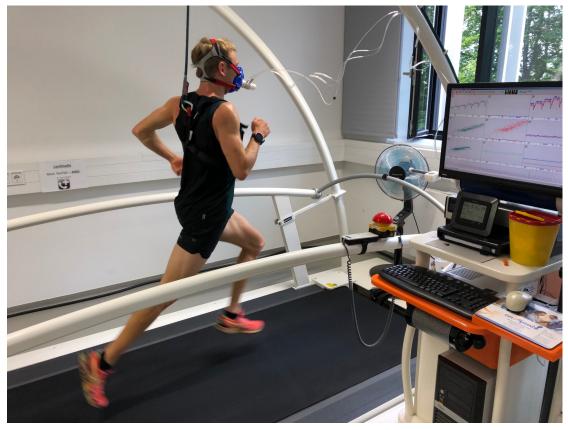
- Aerobe Parameter ($\dot{V}O_2$ max, MFO, RE) gewinnen mit steigender Belastungsdauer an Relevanz
- Bei kurzen Belastungen haben anaerobe Parameter (\dot{V} La_{max}, Δ La₁₀₀) noch positiven Einfluss auf die Leistung bei längerer Belastungsdauer wird der Einfluss zunehmend negativ
- Positive und negative Effekte der anaeroben Energiebereitstellung könnten im Bereich von Maximalbelastungen von circa drei Minuten im Gleichgewicht liegen
- Regelmäßiges Monitoring anaerober Parameter könnte für Mittelstreckenathleten und -trainer vorteilhaft sein

Individualisieren. Energetisch denken!

Wettkampfdauer/
-distanz


Wie viel Energie (pro Zeit) wird benötigt?

Wie wird Energie bereitgestellt?


Sind Energiespeicher limitierend?

Relevante Strukturen/ Parameter

Training

Danke!