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Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
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Zusammenfassung

Produktlinien ermöglichen die Entwicklung variabler, konfigurierbarer Produkte auf
Basis von Konfigurationen. Eine valide Konfiguration wird im Problemraum einer
Produktlinie abgeleitet, während ihre Realisierbarkeit zu einem Produkt im Lö-
sungsraum entschieden wird. Eine valide, aber nicht realisierbare Konfiguration
führt zu einer Inkonsistenz zwischen Problem- und Lösungsraum, da die Menge
der tatsächlich baubaren Produkte im Lösungsraum nicht mit der definierten Vari-
abilität im Problemraum übereinstimmt. Für große Produktlinien ist es händisch
schwierig zu entscheiden, ob Inkonsistenzen existieren, da die Anzahl der Konfigu-
rationen in Produktlinien exponentiell wächst. In dieser Arbeit wird die Konsistenz
von Problem- und Lösungsraum adressiert und zwei formale Methoden auf Basis von
Bedingungserfüllungsproblemen vorgeschlagen, um die Menge der Konfigurationen
zu berechnen, die sowohl valide als auch realisierbar sind. Die Sampling-Methode
entscheidet die Realisierbarkeit für jede Konfiguration aus einer Menge von validen
Konfigurationen einzeln. Damit kann im Voraus überprüft werden, welche beste-
henden Konfigurationen auch nach einer Softwareaktualisierung noch funktionsfähig
sind. Die kombinierte Methode berechnet direkt Konfigurationen, die sowohl valide
als auch realisierbar sind, für weitere Produkttests. Beide Methoden werden anhand
zweier Fallstudien mit exemplarischen Produktlinien evaluiert. In den Ergebnissen
wird gezeigt, dass beide Methoden alle Inkonsistenzen zwischen Problem- und Lö-
sungsraum in den Produktlinienbeispielen identifizieren können.
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Abstract

Product lines allow to derive variable, customisable products based on configura-
tions. While a valid configuration is derived in the problem space of a product
line, its realisability to a product is decided in the solution space. A valid but
non-realisable configuration leads to an inconsistency between problem and solution
space, because the set of actually derivable products in the solution space does not
match the defined variability in the problem space. For large product lines, the
manual decision about this consistency is infeasible because the number of configu-
rations grows exponentially. In this thesis, we address this decision and propose two
formal methods to compute the set of configurations which are both valid and real-
isable, based on constraint satisfaction problems. The Sampling Method decides the
realisability for each configuration in a sample of valid configurations. This allows
to check in advance whether an existing configuration will still work after receiving
a software update. The Combined Method computes configurations both valid and
realisable directly for further product testing. We evaluate both methods in two
case studies with exemplary product lines. The results show that both methods can
identify all mismatches between the problem and the solution space in the applied
product line examples.
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1. Introduction

Industry products increasingly combine physical and digital parts, such as hard-
ware and software components. The interconnection and the tight coupling of these
components describe a Cyber-Physical Systems (CPSs) [Nat]. These systems are be-
coming more and more ubiquitous in everyday life. Manufacturers have to face new
challenges in order to develop and produce CPS, for example different life cycles of
hardware and software components. For products in development and production,
hardware components can be considered static with fixed, immutable functionality.
Software components, on the other hand, are in a dynamic environment where rapid
changes in functionality are possible. Even later, for products in use, technologies
such as over-the-air update and functions on demand enable short release cycles and
fast deployment for software components.

The properties of CPSs enable manufacturers to introduce variability to their prod-
ucts. Certain parts of the system can be replaced while a set of core building blocks
remain the same. In the automotive industry, for example, a customer can configure
a car to be equipped either with a small radio or with a navigation system. In addi-
tion to production (build-time variability), run-time variability refers to variability
of already existing products, for example the deployment of a revised route plan-
ning algorithm to the navigation system. Offering variability as a more and more
common pattern to customers is called mass customisation and can be managed in
a Product Line (PL) [JTDL98].

A PL, in the scope of this thesis, consists of a problem space and a solution space
[CN02]. Theoretical aspects of variability are managed by the Feature Model (FM)
in the problem space. A user-experienceable functionality is called a feature and ad-
dresses a single Variation Point. Both the small radio and the navigation system are
features addressing the decision about the infotainment system of the car. Features
may also have dependencies on other features, for example, a navigation system
may require access to the internet. As a PL grows in size and complexity (e.g. the
number of features increases), the number of configurable, distinct products grows
combinatorically. Hence, analysing and managing the PL by hand becomes diffi-
cult. Several tools have been proposed for these tasks, for example the FeatureIDE
[TAK+14].
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In the solution space, the realisation of configured products is considered. The
core building blocks of the PL as well as the selected features are mapped to a
corresponding set of solution space artefacts. In context of CPSs, these solution
space artefacts are a heterogeneous set of hardware and software components. For
instance, for a car which is equipped with a navigation system, these artefacts might
be a GPS antenna and a navigation software.

In practice, it can be shown that configurations which are valid in the problem space
are not necessarily realisable in the solution space [HSTS22]. Such configurations
would yield a non-functioning product. Among other things, this can be caused by
incompatible solution space artefacts like hardware and software components. For
instance, a car equipped with a lightweight Computation Unit (CU) may not be
able to satisfy the extensive resource demands of the navigation software.

More generally, once a valid but non-realisable configuration exists, the problem and
solution space of the PL became inconsistent [HSTS22]. This mismatch means that
a single configuration must not only be validated in the context of the FM, but
also tested for realisability in the solution space. As it is generally computationally
difficult to analyse a FM, it is even harder to decide on the consistency of the problem
and solution space.

Goal of this Thesis

The production of variable products in CPSs raises new challenges for manufacturers,
such as different life cycles of software and hardware artefacts. A valid configuration
of a PL must not necessarily be realisable in the solution space, because extensive
resource demands of updated software artefacts are not satisfied by old hardware
artefacts anymore. This leads to a diverging problem and solution space, where
realisable configurations can not be found by problem space analysis alone.

This thesis addresses the described challenge of keeping the problem and solution
space consistent. As a prerequisite, we define a unified meta-model of hardware and
software artefacts that can express actual solution space artefacts of a configuration.
It must also support different life cycles of and dependencies between solution space
artefacts. Furthermore, we propose a procedure to test configurations on their real-
isability and imply statements about the consistency of problem and solution space
by analysing the compatibility of hardware and software artefacts. To accomplish
these objectives, the thesis consists of three research questions as follows:

RQ1 How can solution space artifacts be formally described in a meta-model?

RQ2 How can the realisability of a valid configuration be decided?

RQ3 How can run-time variability be described?

Structure of the Thesis

The remainder of this document is structured as follows: In Chapter 2 a detailed,
more technical explanation of the problem is given and a running example is in-
troduced. Chapter 3 describes basic knowledge and defines relevant terms. The
solution approaches of the thesis are introduced along the three research questions
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in Chapter 4. A description of the implementation artefacts for tool support is given
in Chapter 5. The contributions are evaluated, delimited and discussed in Chap-
ter 6. An overview of related work is given in Chapter 7. A conclusion and outlook
summarises the results of this thesis in Chapter 8.
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2. Problem Statement

As PLs grow in the number of available features, the number of valid configurations
can become combinatorically high. Yet, Manufacturers still have to analyse and
test the products they offer to the customers. For cost and feasibility reasons, these
steps have to be done in theory or on a representative subset of products, as not
every possible product can be build beforehand [HPS+22]. Regarding a FM in
the problem space of the PL, a variety of analysis methods have been proposed in
the past [TAK+14]. On the other hand, meta-models and analysis methods of the
solution space are less common, because the solution space of CPSs unifies both
software and hardware engineering concepts with separated concerns [BZ18].

To give an example for the problem, we assume the following setting: A car is
manufactured as a PL and can therefore be configured in the problem space using the
FM shown in Figure 2.1. The customer can choose between two kinds of infotainment
system: A small radio (feature radio) or a navigation system (feature navigation-
-system). The latter can optionally be enhanced by real-time traffic information
with the feature real-time-traffic-system.

Figure 2.1: Illustrated problem and solution space for the PL of the running example
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In the solution space, software artefacts for the features radio (radio-software),
navigation-system (navigation-system-software) and real-time-traffic-sys-
tem (rtt-system-software) are deployable to the hardware artefact cu-1 (Compu-
tation Unit). Hardware artefacts are physical building parts of the car, for example
semiconductor chips, and assumed as immutable.

In practice, for instance, a customer configures a car (as configuration CA) with
the feature radio. Another customer configures a car (as configuration CB) with
the feature navigation-system. A third customer also selects the feature naviga-
tion-system but with the enhancement of the feature real-time-traffic-system
(configuration CC).
For configuration CA, the software artefact radio-software needs to be deployed
to the hardware artefact cu-1. As shown in Figure 2.2, the software artefact ra-
dio-software demands at least 1 GB of Random Access Memory (RAM) in order
to work properly. As the hardware artefact cu-1 provides 4 GB of RAM in total,
configuration CA can be assumed as realizable.

Figure 2.2: Configuration CA of the running example is realisable, while configuration
CB (and implicitly CC) is not.

For configuration CB, the software artefact navigation-system-software is in-
tended to be deployed to the hardware artefact cu-1. While the hardware artefacts
remain the same, the software artefact navigation-system-software demands at
least 6 GB of RAM. As this demand is not satisfied by the hardware artefact cu-1,
configuration CB can be assumed as non-realizable. As configuration CC has at least
the demands of configuration CB, it is also non-realizable. Although the realisability
of the configurations CA, CB and CC can be decided manually in this example, this is
not feasible for larger PLs with many configurations. Therefore, automatic decision
methods are necessary (problem P1).

To demonstrate another problem, the following alteration of solution space artefacts
is assumed: Besides the hardware artefact cu-1, the additional hardware artefact
cu-2 is also built into the car. It provides 8 GB of RAM and is therefore able to
satisfy the demands of the software artefact navigation-system-software (at least
6 GB of RAM). The configuration CB can now be realized. For configuration CC, the
software artefact rtt-system-software additionally demands 2 GB of RAM. As
hardware artefact cu-2 has 2 GB of RAM left after the deployment of the software
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artefact navigation-system-software, the software artefact rtt-system-soft-

ware can be deployed to this hardware artefact. It can alternatively deployed to the
hardware artefact cu-1, as this hardware artefact provides 4 GB of RAM. For many
software and hardware artefacts with possibly nearly infinite different demands, the
decision which software artefact is deployed to which hardware artefact is unknown
and computationally hard to solve (problem P2).

Now we assume that an update for the feature navigation-system is released. The
update increases the demands of the software artefact navigation-system-soft-
ware from formerly 6 GB of RAM to 7 GB of RAM. The manufacturer wants to
offer the update to customers with products already in the field and therefore needs
to know, which existing cars are able to support the update. Figure 2.3 shows that
every car can receive the update, but the ones with the optional feature real-time-
traffic-system then definitely have to deploy the corresponding software artefact
rtt-system-software to the hardware artefact cu-1. Generally, with an updated
FM it is unknown which existing products would still be functioning and which
changes in solution space artefact assignments have to be made concretely (problem
P3).

Figure 2.3: Before the update (top), software artefact rtt-system-software could
be deployed to either hardware artefact cu-1 or cu-2. After the update (bottom),
the deployment to cu-2 is no longer possible.

The research questions RQ1, RQ2 and RQ3 stated in Chapter 1 address the problems
P1, P2 and P3 by providing the following contributions:

RQ1 How can solution space artifacts be formally described in a meta-model?

Contribution: A meta-model of the solution space is derived to serve as a
theoretical foundation for further analysis methods of the solution space.
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Benefits: In combination with a suitable meta-model for the problem space,
combined and probably more efficient analysis methods for the whole PL can
be developed.

RQ2 How can the realisability of a valid configuration be decided?

Contribution: A method to decide the realisability of a configuration is pro-
posed. Based on that, two methods to decide about the consistency of problem
and solution space are derived.

Benefits: The knowledge about configurations both valid (problem space) and
realisable (solution space) reduces the amount of products which have to be
analysed further in the development process. This allows for a resource-efficient
PL testing.

RQ3 How can run-time variability be described?

Contribution: The meta-model from RQ1 is extended to express run-time
dependencies of the solution space. Two demonstrations about their exemplary
usage are presented.

Benefits: Analysis methods for existing products can contribute to more ef-
fective and efficient development and update routines for manufacturers.



3. Basics

This section covers the basic terms and concepts necessary for the contributions of
this thesis. In Section 3.1, Product Lines (PLs) are introduced as they are the core
concepts of this thesis. Further, related concepts which are based on PLs, such as
configuration sampling and software product line engineering, are presented.

In Section 3.2, Constraint Satisfaction Problems (CSPs) are introduced to cover the
basics of propositional logic problem statements. We use them to express and solve
problems of instantiated meta-models mathematically, for example the validation of
configurations or the assignment between software and hardware components.
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3.1 Software Product Lines

The concepts of PLs were proposed by Northrop and Clemens as Software Product
Lines cite [CN02]. It enables the development and production of product families
which share a set of common artefacts and can be customized with variable artefacts.
This enables the reuse of artefacts and the reduction of development costs. The
following terms are taken from [PBvdL05].

The term commonality describes the set of artefacts which all products of the PL
have in common. In context of software products, this can be a common implemen-
tation platform or core functionalities.

Commonalities can be extended and customized with the concept of variability.
Variable artefacts are called Variants. Products of a PL differ in these variants.
For software products, variants can be exchangeable software modules of different
functionality.

The point where a commonality is extended by a variant is called Variation Point.
The variation point describes the interface between commonality and variability.

Variability is further distinguished into variability in space and variability in time
[PBvdL05]. Variability in space describes different variants addressing a single varia-
tion point. Variability in time describes different (development) versions of a variant.
Besides variability in space, in this thesis we relate variability in time strongly to
run-time variability and reduce the expression of modifications (to features or to the
PL) to new feature or Feature Model (FM) versions.

Chapter 2 introduced an example PL from the automotive domain as our running
example. The variability of this PL concerns the infotainment system where the
variants radio and navigation-system are possible.

3.1.1 Feature Models & Configurations

To manage commonality and variability, a FM is used. It is a tree-like structure
to express hierarchies and dependencies of a PL and all its possible products. The
nodes (inner nodes and leafs) of a FM are called Features. A feature is a selectable,
”[...] characteristic or end-user-visible behavior [...]” [ABKS13] of a (software) PL.

The FM is a recursive definition of parent- and child-features and can express five
different types of hierarchies between them [ABKS13]. Figure 3.1 shows a generic
FM with all five hierarchy types as listed in the following:

1. Mandatory Feature: A mandatory child-feature is selected, if its parent is
selected. Mandatory features are marked with a filled circle above the feature
name.

2. Optional Feature: An optional child-feature is selectable, if its parent is se-
lected. Optional features are marked with an empty circle above the feature
name.

3. Or-Group: At least one feature from the group of child-features of a parent has
to be selected. Or-groups are marked with a filled triangle below the parent
feature name of the group.



3.1. Software Product Lines 11

4. Alternative-Group: Exactly one feature from the group of child-features of
a parent has to be selected. Alternative-groups are marked with an empty
triangle below the parent feature of the group.

5. Abstract Feature: An abstract feature is a structural element of a FM without
actual artefacts. Abstract features are marked with the stereotype-annotation
<<abstract>>.

To express dependencies between features, for example between siblings or sub-trees,
Cross-tree Constraints are used. Cross-tree constraints are arbitrary logical relations
over features, for example for mutual exclusion of features (excludes-relation) or for
requirements (requires-relation).

Figure 3.1: Five hierarchy types (yellow) and cross-tree constraint (purple) in a FM
[ABKS13].

Figure 2.1 shows the FM for our running example. The abstract feature info-

tainment is the parent of the alternative group containing the features radio and
navigation-system. Therefore, exactly one of both options have to be selected.
The feature navigation-system has an optional child-feature real-time-traffic-
system, which can only be selected if its parent, the feature navigation-system, is
selected. The running example has no cross-tree constraints.

A FM can also be expressed as a propositional logical formula which represents the
structure of the tree [ABKS13]. Table 3.1 shows the translation of the tree-structures
to logical terms. Each feature is a boolean variable which is True iff the feature is
selected. A mandatory feature is selected equivalently to its parent (⇔-relation).
The selection of an optional feature implies the selection of its parent (⇒-relation).
If the parent of an or-group is selected, at least one of feature of the or group has to
be selected. An alternative-group behaves similar to an or-group except it is assured
that not more than one feature is selected.
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Tree-Structure Logical Term t

(root) feature r tr
mandatory feature m of parent p tm ⇔ tp
optional feature o of parent p to ⇒ tp

or-group
of features For of parent p

( ∨
fi∈For

tfi

)
⇔ tp

alternative-group
of features Falt of parent p

(( ∨
fi∈Falt

tfi

)
⇔ tp

)
∧
( ∧

fi,fj∈Falt

fi ̸=fj

¬(tfi ∧ tfj)

)

Table 3.1: Propositional logic representation of a FM. [ABKS13]

As a FM is a rooted tree, a single propositional logical formula can be derived.
Cross-tree constraints are taken directly and conjuncted with the formula of the
tree-structure. We use this logical representation of FMs in our contributions to
apply formal analysis methods and give a concise definition in Chapter 4.

An actual selection of features in a FM is called Configuration [ABKS13]. A con-
figuration can be an arbitrary subset of all features. A valid configuration is a
configuration which fulfills all (hierarchical and cross-tree) constraints of the FM.
To decide if a configuration is valid, the propositional logical representation of the
FM is instantiated with the selection and deselection of the according features.
Then, the decision if all constraints are fulfilled is equivalent to the validity of the
configuration.

In the running example, the subset consisting of the features radio and naviga-

tion-system is a configuration, but not a valid configuration, because both features
belong to an alternative-group where exactly one feature is allowed to be selected.

3.1.2 Configuration Sampling

The number of configurations in a PL can grow combinatorically (exponential upper
boundary) to the number of features [TAK+14]. For example an or-group with n
features and no further constraints generates 2n − 1 possible combinations. This
is often referred to as Combinatorial Explosion. For large PLs, this can lead to
an infeasible number of derivable products to test for the manufacturers, for which
reason automated analysis methods of PLs were developed [BSRC10].

To overcome the challenges of testing an exponentially growing number of possible
products, only a representative subset (a Sample) can be regarded. This concept is
called Configuration Sampling and builds an own research field [VAHT+18]. This
research examines topics such as which configurations exactly are in a sample and
how the quality of samples can be derived.

One strategy after which configurations can be sampled is Feature Interaction Cov-
erage. Feature interactions concern the combinations in which features can occur
together with other features. This is of interest, as the combination of features can
lead to unexpected behaviour with these features in the final product [ABKS13].
Feature interactions are classified along the combination sizes: 1-wise feature inter-
actions regard only single features, pair-wise regard the combinations of two features,
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etc. The coverage criteria guarantees that the sample contains, for example, all pos-
sible, valid pair-wise feature interactions.

Figure 3.2 shows the testing process for a sampled set of configurations. After the
sampling, the manufacturer of the PL derives the products and tests them. Finally,
the testing results of the samples are aggregated and implications on the complete
product line can be stated.

In Chapter 4 we describe, how the contributions of this thesis (e.g. methods to
decide about the consistency of the problem and solution space of a PL) can not
only be applied to a full set of all valid configurations, but also on samples.

Figure 3.2: Testing process of a PL for a sampled set of configurations [ABKS13].

3.1.3 Software Product Line Engineering

The Software Product Line Engineering addresses the development architecture and
processes of PLs [ABKS13]. It serves as a foundation to develop reusable software
artefacts based on commonalities (software platform) and variabilities (feature arte-
facts) and defines roles, actions and artefacts.

Figure 3.3 shows the software product line engineering process defined by Apel et
al. [ABKS13]. It is divided vertically into problem space and solution space. The
Problem Space covers the requirements and the Domain Analysis, which concerns
the management of features, design of the FM and generation of configurations. The
Solution Space covers the realisation (implementation) and derivation of configura-
tions as product variants.

We use the distinction between problem and solution as a central concept of the
thesis. In the problem space, the PL is designed and its variability concepts are
defined. To derive actual products, we address the solution space. With the contri-
butions to the research questions, we propose a meta-model and an analysis method
for the solution space.

The software product line engineering process is divided horizontally into domain
and application engineering. The Domain Engineering addresses the whole PL in
management, analysis and implementation terms with focus on developing reusable
artefacts. The Application Engineering covers the requirement analysis and product
derivation for customers and market segments with focus on using the reusable
artefacts.
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Figure 3.3: Software Product Line Engineering process adopted from [ABKS13].

3.1.4 Unified Conceptual Model

Ananieva et al. [AGK+22] proposed a meta-model of the problem space of a PL.
It is called the Unified Conceptual Model (UCM) and shown in Figure 3.4. In the
problem space, central concepts of variability in space (features and constraints) are
unified with concepts of variability in time, such as feature and system revisions. In
the problem space, products can be derived from configurations and solution space
implementation ”fragments”.

Wittler et al. [WKR22] extended the UCM from Ananieva et al. [AGK+22] with
a more concrete meta-model of the solution space. Figure 3.5 shows the complete
version of Wittler et al. [WKR22]. A Product is derived from a configuration and
solution space components. Components can require or provide generic services and
are either software or hardware components. Further, software components demand
resources and hardware components grant resources. A resource has a quantifica-
tion and two properties: The property isExclusive determines if the resource is
dedicated to a single software component or shared among multiple software com-
ponents. The resource type defines meta-information, such as name and unit of
measurement, and a comparison operator.

We use the UCM by Wittler et al. [WKR22] as a foundation to describe the solution
space. Our contributions adapt the UCM and propose suitable representations to
develop a method for deciding about the realisability of a configuration.
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Figure 3.4: UCM from Ananieva et al. [AGK+22]

Figure 3.5: UCM from Wittler et al. [WKR22] with an extended meta-model of the
solution space.



16 3. Basics

3.2 Constraint Satisfaction Problems

In propositional logic, a CSP is an approach to express a logical problem where
a number of variables have to be assigned to allowed values in order to satisfy all
stated constraints. The generality allows for a wide range of applications. We use
specialised CSPs in our contributions to generate configurations which are both valid
and realisable.

Definition

The definition is adopted from Russell et al. [RND10]. A CSP consists of a set
of variables X := {x1, . . . , xn} and a set of constraints T (in this thesis: T for
”Terms”). Each variable has its own domain ({D1, . . . ,Dn}) for the assigned value.
The solution to a satisfiable CSP is an assignment from each variable to a value in
its domain, called a Satisfiability Model. If no assignment is found that satisfy all
constraints, the CSP is unsatisfiable.

In this thesis, we refer to the assignment of variables with the term evaluation and
declare the general evaluation-function for a variable xi ∈ X as eval(xi) ∈ Di.

Each constraint t in the set of constraints T consists of two elements: A set of
variables which occur in the constraint and a relation (e.g. a propositional logical
formula) that defines, which values the variables can be assigned to in order to satisfy
the constraint. In this thesis, we typically omit the first element of a constraint (the
set of participating variables) and directly specify a propositional logical formula for
reasons of simplicity.

Application Example

An example of a CSP is the generation of a valid configuration from a FM. Features
are defined as variables in the boolean domain B, indicating if a feature f is selected
in the configuration (eval(f) = True) or not selected (eval(f) = False). The
set of constraints correspond to the propositional logical representation of the FM
introduced in Subsection 3.1.1.

If the formalised CSP is satisfiable, the solution is one (of possibly many) valid
configurations. The satisfiability model expresses for each feature if it is selected in
the configuration or not selected. If the formalised CSP is unsatisfiable, no valid
configuration exists and the FM is considered as inconsistent [ABKS13].

Resolvement & Generalisation of Constraint Satisfaction Problems

CSPs are typically solved by Commercial Off-The-Shelf (COTS) tools. The selection
of such a tool depends on the domains of the CSPs variables and the complexity of
its constraints. A CSP with boolean variables (domain B) and boolean propositional
logic (operators ∧, ∨ and ¬) can be solved by Boolean Satisfiability Problem (SAT)-
solvers cite [GZ17]. For generalised problems, e.g. with real values (domain R ⊃ B)
and more complex constraints containing arithmetics, other COTS tools have to be
chosen, for example pseudo-boolean solvers [BH02] or Satisfiability Modulo Theories
(SMT)-solvers [DMB11]. As CSPs over FMs are computationally hard to solve
(NP complexity, [ABKS13]), there exist approaches to reduce the complexity to
polynomial algorithms [Mil72]. Tailoring CSPs to special use cases can also simplify
their computational complexity by loosing generality.
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In this chapter, the solution approaches of the thesis are introduced. Addressing
RQ1, Section 4.1 proposes a meta-model to describe the solution space. This meta-
model serves as a foundation for further contributions of this thesis.

A formal method to decide the realisability of a valid configuration (RQ2) is proposed
in Section 4.2. Then, the underlying scope is generalised to the decision about
the consistency of the problem and solution space in Section 4.3. Two different
methods are presented to approach the problem: A method based on configuration
sampling (Subsection 4.3.1) and a method that combines formal analysis methods
of the problem and solution space (Subsection 4.3.2).

In Section 4.4, a description of run-time variability is proposed and suggestions for
the handling of run-time variability are made. A summary of the contributions is
given in Section 4.5.

Preliminaries

The remainder of this document uses mathematical denotions to express statements
more precisely. For concepts introduced in Chapter 3, the according denotions are
defined in this paragraph. Later, presented concepts come directly with their deno-
tion. In context of this document, we use the following symbols:

F The set of all features.

f A feature.

A feature is part of the set of features F . Usually, a feature is indexed by the
control variable l. Example: f1

CS The set of all valid configurations.

The set of all valid configurations is a subset of all possible combinations of
features (CS ⊆ P(F)).
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C A configuration.

A configuration is part of the set of configurations CS. Specific configurations,
like these of the running example, are indexed lexicographically. Example: CA.

RS The set of all valid and realisable configurations.

The set of all valid and realisable configurations is a subset of all valid config-
urations (RS ⊆ CS).

SW The set of all software components.

sw A software component.

A software component is part of the set of software components SW . Usually,
a software component is indexed by the control variable i. Example: sw0.

HW The set of all hardware components.

hw A hardware component.

A hardware component is part of the set of hardware components HW . Usu-
ally, a software component is indexed by the control variable j. Example:
hw0.

T A set of propositional logical terms.

t A propositional logical term.

A propositional logical term can be a single logical variable of a defined type
or a logical-connected proposition of terms. Example: t0 ∧ t1.

B The boolean domain. (B := {False,True})

In context of this document, we define the following mathematical functions and
operators:

sgn Signum Functions

The family of signum functions consists of two different characteristics:

– From boolean to numeric domain

sgnB→Z : B→ {0, 1} ⊂ Z

sgnB→Z(x) =

{
1 if x = True

0 else

– From numeric to boolean domain (zero included)

sgnR0→B : R→ B

sgnR0→B(x) =

{
True if x ≥ 0

False else
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sel Select Function

The select function determines if a feature is selected in context of a configu-
ration.

sel : F → B

sel(f) =

{
True if the feature f is selected in the configuration

False if the feature f is not selected in the configuration

eval Evaluation Function

The evaluation function computes the truth-value of a term.

eval : T → B

≡C Equality of Two Configurations

This function determines, if two configurations are equal. It is used with infix-
notation.

≡C : CS2 → B

CA ≡C CB ⇔

{
True if both configurations have the same features selected

False else

≡CS Equality of Two Sets of Configurations

This function determines, if two sets of configurations are equal. They are
equal, if they have the same size and exactly equal elements. The function is
used with infix-notation.

≡CS : P(F)2 → B

CSA ≡CS CSB

⇔ |CSA| = |CSB|
∧ ∀ CAi ∈ CSA : ∃Mi :

(
Mi := {CBj ∈ CSB | CBj ≡C CAi } ∧ |Mi| = 1

)
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4.1 Description of the Solution Space

The Unified Conceptual Model (UCM) from [WKR22] is used as a formal description
of Product Lines (PLs). This meta-model fits as a starting point of the thesis for
several reasons: First, it contains the problem space and the solution space of the
PL. Second, it assigns concepts clearly to either the problem space, the solution
space or the link between them. Third, the solution space of the UCM provides a
resource- and service-based view of implementation artefacts. This allows a fine-
grained management of solution space artefacts and refers to recently approached
system architectures of Cyber-Physical Systems (CPSs) [SSG+22, SDS04]. Last, as
the thesis also deals with run-time variability (RQ3), the concept of feature revisions
and system revisions enable the description of versions, thus development, of features
and Feature Models (FMs).

In context of this thesis, the solution space of the UCM is further modified in
Subsection 4.1.1. An approach to describe actual resource demands in the UCM
with an attributed FM is given in Subsection 4.1.2. Details of the linkage of problem
and solution space are proposed in Subsection 4.1.3.

4.1.1 Modification of the Unified Conceptual Model

The UCM is modified to suit the needs of further work of this thesis. In detail, the
following adaptions are made:

1. The UCM, as a Unified Modeling Language (UML) class diagram, formerly
describes a property isExclusive of the class Resource.

Modification: The property isExclusive is moved from the class Resource
to the class ResourceType.

Intention: In context of this thesis, all properties of resources should be defined
via the type of the resource. It could be argued that in some cases, a concrete
instance of a Resource should behave different from other instances of the
same type. These cases are neglected as they introduce more complexity into
the problem and could potentially be omitted by defining another resource
type with the desired properties.

2. Modification: The class ResourceType is extended by the property isAddi-

tive with type Bool.

Intention: Not all physical resources behave equally in case of multiple oc-
currence. For example, if a Computation Unit (CU) has a response time of 1
ms, this value can still be used with multiple, equal CUs or multiple threads
running on the same CU. Considering Random Access Memory (RAM) on the
other hand, the capacity values add up. The introduced property isAdditive

supports this consideration and enables the distinction between ”additive” and
”non-additive” resources.

3. The class Resource is associated with the class ResourceType by a composi-
tion.

Modification: The association will be an aggregation.
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Intention: After the modifications 1 and 2, the class Resource serves as a
quantification object of an instance of the class ResourceType to an instance
of the class Component. It is intended that the type of a resource can be
specified regardless of its quantification.

4. Modification: The class Hardware Component has an aggregation to the class
Resource renamed to provides.

In this document, we denote a resource type with r. Usually, it is identified and
indexed by the control variable k. The set of all resource types is denoted by R. The
values of the properties of a resource type (isAdditive, isExclusive, boundary)
are denoted with the v -function (v for value), which is declared in Equation 4.1.

vadd : R → B
vexc : R → B
vbnd : R → {LOWER, UPPER, EXACT}

(4.1)

Figure 4.1 shows the resulting version of the UCM. Table 4.1 lists the specified
resource types for the running example (Chapter 2) as instances of the class Re-

sourceType. First, a resource type for RAM with additive, non-exclusive behaviour
and lower boundary type is defined (r0). For k = 1, a resource type for the response
time of a component is defined with non-additive, non-exclusive behaviour and up-
per boundary type. Last, a resource type for the number of screens attached to the
component is specified with additive, non-exclusive behaviour and exact boundary
type.

Figure 4.1: The UCM from Wittler et al. [WKR22] after initial modifications. The
part of services is addressed later.

k name unit isAdditive isExclusive boundary

0 RAM GB true false LOWER
1 Response Time ms false false UPPER
2 no. of Screens true false EXACT

Table 4.1: Three instances of the class ResourceType, defined for the running ex-
ample introduced in Chapter 2.
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4.1.2 Description of Resource Demands in Attributed Feature Model

The modified UCM gives the ability to quantify the resource demands of software
components and the resource provisionings of hardware components. We will now
propose, how demands can directly be written to features. With attributed FMs,
features can be enriched with (meta-) information [BTRC05].

Although information about resource quantification is applied in the solution space,
it is decided to shift the information into the problem space for the following reasons:
First, the actual resource demands of a configuration depend on the selected feature.
Therefore, managing these demands can be seen as a task of domain and application
engineering. Both topics are part of the problem space as proposed by [ABKS13].
Furthermore, resource demands of features can change over time as the features
itself are going to be updated. With new feature revisions, the according resource
demands are also versioned [AGK+22].

Each feature fl ∈ F , that specifies any resource demands, has to be attributed with
the following information per resource demand:

1. It must be given, which software component swi ∈ SW is addressed. Software
components serve as an abstraction layer and allow an independent encapsu-
lation of resource demands. Hence, a feature can map to multiple software
components.

2. It must be given, which resource type rk ∈ R is addressed. This information
is treated in context of the specified software component swi. Hence, a feature
can have resource demands for multiple resource types.

3. The quantification of the resource demand must be given. This information is
treated in context of the specified software component swi and resource type
rk. For the time of the plain concept of the solution space description, the
allowed values shall not be restricted further and are assumed as a numeric
type (generally the domain of real numbers R).

In this document, such a resource demand is denoted with rdikl . For the running
example, three resource types were defined in Table 4.1. The actual resource de-
mands of the features are illustrated in Figure 4.2 with an attributed FM. An edge
from a feature fl to a resource type rk of a software component swi describes a
resource demand rdikl . The annotated edge weight quantifies the resource demand.
It is possible that a feature has resource demands to multiple resource types and
(especially feature real-time-traffic-system) to multiple software components.

4.1.3 Mapping Between Features and Software Components

The attributed FM describes resource demands rdikl of features fl ∈ F in context
of a software component swi ∈ SW and a resource type rk ∈ R. Hence, from the
view point of a software component swi, there exists a set of resource demands from
features (f1, f2, . . . , f|F |) in context of a resource type rk. We denote such a set with
RDi

k := {rdik1 , rd
i
k2
, . . . , rdik|F |

}.
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Figure 4.2: Attributed FM of the running example. Edges from features to resource
types of software components illustrate the resource demands.

It is bounded by 0 ≤ |RDi
k| ≤ |F|: In case none of the features specify any resource

demand of resource type rk to the software component swi, the lower boundary is
given and vice versa if all features specify such a resource demand.

According to the UCM, a software component swi quantifies a resource demand of
a resource type rk with a numeric type. This resource demand is denoted by rdik.
To map the set RDi

k to rdik, the reduce-function is defined in Equation 4.4. The

function applies to resource demands of selected features only, denoted by RDi
k =

{rdikl | sel(fl) = True}. This implies that a concrete configuration C ⊆ F has to
be known in advance. The mapping between features and software components
therefore is part of the process to derive solution space artefacts and decide the
realisability of configurations (further described in Section 4.2).

In context of a resource type rk having the property isAdditive set to True
(vadd(rk) = True), the sum of all specified resource demands rdikl is taken. If
not, a comparison based on the boundary type of the resource type (LOWER, UPPER,
EXACT) is done. For the boundary type EXACT, it is assumed that all resource de-
mands specify the same value. Then, the fst-function is used, which returns the first
element of a set and is defined in Equation 4.2. Otherwise, it can not be decided
which value has to be taken. For an empty set, nil is returned. In this document,
nil is the specification of nothing. To determine if a resource demand of a software
component for a resource type is given (any value) or not given (nothing), we define
the nil-function and its negation (nil) in Equation 4.3.

fst : P(R)→ R
fst(X) = x0

(
x0 ∈ ⟨xi | xi ∈ X, i ∈ {0, . . . , |X| − 1}⟩

) (4.2)
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nil, nil : RD → B

nil(rdik) =

{
True if rdik ̸=⊥
False else

nil(·) = ¬nil(·)

(4.3)

red(RDi
k) =



∑
fl∈C

rdikl if vadd(rk) = True

max(RDi
k) if vbnd(rk) = LOWER

min(RDi
k) if vbnd(rk) = UPPER

fst(RDi
k) if vbnd(rk) = EXACT

⊥ if |RDi
k| = 0 and else

(4.4)

Figure 4.2 introduces the attributed FM of the running example. Regarding the map-
ping process, the resource type for the response time (r1) of the software component
navigation-system-software (sw1) is detailed in Figure 4.3. Both the features
navigation-system (f2) and rtt-system-software (f3) are selected (configura-
tion CC). As the resource type r1 is non-additive and has the boundary type UPPER,
the min function is used to reduce the demands rd112 = 50 and rd113 = 30 to rd11 = 30.
Additionally, it can be seen that the mapping is placed in the middle between prob-
lem and solution space, following the UCM. While the resource demands from the
features (attributed FM) are held in the problem space, the mapped resource de-
mand rd11 = 30 belongs to the solution space artifact navigation-system-software
(sw1).

Figure 4.3: Mapping detail of configuration CC of the running example: The resource
demands rd112 = 50 (feature f2) and rd113 = 30 (feature f3) from the problem space
are mapped to rd11 = 30 in the solution space.
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4.2 Decide the Realisability of Configurations

The solution space of a PL is described by the UCM as defined in Figure 4.1.
For a configuration, solution space artefacts can be derived and consist of software
components, which demand resources, and hardware components, which provide
resources. To decide the realisability of a configuration, it must be decided if all of
the demanded resources are provided by the hardware components. In the literature,
such a computational problem is often referred to as a Resource Allocation Problem
or, more generalised, as an Assignment Problem [KI98, Law01].

Typically, an assignment problem is formalised as an optimisation problem. There-
fore, an optimisation function is proposed which is going to be maximised or min-
imised. In the scope of this thesis, the optimisation can be omitted, as only the
decision if any solution is possible, is of interest. Hence, no optimisation function is
needed.

In this Section, first such an assignment problem is formalised for the given meta-
model of the solution space in Subsection 4.2.1. Then the complete procedure to
decide the realisability of a configuration is explained along the running example in
Subsection 4.2.2. Implications of the results of solving the assignment problem are
defined in Subsection 4.2.3.

4.2.1 Formalising the Solution Space Assignments as CSP

The assignment of resource demands to resource provisionings can be formalised and
solved as a Constraint Satisfaction Problem (CSP). Constants and logical variables
form logical constraints. These constraints are joined together by logical conjunc-
tions (∧-Operator). In the following, the definitions of inputs, variables, constraints
and assembly of the CSP are presented.

4.2.1.1 Input

The input of the CSP is mainly driven by three sets:

1. Resource Types R: A set of instances of the ResourceType class (see Fig-
ure 4.1). Each resource type rk (∀k ∈ {0, . . . , |R| − 1}, rk ∈ R) has its
three properties (isAdditive, isExclusive, boundary) defined as constants.
Therefore, this input is of size |R| × 3.

2. Resource Demands RD: For each software component swi (∀i ∈ {0, . . . ,
|SW| − 1}, swi ∈ SW) the resource demands rdik for all resource types rk are
specified as constants. If a resource demand for a specified software component

swi′ and resource type rk′ is not set (e.g., because |RD
i′

k′| = 0), it is set to nil
(rdi

′

k′ =⊥). This input is of size |SW| × |R|.

3. Resource Provisionings RP : For each hardware component hwj (∀j ∈ {0,
. . . , |HW| − 1}, hwj ∈ HW) the resource provisionings rpjk for all resource
types rk are specified as constants. If a resource provisioning for a specified
hardware component hwj′ and resource type rk′ is not set (e.g., because the
hardware component does not provide this type of resource), it is set to nil

(rpj
′

k′ =⊥). This input is of size |HW| × |R|.
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4.2.1.2 Variables & Constraints

The goal of the CSP is to assign each resource demand to a resource provisioning. As
this assignment is done per resource type, a three-dimensional set of resource-wise
assignment variables is defined in Equation 4.5.

∀i ∈ {0, . . . , |SW| − 1} : ∀j ∈ {0, . . . , |HW| − 1} : ∀k ∈ {0, . . . , |R| − 1} :

eval(rzi,kk ) =

{
True if rdik of swi is assigned to rpjk of hwj in context of rk

False else

(4.5)

For further global constraints, it is necessary to not only define resource-wise as-
signment variables, but also component-wise assignment variables. These enforce
the assignment of a software component to a single hardware component over all
resource types and are defined in Equation 4.6.

The reason for this design decision is to strengthen the concept of components as an
abstraction layer. As it encapsulates a set of resource demands (in case of a software
component), it can be argued that all of these resource demands should be satisfied
by the resource provisionings of exactly one hardware component. Furthermore,
it enables a cyber-spatial control over the deployment of software components to
hardware components: For example should the necessary amount of RAM be pro-
vided by the same hardware component than the also necessary Arithmetic Logic
Unit (ALU) regarding latency. By enforcing component-wise assignments, this tech-
nical requirement can be designed.

For the software components to be actually assigned to exactly one hardware com-
ponent each, Equation 4.7 defines the necessary constraint.

∀i ∈ {0, . . . , |SW| − 1} : ∀j ∈ {0, . . . , |HW| − 1} :

czi,k ⇔
|R|−1∧
k=0

rzi,jk
(4.6)

∀i ∈ {0, . . . , |SW| − 1} :
|HW|−1∑

j=0

sgnB→Z(eval(cz
i,j)) = 1 (4.7)

Finally, constraints which define the satisfaction of a resource demand have to be
introduced. These constraints depend on the hardware component hwj, to which the
provided resources belong, and the resource type rk, for which the resource demand
has been stated. For example, resource demands in context of an additive resource
type behave differently to resource demands in context of a non-additive resource
type.

Each resource type rk holds information about its three properties (isAddtitive,
isExclusive, boundary). Regarding these properties, there are twelve charac-
teristics possible in total: Two binary properties (isAddtitive, isExclusive)
and one ternary property (boundary). The according constraints are denoted by
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tvadd(rk),vexc(rk),vbnd(rk) with the properties in this order. To identify an actual value
of a property, it is sub-scripted with the short name of the according property, for
example tTrueadd,Trueexc,LOWERbnd .

Instead of defining constraints for each of these twelve characteristics, the following
two implications can be made:

1. An exclusive resource type can be expressed with a conjunction of its non-
exclusive equivalent and an upper bound of one, regarding the number of
assigned software components which specify a resource demand. Equation 4.8
shows the formalisation for a fixed hardware component hwj and a fixed re-
source type rk.

tvadd(rk),Trueexc,vbnd(rk)

⇔ tvadd(rk),Falseexc,vbnd(rk)

∧
( |SW|−1∑

i=0

(
sgnB→Z

(
eval(rzi,jk ) ∧ nil(rdik)

))
≤ 1

) (4.8)

2. The boundary types LOWER and UPPER are assumed to be non-strict (≥- and
≤-operators). Then, the boundary type EXACT can be expressed with a con-
junction of the boundary types LOWER and UPPER, as formalised in Equation 4.9.

tvadd(rk),vexc(rk),EXACTbnd
⇔tvadd(rk),vexc(rk),LOWERbnd ∧ tvadd(rk),vexc(rk),UPPERbnd

(4.9)

Figure 4.4: Initial twelve characteristics of resource type properties. Due to two
logical implications (Equation 4.8, Equation 4.9), only four constraints have to be
made. The red paths are pruned.
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Figure 4.4 shows the initial twelve characteristics of resource type properties. The
implications reduce the number of different characteristics to four: First, they are
reduced to six as only non-exclusive resource types have to be regarded further.
Second, the number is reduced to four, as only two of three possible boundary types
have to be regarded further. These four constraints are defined in Equation 4.10 to
Equation 4.13 for a fixed hardware component hwj and a fixed resource type rk.

For resource types which are non-additive and lower bounded (tFalseadd,Falseexc,LOWERbnd ;
Equation 4.10), it is required that the provided resources are at least as big as de-
manded resources. This holds analogously, for additive, lower-bounded resource
types (tTrueadd,Falseexc,LOWERbnd ; Equation 4.12), but in context of summed up val-
ues. For non-additive, upper-bounded resource types (tFalseadd,Falseexc,UPPERbnd ; Equa-
tion 4.11) it is required that the provided resources do not exceed the demanded
resources. Analogously for additive, upper-bounded (tTrueadd,Falseexc,UPPERbnd ; Equa-
tion 4.13) resource types, but in context of summed up values. The nil-function and
eval-function are used to regard only given resource demands of assigned components
in the calculations.

tFalseadd,Falseexc,LOWERbnd ⇔
|SW|−1∧

i=0

sgnR0→B(rp
j
k − rdik · sgnB→Z(eval(rz

i,j
k ))) (4.10)

tFalseadd,Falseexc,UPPERbnd ⇔
|SW|−1∧

i=0

sgnR0→B(rd
i
k − rpjk · sgnB→Z(eval(rz

i,j
k ) ∧ nil(rdik))

(4.11)

tTrueadd,Falseexc,LOWERbnd ⇔
|SW|−1∑

i=0

(rdik · sgnB→Z(eval(rz
i,j
k ))) ≤ rpjk (4.12)

tTrueadd,Falseexc,UPPERbnd ⇔
|SW|−1∑

i=0

(rdik · sgnB→Z(eval(rz
i,j
k ) ∧ nil(rdik)))

≥ rpjk · sgnB→Z(

|SW|−1∨
i=0

(eval(rzi,jk ) ∧ nil(rdik)))

(4.13)

4.2.1.3 Assembling

To assemble the CSP, all constraints are conjoined together. The method is illus-
trated in Listing 4.1.

First, an empty set of constraints T has to be initialized (line 5). Then the boolean
variables for the resource-wise assignments rz (line 7 to 10, Equation 4.5) and
component-wise assignments cz (line 12 to 14) are declared. The connections be-
tween those two assignment variables, which were introduced in Equation 4.6, are
added to the set of constraints T (line 16 to 18). The constraints to enforce the
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assignment of each software component to exactly one hardware component (in-
troduced in Equation 4.7) are added in line 20 to 21. Last, the constraints which
define the resource demand satisfaction are added in line 23 to 25, referring to Equa-
tion 4.10, Equation 4.11, Equation 4.12 and Equation 4.13. The completed problem
is conjuncted in line 27.

1 R resource types (input constants)
2 RP resource provisionings (input constants)
3
4 function csp(RD: resource demands (input constants)):
5 T ← ∅ set of constraints
6
7 ∀i ∈ {0, . . . , |SW| − 1} :
8 ∀j ∈ {0, . . . , |HW| − 1} :
9 ∀k ∈ {0, . . . , |R| − 1} :
10 declare boolean variable rzi,jk

11
12 ∀i ∈ {0, . . . , |SW| − 1} :
13 ∀j ∈ {0, . . . , |HW| − 1} :
14 declare boolean variable czi,j

15
16 ∀i ∈ {0, . . . , |SW| − 1} :
17 ∀j ∈ {0, . . . , |HW| − 1} :
18 T ∪ {czi,k ⇔

∧|R|−1
k=0 rzi,jk }

19
20 ∀i ∈ {0, . . . , |SW| − 1} :
21 T ∪ {

∑|HW|−1
j=0 sgnB→Z(eval(cz

i,j)) = 1}
22
23 ∀j ∈ {0, . . . , |HW| − 1} :
24 ∀k ∈ {0, . . . , |R| − 1} :
25 T ∪ {tvadd(rk),vexc(rk),vbnd(rk)}
26
27 return

∧
(T )

Listing 4.1: Assembly of the constraint set T and the complete CSP to decide the
realisability of a configuration.

4.2.2 Procedure

This subsection describes the procedure to decide the realisability of a configuration.
As a prerequisite, an annotated FM with a defined set of features F and resource
types R must be known in advance. Figure 4.5 illustrates the following steps of the
procedure:

1. A valid configuration is derived from the annotated FM. This configuration
yields the resource demand sets RDi

k for each software component swi ∈ SW
and each resource type rk ∈ R from the features fl ∈ C ⊆ F .

2. With the reduce function, the mapping of each resource demand set RDi
k to

the actual resource demand rdik of the according software component is done.
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3. The defined resource provisionings rpjk from each hardware component hwj ∈
HW complete the assignment problem for this configuration.

4. The assignment problem is formalised as a CSP.

5. The CSP is processed by a Commercial Off-The-Shelf (COTS) solver. The goal
is to assign boolean values to the previously defined variables for resource-wise
assignment (rz) and component-wise assignment (cz).

Figure 4.5: The procedure to decide the realisability of a configuration in 5 steps.

Figure 4.2 illustrates the resource demands of the features in the running exam-
ple. For the configuration CC with the features navigation-system and real-

time-traffic-system selected, resource demands to the software components nav-
igation-system-software (sw1) and rtt-system-software (sw2) are generated.
They address the resource types RAM (r0), Response time (r1) and number of
screens (r2) (see Table 4.1 for details). The following resource demand sets have
to be considered: RD1

0 = {6}, RD1
1 = {50, 30}, RD1

2 = {1}, RD2
0 = {2} and

RD2
1 = {30}.

With the reduce function, step 2 yields the actual resource demands of the software
components navigation-system-software and rtt-system-software shown in
Table 4.2. The resource provisionings of the hardware components are presented in
Table 4.3

r0 r1 r2
(RAM [GB]) (Resp. Time [ms]) (no. screens)

navigation-system-software 6 30 1
rtt-system-software 2 30 ⊥

Table 4.2: Resource demands of the software components navigation-system-

software and rtt-system-software in the running example.
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r0 (RAM [GB]) r1 (Resp. Time [ms]) r2 (no. of screens)

cu-1 4 10 ⊥
cu-2 8 10 1

Table 4.3: Resource provisionings of the hardware components cu-1 and cu-2 in
the running example.

The CSP for the given resource demands and provisionings is formalised and solved.
A possible solution is the deployment of the software component navigation-sys-
tem-software to the hardware component cu-2 and the deployment of the software
component rtt-system-software to the hardware component cu-1. Another so-
lution is the deployment of both software components to the hardware component
cu-2. Both possible solutions (component assignments) are illustrated in Figure 4.6.

Figure 4.6: Two possible resource assignments (dotted lines) and component assign-
ments (green stripes) for configuration CC of the running example.

4.2.3 Implications of Results

The CSP designed as a decision problem, rather than an optimisation problem, can
either be satisfiable or not. The latter case denotes that there is no resource-wise as-
signment rz from resource demands to resource provisionings found, which satisfies
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all constraints. Further, it means that no component-wise assignment cz from soft-
ware components to hardware components is found, which satisfies all constraints.
In this case, it can be said that the configuration in question is not realisable.

In the other case, there is at least one variable assignment found which satisfies
all constraints. This is called a satisfiability model. The model, firstly, expresses
all resource-wise assignments rz from resource demands to resource provisionings
and, secondly, all component-wise assignment cz from software components to hard-
ware components. For each software component swi, the component-wise assign-
ment variable czi,j to exactly one hardware component hwj must be evaluated True
(enforced by Equation 4.7). Deploying this software component to the according
hardware component means, that all resource demands of the software component
are satisfied by the resource provisionings of the hardware component.

To decide the configuration in question, finding exactly one satisfiability model suf-
fices. As no further selection or optimisation criteria is defined on the satisfiability
model, it can theoretically not be influenced, of which character the computed sat-
isfiability model will be. Mostly, it will probably depend on the algorithm used by
the solver. Therefore, finding any satisfiability model implies that the configuration
in question is realisable.
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4.3 Decide the Consistency of Problem and Solution

Space

In Section 4.2, the concept to decide the realisability of a single configuration was
introduced. To generalise the contributions, the decision of the consistency between
problem and solution space is examined now. In case of a given consistency, all valid
configurations are also realisable. Two methods are proposed, both building up on
the previously introduced concept to decide a single configuration.

4.3.1 Sampling Method

The sampling method is based on the idea to decide a sampled set of valid con-
figurations on their realisability. Sampling configurations is a common practice in
problem space analysis, where a representative subset of all valid configurations
CSsampled ⊆ CS is generated [HPS+22]. This reduces the number of configurations
which have to be regarded in analysis processes.

Depending on the sampling algorithm, a certain coverage of the configuration space
CS is achieved. The sampling method, as proposed here, is defined for the full cov-
erage of the configuration space (CSsampled ≡CS CS). This way, it is mathematically
trivial to decide about the consistency of the problem and solution space, because
the resulting implications cover the configuration space completely.

4.3.1.1 Procedure

The procedure is closely related to the one for deciding the realisability of a single
configuration (see Listing 4.1 and Subsection 4.2.2). Instead of only a single configu-
ration, the procedure is repeated for every sampled configuration C ∈ CSsampled. As
the attributed FM stays the same, especially the defined resource types R and re-
source provisionings RP also stay the same for each iteration. Listing 4.2 shows the
procedure of the sampling method, referring to the csp-function used in Listing 4.1
to generate a CSP.

1 R resource types (input constants)
2 RP resource provisionings (input constants)
3
4 function samplingMethod(CS: set of configurations):
5 isConsistent ← True boolean variable to decide space consistency
6
7 ∀C ∈ CS :
8 compute set of resource demands RD for C via mappings
9 tp := csp(RD)
10 isConsistent = isConsistent ∧ eval(p)
11
12 return isConsistent

Listing 4.2: The sampling method checks, if each valid configuration is also realiz-
able.



34 4. Design

4.3.1.2 Implications of Results

As seen in Listing 4.1, the consistency of problem and solution space is given if
all (valid) configurations are also realisable. For larger PLs with many valid con-
figurations, the sampling method therefore could be infeasible, as solving a single
assignment problem can be already exponential in computational complexity.

While this holds for the consistency, it does not for the inconsistency. Diverging
problem and solution spaces can be detected by a single configuration that is valid
but not realisable. The procedure proposed in Listing 4.1 therefore could be simpli-
fied to break after processing the first configuration which is not realisable.

Table 4.4 formally describes the implications. For reasons of completeness, the
rightmost column describes the criteria for a generalised sampling algorithm. In this
case, certain coverage criteria must be fulfilled first in order to decide the consistency.
It enables alternative definitions of space consistency than the one used here.

Decision Full Coverage Generalized
(CSsampled ≡CS CS) (CSsampled ⊆ CS)

consistency ⇔ RS ≡CS CS
⇔ coverage criteria fulfilled
∧ RS ≡CS CSsampled

inconsistency ⇔ RS ⊊ CS ⇔ RS ⊊ CSsampled

Table 4.4: Formal criteria to decide consistency and inconsistency between problem
and solution space.

4.3.2 Combined Method

The combined method is based on the idea of conjuncting problem space constraints
and solution space constraints. A CSP of the problem space is used to generate
valid configurations. A CSP of the solution space is used to generate realisable
configurations. The method describes, how both CSPs can be combined and then
solved in a single step. It addresses the downsides of the sampling method: Mainly
its computational complexity and its scattered multi-step approach in practice.

4.3.2.1 Formalising the Unified Conceptual Model as a Constraint Satisfaction
Problem

The goal is to formalise a CSP, which expresses both the problem and the solution
space as parts of the UCM.

Problem Space

A formalisation of the problem space can be found in the literature and can be seen
as a propositional logic representation of a FM. A feature f ∈ F is represented by
a boolean variable tf and relates to the select function (see Equation 4.14).
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The tree-constraint ttree is adopted from Apel et al. [ABKS13] and was introduced
in Table 3.1: All possible feature-dependencies of a FM with the according propo-
sitional logic term. The cross-tree constraints are conjuncted to tcross−tree and then
conjuncted with ttree.

The resulting constraint represents the problem space and is denoted with tF . An
instantiation of the feature variables tf along Equation 4.14 represents a configura-
tion.

∀f ∈ F : sel(f) = eval(tf ) (4.14)

Annotations of the FM, e.g. the resource demands of the features, are represented
by constants.

Solution Space

The formalisation of the solution space is mainly taken from Subsection 4.2.1 and
denoted by tp. The configuration assumed there is based on the instantiation of
feature variables tf in the CSP of the problem space (tF).

The main difference is, that resource demands are no longer constants, as they
are not known in advance, but defined by the mapping. In the combined CSP,
the actual resource demand values are defined in the problem space by features.
Therefore, the mapped resource demands of software components are represented
by numeric variables trdik .

Mappings

Mappings form the connection between the problem space constraint tF and the
solution space constraint tp. First, the problem space constraint defines which fea-
tures are selected and which are deselected to get a valid configuration. Second,
the mapping describes a set of resource demands for the configuration by using the
reduce function. Last, the solution space constraint defines the assignment problem
to decide the configuration on realisability.

The reduce function was defined in Equation 4.4. For the time of the constraint
definition, the actual selection of features is not known. Therefore, a symbolic
function sym (see Equation 4.15 for a formal definition) of the reduce function
is defined in Equation 4.16. It can handle inputs containing logical variables, for

example the symbolic set of resource demands of selected features: sym(RDi
k) :=

{rdikl | eval(tfl) = True}. For the output, the case distinction of the reduce function
also returns only symbolic functions (of the sum, the maximum, the minimum etc.),
depending on the resource type rk in question.

The mapping is conjuncted in the constraint tred as illustrated in Listing 4.3

ϕ(·) ≡ eval(sym(ϕ)(·)) (4.15)
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sym red(RDi
k) =



sym
∑
fl∈C

rdikl if vadd(rk) = True

symmax(RDi
k) if vbnd(rk) = LOWER

symmin(RDi
k) if vbnd(rk) = UPPER

sym fst(RDi
k) if vbnd(rk) = EXACT

sym ⊥ if sym(|RDi
k|) = 0 and else

(4.16)

1 R resource types (input constants)
2 RD resource demands of features (input constants)
3
4 function mappingCSP():
5 T ← ∅ set of constraints
6
7 ∀i ∈ {0, . . . , |SW| − 1} :
8 ∀k ∈ {0, . . . , |R| − 1} :
9 T ∪ {trdi

k
⇔ sym red(RDi

k)}
10
11 return

∧
(T )

Listing 4.3: Assembly of the mapping constraint tred along the symbolic reduce
function.

4.3.2.2 Procedure

The combined CSP tcsp can be assembled as illustrated in Listing 4.4. Besides the
variable declarations, several information is required: First, an annotated FM defines
both the problem space constraint tF and the resource demands from features (rdikl).
Second, all resource types have to be defined. Third, the resource provisionings of
hardware components have to be known. Then, the combined CSP is a conjunction
of the problem space constraint tF , the solution space constraint tp and the mapping
constraint tred (Listing 4.3).

In comparison to the sampling method, just the single step of solving the combined
CSP tcsp is necessary to compute configurations both valid and realisable. To com-
pute all such configurations, the procedure must be repeated as long as there are
undetected solutions left to the combined CSP. To circumvent the repeated com-
putation of already known satisfiability models, each one has to be added to the set
of constraints as an exclusion. Listing 4.5 illustrates the procedure of computing all
possible solutions.

4.3.2.3 Implications of Results

If the combined CSP is unsatisfiable, there exists no configuration which is both
valid and realisable. Furthermore, no statements about valid configurations could
be made, although there might exist some.

If at least one satisfiability model is found for the combined CSP (Listing 4.4), it ex-
presses a configuration both valid and realisable. In detail, the following information
can be derived:
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1 F set of annotated features
2 R set of resource types
3 RP set of resource provisionings
4
5 function combinedCSP():
6 T ← ∅ set of constraints
7
8 tF := tcross−tree ∧ ttree
9 T ∪ {tF} # problem space
10
11 T ∪ {tp} # solution space
12
13 T ∪ {tred} # mappings
14
15 return

∧
(T )

Listing 4.4: Assembling the combined CSP with three parts: Problem space, solution
space, mappings

1 procedure solveCombinedCSP():
2 tcsp′ ← combinedCSP()
3
4 while eval(tcsp′) returns a solution:
5 output solution # satisfiability model
6
7 TF ← ∅ set of feature variable constraints
8
9 ∀f ∈ F : # collect feature variable assignments
10 TF ∪ {tf ̸= eval(tf )} # collect feature variables
11
12 tcsp′ ∧

∨
(TF ) # add configuration as exclusion

Listing 4.5: Compute all configurations both valid and realisable by repetitive solving
and extending of the combined CSP.

1. A configuration C ⊆ F is defined by the selected features f ∈ F . The satisfi-
ability model expresses the configuration with its feature variable assignment
eval(tf ) as described in Equation 4.14.

2. The component assignment for the configuration can be derived from the com-
ponent assignment variables czi,j, which assign each software component swi

a hardware component hwj to be deployed on (see Subsection 4.2.3)

The set of all distinct satisfiability models (see Listing 4.5) expresses all configu-
rations both valid and realisable: RS. As the set of all only-valid configurations
CS is not explicitly computed, the consistency of the problem and solution space
can not directly be derived. This also holds for the inconsistency of the problem
and solution space. Still, the criteria of consistency and inconsistency defined in
Table 4.4 is also applicable here: The computed set of configurations both valid and
realisable RS must be compared to the set of only-valid configurations CS.

The main advantage of the combined method is its practical usability, where often
only configurations both valid and realisable are of interest. With the sampling
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method, all valid configurations CS have to be computed first before ”filtering” them
(to RS). With the combined method, the desired set RS can be computed directly.

For the running example, the attributed FM is shown in Figure 4.2. Formalising the
problem space constraint tF as defined in Table 3.1 yields:

infotainment

∧
(
(radio ∨ navigation-system)
⇔ infotainment ∧ ¬(radio ∧ navigation-system)

)
∧ (real-time-traffic-system⇒ navigation-system)

Formalising and solving the combined problem tcsp for the running example ex-
presses three valid and realisable configurations RS: Configuration CA (feature
radio), CB (feature navigation-system) and CC (features navigation-system

and real-time-traffic-system). This yields the set RS = {CA, CB, CC}. As
these three configurations holistically describe the set of all valid-only configura-
tions CS={CA, CB, CC}, the problem and solution space of the running example can
be considered as consistent (RS ≡CS CS).
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4.4 Description of Run-Time Variability

The concepts introduced previously address aspects during the build-time of a PL.
Therefore, design and management of the PL are typically done in the problem
space. For a PL in production and use, modifications can also occur in the solution
space only. In the following, a concept called Capabilities is proposed. It enables the
transformation of solution space modifications into the concept of feature revisions
and system revisions. This way, design and management of the PL are shifted back
in the problem space and the unidirectional propagation of design decisions from
the problem space to the solution space can be maintained. Finally, problems of the
run-time variability can be reduced to the contributions of this thesis.

4.4.1 Capabilities

The goal of capabilities is to express solution space modifications. The UCM de-
scribes components (class Component) and resources (class Resource) as central
artefacts of the solution space. Therefore, capabilities have to blend into these.
Wittler et al. [WKR22] proposed Services (class Service) in the UCM. The ab-
stract concept can be used to describe dependencies between components, regardless
if these ”are physical parts [hardware components] or programs [software compo-
nents]” [WKR22]. In this thesis, services are modified and used as capabilities.

In detail, the following modifications to the UCM from Wittler et al. are made. The
resulting UCM is shown in Figure 4.7

1. Modification: Renaming Service to Capability.

2. The class Capability has no properties.

Modification: A property identifier (type string) and metadata (type Ca-

pabilityMetadata) is added.

Intention: A key-value-store should suffice most use cases, as the actual meta-
data stored is not relevant in the scope of this thesis.

3. The class Component has the associations demands and provides to the class
Capability.

Modification: Both associations are specialised to aggregations.

Intention: Capabilities can exist without components. This principle was also
proposed for resources in Section 4.1.

Capabilities can be demanded and provided by software and hardware resources.
This is a major difference to the concept of resources, which can only be demanded
by software components and provided by hardware components. Particularly, this
means that, besides others, software components can have dependencies to other
software components. To address these modelling aspects, two demonstrations are
presented in the following sections.

Formally, in this thesis the set of capabilities is denoted by S with a capability sm ∈ S
(∀m ∈ {0, . . . , |S| − 1}). A component demands and provides a capability sm as
defined in Table 4.5. To keep a modification of the solution space simple, properties
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Figure 4.7: The UCM after modifying services to capabilities.

demands provides

software component swi ∈ SW sdSWi
m ∈ B spSWi

m ∈ B

hardware component hwj ∈ HW sdHWi
m ∈ B spHWi

m ∈ B

Table 4.5: Denotions for software and hardware components demanding or providing
a capability sm ∈ S.

of capabilities are only defined via its meta-data and not taken into account when
comparing demands and provisionings. Thus, quantification is not of interest and a
demand or a provisioning can just be given (True) or not (False).

Further, Equation 4.17 defines the following sets: First, all software components
swi which specify any demand to the capability sm are denoted with SWdem

m . Anal-
ogously denoted are the set of software components which specify a provisioning
to capability sm, SWprov

m , as well as the hardware component subsets HWdem
m and

HWprov
m . Finally, Equation 4.18 defines the set of features, which specify a resource

demand to any software component in SWdem
m (FSWdem

m ) or SWprov
m (FSWprov

m ).

SWdem
m := {swi | sdSWi

m = True} ⊆ SW
SWprov

m := {swi | spSWi
m = True} ⊆ SW

HWdem
m := {hwi | sdHWi

m = True} ⊆ HW
HWprov

m := {hwi | spHWi
m = True} ⊆ HW

(4.17)

FSWdem
m :=

⋃
swi∈SWdem

m

{
fl | fl ∈ F :

( ∨
rk∈R

nil(rdikl)
)
= True

}
FSWprov

m :=
⋃

swi∈SWprov
m

{
fl | fl ∈ F :

( ∨
rk∈R

nil(rdikl)
)
= True

} (4.18)

4.4.2 Demonstration: New Feature Revision

In this demonstration, the case of a dependency between a software and a hardware
component is studied. In detail, it is fixed that a capability sm′ ∈ S is demanded by
a set of software components SWdem

m′ and provided by a set of hardware components
HWprov

m′ . Both sets can possibly be empty.



4.4. Description of Run-Time Variability 41

In the running example, the following setting is assumed: During the production
of the PL, it was discovered that the installed GPS antenna of the new supplier is
behaving erratically. The system is designed the way that hardware components only
pass through the interface of the GPS antenna. Therefore, the software components
that use the interface of the GPS antenna must handle the errors themselves. Hence,
the production engineers declared the capability err-gps-antenna (s0), which is
demanded by the software component navigation-system-software and provided
by all connected hardware-components (cu-1 and cu-2).

The described capability can be transformed to problem space constraints in four
steps:

1. Define a new resource type: A new resource type (instance of the class
ResourceType) k′ ∈ R is defined with the properties {vadd(rk′) = False,
vexc(rk′) = False, vbnd(rk′) = EXACT}. The resource type is non-additive, be-
cause quantification is not regarded with capabilities. It is non-exclusive, be-
cause many software components can demand the capability provided by a
hardware component. Finally, the boundary can be specified exactly, as the
characteristics for the capability are binary (False→ 0 and True→ 1).

2. Define resource demands: All features f ∈ FSWdem
m′ are extended with a re-

source demand to the new resource type k′ in context of these software com-
ponents. Formally:

∀swi ∈ SWdem
m′ : ∀fl ∈ FSWdem

m′ : rdik′l
= 1

This enforces that, as soon as such a feature is selected, the resource related to
the capability is demanded. The modification of these feature attributes can
be done with new feature revisions.

3. Define resource provisionings: All hardware components which provide the
capability are extended with a resource provisioning to the new resource type
k′:

∀hwj ∈ HWprov
m′ : rpjk′ = 1

4. The capability sm′ can be removed. The dependencies are equivalently modeled
with resources.

In the running example, first a resource type r3 with the required properties is
instantiated. Only the software component navigation-system-software (sw1)
must be regarded: The features navigation-system (f2) and real-time-traf-

fic-system (f3) specify any resource demand and therefore must be extended with
rd132 = 1 and rd133 = 1. Finally, the hardware components cu-1 (hw0) and cu-2

(hw1) are extended by the resource provisionings rp03 = 1 and rp13 = 1.

4.4.3 Demonstration: Dependencies between Software Components

In this demonstration, the case of a dependency between software components is
studied. In detail, a capability sm′ ∈ S is demanded by a set of software com-
ponents SWdem

m′ and provided by a set of software components SWprov
m′ . To avoid

self-dependencies, it can be required that SWdem
m′ ∩ SWprov

m′ = ∅. Nevertheless, this
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requirement is not essential as a self-dependency of a software component is both
required and satisfied when the software component is used.

In the running example, the following setting is assumed: During the production of
the PL, it was discovered that the software component radio-software depends on
functionality implemented in the software component navigation-system-soft-

ware. The production engineers then declared the new capability dep-radio-

navigation (s1), which is demanded from the software component radio-software
and provided by the software component navigation-system-software.

The described dependencies can be transformed to problem space constraints by
defining a new cross-tree constraint for the FM: As soon as any software component
from SWdem

m′ is implied by the selection of a feature in FSWdem
m′ , there must be at least

one software component in SWprov
m′ implied by any feature in FSWprov

m′ . Formally:∨(
FSWdem

m′
)
⇒

∨(
FSWprov

m′
)

Introducing new cross-tree constraints to the FM can have certain effects. In the
running example, the capability dep-radio-navigation (s1) introduces the depen-
dency from the software component radio-software (sw0) to the software compo-
nent navigation-system-software (sw1). First, the software component radio-

software is demanded only by the feature radio (f1), implying FSWdem
1 = {f1}.

Next, the software component navigation-system-software is only demanded by
the feature navigation-system (f2), implying FSWprov

1 ={f2}. Therefore, the new
cross-tree constraint is the feature radio implying the feature navigation-system
(f1 ⇒ f2). But, as these two features are siblings in an alternative-group of the FM,
they can not be selected at the same time (referring to Table 3.1). For a customer,
this means that the feature radio can not be selected anymore.

Dependencies between software components in the solution space is problematic.
The idea of software components as an abstraction layer between features and re-
sources enable a free, independent encapsulation of resource demands. To avoid
dependencies between software components, the software components itself should
be designed the way that they state all their (resource) demands by themselves. It
should be discussed, if such dependencies should be resolved in cross-tree constraints
or in adaptions of resource demands from features to software components.
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4.5 Summary
This thesis addresses the analysis of the solution space of a PL. Configurations
which are valid in the problem space are not necessarily realisable in the solution
space. Formally, the set of all realisable configurations RS could only be a subset of
all valid configurations CS (RS ⊂ CS). This leads to the divergence of the problem
and solution space and impacts further product analysis and testing methods.

To structure the described problems, we stated three research questions (RQ1, RQ2,
RQ3) in Chapter 1. The contributions of this thesis to the research questions are
discussed in the following.

RQ1: How can solution space artifacts be formally described in a meta-model?

In Section 4.1 we described the solution space of a PL with a meta-model. We
modified the UCM, proposed by Wittler et al. [WKR22], along the concepts of
components and resources. Software components demand resources while hardware
components provide resources. Resource types describe and control the behaviour of
resources. In detail, we introduced three properties of a resource type (isAdditive,
isExclusive, boundary).

To specify actual resource demand values, we attributed features in a FM with
contextual information of the resource demand, such as the addressed software com-
ponent and the resource type. We argue, that the specification of resource demands
can be seen as a task of domain and application engineering and therefore is shifted
into the problem space of a PL.

For a concrete configuration, we described the translation from problem space de-
scription to solution space artefacts by a mapping between features and software
components. We formalised the mapping in the reduce-function. The reduce-
function maps a set of resource demands from attributed features to actual resource
demand values of a software component, aligning with the UCM which we defined
previously as solution space description.

RQ2: How can the realisability of a valid configuration be decided?

In Section 4.2 we defined a CSP to decide the realisability of a configuration.
The CSP contains propositional logical representations of solution space artefacts,
namely components, resources and resource types. It decides, if all resource demands
of the software components are satisfied by the resource provisionings of the hard-
ware components. We can then state information about which software component
has to be deployed to which hardware component to yield a functioning product.

In Section 4.3, we generalised the decision about a single configuration to the con-
sistency of problem and solution space. Both spaces are consistent if all valid con-
figurations of the problem space are also realisable in the solution space. We in-
troduced two methods: With the sampling method, we decide the realisability of a
pre-calculated sample of valid configurations. If a valid but non-realisable configu-
ration is found, we assume that the problem and solution space diverge. In practice,
the sampling method can be used to decide whether an existing configuration can
receive a software update (with altered resource demands). With the combined
method, we compute configurations both valid and realisable directly by formalising
a CSP containing both problem and solution space constraints. In practice, these
configurations are of interest for further testing.



44 4. Design

RQ3: How can run-time variability be described?

In Section 4.4 we give a description of run-time variability. We extended the pro-
posed UCM to the concept of capabilities. Capabilities enable the description of
dependencies between solution space artefacts, namely software and hardware com-
ponents. We argue that these dependencies should be shifted into the problem space
of a PL, as it allows the application of problem space concepts such as the revisioning
of features and FMs.

We presented two demonstrations of capabilities: The first one covers dependen-
cies between software and hardware components. Such dependencies can be shifted
into the problem space by expressing them as resource demands of attributed fea-
tures. The second demonstration covers dependencies between software components
itself. We argue that the concept of software components, as abstraction between
features and resource demands, can be used to design PLs without dependencies
between those software components. Therefore, we define a formal translation of
such dependencies into cross-tree constraints of FMs.



5. Implementation

This chapter presents the code implementations accompanying the thesis. As this
thesis is mainly focused on developing conceptual ideas, the implementation itself is
focused on supporting the evaluation of the thesis.

Figure 5.1 shows an overview of the implementations. The three colors indicate
categories in which this chapter is divided. Section 5.1 introduces COTS tools
(blue). We use the FeatureIDE to manage the problem space of a PL and the Z3
Theorem Prover to solve CSPs in the solution space. Section 5.2 describes exchange
formats (yellow) for common use cases such as storing FMs and configurations in
the problem space and resource types, resource demands, resource provisionings
and results of CSPs in the solution space. Section 5.3 documents the code artefacts
(purple) we implemented. These are a mapper tool (1), implementations of the
sampling method (2) and the combined method (3) and a tool which tests the
equality of sets of configurations (4), used in the evaluation of this thesis.

Figure 5.1: Overview of implementations. These are divided into three categories:
COTS tools (blue), exchange formats (yellow) and code artefacts (purple).
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5.1 COTS Tool Support

This section presents the supporting COTS tools we use: The FeatureIDE and the
Z3 Theorem Prover.

5.1.1 FeatureIDE

We use the FeatureIDE 1 [LAMS05] to manage the problem space of a PL. The Fea-
tureIDE is based on the Eclipse2 Integrated Development Environment (IDE) and
is a plug-in-solution for feature-oriented software development. The functionality
used in this thesis is the modelling and management of FMs, FM dependencies and
annotations.

After creating a FM with features and cross-tree constraints, we attributed the
features with resource demand descriptions. As proposed in Subsection 4.1.2, such
a resource demand (denoted by rdikl) is specified in context of a feature fl ∈ F , a
resource type rk ∈ R and a software component swi ∈ SW . In the FeatureIDE,
attributes are realised as a list of key-value items per feature. As shown in Figure 5.2 ,
we express a resource demand rdikl as an attribute of the feature fl with the properties
{key = (i, k), value = rdikl}. The key of an attribute (type string) specifies the
context and the value of the attribute (type long, an integer) specifies the actual
value of the resource demand.

Figure 5.2: In the FeatureIDE, resource demands are specified as feature attributes
with properties {key=(i, k), value=rdikl}.

1https://www.featureide.de/
2https://www.eclipse.org/

https://www.featureide.de/
https://www.eclipse.org/
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5.1.2 Z3 Theorem Prover

We use the Z3 Theorem Prover3, initially released in 2012 by Nikolaj Bjorner [Bjø12],
to solve CSPs. The CSPs developed in this thesis (for example to decide the realis-
ability of a configuration in Section 4.2) include arithmetic and pseudo-boolean state-
ments, e.g. multiplication and summation. The Z3 Theorem Prover can compute
Satisfiability Modulo Theories (SMT) problems, which generalises Boolean Satisfia-
bility Problems (SATs) to express, beside others, real numbers, lists and arithmetics
[BH02, CRSC09, DMB11]. Therefore, we assume that the Z3 Theorem Prover is
able to compute results for all of our CSPs.

To interact with the Z3 Theorem Prover, Application Programming Interfaces (APIs)
for several programming languages are available. For our implementations, we use
the Python package z3-solver. Section 5.2 describes exchange formats we de-
fined to express the input and output for the tool, for example resource demands,
resource provisionings and component assignments. As we separate the data (in-
put and output) from the process (interaction with the Z3 Theorem Prover), the
Python implementation should easily be convertible to other programming languages
[BMNW21].

3https://github.com/Z3Prover/z3

https://github.com/Z3Prover/z3
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5.2 Exchange Formats

This section presents exchange formats we developed to store data like FMs, config-
urations and resource demands. Tools rely on these formats as they define input and
output interfaces. The section is separated into problem space (Subsection 5.2.1)
and solution space (Subsection 5.2.2).

5.2.1 Problem Space

In the problem space, exchange formats for FMs and configurations are discussed.

Feature Model

A FM is structured as a tree with a fixed root feature. Therefore, a tree-like file
format like Extensible Markup Language (XML) is typically used to store FMs.
The FeatureIDE already has the functionality to serialise a FM to an XML file.
Listing 5.1 shows the contents of such a file for the FM of the running example.
Feature properties, such as being marked as abstract, are handled as node properties
(line 4). The attributes of a feature are handled as child nodes of a feature node.
We use the XML serialisation of a FM to process the structure and attributes of a
FM.

1 <featureModel>
2 [...]
3 struct>
4 <alt abstract=" true " mandatory=" true " name=" in fota inment ">
5 <feature name=" rad io ">
6 <attribute name=" (0 , 0 ) " type=" long " value="1"/>
7 <attribute name=" (0 , 1 ) " type=" long " value="100"/>
8 <attribute name=" (0 , 2 ) " type=" long " value="1"/>
9 </feature>
10 <and name=" navigat ion−system">
11 <attribute name=" (1 , 0 ) " type=" long " value="6"/>
12 <attribute name=" (1 , 1 ) " type=" long " value="50"/>
13 <attribute name=" (1 , 2 ) " type=" long " value="1"/>
14 <feature name=" rea l −time−t r a f f i c −system">
15 <attribute name=" (2 , 0 ) " type=" long " value="2"/>
16 <attribute name=" (2 , 1 ) " type=" long " value="30"/>
17 <attribute name=" (1 , 1 ) " type=" long " value="30"/>
18 </feature>
19 </and>
20 </alt>
21 </struct>
22 </featureModel>

Listing 5.1: Shortened XML file with the serialised FM of the running example.

Configuration(s)

We use an XML file format to store a configuration. This functionality is already
included in the FeatureIDE. Listing 5.2 shows configuration CC of the running exam-
ple where the feature real-time-traffic-system was selected manually and the
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feature navigation-system was selected automatically, because the feature real-

time-traffic-system depends on the feature navigation-system. All features of
the FM are serialised in a list. Feature properties, such as their selection or un-
selection in the configuration, are expressed as node properties of the feature: Each
feature can have the binary properties automatic (line 4) or manual (line 5), indi-
cating if it is selected automatically (through constraints), manually or not selected
(none, line 3).

1 <configuration>
2 <feature automatic=" s e l e c t e d " name=" in fota inment "/>
3 <feature name=" rad io "/>
4 <feature automatic=" s e l e c t e d " name=" navigat ion−system"/>
5 <feature manual=" s e l e c t e d " name=" rea l −time−t r a f f i c −system"/>
6 </configuration>

Listing 5.2: XML-serialised configuration CC of the running example. The feature
real-time-traffic-system was selected manually. Hence, the feature naviga-

tion-system was selected automatically.

For other applications, such as the combined method, not only one configuration
has to be stored but possibly multiple. As each configuration C ∈ CS addresses
selected and un-selected features f ∈ F (referring to the select-function sel(·) ∈ B),
a list of configurations has the size |CS| × |F|. We store such a generated list of
configurations as Comma-Separated Values (CSV) file where each row addresses a
configuration and each column addresses a feature. Table 5.1 shows this list for the
running example with its three configurations CA, CB and CC.

configuration radio navigation-system real-time-traffic-system

CA True False False
CB False True False
CC False True True

Table 5.1: List of three configurations CA, CB, CC for the running example.

5.2.2 Solution Space

In the solution space, exchange formats for resource types, resource demands, re-
source provisionings and results of solution space CSPs are presented.

Resource Types

Resource types are an essential part of the description of the solution space and
therefore important to store. In Section 4.1, we defined the three properties of a
resource type (isAdditive, isExclusive, boundary). To encode a resource type,
we use the following data set:
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1. The identifier (k) is encoded as integer (domain Z).

2. The property isAdditive is encoded with an adapted vadd-function:

vZadd : R → Z, vZadd(rk) =

{
0 if vadd(rk) = False

1 else

3. The property isExclusive is encoded with an adapted vexc-function:

vZexc : R → Z, vZexc(rk) =

{
0 if vexc(rk) = False

1 else

4. The property boundary is encoded with an adapted vbnd-function:

vZbnd : R → Z, vZbnd(rk) =


0 if vbnd(rk) = LOWER

1 if vbnd(rk) = UPPER

2 if vbnd(rk) = EXACT

Therefore, a list of all resource types is of two-dimensional shape with size |R| × 4
(referring to four integers as listed above). We store this data in a CSV file, as it
is an easy to use, platform-independent and non-proprietary file format. Figure 5.3
shows the serialisation of the three resource types of the running example.

Figure 5.3: Serialisation of resource types in the running example. For three resource
types, the serialisation is of size 3× 4.

Resource Demands & Resource Provisionings

Resource provisionings of hardware components and resource demands of software
components are also an essential part of the description of the solution space. It is
necessary to define an exchange format for these data sets, because our sampling
method (proposed in Subsection 4.3.1) needs both as input.

Both data sets define values (generally in R) in a two-dimensional context: A re-
source demand rdik is specified in context of a software component swi ∈ SW and a
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resource type rk ∈ R. A resource provisioning rpjk is specified in context of a hard-
ware component hwj ∈ HW and a resource type rk ∈ R. Therefore, we store all
resource demands in a CSV file with size |SW| × |R| and all resource provisionings
in a CSV file with size |HW| × |R|. Each row (i or j) addresses the component
(hardware or software) and each column addresses the resource type (k). Figure 5.4
shows the serialisation of the resource demands for configuration CC of the running
example.

Figure 5.4: Serialisation of resource demands for configuration CC in the running
example. For two software components and three resource types, the serialisation is
of size 2× 3.

CSP Results

In the solution space we formalised the assignment problem tp in Section 4.2, where
software components are assigned to hardware components. We solve this problem
with the Z3 Theorem Prover described in Section 5.1. As this is the main output of
the sampling method, it is important to store the results of the problem for further
evaluation. The result can either be a satisfiability model or the information that the
CSP is unsatisfiable. In the latter case, any file output can practically be omitted.
In the implementation, we write an empty file unsat without a file type nonetheless.

If there is a satisfiability model, component assignments exist which assign each
software component to exactly one hardware component (∀swi ∈ SW : ∀hwj ∈
HW : czi,j ∈ B). We store this two-dimensional data as a CSV file, where each
row represents a software component and each column a hardware component. Fig-
ure 5.5 shows a serialised component assignment for configuration CC of the running
example. There is no software component assigned to hardware component cu-1.
Hence, its column only contains False. Both software components are assigned to
hardware component cu-2. Hence, its column only contains True.
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Figure 5.5: Serialisation of component assignments for configuration CC in the run-
ning example. For two software components and two hardware components, the
serialisation is of size 2× 2.
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5.3 Code Artefacts
This section presents the four code artefacts we implemented and which are shown
in Figure 5.1: The mapper tool (Subsection 5.3.1) executes the reduce-function
(Equation 4.4) and stores the resource demands of a configuration.

The tool to process the sampling method (Subsection 5.3.2) takes these resource
demands, as well as a set of valid configurations, resource provisionings and resource
types as input and decides, if the configurations are realisable (referring to the
sampling method in Subsection 4.3.1).

The tool to process the combined method (Subsection 5.3.3) takes a feature model
and resource provisionings as input and iteratively computes configurations both
valid and realisable (referring to the combined method in Subsection 4.3.2).

In the evaluation, the results of the sampling method and the combined method
are compared to the expected results. We developed an evaluation tool (Subsec-
tion 5.3.4), which decides the result sets for equality (≡CS-operator).

5.3.1 Mapper Tool

The mapper tool is a Java project which executes the reduce-function (Equation 4.4)
for a set of configurations. Listing 5.3 shows the program in pseudo code.

The tool takes an attributed FM, a definition of the resource types and a list of con-
figurations (line 1 to 3). For each configuration C ∈ CS, a set of software components
SW is computed, which are specified by the resource demands of the features (line
7). A two-dimensional list (swComponentDemandsList, line 8) is initialised with nil
(⊥) which will store the resource demands of the software components in context of
their resource type with size |SW| × |R|.
The list is described in lines 10 to 14 where, for each software component swi ∈ SW
and each resource type rk ∈ R, the set of resource demands from features RDi

k is
reduced to a resource demand value rdik.

Omitted in Listing 5.3 is the translation of software component identifiers to row
numbers in the resource demands file. In our implementation, this translation is
necessary, because not all specified software component identifiers must occur in the
resource demands file, for example if the configuration demands resources only for
a subset of all software components. As we want to trace the software components
later in the component assignments, we need to know which row number in the
serialisation corresponds to which software component identifier.

5.3.2 Tool to Process the Sampling Method

The tool is coded in the Python programming language and decides the realisability
of a list of sampled configurations. It implements the sampling method proposed
in Subsection 4.3.1. Hence, the tool computes the set of all configurations both
valid and realisable RS as a subset of all sampled configurations CSsampled (RS ⊆
CSsampled).

The resource types and resource provisionings must be given as well as the resource
demands (e.g. from the mapper tool) for each configuration. The assembly of the
CSP tp and its computation is done with the Z3 Theorem Prover. The result for each
configuration is either a file named unsat, in case the configuration is not realisable,
or a CSV file containing the component assignments.
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1 F attributed feature model
2 R resource types
3 CS list of configurations
4
5 procedure mapping():
6 ∀ C ∈ CS :
7 compute SW
8 init swComponentDemandsList: int[][] ←⊥
9
10 ∀ swi ∈ SW :
11 ∀ rk ∈ R :
12 compute RDi

k

13 compute rdik = red(RDi
k)

14 write swComponentDemandsList[i][k] = rdik
15
16 write resource demands file for configuration C

Listing 5.3: The mapper tool executes the reduce-function for a list of configurations.

5.3.3 Tool to Process the Combined Method

The tool is coded in the Python programming language and computes configurations
of a PL both valid and realisable. It implements the combined method, proposed
in Subsection 4.3.2, by assembling a CSP that describes both solution and problem
space constraints at the same time (i.e., tcsp).

As inputs, the attributed FM (XML file), the defined resource types and resource
provisionings must be given. The assembly of the CSP and its computation is
done with the Z3 Theorem Prover. The tool iteratively computes a configuration
both valid and realisable and adds the configuration as exclusion constraint to the
problem. This loop breaks as soon as there is no more distinct solution for the
problem. The output is a list of found configurations and the component assignments
for each configuration.

For large PLs, the procedure may not be able to compute all configurations both
valid and realisable due to computational complexity. Therefore, further criteria to
break the loop, for example the maximum execution time, can be implemented.

5.3.4 Evaluation Tool for Problem and Solution Space Consistency

Both the sampling method and the combined method compute a set of configurations
which are both valid and realisable. For the evaluation, we are interested in the
equality of those sets to the expected set (ground truth) RSGT. Therefore, we
developed a tool which decides the equality of two sets of configurations (CSB and
CSA), based on the ≡CS-operator defined in Chapter 4.

Listing 5.4 shows the procedure of the tool. Both sets CSA and CSB are given as
lists of configurations, where each list entry represents a single configuration and
specifies which features are selected for this configuration (Table 5.1). In line 2, the
size equality of CSA and CSB is asserted. If the size equality is not given, the sets can
not be equal. Line 4 and 5 define the family of sets of matching configurationsMA.
For each i ∈ {0, . . . , |CSA| − 1}, the set MA

i ∈ MA contains all configurations from
CSB which are equal to the specific configuration CAi . Each set is initially empty (line
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1 procedure checkEquality(CSA, CSB):
2 assert(|CSA| = |CSB|)
3
4 ∀i ∈ {0, . . . , |CSA| − 1} : MA

i ← ∅
5 MA := {MA

0 , . . . ,M
A
|CSA|−1}

6
7 ∀CAi ∈ CSA :
8 ∀CBj ∈ CSB :
9 if CAi ≡C CBj : MA

i ∪ {CBj }
10
11 ∀MA

i ∈MA : assert(|MA
i | = 1)

Listing 5.4: Assertion of set equality between CSA and CSB.

5) and extended in lines 7 to 9. The assertion in line 11 checks, if each configuration
in CSA has exactly one counterpart in CSB. Together with the assertion in line 2,
this implies that every configuration in CSA has its counterpart in CSB. Then, we
assume both sets to be equal.
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6. Evaluation

This chapter describes the evaluation of the concepts introduced in Chapter 4.
The evaluation is focused on a quantitative assessment of the proposed procedures.
Mainly, this covers the research questions RQ1 and RQ2, where we contributed a
meta-model of the solution space as well as two methods (sampling method and
combined method) to decide the consistency of the problem and solution space of a
PL.

Setup & Design

We evaluate the methods along two case studies, which are introduced in Section 6.1.
The first case study, CS1, is used to maximize the coverage of the developed logical
formulas for the CSPs. The second case study, Body Comfort System (BCS), is used
to apply our contributions to an already existing example.

For both case studies, we know a Ground Truth (GT) in advance. The GT contains
the set of configurations which are both valid and realisable, denoted by RSGT

CS1 and
RSGT

BCS. We compare the GT against the computed sets of configurations which are
both valid and realisable, RSCS1 and RSBCS. Section 6.2 describes the evaluation
procedure in detail.

In Section 6.3, we present the results as well as the limitations of the evaluation. In
Section 6.4 we discuss the evaluation in context of the research questions and goals
of this thesis. Threats to the validity of our work are assessed in Section 6.5.
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6.1 Case Studies

This section describes the two case studies in detail. For both case studies, the prob-
lem and solution space artefacts are introduced and the GT (sets of configurations)
is derived.

6.1.1 Case Study 1 (CS1)

Case Study 1 (CS1) is a small example of a car PL and used to evaluate the developed
procedure of deciding if a configuration is realisable. In Section 4.2 we presented
an approach to compute this decision by constructing a CSP. It consists of a set of
propositional logical constraints. To verify these constraints, we designed CS1 the
way that it covers all of the proposed logical formulas. As the formulas depend highly
on the properties of the resource types (isAdditive, isExclusive, boundary) which
occur in the data (e.g. Equation 4.10 to Equation 4.13), CS1 covers all twelve
possible characteristics of resource type properties (shown as tree in Figure 4.4).

Feature Model

In the problem space, we defined a FM as shown in Figure 6.1. It represents a PL
of a car manufacturer with 13 features (three abstract features) and no cross-tree
constraints. The customer can choose between two infotainment systems. Further,
the optional motorisation of the seats can either be only in the front row or for all
passengers (front and back) and the adjustment of the seats can either be six-way or
ten-way. Optionally, the car can be eqipped with a tyre pressure monitoring system.
The monitoring system for critical components (CCM) of the car (for example oil
pressure and temperature) is mandatory.

Figure 6.1: FM of CS1.
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Resource Types

The intention behind the defined resource types is to cover all twelve character-
istics of resource type properties (isAdditive ∈ B, isExclusive ∈ B, boundary
∈ {LOWER, UPPER, EXACT}). Therefore, we specified exactly twelve distinct resource
types as shown in Table 6.1.

ID (k) vadd(rk) vexc(rk) vbnd(rk) Unit Description

0 False False LOWER MBit/s Communication Bandwidth
1 False False UPPER ms Response Time
2 False False EXACT GHz Infotainment Core Clock
3 False True LOWER Mbit/s CCM Communication Bandwidth
4 False True UPPER CCM Screen Resolution
5 False True EXACT Screen Resolution
6 True False LOWER GByte Memory
7 True False UPPER no. Touchscreens
8 True False EXACT no. Screens
9 True True LOWER no. Seat Adjustment Actuators
10 True True UPPER no. Seats
11 True True EXACT no. Tyre Pressure Sensors

Table 6.1: Resource types for CS1. Screen resolutions are given in a multiple of
the generic ”1K”-resolution, e.g. 2K (approx. 2000 pixels width), 4K (approx. 4000
pixels width) etc.

Software Components & Hardware Components

We specified five software components and three hardware components as solution
space artefacts. They are described in the following.

Table 6.2 shows the five different software components, which relate loosely to the
FM. The software component infotainment-software (sw0) addresses the info-
tainment features. The critical component monitoring is split into a software com-
ponent for visualisation (ccm-visualisation-software, sw1) and a software com-
ponent for calculation (ccm-calculation-software, sw2). The seat adjustment
is realised as a user interface panel which is controlled by the software component
seat-adjustment-panel-software (sw3). The tyre pressures are monitored by the
software component tyre-pressure-monitoring-software (sw4).

We specified three different hardware components: The hardware component in-

fotainment-hardware (hw0) for infotainment and communication, ccm-hardware
(hw1) for critical components and car-periphery-hardware (hw2) for peripheral
components.

Resource Demands and Provisionings

Resource demands are described in the problem space as feature attributes. Table 6.3
shows an excerpt of all specified resource demands in context of a feature fl, a
software component swi and a resource type rk. The complete table is listed in
Table A.1. Table 6.4 shows all resource provisionings in context of a hardware
component hwj and a resource type rk.



60 6. Evaluation

ID(i) Name Relates to Features

0 infotainment-software infotainment

1 ccm-visualisation-software critical-component-monitoring

2 ccm-calculation-software critical-component-monitoring

3 seat-adjustment-panel-software electric-seats

4 tyre-pressure-monitoring-software tyre-pressure-monitoring

Table 6.2: Software components for CS1.

Feature Software Comp. (swi) Demand (rdik)

infotainment-small sw0

rd00 = 5
rd01 = 100
rd02 = 1
rd06 = 2
rd07 = 1

infotainment-big sw0

rd00 = 10
rd01 = 100
rd02 = 3
rd06 = 6
rd07 = 3

critical-component-monitoring

sw1

rd14 = 1
rd16 = 2
rd18 = 1

sw2
rd23 = 2
rd26 = 1

electric-seats sw3 rd35 = 1
seat-adjustment-6way sw3 rd39 = 6
seat-adjustment-10way sw3 rd39 = 10
seat-motorisation-front sw3 rd310 = 2
seat-motorisation-front-back sw3 rd310 = 4
tyre-pressure-monitoring sw4 rd411 = 4

Table 6.3: Resource demands of features in CS1 (excerpt; complete table in Ta-
ble A.1.
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Hardware Component (hwj) Provisioning (rpjk)

infotainment-hardware (hw0)

rp00 = 15
rp01 = 50
rp02 = 3
rp06 = 8
rp07 = 1

ccm-hardware (hw1)

rp13 = 5
rp14 = 1
rp16 = 4
rp18 = 1

car-periphery-hardware (hw2)

rp25 = 1
rp29 = 6
rp210 = 2
rp211 = 4

Table 6.4: Resource provisionings of hardware components in CS1.

Ground Truth

The GT gives prior information about the validity (problem space) and realisability
(solution space) of configurations. We computed the set of all valid configurations
CSCS1 with the FeatureIDE (Section 5.1) and got the set size |CSCS1| = 20.

Regarding the realisability, we designed resource demands and resource provisionings
that way, that certain configurations are not realisable. This is done by specifying
features which yield resource demands that can not be satisfied by the resource
provisionings. In detail, we defined the following incompatibilities for CS1:

• The feature infotainment-small specifies a resource demand to software com-
ponent infotainment-software (sw0) of resource type Infotainment Core

Clock (r2) with value rd02 = 1 (GHz). This resource type has the boundary

property EXACT (vbnd(r2) = EXACT).

There is no hardware component that specifies a resource provisioning for r2
with exactly 1 GHz. Thus, the resource demand of the feature infotainment-
small can not be satisfied.

• The feature seat-adjustment-10way specifies a resource demand to software
component seat-adjustment-panel-software (sw3) of resource type no.

Seat Adjustment Actuators (r9) with value rd39 = 10. This resource type
has the boundary property LOWER (vbnd(r9) = LOWER).

There is no hardware component that specifies a resource provisioning for
r9 with at least value 10. Meaningfully, no seat in the car has at least ten
seat adjustment actuators. Thus, the resource demand of the feature seat-

adjustment-10way can not be satisfied.

• The feature seat-motorisation-front-back specifies a resource demand to
software component seat-adjustment-panel-software (sw3) of resource type
no. Seats (r10) with value rd310 = 4. This resource type has the boundary

property UPPER (vbnd(r10) = UPPER).
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There is no hardware component that specifies a resource provisioning for r10
with at most value 4. Meaningfully, no car has four motorised seats installed.
Thus, the resource demand of the feature seat-motorisation-front-back

can not be satisfied.

As each incompatibility concerns one feature and has no dependencies to other
incompatibilities, at least one of these features has to be selected to yield a non-
realisable configuration. We proposed the CSP tp in Section 4.2 to decide the realis-
ability of a configuration. To derive a GT for CS1, we state the following implication:

infotainment-small

∨ seat-adjustment-10way
∨ seat-motorisation-front-back

⇒ eval(tp)
!
= False

The expected set of all configurations both valid and realisable RSGT
CS1 therefore

contains all valid configurations except those fulfilling the premise of the implication
above. The set size is |RSGT

CS1| = 4.

6.1.2 Body Comfort System (BCS) Case Study

The BCS Case Study is known in the research topic of Software Product Line En-
gineering (SPLE). The version used in this thesis was published from Lity et al.
[SRMI12] in 2012. It was developed with industry partners from the automotive
industry and represents an excerpt of a car PL. We use the BCS case study to apply
the proposed concepts to an existing example of a larger PL. While problem space
artefacts, such as a FM and configurations, are given, we have to extend the case
study with solution space artefacts which fit into the UCM.

Feature Model

In the problem space, the FM consists of 27 features (seven abstract features) and six
cross-tree constraints. It can be divided into three sub-trees: Figure 6.2 shows the
first sub-tree hmi concerning a user interface. Six warning and signal lights (features
led-...) can be chosen in an optional or-group. Figure 6.3 shows the second sub-
tree doors concerning convenience and safety functionality such as power windows,
heatable mirrors and finger protection. Figure 6.4 shows the third sub-tree security
concerning optional functionality such as a remote-control key and an alarm system.
The cross-tree constraints are as follows:

(led-alarm-system⇒ alarm-system)

∧ (led-central-locking⇒ central-locking)

∧ (led-heatable⇒ exterior-mirror-heatable)

∧ (power-window-manual⇔ ¬rc-key-automatic-power-window)
∧ (rc-key⇒ central-locking)

∧ (rc-key-alarm-system⇒ alarm-system)



6.1. Case Studies 63

Figure 6.2: Sub-tree hmi of the FM of the BCS case study.

Figure 6.3: Sub-tree doors of the FM of the BCS case study.
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Figure 6.4: Sub-tree security of the FM of the BCS case study.

Resource Types, Software Components & Hardware Components

In the solution space, we specified four software components: The software compo-
nent hmi-software (sw0) encapsulates the implementation of the user interface. The
software components power-window-control-software (sw1) and exterior-mir-

ror-control-software (sw2) address the operation of exterior mirrors and power
windows. The software component security-software (sw3) controls all security
installations in the car.

The resource types are shown in Table 6.5 and address requested resources of the
described functionality such as power specifications, security video cameras and
communication bandwidth.

Further, we defined two hardware components: The hardware component secu-

rity-hardware (hw0) encapsulates critical tasks for the security of the car. The
hardware component infotainment-hardware (hw1) functions a central CU for all
other, non-critical tasks.

ID(k) vadd(rk) vexc(rk) vbnd(rk) Unit Description

0 True False LOWER no. Interface Slots
1 True False LOWER W Power Specification
2 True True LOWER no. Security Comm. Channels
3 False True LOWER MHz Security Processing Core Clock
4 False True UPPER min Security Automatic Relock Time
5 True True EXACT no. Security Video Cameras
6 True False LOWER no. Window Movement Sensors
7 True False LOWER kbit/s Bandwidth

Table 6.5: Resource types of the BCS case study.
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Resource Demands & Provisionings

Table 6.6 shows an excerpt of the resource demands of the features in context of the
four software components (sw0, . . . , sw3) and the eight resource types (r0, . . . , r7).
The complete table is listed in Table A.2. Table 6.7 shows the resource provisionings
of the two hardware components (hw0, hw1).

Feature Software Comp. (swi) Demands (rdik)
led-alarm-system sw0 rd00 = 2
led-finger-protection sw0 rd00 = 1
led-central-locking sw0 rd00 = 1
led-power-window sw0 rd00 = 1
led-exterior-mirror sw0 rd00 = 1
led-em-heatable sw0 rd00 = 1

em-electric sw1
rd17 = 10
rd11 = 5

em-heatable sw1 rd11 = 20
pw-finger-protection sw2 rd26 = 1
pw-manual sw2 rd26 = 2

pw-automatic sw2
rd27 = 5
rd26 = 3

rc-key sw3
rd32 = 2
rd33 = 10

rck-pw-automatic
sw2 rd27 = 5
sw3 rd32 = 2

rck-exterior-mirror
sw1 rd17 = 10
sw3 rd32 = 2

rck-alarm-system sw3 rd32 = 2
rck-safety-function sw3 rd32 = 2

alarm-system sw3
rd33 = 100
rd35 = 4

alarm-system-interior sw3
rd33 = 700
rd35 = 1

central-locking sw3 rd33 = 10
central-locking-automatic sw3 rd34 = 1

Table 6.6: Resource demands of features in the BCS case study (excerpt; complete
table in Table A.2).

Ground Truth

The GT for the BCS case study is derived analogously to the CS1. In the problem
space, we computed the set of valid configurations CSBCS with the FeatureIDE. The
set is of size |CSBCS| = 7512.

For the realisability, we designed the resource demands and provisionings analo-
gously to CS1, where some features yield unsatisfiable resource demands. In the
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Hardware Component (hwj) Provisionings (rpjk)
infotainment-hardware (hw0) rp00 = 8

rp01 = 25
rp06 = 4
rp07 = 16

security-hardware (hw1)

rp12 = 16
rp13 = 700
rp14 = 1
rp15 = 4

Table 6.7: Resource provisionings of hardware components in the BCS case study.

BCS case study, only the feature alarm-system-interior yields an incompatibil-
ity. It specifies a resource demand to software component security-software (sw3)
of resource type no. Security Video Cameras (r5) with the value rd35 = 1. This
resource type has the boundary property EXACT (vbnd(r5) = EXACT). There is no
hardware component that provides this resource type r5 with the exact value 1,
which means no hardware component provides exactly one security camera, which
the feature alarm-system-interior could use. Thus, the resource demand of this
feature can not be satisfied.

The feature alarm-system-interior is the only feature that specifies unsatisfiable
resource demands. Therefore, we can state the following implication on the CSP of
the solution space of the BCS case study (tp):

alarm-system-interior ⇒ eval(tp)
!
= False

The expected set of all configurations both valid and realisable RSGT
BCS therefore

contains all valid configurations except those containing the feature alarm-system-
interior. The set size is |RSGT

BCS| = 4200.



6.2. Evaluation Procedure 67

6.2 Evaluation Procedure

This section describes the procedure we followed to evaluate our contributions. Sub-
section 6.2.1 introduces the evaluation procedure for the sampling method and Sub-
section 6.2.2 for the combined method.

For both case studies, CS1 (Subsection 6.1.1) and the BCS case study (Subsec-
tion 6.1.2), the procedure is the same. As a prerequisite, we aim to achieve full
coverage of the configuration space for both case studies: The sampling method is
done for all valid configurations (CSCS1 and CSBCS) and the combined method stops
when no more solutions are possible, e.g. all configurations both valid and realisable
are found.

6.2.1 Sampling Method

For the sampling method, the procedure proposed in Subsection 4.3.1 is followed and
shown in Figure 6.5. With the FeatureIDE, we generate all valid configurations from
the FMs of the case studies, denoted by CSCS1 and CSBCS. The resource demands
are specified in the attributed FM, following Table 6.3 (CS1) and Table 6.6 (BCS
case study).

Then, for each configuration, the following three steps are executed:

1. We compute the resource demands of the software components from the at-
tributed FM with the mapper tool (Subsection 5.3.1).

2. We assemble the solution space CSP tp with the resource demands, resource
provisionings (CS1: Table 6.4; BCS case study: Table 6.7) and resource types
(CS1: Table 6.1; BCS case study: Table 6.5).

3. We solve the solution space CSP with the Z3 Theorem Prover (Section 5.1).
The result can either be a component assignment or the information that the
configuration is not realisable.

The composed sets of all realisable configurations are denoted with RSSM
CS1 and

RSSM
BCS. We compare those sets to the known GT (RSGT

CS1 and RSGT
BCS) with the

evaluation tool (Subsection 5.3.4) and state the results according to Equation 6.1:
If the compared sets are equal, e.g. they contain the exactly same configurations,
we assume the sampling method to be evaluated positively.

RSSM
CS1 ≡CS RSGT

CS1 ⇔ sampling method evaluated positive for CS1,

RSSM
BCS ≡CS RSGT

BCS ⇔ sampling method evaluated positive for BCS case study.
(6.1)
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Figure 6.5: Evaluation procedure for the sampling method. (green: GT; red: com-
puted)

Figure 6.6: Evaluation procedure for the combined method. (green: GT; red: com-
puted)
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6.2.2 Combined Method

For the combined method, the procedure proposed in Subsection 4.3.2 is followed
and shown in Figure 6.6. The problem space is formalised in the CSP tF from the
FM. The mapping and solution space are formalised in the symbolic reduce-function
tred and tp from the resource demands and resource types. Then, these CSPs are
conjuncted in the CSP tcsp (tcsp = tF ∧ tred ∧ tp).

We iteratively solve the CSP tcsp with the Z3 Theorem Prover, yielding a configura-
tion which is both valid and realisable in each iteration. The configuration is added
to the CSP tcsp as exclusion, so that no duplications occur in the result. As we want
to compute all configurations both valid and realisable, the loop breaks when no
more solutions are possible (tcsp is no longer satisfiable).

The computed set of configurations is denoted with RSCM
CS1 and RSCM

BCS respectively.
We compare those sets to the known GT with the evaluation tool (Subsection 5.3.4)
and state the results according to Equation 6.2: If the compared sets are equal, e.g.
they contain the exactly same configurations, we assume the combined method to
be evaluated positively.

RSCM
CS1 ≡CS RSGT

CS1 ⇔ combined method evaluated positive for CS1,

RSCM
BCS ≡CS RSGT

BCS ⇔ combined method evaluated positive for BCS case study.
(6.2)
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6.3 Results & Limitations

The evaluation of the concepts we introduced in Chapter 4 was done by two case
studies, CS1 and the BCS case study. The first case study serves as a verification of
the proposed logical formulas and the second to evaluate the concepts on a larger,
already existing PL example. We extended the model data of the case studies in
Section 6.1 to fit as an initial point for the evaluation.

As this thesis focuses on the consistency of the problem and solution space of a
PL, the evaluation mainly addresses the two proposed methods to decide this con-
sistency: The sampling method (Subsection 4.3.1) and the combined method (Sub-
section 4.3.2). Section 6.2 presents our procedures to evaluate these methods along
the case studies. The computed sets of configurations both valid and realisable
are compared to the known GT in terms of set equality. In Equation 6.1 and Equa-
tion 6.2, we gave a mathematical criteria to decide whether we evaluate the methods
positively or negatively.

6.3.1 Results

Table 6.8 shows the evaluation results for both case studies. Initially, the number of
only-valid configurations is |CSCS1| = 20 for CS1 and |CSBCS| = 7512 for the BCS
case study. The derived GT expected the number of configurations both valid and
realisable to be |RSGT

CS1| = 4 for CS1 and |RSGT
BCS| = 4200 for the BCS case study.

Case Study CS1 BCS

Valid Configurations (|CS|) 20 7512

Realisable Configurations Ground Truth (|RSGT|) 4 4200

Sampling Method (|RSSM|) 4 4200
Equality (RSSM ≡CS RSGT) True True

Combined Method (|RSCM|) 4 4200
Equality (RSCM ≡CS RSGT) True True

Table 6.8: Quantitative results of the sampling method and the combined method
compared to the GT for both case studies.

With the sampling method, we computed |RSSM
CS1| = 4 configurations for CS1 and

|RSSM
BCS| = 4200 configurations for the BCS case study. With the comparison of

those sets to the GT with the ≡CS-operator, we found an exact coverage of the
expected results (RSSM ≡CS RSGT) for both case studies. This means that the
sampling method computed the exactly same set of configurations as we derived in
the GT. We therefore assume the sampling method to be evaluated positively.

With the combined method, the number of configurations which are both valid
realisable was computed to |RSCM

CS1| = 4 configurations for CS1 and |RSCM
BCS| = 4200

configurations for the BCS case study. For both sets, we found an exact coverage
of the GT (RSCM ≡CS RSGT) and therefore assume the combined method to be
evaluated positively.
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For both case studies, the computed sets of the sampling method and the com-
bined method are both equal to the expected set of the GT ((RSSM ≡CS RSGT) ∧
(RSCM ≡CS RSGT)). Hence, we can imply the equality of both computed sets
(⇒ RSSM ≡CS RSCM) per case study. This means that, under the given evaluation
setup, both methods yield the exactly same results.

6.3.2 Limitations

The evaluation has limitations on the statements, which are implied from the results.
We discuss them in the following and give concise restrictions on these statements.

Integer Values

From a technical perspective, the contributions are assessed only with positive inte-
ger values (domain Z) introduced with the case studies in Section 6.1. We defined
the conceptual ideas in Chapter 4 generally for real values (domain R) and therefore
assume them to work also for negative, non-integer values. The tool to solve CSPs
then must support real-value arithmetics. Numerical limitations should be kept in
mind for very large or very small numbers, which approach technical borders (e.g.
≥ 232 or ≥ 264).

Application to Large Product Lines

The second technical limitation is the application of the concepts to a large PL. The
number of valid configurations can increase exponentially to the number of features
in the FM. The decision about the consistency of the problem and solution space
can therefore be infeasible due to computational complexity.

The sampling method, for instance, consists of the sampling of all valid configu-
rations and the decision about their realisability. We assume a naive sampling of
all valid configurations to be in space complexity O(2poly(|F|)) (EXPSPACE) and the
computation of the solution space CSP tp to be in time complexity O(poly(|SW| ∗
|HW| ∗ |R|2)) (PTIME) per configuration [KI98]. The evaluation assesses the fea-
sibility of the computations only for the reasonable sized PLs of the case studies,
where we could compute the results without limitations.

Coverage of Problem & Solution Space

In the design of the evaluation, we stated two premises: First, the sampling method
is evaluated with full coverage of the set of all possible only-valid configurations, not
a subset. Second, the combined method is evaluated with full coverage of the set of
configurations both valid and realisable, without restrictions on computation-time
or -space. The implication on the set equality RSSM ≡CS RSCM is only given, if
both premises are fulfilled. Otherwise, no statement on this set equality can be
made, as the combined method then generates an arbitrary, non-influenceable result
set.



72 6. Evaluation

Evaluation of Resource & Component Assignments

The evaluation decides the equality of the result sets RSSM and RSCM to the GT
RSGT. It does not assess the actual assignments of resource demands from software
components to resource provisionings of hardware components explicitly. Implicitly,
a valid resource assignment implies a valid component assignment, which itself im-
plies the given realisability of the configuration. As the contradiction to these two
implications also holds, we assume that our decision about the set equality suffices
to state the positive evaluation for the contributions.
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6.4 Discussion & Relation to Research Questions

In Section 6.3, we presented the results of the evaluation and its implications. The
evaluation is focused on the two proposed methods to decide the consistency of
the problem and solution space: The sampling method (Subsection 4.3.1) and the
combined method Subsection 4.3.2. In the following, we relate the contributions and
their evaluation to the research questions stated in Chapter 1.

Research Question RQ1

Research question RQ1 addresses the description of solution space artefacts in a
PL. We contributed a meta-model as an extension to the UCM from Wittler et
al. [WKR22], which relies on components and resources to specify demands and
provisionings. In the evaluation, we used two case studies, which are instances of
our meta-model and thus represent the meta-model in the data. Because we modeled
the case studies along the proposed meta-model (and not vice-versa), we can not
state implications on the meta-model itself after the evaluation of the case studies,
as this would create a circular closure.

Research Question RQ2

Research question RQ2 addresses the decision about the realisability of a valid con-
figuration. In Section 4.2, we proposed a formalisation of solution space artefacts
as a CSP. By solving this CSP, we can either imply the realisability of the con-
figuration with a valid component assignment, or the non-realisability because the
CSP is unsatisfiable. The sampling method and the combined method rely on this
formalisation to compute a set of configurations which are both valid and realisable.

In the evaluation, we derived the correctness of these two methods by applying
the quantitative data of the two case studies. Every valid configuration was decided
correctly about its realisability by both methods. Therefor, we assume the contribu-
tions to research question RQ2 to be evaluated positively under the given evaluation
setup and limitations discussed in Section 6.3.

Research Question RQ3

Research question RQ3 addresses the description of run-time variability in a PL.
In Section 4.4, we proposed a modification to our meta-model which introduces
capabilities. Capabilities can express dependencies between solution space artefacts.
We presented two demonstrations how to shift these dependencies into the problem
space and express them with concepts already known.

The first demonstration covers the dependency between a software and a hardware
component. We showed how this dependency can be represented in the problem
space by designing a resource type and according resource demands and provision-
ings. Then, it is part of the procedure we proposed in Section 4.2 to decide the
realisability of a configuration. Hence, the evaluation of dependencies between soft-
ware and hardware components is covered by the evaluation of research questions
RQ1 and RQ2, because it only relies on these contributions.

The second demonstration covers the dependency between two software components.
We showed how this dependency can be represented completely by FM constraints
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in the problem space, independent from the solution space. Therefore, dependencies
between software components can be analysed by known problem space analysis
methods [BSRC10].

We consider the other cases, the dependency from a hardware to a software compo-
nent and the dependency between two hardware components, as not meaningfully
applicable to our meta-model. They either contradict to the pattern of designing
demands and dependencies along user-experienceable behaviour (features) in the
problem space of a PL or are a task of plain hardware engineering. Therefore, we
assume all meaningful cases to be reduced to already evaluated contributions of this
thesis.

Main Contribution

The main contribution of this thesis is the decision of the consistency between the
problem and solution space of a PL. With the sampling method and the combined
method, we proposed two procedures to compute the set of all configurations both
valid and realisable. We designed them to cover this set of configurations completely
(full coverage): The sampling method uses all valid configurations (not a subset) to
decide about the realisability of each configuration. The combined method directly
computes the complete set without further breaking conditions, such as execution
time or result set size.

In the evaluation, we derived the GT of both case studies the way that this full
coverage was expected of both methods. The results of the evaluation show that
both methods satisfy the expectations, yielding exactly the set of configurations
expected. Therefore, we assume this main contribution of the thesis as given in
theory under the (possibly) practical limitations due to computational complexity.
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6.5 Threats to Validity

In the following, we discuss threats to the validity of the evaluation. Internal threats
concern the setup and execution of the evaluation and are discussed in Subsec-
tion 6.5.1. External threats concern the generalisability of the statements and are
discussed in Subsection 6.5.2.

6.5.1 Internal Threats

Evaluation of Resource & Component Assignments

The evaluation focuses on the comparison of the computed sets of configurations
(RSSM

CS1, RSCM
CS1, RSSM

BCS, RSCM
BCS) to the expected sets of configurations (RSGT

CS1,
RSGT

BCS). Thus, the computed decision about the realisability of each configuration
is compared to the expected decision. The defined solution space CSP (Section 4.2)
used in the sampling method and in the combined method actually computes as-
signments of demanded resources from software components to provided resources
of hardware components. These resource assignments are not explicitly evaluated.
Furthermore, the component assignments, which are implied by the resource assign-
ments, are also not explicitly evaluated. Nevertheless, in Section 6.3 we described
how correct resource assignments imply a correct decision about the realisability of
a configuration. Therefore we argue that an incorrect resource assignment would
yield an incorrect decision about the realisability of a configuration, which would be
detectable with our evaluation design.

Correctness of Implemented Code Artefacts

For supporting the evaluation procedure, we implemented tools described in Sec-
tion 5.3: An implementation of the reduce-function, implementations of the sampling
method and the combined method as well as an implementation of the ≡CS-operator.
These tools could contain errors which could lead to wrong computation outputs.
As the practical results of the evaluation are equal to the theoretical expectations,
we assume our tools to be free of errors.

6.5.2 External Threats

Lack of Formal Proofs

The contributions proposed in Chapter 4 consist of a number of propositional logical
formulas, which form CSPs of the solution space (for the sampling method) and the
combined method. With the application on case studies and the comparison against
a GT, we showed the correctness of the results of these formulas, but not their formal
correctness. Hence, we can only state a positive evaluation of the contributions in
context of the case studies.

Lack of External Validation

Furthermore, we designed the case studies without references to existing work. In
detail, the BCS case study relies on an existing FM but was extended by solution
space artefacts. As our contribution and evaluation focuses on these solution space
artefacts, a circular closure is built, where the expected results are designed in ad-
vance. To validate the contributions, they should be applied to an external example
of an instantiated meta-model.
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Technical Threats for Generalisability of Contributions

In Section 6.3, we discussed two technical limitations of our contributions: First,
they were applied only to positive integer values (domain Z). We argue that our
contributions can be generalised to a superset of Z, because we already defined them
for real values (domain R) in Chapter 4. Second, the application of the concepts to
large PLs could be infeasible due to exponential complexity of the computations. We
suggest to adapt the sampling method to be applied to a representative, real subset
of all valid configurations (CSsampled ⊊ CS) while maintaining a coverage criteria.
We defined the formal conditions of this adaption in Table 4.4.



7. Related Work

This chapter presents contributions from other authors which are related to this
thesis. We searched literature in the combined contexts of Variability (e.g. PLs
and other product artefacts with reuse) and Implementation (e.g. implementation-,
solution space- or testing artefacts) and identified ten papers of interest. Most of the
work (6 of 10) we reviewed focuses on (source) code as implementation artefacts. We
categorized all papers (non-disjunctively) to four topics: Models of solution space
artefacts (Section 7.1, 3 papers), analysis techniques of solution space artefacts (Sec-
tion 7.2, 3 papers), papers concerning the mismatch between problem and solution
space (Section 7.3, 3 papers) and sampling strategies (Section 7.4, 4 papers).

7.1 Modeling of Solution Space Artefacts

Ananieva et al. [AGK+22] proposed the UCM as a meta-model of a PL, representing
variability in space (variants) and time (versions). A solution space model to the
UCM was proposed from Wittler et al. [WKR22] and serves as a foundation of this
thesis. It introduced the concepts of components and resources. Our contributions
refined and extended this meta-model in three aspects: First, we modified resources
the way that their properties (additivity, exclusivity, boundary) are only defined
by a resource type, serving as an interface to the characteristics and behaviour of
resources. Second, we proposed a formalisation of solution space artefacts as CSP,
allowing for automatic reasoning about the realisation of configurations. Third, we
detailed capabilities as a representation of run-time variability in the solution space
of a PL.

Neema et al. [NSKB03] suggested a meta-model and tool to synthesize products
in the domain of embedded systems engineering. It abstracts over domain specific
modeling languages (e.g. the UML) by providing a framework which can deal with
arbitrary modeling languages. Therefore, a user instantiates a modeling language
(e.g. a UML class diagram) and defines the model, syntax and semantics of the
instance. The proposed tool supports in finding products that meet all constraints
of the defined model and semantics. In comparison to this thesis, Neema et al.
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[NSKB03] contributed a generic interface to constraint satisfaction for variability-
aware products, while this thesis contributes an actual meta-model and constraint
satisfaction method.

7.2 Analysis of Solution Space Artefacts

The reviewed papers about the analysis of solution space artefacts mostly focus on
checking incompatibilities in a conditional set of implementation artefacts, depend-
ing on the input configuration. Hentze et al. [HSTS22] integrated solution space
constraints (e.g. dependencies between artefacts) into the problem space FM (the
Integrated Feature Model) by handling the solution space artefacts as features of
distinguishable type.

The work of Kästner et al. [KGR+11] and Gazillo and Grimm [GG12] contribute
analysis tools for implementation artefacts (source code) of variability-aware soft-
ware systems which do not have to generate each software product individually, but
can detect errors in advance of preprocessor actions.

While Kästner et al. [KGR+11] and Gazillo and Grimm [GG12] focus their contri-
butions on the analysis of source code, the Integrated Feature Model from Hentze
et al. [HSTS22] allows the application to arbitrary domains. Nevertheless, all three
contributions are similar to this thesis in terms of relating explicit solution space
constraints to the variability of a product family. They differ to this thesis either
in their generality of application (Kästner et al. [KGR+11], Gazillo and Grimm
[GG12]) or their ability to express more complex solution space constraints than
basic propositional logic as used in FMs (Hentze et al. [HSTS22]).

7.3 Inconsistencies Between Problem and Solution Space

Contributions about the inconsistency of problem and solution space regard the ex-
plicit distinction between variability along the FM and variability in derived prod-
ucts. They share the initial assumption that the solution space contains further
constraints which diminish the variability of a PL.

As described in the previous section, Hentze et al. [HSTS22] integrated solution
space constraints as (solution-space-) features into the problem space of a PL.
Their work further allows for a comparison of the variability with and without these
solution-space-features, quantifying a possible inconsistency between problem and
solution space.

The contributions of Thüm et al. [TKES11] and El-Sharkawy et al. [ESKS17] reason
about inconsistencies caused by feature model design. The argumentation of Thüm
et al. [TKES11] is based on abstract features, which do not have any solution space
artefacts and only exist for structural reasons in a FM. They argue that, due to
these abstract features, the number of actual, distinctive product variants is lower
than the number of valid configurations. El-Sharkawy et al. [ESKS17] analysed the
Linux kernel for mismatches between its variability model (problem space) and its
actual variability. Their results show, that most of the mismatches rely on variability
options which do not effect the resulting product. This corresponds highly to the
work of Thüm et al. [TKES11].



7.4. Configuration and Product Sampling 79

Thüm et al. [TKES11] and El-Sharkawy et al. [ESKS17] related inconsistencies
to the design of the FM and the derived solution space artefacts and constraints.
In contrast, Hentze et al. [HSTS22] let solution space constraints to be stated
independently from the problem space, but integrated them later into the FM. All
three contributions are able to quantify inconsistencies between problem and solution
space. With the sampling method, our contributions are also able to quantify this
mismatch. It differs from the related work, because it keeps problem and solution
space constraints completely separate.

7.4 Configuration and Product Sampling

Configuration sampling is introduced in Subsection 3.1.2. It addresses the genera-
tion of a representative subset of configurations, called Sample. A basic sampling
strategy is the T-wise Feature Interaction Coverage, where all possible, valid t-wise
combinations of features are regarded. The enhanced implementation of the naive
procedure is called YASA from Krieter et al. [KTS+20] and is, for example, available
in the FeatureIDE. Varshosaz et al. [VAHT+18] gave a general overview of sampling
strategies in the literature. We want to focus on contributions which also regard
solution space artefacts in their sampling strategy.

A sampling strategy for generic solution space artefacts was proposed by Hentze et al
[HPS+22] and relies on their previous work on the Integrated Feature Model. Their
sampling strategy takes solution space constraints and behaviour into account when
sampling for t-wise feature interaction coverage. For example, two t-wise feature
interactions can yield the same solution space artefacts and thus differ only in the
problem space, not in the solution space where further testing is relevant. Therefore,
the sample set size can be reduced by avoiding the duplication of configurations with
the same set of solution space artefacts.

A similar approach for the application on PLs with source code artefacts is taken by
Kim et al. [KBK11] and Shi et al. [SCD12]. Both contributions analyse, if different
configurations yield differences in the resulting source code of the derived software
products. Kim et al. [KBK11] therefore use static software analysis tools on each
derived product, while Shi et al. [SCD12] reason with feature dependencies and
interactions resulting from code analysis in advance.

Tartler et al. [TLD+11] proposed a sampling strategy that regards source code
coverage, e.g. how much lines of code a sample covers. First, they build a graph
structure from source code blocks (nested blocks and if-else-cascades). Then, they
identify source code blocks which can not be selected the same configuration. These
are the solution space constraints. With graph theory algorithms (coloring problem
solver), they find combinations of source code blocks representing configurations,
and therefore achieve a high statement coverage.

All four contributions (Hentze et al. [HPS+22], Kim et al. [KBK11], Shi et al.
[SCD12], Tartler et al. [TLD+11]) share the intention to reduce the sample set size
by analysing similarities in sets of solution space artefacts, as different configurations
in the problem space do not necessarily yield different product variants. With the
sampling method, our contributions can also reduce a sample set size. The main
difference to the related work is, that the sampling method identifies incompatibilities
between solution space artefacts instead of similarities between product variants.
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8. Conclusion and Outlook

This thesis addresses the consistency between the problem and solution space of a
PL in CPSs. The problem space diverges from the solution space, if the variability of
the FM (problem space) is reduced by solution space constraints, such as incompat-
ible solution space artefacts. We proposed two methods to decide this consistency,
the sampling method and the combined method. The sampling method (Subsec-
tion 4.3.1) takes a sample of valid configurations and decides about the realisability
for each configuration. This allows to check in advance, if an existing configuration
is still working after an update. The combined method (Subsection 4.3.2) gener-
ates configurations which are both valid and realisable, directly. This has practical
advantages for further product testing, as usually only these configurations are of
interest.

In detail, the thesis was structured along three research questions introduced in
Chapter 1:

RQ1 How can solution space artifacts be formally described in a meta-model?

RQ2 How can the realisability of a valid configuration be decided?

RQ3 How can run-time variability be described?

For research question RQ1, we modified the UCM from Wittler et al. [WKR22] to
express generic solution space artefacts (Section 4.1). It consists of software compo-
nents which demand resources and hardware components which provide resources.
A resource belongs to a resource type, which has three properties: Additivity, exclu-
sivity and a boundary type. These properties control the behaviour of the resource,
for example if it adds up in value when demanded multiple times, such as RAM.

For research question RQ2, we proposed a procedure to formalise the solution space
artefacts of a valid configuration as a CSP (Section 4.2). It is based on the modified
UCM and represents a resource allocation problem, where the resource demands of
the software components are compared to the resource provisionings of the hardware
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components. If all resource demands are satisfied by the resource provisionings, we
consider the configuration to be realizable.

For research question RQ3, we introduced the concept of capabilities to the mod-
ified UCM (Section 4.4). Capabilities can express arbitrary dependencies between
solution space artefacts, for example two software components. We showed two
demonstrations how to shift these dependencies into the problem space of a PL,
where they can be represented as resource demands or as FM constraints. This
allows for the application of our contributions on the research questions RQ1 and
RQ2.

In the evaluation (Chapter 6), we designed two case studies: The CS1 to verify
the contributions and the BCS case study to apply the contributions to a well
known PL in the research context. For each case study, we computed the set of
configurations which are both valid and realisable with the sampling method and
the combined method. Then we compared the result sets to the GT (expected sets)
for equality. We found a full coverage of the expected results for both methods
(sampling method and combined method) and both case studies. Therefore, we
assume the two methods to be evaluated positively with the given limitations.

As a further work on this topic, we first suggest to generalise the properties of a
resource type in the meta-model. With the three properties, additivity, exclusivity
and boundary type, we initially enabled to control the behaviour of resources. For
example, the demanded RAM of a number of software components is added up
when comparing it to the provided resource of a hardware component. In real-world
scenarios, resource allocation can behave non-linearly (e.g. logarithmically) due to
technical limitations, such as computation overhead or latency. Hence, we suggest
to generalise resource properties to the specification of arbitrary functions, instead
of simple summation-arithmetic.

With the combined method, configurations both valid and realisable can be itera-
tively computed. Depending on the used solver (in this thesis: Z3 Theorem Prover),
the resulting configuration (per iteration) can not be influenced and mainly depends
on the algorithm inside the solver. Therefore, we suggest to enhance the procedure
to influence the iterative computation of configurations. For the Z3 Theorem Prover,
Bjorner et al. [BPF15] proposed the specification of objective functions when apply-
ing the solver to CSPs. This way, manufacturers of PLs can compute configurations
which not only satisfy problem and solution space constraints but also optimize on
self-defined metrics.
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