RELATIONSHIP BETWEEN PHYSIOLOGICAL PARAMETERS AND TIME-TRIAL PERFORMANCE OVER 1, 2 AND 3 KM IN WELL-TRAINED RUNNERS

SCHWARZ YM, NOLTE S, FUCHS M, GEHLERT G, SLOWIG Y, SCHIFFER A, FOITSCHIK T, ABEL T, QUITTMANN OJ

Deutsche Sporthochschule Köln

German Sport University Cologne Institute of Movement and Neurosciences

Physical Fitness and Performance

Determinants of 800-m and 1500-m Running **Performance Using Allometric Models**

STEPHEN A. INGHAM¹, GREGORY P. WHYTE², CHARLES PEDLAR³, DAVID M. BAILEY¹, NATALIE DUNMAN³, and ALAN M. NEVILL⁴

¹English Institute of Sport, Loughborough University, Loughborough, Leicestershire, UNITED KINGDOM; ²Research Institute for Sport and Exercise Science, Liverpool John Moores University, Henry Cotton Campus, Truman Road, Liverpool, UNITED KINGDOM; ⁴English Institute of Sport, St. Mary, College, Twistenham, UNITED KINGDOM; and ⁴Department of Sports Studies, University of Wolverhampton, Walsall Campus, Walsall, UNITED KINGDOM

Ingham et al. (2008) Phys Fit Perf

Running Performance

L. Jerome Brandon

Georgia State University, Atlanta, Georgia, USA

Brandon (1995) Sports Med

J Appl Physiol 107: 478-487, 2009. First published May 28, 2009; doi:10.1152/japplphysiol.91296.2008.

Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run

Véronique Billat,¹ Laurence Hamard,¹ Jean Pierre Koralsztein,² and R. Hugh Morton³ ¹Faculty of Sport Sciences, University of Evry-Val d'Essonne, Evry, France; ²Sport Medicine Center CCAS, Paris, France; and ³Institute of Food, Nutrition, and Human Health, Massey University, Palmerston North, New Zealand Submitted 28 September 2008; accepted in final form 26 May 2009

Billat et al. (2006) J Appl Physiol

Introduction

Methods

Results

Discussion

Conclusion

Previous studies often investigated physiological traits of **elite athletes** and athletes **specialized in middle-distance running**

The subjects included 15 male middle-dis, nce runners; 8 were specialists over 800-m and 7 over 1,500-m races. The two groups had

Subjects

Twenty-nine elite male runners participated in the study. These athletes were the best runners in Sw den at the time of the study and all belonged to the Swedish natioil team in their respective events. The inty-seven of the

Ingham et al. (2008) Phys Fit Perf Billat et al. (2006) J Appl Physiol

Introduction	Methods	Results	Discussion	Conclusion

"Using samples restricted (truncated) to contain only elite athletes or highly trained individuals may result in biased results."

Borgen (2018) Sports Med

ntroduction	Methods	Results	Discussion	Conclusion			
Participa	ants	Investigated	Parameters				
Sprinters (n Middle-/ Ior runners (n = (Ultra-)mara runners (n =	ng-distance 16) MANANANAN thon	 Physiology Maximal oxygen uptake (VO₂max) Maximal fat oxidation (MFO) Running economy (RE) Fractional utilization of at VO₂max MLSS (%VO₂max) Maximal lactate accumulation rate (VLa_{max}) Difference between resting and maximal post 100- m sprint lactate concentration (ΔLa₁₀₀) 					
		Performance					
Mean Chara		 Velocity associate Maximal lactates Critical Velocity (<)			
Age: Body mass: Body fat (%):		11. Finite amount of 12. Anaerobic speed		ded above CV (D')			
VO₂max:	66.0 ± 5.71 mL·min ⁻¹ ·kg ⁻¹	13. Speed reserve ra	atio (SRR)				

VO₂max: RE: 66.0 ± 5.71 mL·min⁻¹·kg⁻¹ 222.0 ± 11.1 mL·kg⁻¹·km⁻¹

Experimental design

Figure 1 Correlation coefficients of physiological parameters and 100 m sprint and 1, 2, and 3 km TTs are displayed as solid dots and bars indicating respective confidence intervals.

Intersection of confidence intervals with zero corresponds to p-values exceeding 0.05.

ion	Methods	Results		Discus	sion	
Time-trial	Model	R ²	Δ R ²	Resid. Std. Error	р	AIC
100 m	V′La _{max}	0.60		0.31	< 0.0001	-45.22
100 m	$VLa_{max} + \Delta La_{100}$	0.97	0.12	0.08	< 0.0001	-96.96
	VO _{2max}	0.46		0.26	0.001	-52.56
	VO _{2max} + VLa _{max}	0.53	0.07	0.25	0.003	-53.39
1000 m	$VO_{2max} + VLa_{max} + MFO$	0.58	0.05	0.24	0.004	-53.52
	$VO_{2max} + VLa_{max} + MFO + RE_{MLSS}$	0.62	0.05	0.23	0.004	-53.88
	۷O _{2max}	0.65		0.20	< 0.0001	-61.86
	VO _{2max} + MFO	0.78	0.13	0.16	< 0.0001	-69.55
2000 m	$VO_{2max} + MFO + RE_{MLSS}$	0.83	0.05	0.15	< 0.0001	-72.36
	$VO_{2max} + MFO + RE_{MLSS} + VLa_{max}$	0.85	0.02	0.14	< 0.0001	-73.28
	۷O _{2max}	0.71		0.21	< 0.0001	-61.32
	VO _{2max} + MFO	0.83	0.12	0.16	< 0.0001	-70.53
3000 m	$VO_{2max} + MFO + RE_{MLSS}$	0.88	0.05	0.14	< 0.0001	-75.33
	VO _{2max} + MFO + RE _{MLSS} + %VO _{2max}	0.93	0.05	0.11	< 0.0001	-83.00

Figure 2 Forward stepwise regression models of physiological parameters for sprint and TT velocity are displayed including coefficient of determination (R^2), change of R^2 and relation to inferior model (ΔR^2), residual standard error (m·s-1), probability of alpha error (p). Akaike's Information Criterion (AIC) was used for successive selection of added variables.

Figure 3 Correlation matrix displaying correlation coefficients for all physiological parameters. * indicates probability of alpha error below 0.05

Introduction	Methods	Results	Discussion	Conclusion

- High relevance of VO₂max for middle-distance running is congruent with previous research (Brandon, 1995; Ingham et al., 2008; Billat et al., 2006)
- Evidence exists, that %VO2max might not play such a decisive role as previously assumed in endurance running

(Joyner & Coyle, 2008; Støa et al., 2010, Gordon et al., 2017)

- It could be assumed that MFO indicates general status of endurance performance rather than directly influencing middle-distance running (Maunder)
 (Maunder et al., 2018)
- Few studies have investigated influence of anaerobic variables directly

(Schnabel & Kindermann, 1983 ; Sandford et al., 2019a, Sandford et al., 2019b, Bellinger et al., 2021)

IntroductionMethodsResultsDiscussionConclusionInfluence of anaerobic metabolism on sprint and time-trial
performanceFinal StructureFinal StructureFinal Structure

 Anaerobic metabolism enables higher total rates of energy release

> (Robergs et al., 2004, Hanon et al., 2019)

- Muscular acidosis as a result of anaerobic energy release is detrimental for endurance performance
- Fast-twitch fibers involved in highintensity running are more prone to fatigue

(Lievens et al., 2020)

Introduction	Methods	Results	Discussion	Conclu
· · · ·				

Limitations

- Applicability of results for more homogenous cohorts remains unknown
- Difficulties in valid assessment of anaerobic power and capacities

(Noordhof et al., 2018, Buchheit & Laursen, 2013)

 Investigated "anaerobic" parameters might not solely reflect influence of anaerobic metabolism but other characteristics such as muscle typology etc.

(Lievens et al., 2020)

Future Directions

- **Training intervention studies** are needed to further understand modulation of anaerobic parameters and endurance performance through exercise prescription
- Studies investigating underlying mechanisms of detrimental effects of anaerobic metabolism on endurance performance

Conclusions

- Aerobic variables (VO₂max, MFO, RE) have an increasingly positive influence on time trial performance
- Anaerobic variables ($\dot{V}La_{max}$, ΔLa_{100}) have an increasingly negative influence on time trial performance
- Beneficial and detrimental effects of anaerobic metabolism might be in balance in maximal running lasting approximately three minutes
- **Regular monitoring of anaerobic parameters** might be of special interest for middle-distance runners and coaches

Introduction	Methods	Results	Discussion	Conclusion

Supplementary Data

Introduc	tion		Meth	nods		Re	sults		Di	scussic	on		Conclus	ion
SRR														
ASR	0.97										rrelatic			
D'	0.77	0.81									eniciei			
∆La ₁₀₀	0.65	0.64	0.53							-1	0	1		
VLa _{max}	0.64	0.68	0.78	0.88							-			
Fat _{max}	-0.87	-0.77	-0.52	-0.63	-0.43									
MFO	-0.73	-0.65	-0.47	-0.40	-0.39	0.62								
RE	0.58	0.50	0.39	0.46	0.31	-0.79	-0.26							
CV	-0.95	-0.89	-0.74	-0.57	-0.59	0.82	0.75	-0.55						
vMLSS	-0.86	-0.79	-0.62	-0.51	-0.48	0.88	0.55	-0.66	0.91					
%ൎVO₂max	-0.21	-0.26	-0.37	0.19	-0.02	0.11	0.12	0.07	0.19	0.22				
vVO₂max	-0.79	-0.69	-0.41	-0.47	-0.24	0.88	0.55	-0.66	0.83	0.79	-0.05			
ḋO₂max	-0.75	-0.68	-0.48	-0.59	-0.46	0.74	0.51	-0.40	0.82	0.83	-0.12	0.76		
	SR	doy.	ò	A1.2100	UL anat	Fatroat	with ⁰	Q ^E	S S	MISS	olovomat	juoznat	Joznat	

uction	Methods		Results	Discus	sion	Conc
Time-trial	Model	R ₂	ΔR_{2adj}	Resid. Std. Error	р	AIC
400	D'	0.48		0.35	< 0.001	-39.85
100 m	D' + CV	0.53	0.05	0.34	0.002	-39.88
	vVO₂max	0.58		0.23	0,0001	-57.53
1000 m	vVO₂max + D'	0.76	0.18	0.18	< 0.0001	-66.86
	v [.] VO ₂ max + D' + CV	0.97	0.21	0.06	< 0.0001	-106.84
	CV	0.80		0.16	< 0.0001	-72.60
2000 m	CV + D'	0.98	0.18	0.05	< 0.0001	-118.70
3000 m	CV	0.97		0.06	< 0.0001	-105.55
	CV + D'	1.00	0.03	0.02	< 0.0001	-165.15

Introduction	Methods		Results	Discuss	ion	Conclusion	
			vMLSS	CV *	Fat _{max}	D' *	
Participant			[m·s ⁻¹]	[m⋅s⁻¹]	[m·s ⁻¹]	[m]	
	SP	mean	3.53	4.15	2.43	285.84	
characteristics	(n = 6 / 4 [*])	SD	0.27	0.15	0.34	46.14	
	MD-LD	mean	4.33	4.78	3.23	186.68	
	(n = 16 / 15 [*])	SD	0.41	0.37	0.28	52.47	
	M-UM	mean	4.37	4.95	3.24	167.08	
	(n = 3 / 1 [*])	SD	0.21	0.21	0.23	19.52	
	Total (n = 25 / 20)	mean	4.14	4.67	3.04	203.70	
		SD	0.50	0.41	0.45	62.98	
			v VO₂max	v100	ASR	SRR	
			[m·s ⁻¹]	[m·s ⁻¹]	[m⋅s⁻¹]		
	SP	mean	5.10	8.54	3.44	1.68	
	(n = 6)	SD	0.29	0.33	0.45	0.12	
	MD-LD	mean	5.65	7.62	1.97	1.35	
	(n = 16)	SD	0.36	0.36	0.37	0.08	
	M-UM	mean	5.45	7.17	1.72	1.32	
	(n = 3)	SD	0.53	0.20	0.55	0.13	
	Total	mean	5.49	7.78	2.29	1.43	
	(n = 25)	SD	0.42	0.56	0.77	0.17	

Figure 4 Conceptual data displaying correlation coefficients and confidence intervals of respective mean time-trial. Grey areas indicate time range of TOP50 (World Athletics, 2022) male and female performances in the 800 m, 1500 m and 3000 m SC running events.

Introduction Methods Results Discussion Conclusion

Calculation of maximal lactate accumulation rate

maximal post- sprint lactate concentration - resting lactate concentration

100-m sprint time - alactic time

Introduction	Methods	Results	Discussion	Conclusion

Non-normally distributed parameters

%^{VO}2max MFO ^VLa_{max} ASR SRR