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Abstract

After decades of research, dark matter remains elusive. This has motivated the recent efforts to
comprehend the characteristics of dark matter in our neighborhood. In this thesis, we investigate
the possibility of dark matter forming gravitationally bound structures. In addition to the inevitable
constraints imposed on our techniques for identifying and detecting dark matter, these might also
be correlated with distinctive signals. Consequently, they may offer precious insights into specific
models of dark matter.

One notable illustration of this phenomenon is given by the axion miniclusters. Emerging within
a scenario where axions, hypothetical particles introduced to address the strong CP problem, are
produced subsequent to inflation, these structures consist of axions bound by gravitational forces,
exhibiting a mass on the order of ∼ 10−12M⊙. Given their potential to form as early as during the
matter-radiation equality epoch, the initial population of axion miniclusters is subjects to many ef-
fects that alter, damage and even destroy them. Among these effects, tidal interactions with stars,
after becoming gravitationally bound within a galaxy, are particularly noteworthy. Inspired by the
critical implications for direct detection – where the presence of a uniform axion background ver-
sus bound structures can result in markedly divergent signals – we investigate the survival of the
miniclusters when confronted to these tidal interactions. Notably, marking a pioneering step, we
undertake this analysis by incorporating the classical wave formalism that is indispensable for com-
prehending axionminiclusters. Our research conclusively establishes that the survival is profoundly
linked to their density profile. However, as we explore various profiles, our study reveals a notewor-
thy outcome: a substantial proportion of these clusters would survive to the stellar tidal interactions.
(a)
In line with this analysis, we then proceed to study the signal an axion minicluster would induce
in direct detection experiments and more precisely in haloscope setups similar to ADMX. Since the
output signal in the latter experiment is proportional to the product of the density and the axion-
photon coupling, ρg2aγγ , we confirm that a minicluster would induce a signal order of magnitudes
larger than in an axion background case. More importantly, we show that in the happy event of an
encounter, a high-resolution haloscope can unravel the density coupling product by first accessing
the gravitational potential of the cluster. (b)

Another part of this thesis is devoted to primordial black holes, long considered to be good can-
didates for dark matter, even though they are today strongly constrained by observations. They
constitute a strong prediction in the case of large scalar (curvature) fluctuations in the early uni-
verse and have the interesting phenomenological property of being associated with the production
of gravitational waves. Based on the recent potential gravitational wave signal observed among
the Pulsar Timing Array communities, we perform a Bayesian search to derive the posterior distri-
butions for the shape of the primordial curvature fluctuations. We demonstrate that, although the
signal might, at first sight, be explained by such a process, the associated production of primordial
black holes is spoiling the observational constraints. (c)

(a) V.Dandoy, T. Schwetz, and E. Todarello, "A self-consistent wave description of axion miniclusters
and their survival in the galaxy", JCAP 09 (2022) 081, [2206.04619].

(b) V. Dandoy, J. Jaeckel, and V. Montoya, "Using Axion Miniclusters to Disentangle the Axion-photon
Coupling and the Dark Matter Density" , [2307.11871] (Prepared for submission to JCAP).

(c) V. Dandoy, V. Domcke, and F. Rompineve, "Search for scalar induced gravitational waves in the
International Pulsar Timing Array Data Release 2 and NANOgrav 12.5 years dataset", [2302.07901]
(Accepted in SciPost).
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Chapter 1

Introduction

"We see it as Columbus saw America from the coast
of Spain. Its movements have been felt, trembling
along the far-reaching line of our analysis with a
certainty hardly inferior to that of ocular
demonstration".

William Herschel

What course of action should I take if I suddenly discover an exception to a law of nature that
has long been accepted by the community as a whole? This question has two radically opposed but
equally interesting answers, and has probably guided the generation of modern scientists.

To illustrate the first, we need to go back to the 18th century. At that time, Newton’s law of
gravity was considered to be one of the most accomplished theory, able to predict the motion of
all objects on Earth, as well as all known planets. Nonetheless, as a breakthrough in this peace
full timeline, William Herschel showed by observations the evidence of a new planet, Uranus [1].
Soon, astronomers realized that its orbital motion around the sun was incompatible with what was
expected and calculated from Newton’s theory [2]. Naturally, this matter divided the scientific com-
munity in two groups. The first, in favor of a modification of the universal law of gravity proposed
by Newton, argued that the latter should be only valid close enough to the sun and would lose its
validity as moving away from it. The second, not ready to give up on Newton’s laws, proposed to
explain the Uranus anomaly by an other planet, yet undiscovered, disturbing the orbital motion of
Uranus by gravitational interactions. Eventually, the second group, based on Newton’s gravity, cal-
culated the position of the supposed new planet and discovered Neptune, first astrophysical object
found only with the use of the laws of physics. Regardless of the outcome, both solutions would
have lead to a radical change of perception.

To illustrate the second answer to our question, one of the most striking example has emerged
much more recently. Still according to Newton’s laws, in a two body system, like a planet-star sys-
tem, the point of closest approach, the perihelion, is fixed. At the end of the 19th century, Le Verrier,
realized that this condition was actually not fulfilled for one planet, Mercury [3]. So, by analogy
with what happened over a hundred years ago with Uranus, the scientific community found itself
faced with the same two options: Should we modify theory or is there something, that we do not
see, that is disturbing the motion of Mercury? Clearly learning from their previous experience, most
of them have headed for a new planet, even closer to the Sun than Mercury [4]. None was found,
despite the much more advanced technology available at that time. It was not until the 20th century
and Einstein’s theory of general relativity [5] that it became clear that Mercury’s anomaly was due
to a lack of validity of Newton’s gravity near the Sun. Again, here both options would have lead to
a radical change in our perception of the world, but this time, the theory has to be changed.
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1.1. AXIONS AND AXION MINICLUSTERS

The aim of this introduction was to present the important context in which the dark matter
problem - center of this thesis - arose and to help you understand the possible outcomes.
The story of dark matter began in the same way as previous situations, with an anomaly: In the 20th
century, our knowledge on the Universe was already quite broad. We knew, for instance, about the
existence of galaxy clusters. They are nothing more than galaxies held together by a perfect balance
of gravity and speed. Gravity prevents them from escaping and their speed prevents them from
collapsing towards each other. Measuring the speed of galaxies in a stable cluster should therefore
give us an idea of the total mass of the cluster. In the 20th century, Fritz Zwicky [6], observing stable
clusters of galaxies, hence proceeded to determine the mass of the clusters by measuring the velocity
dispersion of the galaxies. He then compared it to the mass he could actually observed from looking
directly at the galaxies. The two measurements of the cluster mass did not match. More precisely,
he concluded that the mass he directly observed was dramatically lower than the mass needed for
the clusters to be stable. According to its calculation, the galaxies were not providing enough mass
to generate the gravity required, and the clusters should have been dismantled by now.
After this first anomaly, many others followed (rotational curves [7], bullet clusters [8, 9],...), all
pointing to two possible conclusions: either there is some missing mass (today named dark matter),
or the theory of gravity needs to be modified, once again. To put concrete numbers on this, we know
today that, if dark matter is indeed a unknown component of the universe, it should compose 85%
of the latter total mass [10]. Unfortunately, compared to the two previous examples, the answer on
the nature of dark matter is yet still unknown.
Of course, this thesis is not intended to provide an answer to this question, as it will probably come
from experimental evidence. Nevertheless - taking the assumption that there is indeed a unknown
component in the universe - this manuscript aims to address the phenomenological consequences
on specific dark matter candidates. This process is in fact inevitable if we want to steer experimental
research in the right direction: it seems difficult to search for this hidden part of the Universe if we
don’t know how it looks like. To give concrete intuition on how the phenomenology of a darkmatter
candidate could alter the experimental searches, let’s imagine that dark matter is a new particle,
homogeneously distributed in the galaxy. Naively, an Earth-based direct detection experimentwould
have a time-independent probability of detecting this dark matter background. On the other hand,
if the same new particle is bound in stable structures (small relative to the galaxy), we can only
hope to have a signal if one of these dark matter clusters crosses the Earth. The astrophysical
structure of dark matter is, therefore, playing a crucial role in the way we should search for it.
Motivated by this last example (and others omitted in this introduction), we will be mainly focused,
along this manuscript, on the possibility for dark matter to be bound inside stable structures. In
addition to provide radically different signal in direct detection experiments, clumped dark matter
structures could also be associated with other types of signals, such as the gravitational lensing
effects, gravitational waves (GWs), etc,... Observing these effects, would then provide important
hints on the nature and the astrophysical structure of dark matter and, on the other hand, their
non-observation can constrain some of these clumped structures.
Two distinct dark matter candidates that present clumped structures will be discussed. The first,
the axion (a new hypothetical particle), has the exotic property, under some scenarios, to be bound
in clusters named axion miniclusters (AMCs) . They will be at the center of this thesis and their
properties, as well as signatures in experiments, will be extensively discussed. The second, the
primordial black holes (PBHs), has the property to be associated with the production of gravitational
waves. Using the data from Pulsar Timing Arrays experiments, we will see that existing constraints
on PBH abundance may be used to importantly constrain cosmological models.

1.1 Axions and Axion Miniclusters

If the dark matter is "simply" composed of particles, what properties should they have? Intuitively,
since we are not able to observe them, they can not interact electromagnetically or at most very
weakly, same for the weak interaction. On the other hand, they need to interact gravitationally in
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order to account for all the observed effects. Last but not least, dark matter must be cold, i.e that the
particles are non-relativistic, in order to not spoil structure formation. None of the known particles
of the Standard Model meets all these constraints. The way is, therefore, to go beyond Standard
Model particle physics as it has for instance been done with Super-Symmetry (SUSY) [11]. In this
model, many new elementary particles are added and can then potentially behave as dark matter.
We refer to WIMPs (weakly interaction massive particles) for these particles. Unfortunately, despite
important effort from the experimental side, no evidence for WIMPS has been found [12, 13, 14].
Another hypothetical new particle - the axion - has recently attracted strong attention. Interestingly,
the scientists behind the postulation of this new particle were in the process of solving another very
important problem in physics, the strong CP problem [15, 16, 17]. Without giving too deep details
here (this will be extensively discussed in Chapter 2), the latter is related to the fact that the strong
interaction seems to preserve the CP symmetry, whereas it is known that a violating term is actually
present in the Lagrangian. This apparent conundrum was solved in the 1970’s by Peccei and Quinn
[15], who realised that the introduction of a new Goldston boson, later named the axion [18] , could
compensate for the CP violating term, thus reconciling theory and experiment. However, they did
not realise that this Goldston boson would have the exact properties of the cold dark matter the
community was looking for. This conclusion has been later given by Weinberg [18].

The essential idea behind the axion, is that the Standard Model is extended with a global U(1)
symmetry. The latter is spontaneously broken at a given scale fa so that the emerging Goldston
boson gets interactions inversely proportional to this scale. We will see in the next chapter that, in
order to solve the strong CP problem, the axion has to carry an interaction term with the gluon field.
Importantly, this represents a temperature dependent potential for the axion that will, in addition to
solve the strong CP problem, induces a temperature dependent mass ma(T ). As soon as the gluon
potential develops, the axion field would start to oscillate around the minimum of the potential and
provide an energy density in line with was is expected from cold dark matter. This is the so-called
misalignment mechanism [19, 20, 21, 22, 23]. Of course, the today’s relic abundance depends on the
axion mass ma (or the symmetry breaking scale fa). It will be shown that, for ma ∼ 10−5eV, the
total amount of dark matter can be explained by axions [24].
Interest in this particle goes even further than its dark matter interpretation. Soon after its postula-
tion, it has indeed been realized that, in the case of a symmetry breaking occurring after inflation, the
field is initially inhomogeneous, taking different initial values in each causal disconnected region.
While it does not change the possibility for the axion to account for the whole dark matter relic
abundance, it induces phenomenological signatures extremely precious for dark matter searches.
In particular, those inhomogeneities are expected to grow and collapse way before usual structure
formation into the so-called axion miniclusters [25].
Post-inflation axions therefore offer the promise of exotic phenomenoligical signatures and the
clumped structures we introduced above. But, what do we know about axion miniclusters?
So far, they have been extensively studied via numerically simulations (see Refs.[26, 27, 28, 29, 30,
31]). It is, however, extremely challenging to understand the whole evolution of these objects, from
their creation around matter-radiation equability until our current days. For instance, previously
mentioned numerical simulations account for their evolution, throughmerging and collisions, down
to a redshift z ≈ 100. At that time galaxies have not yet formed. At late times, it is known that ax-
ion miniclusters would become the site of galaxy formation [31] and themselves be part of the dark
matter halo of those galaxies. This late part of the history of the life of the axion minicusters is,
therefore, not understood yet.
Secondly, we may wonder about the way to describe an axion minicluster. A careful analysis would
lead to the conclusion that such light particles have extremely high occupation numbers (since they
are bosons this is indeed not a problem). Hence, in analogy to the photons that are better described
by the Maxwell equations in this limit, the axions will be described via a classical field [32]. It im-
plies for the axion miniclusters to be described, as well, by a classical field rather than via a classical
particle description.
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The first chapter of this thesis is specifically dedicated to these two previous points: how to describe
the late time evolution of the axion miniclusters accounting for their classical wave properties?
Solving this question will shed light on the fact that, even if being astrophysical objects, their wave
function is still governed by the Schrodinger equation. This interplay between classical behavior
and quantum formalism makes the richness of this analysis. In this chapter, the survival of the
miniclusters against tidal interactions with galactic stars will be extensively studied.

As mentioned in the first part of this introduction, having clumped structures would induced a
radical change in the expected signal on direct detection experiments. This conclusion motivates the
second chapter of this thesis, where the haloscope [33, 34] signal in the case of an axion minicuster
encounter will be studied.
The latter, designed as a cavity embedded in a strong magnetic field, uses the fact that axions should,
in addition to the gluon coupling, inherit a coupling to photons, with a coupling constant gaγγ that
is naturally unknown. As we are travelling within the dark matter halo, incoming axions in the
cavity can then interact with the magnetic field and induce an electromagnetic field. Intuitively,
the strength of the output signal can be enhanced by two distinct factors. First, the axion density ρ
can simply be increased. This would naturally enhance the electromagnetic power produced within
the haloscope cavity. On the other hand, increasing the coupling would increase the axion-photon
conversion and contributes as well in enhancing the output power. Doing explicit calculation (see
Chapter 4) leads to the conclusion that the electromagnetic power induced in a haloscope experiment
is proportional to ∼ g2aγγρ. No separate information on the coupling or the density can apparently
be extracted from such measurement.
In this context, the haloscope signal in the case of an encounter with an axion minicluster will be
derived. It will be furthermore shown that, in the, lucky, case of such an encounter, the haloscope
cavity would be capable of disentangling the axion-photon coupling by having first access to the
gravitational potential of the cluster.

1.2 Primordial Black Holes and Gravitational Waves

Wementioned that observing particular cosmological/astrophysical signatures may constrain some
clumped dark matter candidates, and vice versa. This is the case for primordial black holes and grav-
itational waves.
The Pulsar Timing Arrays (IPTA [35], NANOGrav [36, 37], EPTA [38],...), are experiments observ-
ing multiple pulsars and recording the times at which their light pulses are reaching the Earth. For
stable pulsars, as the ones they are observing, it is expected for the pulses to be extremely regular
in time (up to some known deviations). However, in the case of incoming gravitational waves, the
induced space-time distortion would translate into an additional delay between the pulses. Hence,
recent data1 have shown evidence for the presence of a stochastic gravitational wave background.
This was naturally followed by a considerable effort to understand its origins. If the most accepted
is given to be the coalescence of super-massive balck holes [39, 40], gravitational waves may also be
produced in the early universe by exotic phenomena.
One of those assumes large curvature fluctuations at small scales [41, 42, 43, 44, 45, 46]. It indeed
constitutes an exotic production mechanism since the curvature fluctuations are know to be ex-
tremely small at CMB scales (∼ 1Mpc) [10]. If, for some reasons, large fluctuations are, nonethe-
less, produced at small scales, the scalar perturbations of the metric would naturally trigger tensor
perturbations and induce a gravitational wave background nowadays. The counter part of hav-
ing large curvature perturbations is that it would unavoidably produce primordial black holes, that
will contribute to the dark matter relic density [47, 48]. The fraction of the dark matter in pri-
mordial black holes is however strongly constrained by observations (lensing, cosmic microwave
bakcground (CMB), laser interferometer gravitational-wave observatory (LIGO),...).

1At the time of this project, only data from NANOGrav 12.5 years were available [36]. At the end of this thesis the 15 years data set have been
released [37], showing even stronger evidence for a stochastic gravitational wave background.
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In Chapter 5, we proceed to analyse the public data from both NANOGrav 12.5 years and IPTA DR2,
interpreting the potential gravitational wave signal as coming from large curvature fluctuations. We
find that the population of primordial black holes induced by the fluctuations capable of explaining
the signal are in strong conflict with the astrophysical constraints.

This manuscript is organized as follows: Starting with the axion part, the Chapter 2 is dedicated
to introduce this new particle. We, therefore, discuss the strong CP-problem as well as its solution
and the production mechanism for the axion in the early universe. In Chapter 3, we discuss the
evolution of the axion miniclusters in the late universe and their survival in the galaxy. We derive
as well a general formalism to describe the axion miniclusters in a classical field picture. In Chapter
4, we use this wave function to derive the signal in haloscope experiments an axion minicluster
would induce and proceed to describe a method able to disentangle the axion-photon coupling.
In chapter 5, we discuss how primordial black holes can constrain the potential gravitational wave
signal observed in pulsar timing arrays.
We finally conclude, discuss the results and future prospects in Chapter 6
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Chapter 2

Formalism and Phenomenology of Axion
Dark Matter

In this chapter the axion will be consistently introduced. In Sec.2.1 and Sec.2.2 we start with the way
it brings a solution to the well-known strong CP-problem. The axion interactions in the different
models will then be discussed in detail in Sec.2.3 and the current existing limits on axion parameters
will be reviewed. Finally, in Sec.2.4, we are going to introduce the different mechanisms able to
produce a sizable axion relic abundance today and see how it could behave as cold dark matter. The
phenomenological consequences of each mechanism will be discussed and Sec.2.5 will be dedicated
to the appearance of axion miniclusters (AMCs).

2.1 The Chiral Anomaly and U(1)A problem

Interestingly, the strong-CP problem was first introduced to solve another well-known puzzle in
particle physics, the U(1)A problem. In order to make sense on why the axion had to be introduced,
we must therefore start chronologically (see Ref.[49] for further details calculation on what will
follow).
Let’s consider the QCD Lagrangian for N quarks:

LQCD = −1

4
Ga
µνG

a,µν +
N∑

i=0

q̄i (γµDµ −mi) q
i, (2.1)

with qi and Ga
µν respectively the quark and gluon fields.

Considering only the three quarks (u, d, s) and neglecting their mass makes this Lagrangian invari-
ant under the global symmetry group U(3)V × U(3)A = SU(3)I × U(1)B × SU(3)A × U(1)A.
Intuitively, SU(3)I and U(1)B stand for the isospin and baryon numbers. These last two symme-
tries are indeed well observed in experiments and show up as multiplet arrangements in the hadron
spectrum. However, the axial symmetries are spontaneously broken by the QCD vacuum when this
one becomes non-zero. This translates into as many massless Goldstone bosons as broken genera-
tors, nine in the present case.
Of course, if we now turn on the masses of the quarks, this provides explicit sources of symmetry
breaking. Hopefully, since in this case the masses are close to zero, this effect is small enough to be
captured perturbatively and it would simply give masses to the produced Goldstone bosons 1. It is
in addition expected that those new particles carry similar masses.
Eight of them have indeed been found in the same mass range, namely the three pions (π0, π±), the
four kaons (K0, K̄0, K±) and the eta η. However a last one, that may be associated with the U(1)A
symmetry, the η′, has been found to have a much heavier mass. What could induce such a mass gap
if we have claimed earlier that the nine Goldstone bosons were expected to have similar masses? As
pointed out by Weinberg in 1975 [17], this gap in mass is the consequence of the fact that the group

1We then talk about pseudo Goldstone bosons.
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U(1)A is a good symmetry of the classical Lagrangian but is violated in the quantum theory, we say
that it is anomalous [50, 51]. Therefore, the U(1)A symmetry has a much stronger source of explicit
symmetry breaking, in addition to the one coming from the quark masses. It intuitively explains
the much heavier mass of the η′ and leads to the conclusion that this last one can not be adequately
described by the Goldston mechanism.
But what makes the U(1)A symmetry explicitly broken if the massless QCD Lagrangian is invariant
under it? This question is answered by looking at the current Jµ5 associated to this symmetry. If for
a perfect symmetry the divergence of its current is zero, it is known that axial currents suffer from
the chiral anomaly [50, 51], returning a non-vanishing divergence. We have here

∂µJ
µ
5 =

g2N

32π2
Gµν
a G̃a,µν , (2.2)

where N is the number of quarks, g the strong coupling and G̃a,µν =
1
2
ϵµναβG

αβ
a .

Hence, through a quark U(1)A transformation

qi → eiαγ5/2qi, (2.3)

the action is modified as
δS = α

g2N

32π2

∫
d4xGµν

a G̃a,µν . (2.4)

Interestingly, it has been first thought that this integral was vanishing making U(1)A a perfect
symmetry again. However, in the specific case of QCD, the complex structure of its vacuum config-
uration2 makes this last one non-zero and the U(1)A symmetry definitely explicitly broken [52].
The complex structure of the QCD vacuum therefore explains that only 8 pseudo Goldston bosons
have been found in the same mass range and solves the U(1)A problem. It, however, has further
consequences. Indeed, it directly implies that an additional term must be present in the QCD La-
grangian:

Lθ = θ
g2

32π2
Gµν
a G̃a,µν , (2.5)

with θ a new parameter.
This term carries strong phenomenology implications since it breaks the CP symmetry and induces
in the same time a dipole moment for the neutron proportional to the θ term [53]

dn ≈ eθmq

m2
N

. (2.6)

The neutron dipole moment is, however, strongly constrained by experiments. Hence, it is known
that dn < 2.9×10−26e cm at 90% CL [54], translating into θ < 10−9. But why θ would be that small
where it could intuitively take any value between [0, 2π]?

2.2 The Strong CP Problem and the Axion solution

Solving the U(1)A problem has then brought on the table a new critical question referred as the
strong CP problem. In this section, we are going to review the possible solutions and in, particular,
the axion solution.
Taking a closer look at the new term Lθ, it could be noticed that a U(1)A transformation applied on
a single quark would modify the θ term as

θ
g2

32π2
Gµν
a G̃a,µν → (θ − α)

g2

32π2
Gµν
a G̃a,µν , (2.7)

where α is the rotation angle.
Once the quark masses are generated during electroweak symmetry breaking, they appear as a non-
diagonal complex matrixMij . We usually diagonalize this matrix by performing a SU(N) rotation

2The interested reader is invited to read the more detailed references associated to this topic since it is beyond the scope of this thesis.
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(where N is the number of quarks) and then remove the complex phases, αi, with a U(1)A chiral
rotation for each quark. From Eq.(2.7), we see that such a procedure would induce a contribution to
the θ term [49]

θ
g2

32π2
Gµν
a G̃a,µν → (θ + arg detM)

g2

32π2
Gµν
a G̃a,µν . (2.8)

Hence, making the masses real forces us to define the full theory coefficient

θ̄ = θ + arg detM. (2.9)

All experimental measurements therefore depend on the full theory parameter θ̄ and then the con-
dition on the neutron dipole moment considered earlier must be applied on it as well.
Naively, we could use a chiral rotation to put the new CP violating Lagrangian term to 0. However
for such a field redefinition, the basis for the Yukawa matrices would not be the mass basis and
the resulting mass matrix would contain an overall CP violating phase θ̄. In conclusion, in the full
theory, the CP violating term θ̄ is independent of the basis choice.
So why θ̄ is so small? A first proposed solution was to assume a massless quark in the Lagrangian.
Indeed, in such a case, a chiral symmetry applied on it is only anomalous and θ̄ can be shifted away
with no physical effect. In the Standard Model the lightest quark is the up one withmu = 2.2± 0.5
MeV, making the latter solution ruled out [55]. However the idea that a U(1)A global symmetry,
explicitly broken only by the anomaly, can washed out the CP violating term is the milestone of the
axion solution we are going to discuss now.
Since we cannot allow for massless quarks, we must find a way to implement a U(1)A global sym-
metry with a massive one. Based on that, the first idea came from R.Peccei and H.Quinn (PQ) who
introduced a new axial symmetry, today called U(1)PQ [15]. In its minimal set up, we only need a
quark q and complex scalar ϕ field that both transform under it. This symmetry is explicitly broken
by the anomaly as it should. Initially the quark does not have any mass term, but carries a Yukawa
interaction

Lϕqq = q̄LϕqR + h.c. (2.10)
To make this term invariant under the chiral U(1)PQ we need that ϕ transforms as

ϕ→ eiαϕ, (2.11)

where α is the angle of the chiral rotation defined earlier. Similarly to the Higgs mechanism, the
scalar field has a potential with a minimum located at |ϕ| = fa. Below that scale, the U(1)PQ is
spontaneously broken and the quark acquires some mass. However, the U(1)PQ symmetry is still
hidden in the theory and it would be possible to wash out the CP violating term. Let’s derive that
explicitly.
When the theory gets spontaneously broken, the Goldstone formalism can be applied on the complex
scalar field ϕ. Explicitly we can write it as

ϕ(x) = (fa + χ(x)) eia(x)/fa , (2.12)

where χ(x) is the radial mode, often referred as the "saxion", and a(x) is the axion. Under a U(1)PQ
symmetry the axion field now translates as

a(x) → a(x) + αfa. (2.13)

If theU(1)PQ was an exact symmetry of the theory, the axion Lagrangian would include only kinetic
terms, derivative interactions suppressed by the scale of the symmetry breaking fa and the axion
would remain massless. However, because of the anomaly, the source of explicit symmetry breaking
propagates into the axion Lagrangian and it can be shown that the following axion-gluon interaction
term is present [15, 49, 56]

Lagg =
g2

32π2fa
aGµν

a G̃a,µν . (2.14)
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Figure 2.1: Evolution of the topological susceptibility of QCD, χ(T ), as a function of the tempera-
ture. The original figure can be found in Ref.[59].

This term is essential to the strong CP problem solution since it has a similar shape than the θ-
CP violating term. Below QCD phase transition, the axion potential inherited by Eq.(2.14) can be
calculated using instantons [57] as well as directly from chiral perturbation theory [58]. It takes the
form

V (a) = m2
πf

2
π

mumd

m2
u +m2

d

(
1− cos

(
θ̄ +

a

fa

))
. (2.15)

The minimum of this potential is at ⟨a⟩ = −f θ̄. Hence in the presence of the potential induced by
the anomaly, the axion field will roll down to a minimum that cancels exactly the θ̄ term. The axion
field dynamically solves the strong CP problem by settling down to a CP conserving minimum. Us-
ing the remaining shift symmetry, we can redefine the axion field as aphys → a + ⟨a⟩ and observe
that the theory has no longer θ̄-CP violating terms. The background contribution of the axion field
is therefore CP conserving.

In addition to solving the strong CP problem, the Eq.(2.15) potential induces a mass term for the
axion given by

m2
a =

∂2V

∂a2

∣∣∣∣∣
min

,

=
m2
πf

2
π

f 2
a

mumd

m2
u +m2

d

.

(2.16)

Since the up and down quark massesmu andmd as well as the pionmassmπ and scale fπ are known,
the axion mass below QCD confinement depends only on the breaking scale fa as [59]

ma ≈ 5.7µeV
(
1012GeV

fa

)
. (2.17)

It is, however, important to note that Eq.(2.15) is only valid below QCD phase transition, down to
zero temperature. The axion gluon term in Eq.(2.14) will indeed provide a more general temperature
dependent potential, even above QCD transition. Using instantons [57] or lattice [59] calculations,
the temperature dependent potential is given by

V (a, T ) = m2
a(T )

(
1− cos

(
a

fa

))
, (2.18)
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where the shift on the axion field has already been performed in this last expression. The tempera-
ture dependence of the mass is now given in terms of the topological susceptibility of QCD,

m2
a(T ) =

χ(T )

f 2
a

, (2.19)

which is calculated again using instantons [57] or lattice [59] calculations (see Fig.2.1). As it should,
we recover the result in Eq.(2.17) as T goes below the QCD scale (TQCD ≈ 200MeV) [57]. Note
that χ(T ) decays rapidly beyond the confinement temperature, such that the axion is essentially
massless at high temperatures.

2.3 Axion Models and Interactions

The strong CP problem is therefore solved by the introduction of the axion as the Goldston boson
of the new U(1)PQ symmetry. However, at this stage, we have still not defined the quark and the
complex scalar field used in the PQ mechanism. We have stressed earlier that such a set up was
actually the minimal ingredients needed to achieve the PQ mechanism. Indeed, more sophisticated
realizations, involving sometimes more fields, also exist. Hence, the KSVZ model [60, 61] for in-
stance considers a complex scalar field and a quark that do not belong to the Standard Model. Both
of them are singlet under SU(2)W and the quark is charged under SU(3)C as it should. As it does
not belong to the Standard Model the mass of the quark produced by the spontaneous symmetry
breaking can take arbitrary large values, so as fa. From the previous expressions we see that a large
symmetry breaking scale fa means that the axion could then reach an extremely small mass and get
weakly coupled. The DFSZ model [19, 62] introduces on its side a second Higgs doublet, a complex
scalar field, and uses the quarks of the Standard Model. All of them transform under U(1)PQ.
The important point here is that in any model, the axion-gluon coupling that arises from the spon-
taneous symmetry breaking is the same and is then model independent3. It implies that the mass
of the axion behaves as well model independently. Moreover, at low energy, the interaction be-
tween axions and pions implies that the axion will inherit from the pion-two photons interaction.
It translates into an axion-photon model independent interaction

Laγγ ≈
α

32π2fa
aF µνF̃µν . (2.20)

Those photon and gluon couplings are the only model independent interactions the axion would
get (and the only ones at all in the KSVZ model). Beyond those, interactions with quarks as well
as contributions to the photon interaction can also emerge in a model dependent way as it is the
case for the DFSZ model. To summarize the axion interactions, we write down explicitly the axion
Lagrangian with the model independent and dependent interactions as follows:

La = Lind. + Ldep., (2.21)

with

Lind. =
1

2
∂µa∂

µa+
g2

32π2fa
aGµν

a G̃a,µν (2.22)

and the model dependent part given by

Ldep. =
gaγγ
4
aF µνF̃µν +

∂µa

2fa
q̄iγ

µCijγ5qj, (2.23)

where gaγγ is the model dependent axion photon coupling and Cij is a diagonal matrix containing
the quark couplings. At low energy, the phenomenologically relevant part of the full Lagrangian

3It must be as such, since the strong-CP problem is solved by its induced potential.
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can be written in terms of interactions with photons, protons, neutrons and electrons:

La ⊃
gaγγ
4
aF µνF̃µν + i

∑

f=n,p,e

Caf
∂µa

2fa
Ψ̄fγ

µγ5Ψf − i
∑

f=n,p

Cafγ
a

2fa
F µνΨ̄fσµνγ

5Ψf . (2.24)

In the KSVZ model the axion-proton, axion-neutron and axion-electron couplings have been found
to be [63, 64, 65]

CKSVZ
ap = −0.47(3),

CKSVZ
an = −0.02(3),

CKSVZ
ae =

3α2

4π2

(
E

N
log (fa/me)− 1.92 log(1GeV/me)

)
,

(2.25)

where E/N is the ratio between the electromagnetic and color anomalies and is usually set to 0
in the KSVZ model [60, 61] whereas it takes the value 3/8 in the DFSZ one [19, 62]. However, it
has been shown that a broader range of values are possible [66, 67, 68, 69]. In the DFSZ model, the
coefficients become [63, 64]

CDFSZ
ap = 0.617 + 0.435 sin2 β ± 0.025,

CDFSZ
an = 0.254− 0.414 sin2 β ± 0.025,

CDFSZ
ae =

sin2 β

3
,

(2.26)

where β is an extra parameter related to the ratio of the Higgs vevs.
The axion-photon-nucleon coupling is model independent and gets the same absolute value for the
proton and neutron [63, 64]

Canγ = −Capγ = (3.7± 1.5)× 10−3. (2.27)

Finally, the axion-photon coupling is given as well in terms of the ratio between the electromagnetic
and color anomalies E and N as [63, 64]

gaγγ =

(
0.203(3)

E

N
− 0.39(1)

)
ma

GeV2 . (2.28)

The KSVZ and DFSZ theoretical values for this coupling are shown in Fig.2.2 by the yellow band.

Let’s have a closer look at the axion-photon coupling and the way it can be probed in experi-
ments. First, this interaction allows for the decay of the axion into two photons. However, for the
breaking scale fa usually considered fa ∼ 1012GeV (see Sec.2.4), the lifetime of the axion would
reach the lifetime of the universe, making this particle stable. Bad luck for experiments since such
a decay would have a clear signature with each photon carrying an energy Eγ = ma/2. On the
other hand, stability is a necessary condition for being a good dark matter candidate. Secondly, the
axion-photon coupling allows for the conversion of an axion into photons in the presence of a strong
magnetic field (and vice-versa). This is known as the Primakoff effect [70]. P. Sikivie proposed to
use it to detect the axion into several experiments [33]. The first one is the so-called light shining
through the wall experiment. A laser embedded in a strong magnetic field is projected toward a
wall such that photons could be converted into axions. They would then easily penetrate the wall
and be converted again into photons on the other side where a strong magnetic field is still applied.
However, no such signal has been ever observed and bounds on the axion photon couplings can be
set. The current best limit has been derived by the Optical Search for QED Vacuum Birefringence
(OSQAR) collaboration with gaγγ < 3.5× 10−8GeV−1 forma < 0.3meV at 95% CL [71].
The second experiment is the so-called axion Haloscope. It uses the assumption that the dark mat-
ter halo of the milky way is, at least partially, composed of axions and that the Earth is therefore
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Figure 2.2: Upper limits on the axion-photon coupling gaγγ from current experiments. The KSVZ
and DFSZ theoretical predictions are shown by the two solid black lines. The yellow band represents
the extended possible values for the ratio E/N (see main text). The future experiments sensitivities
are represented by the light shaded regions. This figure has been taken from Ref.[72]

constantly moving in an axion background. The haloscope experiments are usually designed as
cavities embedded in a strong magnetic field. When the axion field penetrates it, it could convert
into photons leaving an electromagnetic power that we can measure. More precisely, if the axion
field frequency, given roughly by its mass if the axions are non-relativistic, is the same as the one
of the main mode of the cavity, resonance happens and the signal is enhanced. The cavity shape is
therefore constantly modified in order to modify the main mode and to look for resonance. Doing
so, those experiments were able to exclude a large range of the possible axion masses. The Axion
Dark Matter Experiment (ADMX), based in the USA, has started to probe the parameter space of
the axion-photon coupling predicted by both the KSVZ and DFSZ models and this in the mass range
2.7−4.2µeV [73, 74, 75, 76]. Other similar experiments also exist and derived upper limits on heav-
ier mass ranges (see Fig. 2.2). Chapter 4 will be specifically dedicated to haloscope experiments and
more details will be therefore given in this one.
The last experiment proposed by P. Sikivie is the so-called axion helioscope experiment. The ax-
ions produced inside the Sun (they could be for instance produced by the strong magnetic field in
the inner parts of the Sun) create an incoming flux of relativistic particles on Earth. The idea here
consists in pointing toward the Sun a strong magnetic field to convert this axion flux back to X-ray
photons. The strongest upper limit has been derived by the CERN Axion Solar Telescope (CAST)
experiment and set gaγγ < 6.6× 10−11 GeV at 95% CL in the mass rangema < 0.02 eV [77]. Limits
on masses up to ma < 1.17 eV have also been reached by filling the magnet bores with different
gases [78, 79, 80]. As for the axion haloscope, the other experiment upper limits are shown in Fig.
2.2.
Following the same idea, since axions could be produced in hot astrophysical plasma and then eas-
ily escape, it would generate an anomalous cooling for stars, reducing their lifetime. Observation
of the horizontal branch stars lead to strong constraints on the axion-photon coupling: gaγγ <
6.6× 10−11 GeV at 95% CL on a mass range even broader than the one obtained by CAST [81].
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2.4. AXION AS DARK MATTER

Figure 2.3: Limits on the PQ symmetry breaking scale fa as a function of the axion massma. This
figure has been taken from Ref.[72]

Other constraints on lighter and heavier mass ranges are presented in Fig. 2.2.
Finally, future experiments are expected to importantly improve the current upper limits. This is for
instance the case of ABRACADABRAwhich should reach a sensitivity able to probe couplings down
to gaγγ ≈ 10−18 GeV [82, 83]. Next generation of axion helioscope, the International Axion Observa-
tory (IAXO), should also push the coupling limit down [84]. On the axion haloscope prospects, the
next generation of ADMX or the new proposed experiment, the Magnetized Disc and Mirror Axion
experiment (MADMAX), should explore broader mass ranges and dig deeper in the KSVZ and DFSZ
region [85, 86]. All the future experiment sensitivities are presented in Fig.2.2.
Upper limits also exist for the other couplings of the Lagrangian (2.24) but since this thesis will not
dedicate a specific section to those interactions, we redirect the interested reader to Ref.[72] for a
summary on their current limits.

2.4 Axion as Dark Matter

Let’s summarize the chain of events leading to the axion appearance. At some high scale fa the new
U(1)PQ symmetry is spontaneously broken and leads to the axion as the angular degree of freedom
of a complex scalar fieldϕ. The axion field a inherits from theU(1)PQ symmetry through a shift sym-
metry a→ a+ const. However the anomaly of the chiral symmetries breaks explicitly U(1)PQ and
induces a model independent potential for the axion as well as a mass term depending on the tem-
perature and the symmetry breaking scale fa. Limits from supernova cooling [87, 88] and black holes
superradiance [89] have constrained the breaking scale fa in the range 109 GeV < fa < 1017 GeV
(see Fig.2.3).
The axion gets self-interactions and couplings to Standard Model particles suppressed by powers of
the scale factor fa. For this reason, the large expected value of the breaking scale implies for the
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axion to be long-lived and weakly interacting. In addition, for the QCD axion, since the mass is in-
versely proportional to fa, the axion is expected to be extremely light. For those reasons, it becomes
naturally a good dark matter candidate.
Assuming the axion to be a good dark matter candidate means that an efficient production mech-
anism is needed in order to produce a sizeable dark matter relic abundance. In this section, we are
going to introduce and discuss in detail the so-called misalignment mechanism [20, 21, 22] since it
provides an elegant way to produce the observed cold dark matter abundance on a model indepen-
dent way. The thermal production will be discussed as well at the end of the section.

2.4.1 Misalignment Mechanism

The misalignment production [20, 21, 22] relies directly on the spontaneous symmetry breaking of
U(1)PQ and provides amodel independent mechanism to produce a cold axion relic abundance. As it
will be discussed later in this section, axions produced via thismechanismwould have a cosmological
evolution drastically different depending onwhether the symmetry breaking occurres before or after
inflation.
Let’s start the discussion by considering the equation of motion for the axion field in an expanding
universe. The action, neglecting the axion self-interactions and couplings to other particles, is given
by

Sθ = f 2
a

∫
d4x

√−g
(
−1

2
∂µθ∂

µθ − V (θ, T )

)
, (2.29)

where gµν is the Friedman-Robertson-Walker metric and θ = a/fa. The temperature dependent
axion potential induced by the chiral anomaly is written as V (θ, T ) (c.f Eq.(2.18)). Below QCD
phase transition, it takes its zero temperature form given by Eq.(2.15).
From this, the equation of motion for the axion can be written as

2θ − ∂V

∂θ
= 0, (2.30)

where the d’Alembertian operator depends on the following metric

2 =
1√−g∂µ

(√−ggµν∂ν
)
. (2.31)

For the Friedman-Robertson-Walker metric, the equation of motion becomes

θ̈ + 3Hθ̇ − 1

a2
∇2θ +

∂V

∂θ
= 0, (2.32)

with a the scale factor (not to be confused with the axion field denoted θ in further parts of the
section) and the Hubble constant is H = ȧ/a.
We have already claimed that for the large breaking scales remaining unconstrained, the QCD axion
would have an extremely small mass. However, in order to produce a sizable fraction of the dark
matter abundance, the occupation number on each energy level should be enormous. For this rea-
son, the axions are described by a classical field rather than by individual quanta. The equation of
motion derived for the axion field then has to be understood exactly as when photons are described
classically by the Maxwell equations.
In addition, the stress energy tensor is defined for the axion field as

T µν = f 2
a∂

µθ∂νθ + gµνf 2
a

(
−1

2
∂σθ∂

σθ − V (θ, T )

)
. (2.33)

It follows that the energy density ρθ and pressure Pθ of the axion field are given by

ρθ = f 2
a

(
1

2
θ̇2 +

1

2a2
(∇θ)2 + V (θ, T )

)
,

Pθ = f 2
a

(
1

2
θ̇2 − 1

6a2
(∇θ)2 − V (θ, T )

)
.

(2.34)
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These last set of equations are the starting point for the misalignment mechanism. Before going
into more details, let’s sketch its main ideas.
At early times (large temperatures, much higher thanQCD confinementTQCD = ΛQCD ≈ 200MeV),
the axion mass and hence the potential are still negligible, V (θ) ∼ 0. In that case the equation of
motion is simply

θ̈ + 3Hθ̇ − 1

a2
∇2θ = 0. (2.35)

In order to solve this equation, the initial conditions for the axion field are needed. Since no potential
influences the axion so far, θ = a/fa can, therefore, get any value between−π and π. We call θi this
initial value. Let’s for the moment assume that the axion field takes this initial value homogeneously
in the whole universe. In that case, the gradient term disappears and we are left with

θ̈ + 3Hθ̇ = 0. (2.36)

It is then easy to see that the axion field would stay frozen at its initial value θi as long as this
equation remains valid.
However, the universe is cooling down and as derived in the previous section, the potential V (θ, T )
(and therefore the axion massma(T )) arising from the chiral anomaly becomes eventually relevant.
At that stage, using Eq.(2.15), the equation of motion becomes

θ̈ + 3H(T )θ̇ +m2
a(T )θ = 0. (2.37)

Note that here we have used a Taylor expansion of the potential assuming small displacements of
the axion around its minimum, which means that a ≪ fa and that the potential can be written
at leading order as V (θ, T ) ≈ 1

2
ma(T )

2θ2. The last equation is basically the one of a damped har-
monic oscillator. A competition therefore occurs between the oscillation term coming from the mass
ma(T ) and the damping from the universe expansion, parameterized by the Hubble constantH(T )
decreasing with temperature. Since both of those quantities are functions of the temperature, it
is possible to follow the axion field evolution as a function of the temperature as well. Of course
we recover that at early times, the axion field is frozen at its initial value θi since ma(T ) ∼ 0 and
the damping dominates. However, at lower temperatures the oscillations can start and eventually
dominates when ma(T ) > H(T ). As already developed in the previous section, the oscillations
occur around a CP conserving minimum, solving the strong CP problem. Those oscillations will in
addition, generate an energy density and finally an axion relic abundance today. This is the key of
the misalignment mechanism.
An important question still remains. We have so far assumed that the initial value of the axion
field was homogeneous and given by θi in the whole universe. Is that true in any case? Actually
not really. When symmetry breaking happens, different values of θi would be observed in different
causally disconnected regions. However, if the U(1)PQ symmetry gets broken before inflation, each
Hubble patch with different values of θi would be stretched out by the fast expansion, so that at
the end of inflation our current Hubble volume starts with a homogeneous value of θi. This is the
so-called pre-inflation scenario. On the other hand, if symmetry breaking occurs after the inflation
period, each Hubble patch of radius R ∼ 1/H would get a random initial field value. This would
lead to some exotic phenomenology and eventually the so-called axionminiclusters. This is the post-
inflation scenario. We are now going to derive explicitly for these two scenarios the dark matter relic
abundance and the properties of the axion field.

Pre-Inflation Scenario

As explained, in this scenario inflation ends with a single and homogeneous value for the axion field.
This value θi is randomly taken between −π and π. It can be seen that the evolution of the axion
field is identical to the toy model considered above: the field is initially frozen at the initial value θi
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as long asma(T ) < H(T ). Hence at that stage, the energy density is given from Eq.(2.34) by

ρθ(T ) =
f 2
a

2
m2
a(T )θ

2
i

(2.38)

Eventually, as the mass keeps increasing up to its zero temperature mass (see Eq.(2.17)) and the
Hubble constant keeps decreasing, the mass overtakes the friction term and the axion field starts
oscillating.
To capture the cosmological evolution of the axion field at this stage, we solve Eq.(2.37) with the
help of the WKB approximation in the limit H(T ) ≪ ma(T ). It that case, the solution is given by

θ(t) ≈ C

a3/2
√
ma(t)

cos

(∫ t

t0

dt′ma(t
′)

)
, (2.39)

where C has to be fixed by the initial condition at a time t0. The detail calculation could be found
in [90] for the interested reader.
The energy density in that limit is a fast oscillating functionwith frequency∼ ma. Hence the density
averaged over those fast oscillations is written as

⟨ρθ(T )⟩ =
C2f 2

a

2a3
ma(T ). (2.40)

The coefficient C is found by matching together both limits at the time the oscillations start. This
takes place at the oscillating temperature Tosc when 3H(Tosc) ∼ ma(Tosc) and we find

C2 = ma(Tosc)a
3(Tosc)θ

2
i . (2.41)

When the mass becomes dominant and the oscillations start, the mean energy density is then given
by

⟨ρθ(T )⟩ =
ma(Tosc)ma(T )f

2
a

2

(
a(Tosc)

a(T )

)3

θ2i , (2.42)

In addition, the averaged pressure can be calculated in a similar way, leading to

⟨Pθ(T )⟩ = 0. (2.43)

The strong conclusion of this result is that as soon as the field starts to oscillate (whenma > H), the
energy density starts to decay following ρθ ∼ 1/a3 and the equation state haswθ = 0 independently
of whether the background is radiation or matter dominated. This is exactly the same behavior as
ordinary matter, and for this reason the axion field behaves as cold dark matter.
In order to calculate the axion relic abundance Ωθ = ρθ(T0)/ρc, with T0 and ρc respectively the tem-
perature today and the critical density, wemust find the oscillating temperature Tosc. This one would
depend exclusively on the symmetry breaking scale fa. Indeed, using the analytical approximation
derived in Ref.[91] for the massma(T ) at temperature T > ΛQCD,

m2
a(T ) ≈ 0.018×m2

a(T = 0)

(
ΛQCD
T

)4

, (2.44)

it is found that axions with breaking scale fa < 2× 1015GeV have an oscillating temperature Tosc >
ΛQCD. For those, the oscillating temperature is given by

Tosc = 150MeV
(
1016GeV

fa

)1/6

. (2.45)

It is then possible to calculate the axion relic abundance today for fa < 2× 1015GeV [91],

Ωθh
2 ∼ 2× 104

(
fa

1016GeV

)7/6

θ2i . (2.46)
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For larger breaking scales fa > 2× 1015GeV, oscillations start with Tosc < ΛQCD. At those temper-
atures, the mass can be evaluated with its zero temperature value and the axion relic abundance is
in that case [91]

Ωθh
2 ∼ 5× 103

(
fa

1016GeV

)3/2

θ2i . (2.47)

We observe here that the axion relic abundance depends on the symmetry breaking scale fa as well
as on the random initial value of the field θi. It is therefore possible to tune this parameter to reach
arbitrary values for the axion relic abundance. The pre-inflation is, for this reason, less predictive
than the post-inflation scenario, where we will see, this θi dependence disappears.

So far, only the background axion field contribution has been considered. However, for axions
to be fully considered as cold dark matter, its density fluctuations should be investigated as well. In
particular, they should follow the same equation as a perfect pressureless fluid, if we want to explain
the observed power spectrum. Detailed calculations have been conducted in Refs.[92, 93, 94, 95] and
at linear order the density contrast δ = (ρθ − ρ̄θ)/ρ̄θ, with ρ̄θ the background density calculated
above, follows the equation

δ̈k + 2Hδ̇k −
(
4πGρ̄θ −

1

4

k4

m2
aa

2

)
δk = 0, (2.48)

where δk is the amplitude of the Fourier mode with momentum k.
Interestingly, this equation has an additional pressure term compared to the standard pressureless
cold dark matter equation. This so-called quantum pressure4, explicitly given by

Q =
1

2a2m2
a

∆x
√
ρθ√

ρθ
,

=
1

2a2m2
a

∆x

√
1 + δ√

1 + δ
,

≈ 1

4a2m2
a

∆xδ,

(2.49)

is the direct consequence of the uncertainty principle: as themomentum increases, the delocalization
of the particle increases as well [96]. Intuitively, this source of pressure will stand in opposition to
gravity (first term in the bracket in Eq.(2.48)). Hence, after matter-radiation equality it is expected
for the perturbations to grow at all scales. However, in the specific case of axion dark matter, all
the modes with momentum k > kJ would rather oscillate since they are supported by the quantum
pressure. We define here the comoving Jean scale kJ as

kJ = a
(
16πGm2

aρ̄θ
)1/4

, (2.50)

which corresponds to a physical wavelength

λJ =
2πa

kJ
,

= 2π
(
16πGm2

aρ̄θ
)−1/4

,

= 5.4× 1014cm
( ma

10−5eV

)−1/2

.

(2.51)

At larger scales, the axion is therefore acting exactly as pressureless dark matter. For smaller scales
below λJ , structure formation is, however, compromised by the quantum pressure. Nevertheless,
we see that λJ is small compared to the solar system size for masses around 10−5eV. Only very

4The term that appears in the previous equation is the Fourier transform of ∆xQ.
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light axionsma ∼ 10−22eV would therefore play an observable role on structure formation (see for
instance Ref.[97]). We conclude that, as long as we are away from λJ , the axions can act as a good
cold dark matter candidate.
We now move on to the post inflation scenario.

Post-Inflation Scenario

As already stressed above, the pre-inflation scenario has the disadvantage to depend directly on
the initial angle θi, randomly distributed between [−π, π]. It is therefore difficult to make strong
predictions without fine-tuning the value of θi. Let’s see how the post-inflation scenario evades this
issue.
If the PQ symmetry is broken after inflation, the axion field takes a different initial value θi in
causally disconnected regions, each of them scaling as the Hubble radius ∼ 1/H . Since the field
has no homogeneous initial condition, the gradient term in Eq.(2.32) can not be dropped out as
for the pre-inflation scenario. In addition, these initial inhomogeneities would evolve into large
isocurvature density fluctuations. As we will see, those are the seeds of the axion miniclusters we
are going to discuss in detail in the next chapters.
Even though, the equation of motion for the axion field gets more complicated in this scenario, the
mean density can be estimated rather easily. Indeed, assuming that all the patches with different
initial θi are independent, we can simply calculate the energy density in each and finally average
over them [21, 20, 98, 23]. The mean density in the post-inflation scenario is therefore given by an
average over all the θi on Eq.(2.42),

⟨ρθ(T )⟩ =
ma(Tosc)ma(T )f

2
a

2

(
a(Tosc)

a(T )

)3 ∫ π

−π
dθif(θi)θ

2
i , (2.52)

where f(θi) is the probability distribution of the parameter θi. In particular, for a uniform distribu-
tion, we get f(θi) = 1/2π and then

⟨ρθ(T )⟩ =
ma(Tosc)ma(T )f

2
a

2

(
a(Tosc)

a(T )

)3
π2

3
. (2.53)

Note that all the information about the initial angles θi is lost in the final expression and the back-
ground density only depends on the symmetry breaking scale fa and the mass ma. As for the pre-
inflation scenario, we use the temperature dependence of the mass ma(T ) to calculate the oscilla-
tion temperature Tosc. Hence, under this simplified calculation, the today’s axion relic abundance
Ωθ = ρθ(T0)/ρc is finally found to be [57, 24, 99]

Ωθh
2 ∼ 0.1

(
fa

1012GeV

)7/6

,

∼ 0.1

(
ma

5.7× 10−6eV

)−7/6

,

(2.54)

where, in the last step, we have used the relation between the mass and the breaking scale from
Eq.(2.17). Since ΩDMh

2 = 0.12 [10], axions with masses of the orderma ∼ 10−5eV could account for
the whole dark matter relic abundance. Any mass much smaller than that would overproduce dark
matter and then overclose the universe.

A more careful analysis has, however, been achieved in Ref.[100] by solving explicitly Eq.(2.32)
and then taking into account the non-zero momentum modes. Following their calculations, the
axion field is initially inhomogeneous and we could write it as

θ(x) =

∫
dk θ(k)eik.x, (2.55)
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where θ(k) are the Fourier coefficients. The randomness behavior of this field is captured by its
variance and we recover the previous result,

⟨θ2(x)⟩ = π2

3
. (2.56)

In Fourier space, this translates into the power spectrum definition

⟨θ(k)θ∗(k′)⟩ = (2π)3δ3(k − k′)Pθ(k). (2.57)

The randomness of the axion field is then translated to the Fourier coefficients. In practice the power
spectrum can be taken as an Heaviside function encoding the fact that the causally disconnected
regions are uncorrelated.
Each Fourier mode evolves independently and the time evolution for each of them is encoded inside
the function fk(t), such that θ(k, t) = θ(k)fk(t). This last function has to be found numerically
but can be understood easily: for a given mode k, fk(t) is frozen at 1 in the early universe. But
similarly to the pre-inflation scenario, at a given oscillation temperature, it becomes an oscillating
function decaying with power a−3/2. The frequency of the oscillation is here given by ω2

k(T ) =
k2/a2(T ) + ma(T ), where the additional term compared to the pre-inflation scenario is coming
from the gradient in (2.32). Therefore the high momentum modes start oscillating earlier and the
zero mode is the last one to do so. The mean density is given by (see Ref.[100] for an explicit
derivation)

⟨ρθ⟩ =
f 2
a

4π2

∫
dkk2Pθ(k)F (k), (2.58)

with the function F (k) defined as

F (k) = ḟ 2
k + ω2

kf
2
k . (2.59)

Let’s consider the late time behavior of this solution. When all the modes have become non-
relativistic (when the term k2/a becomes subdominant compared to ma) and when the axion mass
has reached its zero temperature value, fk scales as a−3/2 and oscillates with a frequency propor-
tional to ma for all the modes. We can factorize the only scale factor dependence, a−3, out of the
function F (k) and average over the fast oscillations as for the pre-inflation scenario,

⟨ρθ⟩ =
f 2
a

8π2a3

∫
dkk2Pθ(k)F̃ (k), (2.60)

where F = a−3F̃ (k).
It may be observed that the background density acts as cold dark matter again, as it should. The
only difference with the previous simple estimate is that the contribution from all the modes is now
taken into account via the momentum integral. For both a top-hat and a Gaussian window function,
Ref.[100] proved that Eq.(2.60) leads to similar abundance as derived in Eq.(2.54).
However, as already emphasized in the introduction of this part, the post-inflation scenario leads
to further important phenomenology predictions. The initial large inhomogeneities in the field due
to the distribution of the misalignment angle θi make it necessary to use the full potential and not
the approximation used so far. The use of the full non-linear expression brings new axion field
solutions that will contribute to the relic abundance. In particular, at the locations where the field
is surrounded by all possible values of θi between [−π, π], the complex scalar field (that should
produce the axion by spontaneous symmetry breaking) do not know on which vacuum value it
should fall down. As long as the axion field is massless it therefore stays on top of the Mexican-hat
potential. Those field configurations create topological defects named cosmic strings [101, 102, 103]
(see left panel of Fig.2.4). As the universe is cooling down, the axion develops its mass and the
strings would decay by emitting relativistic axions. Another topological defect may then also form
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Figure 2.4: Simulations from Ref.[29] showing the non-linear evolution of the axion field in the
post-inflation scenario. The cosmic strings are represented in yellow, the domain walls in red and
the energy density in blue. From left to right, the time is going from before, during and after QCD
phase transition.

from the boundaries of the cosmic strings, the domain walls (see middle panel of Fig.2.4). They
are, however, unstable as well and contribute to the production of relativistic axions. In practice,
only numerical simulations can follow the evolution of the string-domain network as it has been
done for instance in Refs.[29, 30]. The relic abundance calculated above must therefore take those
contributions into account in order to make correct prediction on the QCD axion mass needed to
account for the whole dark matter. It has been found in Ref.[104] that ma ∼ 20µeV is needed in
order to cover the observed dark matter abundance, which is of the same order as what has been
found earlier without considering the topological defects.
When all the topological defects have finally decayed (below QCD phase transition, when the axion
mass has reached its zero temperature value), some large inhomogeneities remains on the small scale
energy density (see right panel of Fig.2.4). Those fluctuations are the seeds of the axion miniclusters
and would collapse before matter-radiation equality [25, 105, 106] . It is important to note here that
those isocurvature fluctuations differ from the adiabatic fluctuations considered previously in the
pre-inflation scenario. In the post-inflation scenario, both types of fluctuations would be present
such that

δθ = δiso.θ + δadi.θ . (2.61)

It is usually assumed that adiabatic fluctuations are inherited from inflation and characterized by
the curvature power spectrum Pζ(k). In particular, this one has been constraint by CMB observa-
tions to be of the order 10−9 at lare scales [10]. The adiabatic fluctuations are transmitted to all
the different species (baryons, photons, dark matter,...) and would eventually be responsible for the
large-scale structures and the origin of galaxy formation. On the other hand, the isocurvature fluctu-
ations introduced here concern only the axion field and are totally uncorrelated with the curvature
fluctuations. Moreover, the overall density fluctuation is zero: δρθ = 0.
As we will see in detail in the next section 2.5, those isocurvature fluctuations are large enough
to collapse into axion miniclusters way before galaxy formation. The initial population of axion
miniclusters will eventually evolve into large dark matter halo, in which the galaxies would form.
From that stage, the axion miniclusters would undergo tidal interactions with the galactic stars. The
impact of those interactions on the miniclusters will be at the center of the chapter 3.

2.4.2 Thermal Production

We have concluded in the previous section that the misalignment mechanism provides an efficient
way to produce a cold axion relic abundance and the mass needed to account for the whole dark
matter is of the order ofma ∼ 10−5eV. However, is it possible to produce a sizable number of axions
through thermal production? The interaction involving pions π + π → a + π is the most efficient
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process and when its rate goes below the Hubble rate, an axion relic is expected with a number
density given by [107]

na ≈
83 cm−3

g∗(TD)/10
, (2.62)

where g∗(TD) is the number of degrees of freedom at the freeze-out temperature TD.
The axions produced would be relativistic, in opposition to the misalignment mechanism, until the
temperature drops below the axion mass. Hence, under such a production the axions are expected
to act as hot dark matter similarly as neutrinos do.
The axion thermal production gets more efficient as the pion-axion coupling gets larger. Since the
axion interactions scale inversely with fa, it means that we need a small breaking scale, meaning a
large mass, in order to produce a sizable number of axions. It has been estimated that the thermal
population is significant forma > 0.15eV, corresponding to fa ∼ 107GeV. However, stellar cooling
constraints impose that fa > 109GeV. In that range the thermal production is totally negligible.

2.5 Production and Evolution of the Axion Miniclusters in the Early Uni-
verse

In the previous section, we have briefly introduced the exotic phenomenology proper to the post-
inflation scenario. In particular, we have discussed the appearance of large inhomogeneities that
would collapse to AMCs in radiation domination era. This section has for purpose to provide more
details on their formation in the early universe, according to the current state of the art and has to
be seen as the first part of the lifetime of the AMCs. The chapter 3 will be dedicated to their late
time evolution in the Milky Way.
Before going throughout a review of the AMC formation and evolution in the early universe, a first
estimate of the typical mass and radius of the AMCs at formation can be easily made. Indeed, since
the gradient term in the equation of motion will smooth the inhomogeneities on the scales smaller
than the Hubble radius, the AMC mass would be roughly the one enclosed in a Hubble radius when
the field starts to oscillate. For a typical axion mass ma ∼ 10−5eV, the oscillation temperature is
of the order of Tosc ∼ 1GeV. Hence the mass within the Hubble radius and the characteristic AMC
mass is of the order [108, 109, 106]

MAMC ∼ 4π

3
ρ̄(Tosc)

(
π

H(Tosc)

)3

,

∼ 10−12M⊙.

(2.63)

A first approximation for the radius of the AMCs is to take the Hubble radius at matter-radiation
equality 5

RAMC ∼ aeq
aoscHosc

,

∼ 106 km.
(2.64)

Of course those approximations have to be taken with caution since they do not account for the
whole dynamic of the collapse as well as the successive mergers between AMCs. It is therefore
expected to have a broader distribution in mass and radius when the axion field evolution is solved
consistently.

2.5.1 Numerical Simulations

The first attempts to resolve the axion field evolution were made in Refs.[26, 27, 28]. The full non-
linear potential was there included, and the appearance of AMCs was clearly observed. However,

5Even though, as emphasised already earlier, we will see that the collapse of the first generation of AMCs would occur in radiation domination
era.
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Figure 2.5: Evolution of the AMC mass function as a function of the redshift. It can be observed in
the left panel that the mass function grows for all masses at high redshift whereas the low redshift
dynamics on the right panel is dominated by the mergers and the mass function decreases for low
masses to increase the high mass tail. Figure from Ref.[30].

only the real axion field was included in the simulations such that no topological defects, cosmic
strings or domain walls, could have been observed. As briefly mentioned in the previous section,
those objects arise when the full complex scalar field is considered.
More recently, large simulations have been conducted in Refs.[29, 30] taking into account the com-
plex scalar field before symmetry breaking. They were therefore able to follow the appearance and
the decay of the topological structures (see Fig.2.4). The idea of those studies was to characterize
the density fluctuations shortly before matter-radiation equality. Their main result is that after the
axion gets its zero temperature mass, the density contrast power spectrum gets frozen in time and
characterizes overdensities which are already of the order O(1) in radiation era. Those large over-
densities are able to collapse into AMCs if gravitational interactions are turned on.
Only recently, Ref.[31] realized simulations including gravitational interactions. The initial frozen
density field derived in [30] was converted into particles and evolved including gravity with N-body
simulations. The AMC mass function was then followed as a function of the redshift (see Fig.2.5):
At early times, before radiation-matter equality z ≫ zeq, the mass function is dominated by small
mass AMCs corresponding to the small overdensities observed in the initial condition of [30]. As the
redshift decreases, a peak starts forming at a massMAMC ∼ 10−13M⊙. This has to be understood has
due to the collapse of the largest non-linear fluctuations present at high redshift. The overall AMC
mass function keeps growing until radiation-matter equality z ≈ zeq, washing out progressively the
peak. At late time, the mass function is affected by mergers. As it can be observed in the right panel
of Fig.2.5, decreasing the redshift indeed leads to a diminution of the number of AMCs in the low
mass region and increases the high mass tail. The evolution is pushed down to redshift z ≈ 99,
where at that point numerical tools become inefficient.
Those simulations have finally confirmed the expected Navaro-Frenk-White (NFW) density profile
[110] for the AMCs,

ρ(r) =
ρ0

r/rs (1 + r/rs)
2 , (2.65)

with rs the scale radius and ρ0 a free parameter. However, as pointed out in Ref.[30], more work has
to be done in order to follow the density profile evolution in redshift.

Even if numerical simulations provide the ideal and maybe the only way to account for the non-
linear effects of the potential and the decay of the topological defects, analytical methods are al-
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ways the best option if one needs to understand the underlying physics. For this reason, recent
works [100, 111] have studied the formation of AMCs in semi-analytical formalism. For instance, in
Ref.[111] the Press-Schechther formalism [112] was applied on the frozen power spectrum obtained
in the simulation of Ref.[30] to derive the mass distribution of the AMCs at formation. Similarly,
Ref.[100] followed analytically the axion field evolution starting from an initial guess for the power
spectrum6 (see Eq.(2.57)). They obtained that the density contrast power spectrum goes to a time in-
dependent function as well and therefore applied the Press-Schechter (PS) formalism at that point. It
is, however, important to point out that the mass distributions extracted from those semi-analytical
methods do not take into account the successive mergers after formation, as it was conducted in
numerical simulations.

6As discussed in the previous section, in Ref.[100] the power spectrum is chosen in a way to reproduce correctly the correlation of the axion field.
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Chapter 3

Axion Miniclusters in the Milky Way

This Chapter is based on Ref.[113]

In the previous chapter, we have highlighted the way the post-inflation scenario brings new phe-
nomenological signatures. Among them, the axion miniclusters (AMCs) are a strong prediction of
this model and are expected to form from the collapse of the large inhomogeneities already in radia-
tion domination era (see Sec.2.5). As discussed earlier, numerical simulations [30, 111] have pushed
the evolution of the first generation of AMCs down to redshift z ≈ 99 taking into account the merg-
ers in the late times. At lower redshifts, it is expected for the AMCs to become the sit of galaxy
formations and to evolve into dark matter halos. This late time evolution is particularly important
since interactions with surroundingmatter can disturb, damage and even destroy the AMCs. A dom-
inant source of disruption is coming from the tidal interactions with galactic stars. They can indeed
strip away parts of the AMCs as they orbit within the dark matter halo leading to the formation of
axion streams, particularly important for axion direct detection [114].
If it seems impossible for numerical simulations to push the AMC evolution to those low red-
shifts, semi-analytical methods have been developed in order to understand how the AMC prop-
erties would be modified once they are bound to the dark matter halo and tidally disrupted by stars
[114, 115, 116, 117]. Using the well-known formalism directly for tidally shocked galactic clusters
[118] (see Sec.3.2), those studies stayed in a picture in which the AMCs are made of classical par-
ticles. It is, however, known that for axion mass ma < 30eV 1, the averaged number of particles
per unit of de Broglie wavelength is extremely large [32] making the axions better described in a
classical field picture.

In this context, this chapter has for purpose to account for the wave 2 behavior of the axions in
their interactions with galactic stars and their survival in the galaxy. To this point, we start in 3.1
by deriving a solution for the axion field in order to describe the AMCs in a wave picture. In 3.2, we
use this solution to see how a tidal interaction with a galactic star would affect the structure of an
AMC. Finally, in 3.3, the survival of the AMCs is studied using the formalism of the two previous
sections.

3.1 Description of Axion Miniclusters in a Wave Formalism

In this section, we derive a wave function for self-gravitating objects made of axion. As emphasized
above, it will be used later to describe AMCs, but the formalism described here can be applied tomore
general structures as well, like dark matter halos. The first step consists in deriving the equation of
motion for the axion field: the Schrodinger-Poisson system. This will be discussed in Sec.3.1.1. From
it, the wave function for a self-gravitating system will be constructed in Sec.3.1.2. Finally, specific
examples of AMC profiles will be discussed in Sec.3.1.3

1Remind that the typical QCD axion mass considered in the previous chapter is of the order ofma ∼ 10−5eV.
2For now on, when talking about "wave" we will always refer to a classical field in the sense of the electromagnetic field for photons.

40



3.1. DESCRIPTION OF AXION MINICLUSTERS IN A WAVE FORMALISM

3.1.1 Schrodinger-Poisson System

In order to derive the equations of motion for the axion field in a self-gravitating object, we start
from the axion field action already introduced in Eq.(2.29),

Sa =

∫
d4x

√−g
(
−1

2
∂µa∂

µa− V (a, T ) +
R

16πG

)
. (3.1)

Note that since we are considering self-gravitating objects, the Ricci scalar R needs to be included
to account for the evolution of the metric. Hence deriving the equations of motion from this action,
we get

1√
g
∂µ
(√−ggµν∂ν

)
a+ V ′(a),

Rµν − 1

2
gµν = 8πGT µνa .

(3.2)

The first equation is the evolution of the axion field, as already discussed in the previous chapter.
The second one is the Einstein equation, sourced by the stressed energy tensor of the axion field
T µνa defined in Eq.(2.34). This system is known as the Einstein-Klein-Gordon (EKG) equations.
Let’s discuss more in detail the properties of this system. As already stressed earlier, for the standard
QCD axion with ma ∼ 10−5 eV the occupation number of the axion field is enormous. Indeed, the
de Broglie wavelength is given as

λdB =
2π

mav
,

≈ 1.49 km×
(
10−6eV
ma

)(
250km/s

v

)
,

(3.3)

which leads to the number of axions per de Broglie wavelength [32]

NdB ≈
(
34eV
ma

)(
250km/s

v

)
, (3.4)

if we consider the dark matter density in the solar system neighborhood ρ̄ ≈ 0.4GeV cm−3.
Hence, exactly as for the photons that are better described by the classical electric and magnetic
fields for high occupation numbers, the axion field is better described by a classical field as well (see
[95, 119, 120] for further discussions).
Furthermore, an important simplification of the EKG system can be made in the context of AMCs.
Indeed, the escape velocity of such objects is given as vesc =

√
GM/R, withM and R the mass and

radius of the AMC. For the characteristic mass and radius found in Sec.2.5, we get vesc ≈ 10−9 which
corresponds to highly non-relativistic particles. In that case, the axion field could be written as

a(x, t) =
1√
2ma

(
ψ(x, t)e−imat + ψ∗(x, t)eimat

)
, (3.5)

where the fast oscillating mass term has been factorized out such that ψ is the non-relativistic axion
field assumed slowly varying in time. Inserting this expansion in the EKG system, and considering
the weak gravity limit for the Einstein equation leads to the so-called Schrodinger-Poisson (SP)
system [121] (see App.B.1)

i∂tψ = − ∇2

2ma

ψ +maϕψ,

∇2ϕ = 4πGma|ψ|2,
(3.6)

where ϕ is the Newton potential of the self-gravitating object.
In the non-relativistic limit, the matter density of the axion field is given by (see App.B.2)

ρ = ma|ψ|2, (3.7)
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such that the Poisson equation is sourced by the axion field, as it should. This system describes a
self-gravitating object in a wave picture and is the starting point of the next section analysis.
It is important to stress again that even if the axion field is here described via the Schrodinger
equation, we are dealing with a classical field and no quantum interpretation has to be given to
the wave function ψ. Nevertheless, the well-known U(1) symmetry of the equation still has some
implications. If in the quantum theory the conserved quantity is the overall probability, here it
translates into the conservation of the mass (or the number of particles)

M = ma

∫
d3x |ψ|2. (3.8)

However, Solving the SP system analytically is challenging. Hence, recent works [122, 123, 124,
125, 126] have opted for numerical simulations in order to analyze structure formation in this wave
picture. As pointed out in the previous chapter, it reproduces the cold dark matter behavior exactly
at scales larger than the galaxy and deviates from it at scales around the de Broglie wavelength. In
the dark matter halos formed in simulations, small-scale granules therefore emerge from the wave
interference [122, 127]. We will discuss those granules in the next section more in detail.
However, numerical simulations have limitations as well. For example, even though we are inter-
ested in large-scale structures, numerical simulations have to take into account modes with typi-
cal wavelength usually much smaller than the scales of interest. The necessity of high resolution
becomes then quickly an issue. For this reason, recent studies[121, 127, 128, 129, 130] have been
conducted in finding an analytic solution for the wave function of the SP system in the context of
dark matter halos and axion background. They are able to nicely reproduce the dark matter halos
from simulations, including the small granule interference. Similarly to those works, but adapted
to AMCs, we solve in the next section the SP system using the Wentzel-Kramers-Brillouin (WKB)
approximation for the wave function [131, 132]. Often referred as the semi-classical approxima-
tion in the context of quantum mechanics, the WKB approximation used here for a classical field
would offer a well-defined framework to justify the transition to a description of AMCs in terms of
particles.

3.1.2 Construction of a Self-Gravitating System

General Formalism and Random Phase Model

The first step in the construction of the wave function of the self-gravitating AMC is to decompose
its wave function on the eigenmode basis of the Schrodinger equation:

(
− ∇2

2ma

+maϕ(x)

)
ψi(x) = Eiψi(x), (3.9)

where i stands here for the label of the eigenmode ψi and Ei is the corresponding eigenenergy.
The wave function can then be written as a superposition of those modes

ψ(x, t) =
∑

i

aiψi(x)e
−iEit, (3.10)

with a corresponding density profile

ma|ψ(x, t)|2 = ma

∑

i

|ai|2|ψi(x)|2

+ma

∑

i ̸=j

aia
∗
jψi(x)ψ

∗
j (x)e

−i(Ei−Ej)t.
(3.11)

Under this form, it is easy to see that the density profile carries a time independent contribution
and an interference term. The latter is responsible for the appearance of the granules mentioned
earlier. It can be checked that the characteristic size of those fluctuations is of the order of the de
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Broglie wavelength 1/(mav) and that the typical time scale is Tgran. = 1/(mav
2) with v the velocity

dispersion of the cluster [97, 133, 134].
An additional key feature of the AMC construction is to assume that the coefficients ai carry some
random phases. Initially proposed by Refs.[121] and then extensively used in the literature for the
construction of fuzzy dark matter halos (see for instance Ref.[129, 134, 135]), this assumption can
be understood as an analogy to the random phases used to describe the stellar orbits in galaxies.
The consequences of these random phases are then quite profound. In Eq.(3.11), they would only
affect the interference term, making the small-scale granules randomly distributed. Again, this is
in analogy to the stellar motions in the galaxy, where the random phases could cause occasional
enhancements of the density of stars [134]. Hence the density profile of the wave function defined
in Eq.(3.10) is randomly fluctuating around its mean value

ma⟨|ψ(x, t)|2⟩ = ma

∑

i

|ai|2|ψi(x)|2,

≡ ρ̄(x).

(3.12)

If each eigenmode coefficient carries a different random phase, it implies for the whole wave func-
tion ψ(x, t) to be a Gaussian random field (from central limit theorem). On its side, the random
interference term of the density can be written as the sum of two squared Gaussian random fields,
such that the overall density follows an exponential distribution [127]

P (ρ) =
1

ρ̄
e−ρ/ρ̄. (3.13)

Finally, it also follows from Eq.(3.11) that the variance of the density is given by (see App.B.3)

σρ(x) = ρ̄(x). (3.14)

Hence we already see that such a wave construction can reproduce the characteristic density fluc-
tuations at the de Broglie scales mentioned earlier for the wavy dark matter numerical simulations.
However, at this point we have still not specify the value of the coefficients |ai|. To do so, we have
to close the SP system and find them by solving the Poisson equation

∇2ϕ(x) = 4πGma|ψ(x, t)|2

= ma

∑

i

|ai|2|ψi(x)|2 +ma

∑

i ̸=j

aia
∗
jψi(x)ψ

∗
j (x)e

−i(Ei−Ej)t. (3.15)

It is here clear that the solution of the Schrodinger equation leads to a time-dependent density profile
as well as a time-dependent gravitational potential. Trying to solve the Poisson equation that way
would then induce a different potential than the one used to calculate the modes ψi. The way to
overcome this issue is to assume that the Poisson equation is satisfied on average over the random
phases. Hence Eq.(3.16) becomes

∇2ϕ̄(x) = 4πGma⟨|ψ(x, t)|2⟩
= 4πGma

∑

i

|ai|2|ψi(x)|2, (3.16)

where the ensemble average over the random phases is explicitly given by

⟨aia∗i′⟩ = |ai|2δii′ . (3.17)

Importantly, let’s note that this is, of course, an approximation of the true solution. However, the
full time dependence of the SP system could only be reached with numerical simulations. It has,
however, been shown that the wave function constructed that way reproduces correctly the small-
scale structure properties appearing in numerical simulations [134].
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In conclusion, the wave function of a self-gravitating AMCwithmean density profile ρ̄(x) andmean
gravitational potential ϕ̄(x) could be approached analytically under the random phase assumption
by finding each eigenmode coefficient according to

(
− ∇2

2ma

+maϕ̄(x)

)
ψi(x) = Eiψi(x),

∇2ϕ̄(x) = 4πGma

∑

i

|ai|2|ψi(x)|2.
(3.18)

The wave function

ψ(x, t) =
∑

i

aie
iϕiψi(x)e

−iEit (3.19)

reproduces for a given realization of the random phases ϕi the small scale interference observed in
numerical simulations and on average the mean density and gravitational potential.

Construction Under WKB Approximation

In practice, it can, however, be challenging to solve the Schrodinger equation, derive the precise
energy spectrum and hence an analytical expression for the coefficients ai. For this reason, we
derive in the remaining part of the section a formalism based on the WKB approximation for the
wave functions ψi. It would lead to a general expression for the coefficients ai, given a mean density
ρ(x)3 and potential ϕ(x).
Let’s first assume that the mean gravitational potential ϕ(r) and density profile ρ(r) are fixed and
spherically symmetric (relevant for AMCs), we then write the eigenmodes in spherical coordinates
with the use of the spherical harmonics Ylm as

ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ). (3.20)

As for the hydrogen atom, n stands for the principal quantum number and l,m respectively for the
angular momentum and its z component. The energy levels Enl are independent of the quantum
numberm. The radial part of the wave function is found assuming the semi-classical WKB limit

Rnl(r) =
1√Nnl

1

r

1

[2ma (En − Vl(r))]1/4
sin

(∫ r

dr′
√

2ma (En − Vl(r′)) + π/4

)
, (3.21)

where Vl(r) is the effective potential defined in the limit l ≫ 1 4 as

Vl(r) =
l2

2mar2
+maϕ(r), (3.22)

and Nnl is a constant to assure the correct normalization

Nnl =
1

2

∫ r2(n,l)

r1(n,l)

dr
1√

2ma (En − Vl(r′))
. (3.23)

In this last equation, we have averaged over the fast oscillating term and introduced the two classical
turning points ri(n, l) defined as Vl(ri) = Enl.
In line with Eq.(3.19), the wave function of the AMC is then

ψ(r, θ, ϕ) =
∑

nlm

anlmRnl(r)Ylm(θ, ϕ)e
−iEnlt. (3.24)

3From now one we drop out the bar for the mean density/potential notation and we will specifically mention when discussing a specific realization
of the density/potential.

4We will discuss later why this is in line with the WKB approximation.
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Figure 3.1: Left: Single realization of an NFWAMCwith mass and radius given byM = 10−13M⊙,
R = 10−7 Pc respectively. The concentration is set here to c = 10. Right: Ensemble average over
40 realizations of the random phases for the same AMC profile. This figure corresponds to Fig.1 in
Ref.[138].

In Ref.[113], we found that the coefficients anlm, in order to fulfil the Poisson equation (3.16) (aver-
aged over the random phases), must be given by

anlm =
√
(2π)3f(Enl)gl(Enl)∆Ee

iϕnlm , (3.25)

where gl(Enl) = 2maNnl/π is the density of states for a given angular momentum l, ϕnlm are the
random phases and f(Enl) is the distribution function. This last function is directly related to the
density and gravitational potential of the AMC through the Eddington formulae [136, 137]

f(E) =
1

2π2m2
a

d

dE

∫ 0

E/ma

dϕ
1√

2ma(maϕ− E)

dρ

dϕ
. (3.26)

Let’s check that this expression indeed reproduces on average the target density ρ(r):

ρ(r) = ma⟨|ψ(r, t)|2⟩
= ma

∑

nlm

|anlm|2R2
nl(r)|Ylm(θ, φ)|2

=
4πm2

a

r2

∫ 0

maϕ(r)

dE f(E)

∫ lmax(E,r)

0

dl
l√

2ma(E − Vl(r))
,

(3.27)

where the ensemble average over the random phases has been performed similarly to Eq.(3.17) and
we have also averaged over the fast oscillations in R2

nl(r). In the last line, the continuous limit for
the energy levels has been assumed in order to go from the sum to the integral. At a location r and
energy E, the maximum allowed angular momentum lmax(E, r) is defined by E = Vlmax(r). The
l-integral can be performed and we obtain

ρ(r) = 4πm2
a

∫ 0

maϕ(r)

dE f(E)
√
2ma(E −maϕ(r)) . (3.28)

This expression is the usual relation for the density as a function of the distribution function f(E)
and the potential ϕ(r) and can be recovered from Eq.(3.26).
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Figure 3.2: Left: Comparison between the mean density of the AMC considered in Fig.3.1 and the
density coming from an average over 40 realizations of the phases. The blue shaded region shows
the variance of the density fluctuations. Right: Extracted probability distribution for the density.

As already pointed out, the solution (3.24) represents a self-gravitating AMC with mean density
ρ(r) and potential ϕ(r). However, for a given realization of the phases, the AMC density deviates
significantly from ρ(r)with density variance given by σρ = ρ(r). For illustrative purposes, we have
represented in Fig.3.1 a single realization of the density profile of an AMC with a mean density pro-
file ρ(r) taken to be NFW. Its mass and radius are respectivelyM = 10−13M⊙,R = 10−7 Pc and the
concentration is set here to c = 10. The granules mentioned earlier are clearly visible. On the same
figure (right panel), we show how an average over 40 realizations of the phases already converges to
a spherically density profile, smoothing out the small-scale granules. In Fig.3.2, we show explicitly
how the phase average density profile goes to the mean input density ρ(r). The pale shaded region
is the variance calculated from the 40 realizations of the phases. It converges as well to σρ = ρ as it
should. On the right panel, the probability distribution of the density has been extracted from the
40 realizations. The obtained probability distribution follows the expected one derived in Eq.(3.13).

The WKB solution constructed here is, however, an approximation working only under specific
conditions. Indeed the solution (3.21) holds only in the limit where the effective potential Vl(r)
varies slowly compared to the de Broglie wavelength. Explicitly, the system needs to satisfy

λ

2π
≡ 1√

2ma(En − Vl)
≪ En − Vl

|dVl/dr|
∼ D , (3.29)

where D is the characteristic size of the system.
Hence the WKB approximation, used for the modes ψi, breaks down for energy levels close to the
ground states. We will see in the next section that the WKB condition (3.29) translates into the
condition l ≫ 1 on the angular momentum.

3.1.3 Lane-Embden and Hernquist Profiles

In the previous chapter we have discussed the recent numerical simulations and how they derived
a mass distribution and a characteristic density profile for the AMCs around a redshift z ≈ 99 [30]
(see [139] for a more recent work). Even if a NFW profile seems to be in good agreement with the
numerical results, it is difficult to conclude that this would be the density profile of the AMCs within
the MW since their properties could be still modified until galaxy formation. It is then fair to assume
that the expected shape of the density for the AMCs is not well understood. As we will see in the
next section, the density (as well as the gravitational potential and the distribution function) plays
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a crucial role in the way the AMCs will react to the interactions with stars. In the remaining parts
of this chapter we will then assume two different characteristic profiles for the clusters5: the Lane-
Embden (LE) [137] and the Hernquist (H) [140] profiles. Their gravitational potential and density
are defined as

ϕLE(r) =

{
−GM

R

(
πr
R

)
r < R

GM
R

− GM
r

r > R
ϕH(r) = − GM

(r + rH)
, (3.30)

ρLE(r) =
π

4

M

R3

(πr
R

)
r < R ρH(r) =

M

2π

rH
r(r + rH)3

. (3.31)

If the LE profile is not particularly motivated, it still remains a particularly interesting study case
since it provides an AMC with a finite radiusR, i.e. ρ(r > R) = 0. On its side, the Hernquist profile
presents the same 1/r behavior for the density as the NFW profile but falls faster at large radius
making its total mass finite. In order to directly compare those two profiles, we define a typical
radius R for the Hernquist profile as the radius in which 80% of the mass is enclosed in. Using
Eq.(3.30), we get that R ≈ 8.94 rH. In the remaining part we will adopt this definition for the radius
in the Hernquist case.
In the top panels of Fig.3.3 we compare the gravitational potential and cumulative mass function of
those two profiles. For the same mass and radius, it can be observed that the Hernquist profile leads
to a much deeper gravitational potential than the Lane-Emden one. In addition, the mass is much
tighter in the center of the clump in the Hernquist case.
In order to complement the description of those two AMC profiles, we finally need to specify their
distribution functions f(E). As stressed in the previous section, the coefficients of the wave function
would be directly proportional to it. We have [140, 141]

fLE(E) =
1

m4
a

1

8
√
2πGR2

√
−ma

E
, (3.32)

fH(E) =
1

m4
a

M

8
√
2π3r3Hv

3
g

3 sin−1(q) + q
√

1− q2(1− 2q2)(8q4 − 8q2 − 3)

(1− q2)5/2
, (3.33)

where

q =

√
− rH
GM

E

ma

, vg =

√
GM

rH
, (3.34)

and f(E) = 0 for E ≥ 0.
At this point it is important to note the difference in behavior of those two distribution functions. In
the Lane-Emden case, fLE(E) diverges for E → 0, whereas for the Hernquist profile the strongest
contribution comes from the most tightly bound states. This can be observed in the bottom left
panel of Fig.3.3, where the contribution of each energy level (integrated over the angular momen-
tum) dM/d|E| is shown. In the LE case, the contribution is dominated by shallower energy modes
and diverges for E = 0 whereas for the Hernquist profile, important contributions appear from
lower energy levels. Of course, this would have important effects during tidal interactions since
usually only energy levels close to E ≈ 0 would be affected.
On the bottom right panel of Fig.3.3, we show the normalized contribution of each angular momen-
tum to the total mass. Since the LE profile has a finite radius, the system has a maximum angular
momentum as well. This one is given by

lLEmax ≈ 0.607ma

√
GMR , (3.35)

≈ 210
ma

10−5 eV

√
M

10−12M⊙

√
R

10−6 pc
. (3.36)

5Note that the formalism we will develop could be applied to any other type of AMC profile.
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Figure 3.3: Comparison of the Lane-Emden (blue) and Herquist (red) profiles. On the top row,
the potential ϕ(r), as well as the cumulative mass M(r) are shown. The bottom row shows the
differential contribution to the total mass of energy states (bottom left) and angular momentum
states (bottom right). For all figures, we took a total mass M = 10−12M⊙, R = 10−6 pc, ma =
10−5 eV, and for Hernquist we define R such that 80% of the total mass is contained in r < R,
which implies R = 8.47 rH. The energy unit is E0 = GMma/R. This figure corresponds to Fig.1 in
Ref.[113]

The LE cluster will then receive contributions from angular momentum between l = 0 and l =
lLEmax with a peak located at around lpeak ≈ 0.7 lLEmax. From that, let’s now come back to the WKB
approximation. We have stated in Eq.(3.29) that the typical size of the system must be much larger
than the typical wavelength. In this case, it translates into

λ

2π
≈ 1

ma

√
GM/R

≪ R. (3.37)

Using Eq.(3.35), we see that it implies that the WKB approximation holds as long as lmax ≫ 1.
For the Hernquist profile, the shape of the l distribution is rather different, with a peak at signif-
icantly lower values, lHpeak ≈ 18 for the parameters chosen in the plot. Numerically we find that
the peak value has the same scaling with parameters as given in Eq. (3.35) (which also follows from
dimensional arguments). Note also that for Hernquist there is no maximum angular momentum and
the distributions continuously go to zero for l → ∞.
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Finally, for a self-gravitation object, the gravitational binding energy can be calculated as

W = −4πG

∫ ∞

0

dr r2
ρ(r)M(r)

r
. (3.38)

Using the previous section, we can see that the ensemble averaged AMC is in virial equilibrium such
that Etot = W + K = W/2 with K being the total kinetic energy. Importantly, we remind that
Etot ̸= ⟨H0⟩ens =

∑
nlmEn|Cnlm|2 since the latter quantity corresponds to the energy stored in the

field if the potential ϕ was a fixed external potential. In contrast, Etot = W +K corresponds to the
energy stored in the self-gravitating system, where the potential is provided by themass distribution
itself. In the case of the LE and Hernquist profiles, the gravitational binding energy can be easily
expressed in terms of the mass and the radius of the clump

WLE = −3

4

GM2

R
, WH = −1

6

GM2

rH
. (3.39)

3.2 Tidal Stripping of Axion Miniclusters

In the previous section we have developed a formalism to derive the wave function of an AMC
characterized by a mean density profile ρ(r), gravitational potential ϕ(r) and distribution function
f(E). Under the random phase assumption, we have seen that a typical minicluster will have small
granule fluctuations at scales below the de Broglie wavelength. Only on average over the phases,
the cluster reproduces the input density and gravitational potential.
As emphasized in the introduction, we are now going to use this formalism to understand how
the AMCs would react to tidal interactions with galactic stars. If this question has already been
answered using a classical particle description for the AMCs [114, 115, 116, 117], we are going to
propose a generalization for an AMC described by the wave function in Eq.(3.24). To this point, we
will briefly recap the tidal stripping in a particle picture in Sec.3.2.1. We will then move to classical
field formalism in Sec.3.2.2 and finally apply this one in order to discuss the impact of a single tidal
interaction on an AMC.

3.2.1 Tidal Stripping in a Particle Picture

In the context of AMC-star encounters, it is fair to assume that the typical interaction time6 is far
shorter than the dynamical time scale of the system. Explicitly, it means that a star with relative
velocity v and impact parameter b has an interaction time τint. ∼ b/v much shorter than the char-
acteristic time τcross. ∼ R/ω needed for a particle to cross the cluster (with ω =

√
GM/R and R

respectively the typical velocity and the radius of the cluster). Under this approximation, refereed
as the impulse approximation [142, 143, 144, 145], the interaction can be assumed instantaneous and
the particles at rest during that time. Hence, only the velocity of the particles would change whereas
their position would remain the same.
In addition, the calculation of the stellar interaction is considerably simplified if the size of the per-
turbed system (here, the minicluster) is much smaller than the impact parameter b through which
the perturbator passes. In that case, the gravitational potential applied from the star to the AMC, in
a frame where the origin is at the center of the cluster, can be expanded around the origin as

ϕ∗(r, t) = − GM∗

|r − r∗(t)|
,

= −GM∗

r∗(t)
− GM∗

r∗(t)2
r cos(γ(t))− GM∗

r∗(t)

(
r

r∗(t)

)2

P2(cos γ(t)) +O(r3/r3∗(t)),

(3.40)

where r∗(t) is the location of the star, γ is the angle between r and r∗(t) and P2 denotes the 2nd
order Legendre polynomial. In this expression, the first term does not provide any force, the second

6Here the time during which the gravitational force is significant.
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will induce the Keplerian motion of the clump center of mass and only the third order provides the
tidal force we are interested in. Dropping all the terms beyond the second order is called the tidal
approximation. We then define the tidal potential as

ϕtidal(r, t) = −GM∗

r∗(t)

(
r

r∗(t)

)2

P2(cos γ(t)) . (3.41)

When both the tidal approximation and the impulse approximation hold, we talk about tidal shocks.

Let’s now discuss the reaction of an AMC under a tidal shock. Starting from the potential in
Eq.(3.41), a star with mass M∗ flying by with a given relative velocity v and impact parameter b
would inject a total energy in the system [137, 142]

∆E =
4G2M2

∗M

3v2b4
⟨r2⟩, (3.42)

where ⟨r2⟩ is mean squared radius given by

⟨r2⟩ =
(∫

d3r r2ρ(r)

M

)
. (3.43)

This total injected energy can be split into individual energy changes in each particle bound to the
cluster. On average, each particle located at a location r would experience an energy shift

δE(r) =
4G2M2

∗ma

3v2b4
r2. (3.44)

The AMC response to the tidal shock is then easy to apprehend: all the particles with final positive
energy Ef = Ei+ δE(r) > 0 are no longer bound to the clump. Hence, if the mass is initially given
by

M = 4π

∫ ∞

0

dr r2ρ(r)

= 16π2m2
a

∫ ∞

0

dr r2
∫ 0

maϕ(r)

dE f(E)
√
2ma(E −maϕ(r)), (3.45)

the variation of the mass coming from the ejected particles can then be derived as [116]

∆M = 4π

∫ ∞

0

dr r2ρ(r)

= 16π2m2
a

∫ ∞

0

dr r2
∫ 0

min[−δE(r),maϕ(r)]

dE f(E)
√

2ma(E −maϕ(r)). (3.46)

Similarly, the total energy variation of the clump can be calculated assuming that the ejected particles
carry out a fraction fej. of the total injected energy ∆E given in Eq.(3.42). After the encounter, the
final energy of the clump is then given by [116]

Ef = Ei +
(
1− fej.∆E − Eej.

)
, (3.47)

whereEej. is the initial energy of the particles that are ejected due to the encounter. This quantity is
simply the initial kinetic energy of those particles plus the change in binding energy from ejecting
them.
Of course, the system right after the encounter is no longer in virial equilibrium. It means that ifEi =
αGM2/R, where α is a coefficient that depends on the density profile, Ef ̸= αG(M − ∆M)2/R.
The cluster will then be forced to relax to a new virial configuration. This process is, however, non
trivial and still under debate. In Ref.[116], it has been assumed that the AMC will keep the same
density profile, hence keeping the coefficient α fixed. The radius would, therefore, change in order
to cover the change in mass. Note, however, that in Refs.[145, 146], N-body simulations have been
used to derive the density profile after a star encounter and tend to point toward a universal density
profile after the first tidal interaction.
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3.2.2 Tidal Stripping in a Wave Formalism

In the previous section we have discussed the SP system and its solution for the AMCs. It has been
mentioned that even if the axion field is described via the Schrodinger equation, no quantum inter-
pretation is given to the wave function ψ. We will see now that even if the physical interpretation is
not the same, the mathematical properties and tools proper to this equation and more generally to
quantummechanics could be used to understand how an AMCwould react to a star tidal interaction.

Perturbation of the Axion Field

Let’s consider a tidal shock similar to the one described in Sec.3.2.1, the tidal potential induced by
the star on the AMC is given by Eq.(3.41)

ϕtidal(r, t) = −GM∗

r∗(t)

(
r

r∗(t)

)2

P2(cos γ(t)) . (3.48)

Intuitively, this potential has to be added to the Schrodinger equation such that the wave function
constructed in Eq.(3.24) is no longer a solution. However, in the case of ϕtidal(r, t) perturbatively
small (see App.B.6 for a discussion of the perturbativity in this context), the change in the wave
function ψ can be understood analytically. In particular, the consequence of the tidal interaction
in the perturbative limit would act on the wave function ψ similarly as a perturbation in quantum
mechanics acts on the wave function of a particle. Concretely, it will provide a shift in the energy
levels. Therefore, similarly as for the particle picture formalism, since initially all the energy levels
of the AMC have a negative energy, those that would become positive after the energy shift would
be ejected from the cluster. Let’s derive this explicitly.

Under the perturbation (3.48), the new solution for the axion field can be written as a series
expansion. Up to the second order, we have

|ψ(t)⟩ = |ψ(0)(t)⟩+ |ψ(1)(t)⟩+ |ψ(2)(t)⟩ . (3.49)

From now on, we are going to use the quantum mechanical notations keeping in mind that the
calculation is still classical.
In the last expression, |ψ(0)(t)⟩ is the wave function of the AMC before the perturbation so that the
first correction arises at first order. Each order can be expanded on the unperturbed eigenstate basis
defined in Eq.(3.20) and written here |nlm⟩,

|ψ(i)(t)⟩ =
∑

nlm

C
(i)
nlm(t) e

−iEt |nlm⟩ , (3.50)

where the index (i) stands for the order of the expansion, such that C(0)
nlm are the coefficients of the

unperturbed wave function defined in Eq.(3.25). The coefficients of the next orders are found by
solving the differential equation

i∂tC
(i)
nlm(t) =

∑

n′l′m′

C
(i−1)
nlm ⟨nlm|maϕtidal(r, t) |n′l′m′⟩ ei(E−E′)t , (3.51)

where here and in the following we use the short-hand notation E = En and E ′ = En′ .
As usually done in quantum mechanics, the idea here is to assume that the interaction starts at
tin = −∞ and lasts until tfin = +∞. Initially, the first and second order coefficients are naturally
zero since the AMC is described by the unperturbed wave function. The evolution of the coefficients
can then be followed be integrating Eq.(3.51) over time. Since we are interested in the AMC after the
interaction, we calculate the first and second order coefficients C(1)

nlm, C
(2)
nlm at t = +∞. The detailed

calculation is made in appendix B.4 and we show here the final result in terms of the averaged7
7We recall that in this section the average is taken over the random phases that appear in the wave function of the AMC.
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variation of the coefficients squared8,

⟨∆|Cnlm|2⟩ = ∆(+)|Cnlm|2 +∆(−)|Cnlm|2, (3.52)

with

∆(+)|Cnlm|2 =
(
A

α

)2∑

n′,B

|C(0)
n′lm|2

∣∣⟨nl|r2 |n′l⟩
∣∣2 gnn′

∆(−)|Cnlm|2 = −|C(0)
nlm|2

(
A

α

)2∑

n′

∣∣⟨nl|r2 |n′l⟩
∣∣2 gnn′ .

(3.53)

The function gnn′ is a window function coming from the time integration (see App.B.4 for the exact
expression). Naively, the term∆(+) corresponds to the transitions from all the states |n′l′m′⟩ toward
|nlm⟩. Since initially (at t = −∞) only the bound states have a non-zero coefficient, the sum runs
only over them. On the other hand, the term ∆(−) encodes the transitions from the state |nlm⟩
towards any other states |n′l′m′⟩, bound or unbound. For this reason, the sum is not limited to the
bound states as for the∆(+). It is easy to see that considering those two contributions assure to have
the conservation of the total number of particles.

Energy Injected by the Star

The equations (3.53) constitute the starting point of our analysis. We proceed now to apply the above
formalism to describe the impact of a single encounter on an AMC. To this point we first derive the
total energy injected by the star and then discuss the properties of the AMC after the encounter
(final mass, density profile and radius) .
Explicitly, from Eq.(3.53), we obtain two similar expressions for the variation of the energy

∆E(−) =
∑

nlm,B

Enl∆
(−)|Cnlm|2 , (3.54)

∆E(+) =
∑

nlm

Enl∆
(+)|Cnlm|2 . (3.55)

In the first relation, Enl∆(−)|Cnlm|2 corresponds to the amount of energy transferred from the state
|nlm⟩. The quantity ∆E(−) then indicates the total energy transferred by the bound states of the
system. Similarly, ∆E(+) corresponds to the total energy received and since transitions can occur
to unbound states, the sum is not limited to the bound states of the system.
The total energy injected in the AMC is then given by the sum of these two contributions

∆E = 16π2ma

∫ lmax

0

dl 2l

∫ 0

Emin(l)

dE f(E)Nnl

∫ ∞

Emin(l)

dE ′×

gl(E
′) (E ′ − E)

(
A

α

)2

| ⟨nl| r2 |n′l⟩ |2gnn′ ,

(3.56)

where Emin(l) is the minimum value of the effective potential Vl(r) and we have used Eq.(3.53) as
well as the explicit expression for the coefficients |C(0)

nlm|2 from Eq. (3.25).
This integral can be simplified in the impulse approximation mentioned in Sec.3.2.1. Indeed, we
remind that, in the particle picture, if the time scale of the interaction∼ b/v is much shorter than the
dynamical time scale of the system, bound particles can be considered “at rest” during the encounter.
This approximation has been shown to reproduce quite well the numerical simulation results even
for borderline range of impact parameters/velocities [116, 137, 143, 145, 147]. In the wave picture,

8From now on the coefficients are always assumed to be evaluated at t = +∞.
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this approximation is captured by the function gnn′ . Indeed, depending on the time scale of the
perturbation, the two sudden or adiabatic limits are considered in quantummechanics. The adiabatic
one assumes that the interaction is turned on smoothly and in that case gnn′ is well approximated
by a Dirac delta. Only transitions to degenerate energy levels are possible in that case. On the other
hand, the sudden limit corresponds to the impulse approximation in the sense that the interaction
is turned on instantaneously. As naively expected, the function gnn′ gets the opposite behavior
than in the adiabatic limit and is constant. It could be checked from App.B.4 that in the impulse
approximation, gnn′ ≈ 1/2.
The integral in Eq.(3.56) could be finally further simplified using the quantum mechanical sum rules
[148, 149] (see App.B.5)

∫ ∞

Emin(l)

dE ′ g(E ′)(E ′ − E)| ⟨nl| r2 |n′l⟩ |2 =
∑

n′

(En′ − En)| ⟨nl| r2 |n′l⟩ |2 = 2

ma

⟨nl| r2 |nl⟩ ,
(3.57)

such that we finally get for the injected energy

∆E = 16π2ma

∫ lmax

0

dl 2l

∫ 0

Emin(l)

dE f(E)Nnl δE(E, l) , (3.58)

where we defined

δE(E, l) =

(
2GM∗

b2v

)2
ma

4
⟨nl| r2 |nl⟩ . (3.59)

This last quantity corresponds to the average energy shift of a state with energy E and angular
momentum l.
Let’s now compare this equation with Eq.(3.44) obtained in the particle picture. Interestingly, they
are in very close analogy expected from the radial dependence in Eq.(3.44) replaced by the expec-
tation value ⟨nl| r2 |nl⟩ in the wave formalism. However, similarly to quantum mechanics, where
observables are given in terms of expectation values of operators, the term ⟨nl| r2 |nl⟩ has to be seen
as the natural generalization of the radial dependence r2 of Eq.(3.44) in a wave formalism.
From Eq.(3.59) it is now possible to study the evolution of the AMC under a single encounter.

Properties of the AMC After a Single Encounter

From this point, the properties of the AMC after the encounter can be calculated similarly to the
particle picture. Explicitly, under the energy shifts δE(E, l), some of the states would transfer their
occupation number to unbound states with E > 0. Those do not belong to the clump and the
associated transferred mass is therefore ejected from the clump. For a given angular momentum l,
it is then possible to define a critical energy level Ẽ(l) such that Ẽ(l) + δE(Ẽ, l) = 0. It is easy to
see that

|Ẽ(l)| ≡ δE(Ẽ, l) . (3.60)

All the energy states with |E| < |Ẽ(l)| would transfer their occupation number to unbound states.
Hence, in analogy to Eq. (3.46), we calculate the variation of the density profile as

∆ρ(r) = 4π
m2
a

r2

∫ lmax(r)

0

dl l

∫ 0

−Ẽ(l)

dE
f(E)√

2ma (E − Vl(r))
, (3.61)

where lmax(r) is the maximum value of the angular momentum l at a given location r. The variation
of the mass naturally follows from this equation and is given by

∆M = 4π

∫ ∞

0

dr r2∆ρ(r) . (3.62)
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Figure 3.4: Variation of the density profile right after the encounter, ρf = ρi − ∆ρ, where ρi
(solid black lines) is the density profile before the encounter. We show results for the two studied
profiles, Lane-Embden (left) and Hernquist (right). In both cases the initial masses and radii are set
toM = 10−12M⊙ andR = 10−6 pc. The final density profile ρf (r) is shown for two different impact
parameters: b = 2×10−3 pc (blue), b = 3×10−3 pc (orange). For both profiles, we have represented
with dashed lines the variation of the density calculated in the particle picture. The parameters of
the star are set toM∗ = 1M⊙ and v = 10−4. This figure corresponds to Fig.2 in Ref.[113]

In Fig.3.4, we show the impact of a single encounter on AMC with both Lane-Emden and Hern-
quist density profiles. It is interesting to note the difference between the particle picture (dashed
lines) and the wave formalism we have constructed in this section (solid lines). For the particle
treatment, the injected energy depends on the radial location r2, such that particles close to the
origin of the clump are barely impacted by the interactions. As observed from Fig.3.4, the density
profile is then less affected at the center of the cluster. On the other hand, in our formalism the
whole energy level is shifted according to Eq.(3.59). It implies that even close to the origin the den-
sity profile would feel the tidal interaction of the star. Of course, for the Hernquist minicluster, this
effect is less visible since the density diverges at the center. For both profiles, more mass is removed
from large radii in the particle compared to the wave treatment.

Hence, the cluster is losing the mass from the states for which the energy shift (3.59) is strong
enough to transfer their occupation number to unbound states. For the same reason, the transfer of
the occupation number of those states would remove a quantity of energy ∆Elost from the clump.
Following Ref.[116], ∆Elost is the sum of the kinetic energy initially carried in those states (∆EK)
and the variation of the binding energy from removing their occupation number (∆EB). The first
one can be calculated similarly to the Eq.(3.61),

∆EK = −16π2ma

∫ ∞

0

dr

∫ lmax(r)

0

dl l

∫ 0

Ẽ(l)

dE (E −maϕ(r))
f(E)√

2ma(E − Vl(r))
, (3.63)

whereas the variation of the binding energy is calculated from Eq.(3.38) as

∆EB = −4πG

∫
dr r (ρf (r)Mf (r)− ρ(r)M(r)) , (3.64)

where ρf (r) = ρ(r)−∆ρ(r) andMf (r) is the enclosed mass according to the density ρf (r).
Of course, for the other states, the energy shift is not strong enough to send their occupation number
to unbound states but rather to higher bound energy levels. Those transitions do not modify the
mass of the clump but only inject some energy. This contribution (∆Einj.) is calculated via

∆Einj. = 16π2ma

∫ ∞

0

dr

∫ lmax(r)

0

dl l

∫ −Ẽ(l)

Emin(l)

dE
f(E) δE(E, l)√
2ma (E − Vl(r))

. (3.65)
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The overall energy variation is given by the sum of these last three contributions, such that the final
energy of the clump is 9

Ef = Ei +∆EK +∆EB +∆Einj.,

= Ei +∆Elost +∆Einj.,

= Ei +∆E .

(3.66)

Of course, as already emphasized in Sec.3.2.1, right after the encounter the system is no longer in
virial equilibrium (see Eq.(3.39) for the virial equations for both the Lane-Emden and the Hernquist
density profiles). Hence, we assume, following Ref.[116], that it will relax to a new virialized state
by modifying its radius meanwhile conserving its final mass (M −∆M) and final energy Ef . Fur-
thermore, we assume that the cluster after the encounter will keep the same density profile ( i.e.,
either the Lane-Emden or the Hernquist profile). In that case the virial relations defined in Eq.(3.39)
remains the same and the new radius can be calculated as

Rf = −3

8

G (M −∆M)2

Ef
= κRi ,

rH,f = − 1

12

G (M −∆M)2

Ef
= κrH,i ,

κ ≈ 1− 2
∆M

M
+

∆E

|Ei|
, (3.67)

respectively for the LE and H clumps. We remind that we defined the characteristic radius in the
case of the Hernquist AMCs as R ≈ 8.94rH.
At this point, it is clear that both cooling and heating effects are in balance after the encounter. The
kinetic energy ∆EK carried away by the removed modes tends to cool down the system, whereas
the variation of the binding∆EB and the injected energy∆Einj. are heating the system. Depending
on their relative contribution, the radius will have to grow or shrink in order to recover a virialized
configuration. Intuitively, the balance between cooling/heating effects depends on how the matter
is distributed within the clump. Hence, it is expected that the behavior of the radius depends on the
distribution function of the cluster f(E).

In Fig.3.5 we summarize the formalism constructed in this section by studying how the radius, the
energy and the mass change under a single encounter as a function of the impact parameter (top),
the minicluster mass (middle) and radius (bottom). As observed, the radius in the LE and H mini-
clusters react quite differently to small perturbations. This can be understood as, for a small enough
tidal interactions, only the loosely bound states are removed from the clump. In the LE case, since
the distribution function f(E) is diverging for E → 0, removing those states heats up enough the
system to increase the radius. AMCs with this density profile get then more and more venerable
after each tidal interaction. This effect is essentially the same as the one observed in the particle
picture for NFW AMCs in Ref.[116]. For Hernquist AMCs, the situation is different since the dis-
tribution function f(E) → 0 for E → 0. Small perturbations therefore only remove the diffuse
outer parts of the cluster, and the injected energy is not important enough to heat up the system.
The radius decreases and it becomes more and more difficult to alter the properties of the AMCs.
These behaviors found in our wave formalism are in good agreement with the results obtained in
Ref.[150] for different density profiles. Hence, LE and H miniclusters react in the opposite way for
small perturbations (increasing and decreasing radius respectively). It can, however, be inferred that
for specific density profiles, an in-between situation appears where an increase in the radius is fol-
lowed by a decrease. A study of a broader range of density profiles is left for further work.
For strong perturbations, the system is heated up and both types of AMCs tend to increase their
radius. Eventually, they do not form a bound system anymore when ∆E/|Etot| = 1 and the radius
is destroyed (it is manifested by the divergence of the radius in Fig.3.5). Note in particular that the

9Note that ∆E defined in Eq. (3.66) is the energy change of the bound system, whereas ∆E defined in Eq.(3.58) is the total energy transferred by
the star. The latter is shared between states which become ejected with a fraction fej and states which remain bound with the fraction (1− fej) =
∆Einj/∆E . The energy carried away by the ejected part is fej∆E −∆Elost, such that Ef + fej∆E −∆Elost = Ei +∆E , which is equivalent
to Eq. (3.66). See also Ref. [116].
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Figure 3.5: Perturbation of an AMC under a single star encounter. The change in the mass, radius
and energy are shown respectively by the blue, orange and red lines. In each different rows, only
one parameters is modified. Hence in the top panels the initial mass and radius are held constant and
set toM = 10−12M⊙, R = 10−6 pc while the impact parameter is modified. In the middle panels,
the radius and the impact parameters are kept constant as R = 10−6 pc and b = 3 (0.5) × 10−3 pc
for LE (H). In the bottom panels the mass is kept fixed asM = 10−12M⊙ and the impact parameter
as b = 3×10−3 pc. Similar results calculated in the particle picture are shown by the colored dashed
lines. The parameters of the star are set toM∗ = 1M⊙ and v = 10−4. In the region to the left (right)
of the vertical dashed line in the top, middle (bottom) panels ∆E/|E| > 1, the perturbation is no
longer small, and the clump is destroyed; we show these regions only for illustration purposes. This
figure corresponds to Fig.3 in Ref.[113]

AMC is destroyed before its total mass gets removed (see dashed vertical line in Fig.3.5)).
Furthermore, we confirm the observation made by Ref.[116] that the properties of the AMC after the
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Figure 3.6: Progressive evolution of the mass and radius of an AMC under the same repeated per-
turbation. Results are shown for both Lane-Embden (left) and Hernquist (right) clumps. The per-
turbation is characterized by b = 2 (0.5)× 10−2 pc for the LE (H) clump, v = 10−4 andM∗ = 1M⊙.
The initial conditions are shown by the red crosses. The total number of perturbations is fixed to
N = 100 for the H clumps whereas for the LE ones we let the perturbations continue until the
cluster is destroyed. The gray, orange and red shaded regions show respectively the axion star cut,
the lmax < 10, and the lmax < 1 regions. This figure corresponds to Fig.4 in Ref.[113]

interaction depend only on its mean density10, ρ̄ = 3M/(4πR3). In line with that, we can determine
the critical density needed to destroy the minicluster in one encounter,

ρ̄crit ≈
(
M∗

1M⊙

)2(
10−3 pc

b

)4(
10−4

v

)2

×
{

0.7× 10−11M⊙ (10−6 pc)−3 (Lane-Emden)
2.1× 10−14M⊙ (10−6 pc)−3 (Hernquist) .

(3.68)
It is interesting to observe at that point that LE miniclusters are destroyed much more easily than
Hernquist ones. This will have important consequences in the next chapter when we are going to
consider the survival of those two AMC profiles in the MW.
Comparing the final properties of the AMCs after the encounter in both the particle and the wave
formalisms (see dashed colored lines in Fig.3.5), we finally conclude that they agree very well with
each other. The question ofwhether this agreement remainswhen accounting for amore realistic de-
scription of the virialization process of the radius after the encounter is left for further investigation.

In Fig.3.6, we show the evolution of both the radius and the mass under the same repeated tidal
encounter (keeping the impact parameter, mass and velocity of the star fixed). As expected from the
previous discussion, the LE cluster radius increases for all perturbations. The cluster gets then more
a more easily disrupted up to the point where it is completely destroyed. On the other hand, for
small perturbations, the Hernquist cluster sees its radius decrease. After each encounter it then gets
more and more tightly bound and resistant to further interactions. In the figure we show a finite
number of 100 interactions for the Hernquist case.

3.2.3 Axion Star and Validity Limits of our Assumptions

The formalism we have constructed is based on the WKB assumption for the wave function of the
AMC. However, as already pointed out in Sec.3.1.3, the WKB approximation is expected to break
down as the maximum angular momentum gets lower. When the condition lmax ≫ 1 is no longer
valid, the typical wavelength of the axion field becomes comparable to the size of the system and
the modes of the Schrodinger equation must be found by numerical methods (see Ref.[134] where

10We remind the reader that we defineR for the Hernquist profile as the radius which contains 80% of the mass, whereas for the Lane-Emden case
it contains 100%.
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this has been done explicitly). In Fig.3.6 we have represented for both AMC profiles the regions
where the maximum angular momentum lmax becomes less than lmax = 10 (orange shaded areas)
and lmax = 1 (red shaded areas). Note that the reaction of an AMC to a tidal disruption in the low
angular momentum limit is expected to deviate more significantly from a particle treatment. In-
deed, the WKB approximation is a semi-classical description of the axion field. It means that even if
the AMC is described by a classical field, the WKB approximation describes a system for which the
wavelength of the axion field is short enough to approach a classical particle description. Hence,
there is actually no surprise that we find such an agreement between our formalism and the particle
picture analysis. On the other hand, in the limit of low angular momentum, theWKB approximation
breaks down and the wave construction of the system would have a stronger impact on the tidal
respond of the AMC. We leave this interesting question for an incoming study.

The description of AMCs following Sec.3.1 also becomes unphysical in some limits if we include
the axion stars (AS) (or soliton) [26, 151] . Those objects have indeed been observed in numerical
simulations [152, 153, 154, 155] and would form at the center of the AMC. Recent progress has
been recently achieved in the understanding of the relation between the AMC and its axion star. In
Refs.[152, 155], the mass of the AS is found to be related to the mass of the AMC via the so-called
core-halo relation,

MAS ≃ 1.3× 10−17M⊙

(
10−5 eV

ma

)(
M

10−13M⊙

)1/3

, (3.69)

which can be obtained by assuming that the virial velocities in the star and the halo are equal [155].
The radius of the axion star can be related to the AMC mass as well. In particular, [116, 152, 155]

RAS ≃ 3.4× 10−7 pc

(
10−5 eV

ma

)(
M

10−13M⊙

)−1/3

. (3.70)

In Fig.3.6, the grey shaded region corresponds to the limit beyond which the radius of the mini-
cluster gets smaller than the one of the AS, according to the last equation. In this region, the WKB
approximation could not be used any longer to describe the system. On the other hand, far from this
limit, the axion star plays a negligible role on the way the AMC would react to a tidal interaction
and can therefore be neglected.

Let’s finally note that in Refs.[156, 157], the SP system has been solved numerically to extract
the mass-radius relation of the AS. This one deviates by more than one order of magnitude from the
one extract in Refs.[152, 155]. Moreover, the relation found in Refs.[156, 157] is found to be in good
agreement with the lmax = 1 limit derived from the WKB break down assumption discussed above.
Due to these uncertainties on the properties of the AS and to theWKB breakdown, we limit our next
section analysis to the white region of Fig.3.6. From this figure, we note that LE clump, if initially
in the white region, will always remain inside it. For the Hernquist AMCs, the situation is different,
since the decreasing radius might drive the cluster toward the forbidden region. In this scenario, we
would consider that the cluster becomes an AS and the tidal interactions do no longer affect it.

3.3 Survival of the Axion Miniclusters in the Milky Way

In this final section, we proceed to describe how the axion miniclusters would survive in the Milky
Way. As already discussed in the introduction of this chapter, recent progress has been made to
describe the first stage of the formation and evolution of the AMCs [29, 100, 30, 25, 106]. In a second
stage, the collisions and mergers after matter radiation equality have been considered numerically
and the halo mass function (HMF) of the AMCs at late times has been extracted [31, 111, 139, 158,
159, 160]. However, in order to understand the properties of the AMCs today, the simulations need
to go down to times when the clusters are bound to the dark matter halo of the galaxy and subject
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to tidal interactions with baryonic stars. As already claimed earlier in this chapter, this task is so far
inconceivable for numerical simulations.
If recent works [114, 116, 117, 147] have considered the evolution under tidal interactions of the
AMC population in the galaxy using semi-analytical treatments, they stayed, however, in a particle
description of the clusters and their interactions. For this reason, we propose in this section to study
the survival of the AMCs, for both LE and H density profiles, using the wave treatment developed in
the previous section. First, in Sec.3.3.1, the survival probability at the sun location as a function of
the mass and radius of the cluster will be studied. Since it does not take any information about the
initial mass function, those results could be applied to any HMF model. In Sec.3.3.2, we consider a
HMF derived from simulations and apply our previous results on this illustrative example to extract
an overall survival probability.

3.3.1 Survival Probability as a Function of the Mass and the Radius

As emphasised, we first proceed to calculate the survival as a function of the mass and the radius
of the minicluster (for both LE and H density profiles). This survival will be calculated at the sun
location, but note that the formalism can be applied to any other location.
We assume here that the dark matter halo of the MW is given by an NFW profile,

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)
2 , (3.71)

with the parameters ρs = 0.014M⊙ pc−3 and rs = 16.1 kpc [161].
If this one is entirely composed of AMCs, those must be distributed in a way to reproduce the dark
matter halo profile given in Eq.(3.71). Explicitly, it means that specific distributions have to be found
for the eccentricity e and the semi-major axis a of the miniclusters. The general way to write a local
number density of clusters n(r) in terms of their orbital parameter distributions is given by

n(r) =

∫
da 4πa2namc(a)

∫
de P (e)

P (r|a, e)
4πr2

. (3.72)

where P (e) is eccentricity probability distribution, namc(a) is the number density of clusters as a
function of the semi-major axis and

P (r|a, e) = 2

Torb

(
dr

dt

)−1

, (3.73)

where

dr

dt
=

√
GMG(a)

(
2

r
− 1

a
− a(1− e2)

r2

)
,

Torb = 2π

√
a3

GMG(a)
,

(3.74)

withMG(a) being the mass enclosed inside a sphere of radius a, and a(1− e) ≤ r ≤ a(1 + e). The
matter density arising from Eq.(3.72) is defined as ρamc(r) = n(r)⟨Mamc⟩ with ⟨Mamc⟩ the mean
mass of the AMCs.
It is found in Ref.[116] that the NFW density profile (3.71) is obtained from this construction if
namc(a) = ρNFW(a)/⟨Mamc⟩ and if the eccentricity probability distribution is given by P (e) =
4e(1− e2) [162]. Explicitly,

ρNFW(r) =

∫
da 4πa2ρNFW(a)

∫
de 4e(1− e2)

P (r|a, e)
4πr2

. (3.75)
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Figure 3.7: Local survival probability Psurv(M,R, t, r) for the Lane-Emden (top) and Hernquist
(bottom) miniclusters at the sun location r⊙ ≈ 8 kpc. The survival probability is shown for different
time snapshots, t = 2.5 Gyr, 5 Gyr and 10 Gyr (from left to right). For the Hernquist miniclusters
we have included two contours showing the regions where 40% (teal) and 80% (turquoise) of the
clusters that did not survive were actually destroyed instead of becoming an axion star. This figure
corresponds to Fig.5 in Ref.[113]

From this last equation, we derived in Ref.[113] that at a given location r from the galactic center,
the minicluster eccentricity probability distribution is given similarly as before by

P (e) = 4e(1− e2), (3.76)

and the semi-major axis probability distribution given an eccentricity e and location r, via

P (a|r, e) = P (r|a, e), (3.77)

where P (r|a, e) is defined in Eq.(3.73).
In order to calculate the survival probability at the sun location (r ≈ 8 kpc) as a function of the
AMC mass and radius, we are therefore proceeding as follows:

• For a givenmass and radius (M,R), we generate a sample ofNin initial AMCs. For each of them,
the eccentricity and the semi-major axis are chosen according to the probability distributions
(3.76) and (3.77), respectively.

• Hence, each of the Nin initial AMCs carries a random orbit characterized by the semi-major
axis and eccentricity (a, e). Depending on this orbit, the number of star interactions theywould
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undergo in one period is given by

Norb(a, e) = πb2max⟨v⟩
∫ Torb(a)

0

dt n∗(r(t)) , (3.78)

where n∗(r(t)) is the stellar density in the galaxy based on the MW model of Refs. [141, 163,
164, 165, 166] (see App.B.7), bmax is the maximal impact parameter chosen such that for any
b > bmax, the impact on the AMC is negligible and ⟨v⟩ is the averaged relative velocity of the
star. With that the cumulative number of interactions as a function of time is given by

Ntot(t, a, e) =
t

Torb(a)
Norb(a, e) . (3.79)

• We simulate each of the Ntot(t, a, e) interactions by considering a similar mass ofM∗ = 1M⊙
for all the interactions and choosing for each the star velocity and the impact parameter fol-
lowing the probability distributions

P (v) =
4πv2

(2πσ2
rel)

3/2
e
− v2

2σ2
rel ,

P (b) =
2b

b2max
,

(3.80)

with σrel =
√
2 × 10−3 which includes the velocity dispersion of the miniclusters and of the

stars.

• At the end of the simulation, we count the Nfin surviving AMCs and define the survival prob-
ability

Psurv(M,R, t, r) =
Nfin(M,R, r, t)

Nin(M,R, r)
. (3.81)

Importantly, the AMCs that crossed the WKB or AS forbidden region described in Sec.3.2.3 are
also removed from the initial sample, since we assume that in that case the system would form
a soliton-like object. Note that in the case of a destroyed AMC, it is not clear whether the AS
in its center survives. We leave this question to further investigations.

In Fig.3.7, we show the result of the survival Psurv(M,R, t, r) at the sun location for three different
times t = 2.5, 5, 10 Gyr (from left to right). In the top panels, we simulate the survival from a
dark matter halo composed of Lane-Emden AMCs. As already introduced in the previous section,
the reaction of the cluster to some tidal interactions depends only on its mean density. Hence, we
find that the survival probability of the miniclusters depends only on the mean density, with iso-
survival-probability contours followingMR−3 = const. More specifically, the survival probability
is less than 10% for miniclusters with mean density lower than ρ̄ ≈ (0.25, 0.5, 1.5)× 102M⊙ pc−3

for t = 2.5, 5, 10 Gyr, respectively. For AMCs with such density profile, the evolution in the Milky
Way is then relatively easy to understand. Since their radius is always increased following the
interaction, no AMC becomes an AS. They, however, become more and more easily disrupted on
further encounters and are eventually destroyed. We show in Fig.3.8 the survival probability of the
Lane-Emden AMC as a function of the mean density.
On the bottom panels of Fig.3.7, we study the survival of the Hernquist AMCs. In the previous
section we showed that for small perturbations, their radius decreases making them more resistant
to further interactions. Hence AMCs with large densities have very low chances to get affected by
star interactions. In the upper right corner of the contour plot, we see, however, that the survival
is again proportional to the mean density. For those clumps, the density is indeed low enough such
that a small portion of the clumps could get destroyed. The area of the destroyed region increased
with time as it might be observed from the teal and turquoise contours showing respectively the
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Figure 3.8: Local survival probability as a function of the initial mean density ρ̄ for the Lane-Emden
miniclusters extracted from the previous figure. The three different colored lines show the time
evolution of the survival. This figure corresponds to Fig.6 in Ref.[113]

regions where 40% and 80% of the clusters that did not survive were actually destroyed. On the
other hand, for AMCs with radius close to the AS limits, the decrease of the radius could drive them
into the forbidden region. For this reason, we end up with a final population of AS.

3.3.2 Overall Survival for a Specific Mass and Radius Distribution

Let’s note that the formalism and results calculated in the previous section do not depend on any
mass or radius probability distributions. However, such distributions can be used to calculate the
overall survival probability Psurv(r, t) (at a location r and time t). Indeed we define,

Psurv(t, r) =

∫ Mmax

Mmin

dM

∫ Rmax

Rmin

dRP (R,M)Psurv(M,R, t, r) , (3.82)

where limits of the integrals correspond to the limits of the mass and radius ranges according to
the selected distributions P (R,M). As emphasized in the previous sections, numerical simulations
have derived mass and radius distributions at redshift z = 99 [30, 153, 159]. We are going to use
them to derive values for Psurv(t, r). However, it is important to keep in mind that those results
might change if the initial probability distributions change as well.
In line with Ref.[153], the mass probability distribution is here assumed to be

P (M) =
γ

Mγ
max −Mγ

min
Mγ−1 , (3.83)

with γ = −0.7,Mmin = 3.3× 10−19M⊙ andMmax = 5.1× 10−5M⊙.
Secondly, a probability distribution P (δ) for the initial overdensity δ has been found numerically in
Ref. [29]. If the initial overdensity is related to the mean density of the clump by [105]

ρ̄(δ) = 140(1 + δ)δ3ρeq , (3.84)

where ρeq is the average matter density at matter-radiation equality, for a given mass of the clump
M , the radius is then given by

R(M, δ) =

(
3M

4πρ̄(δ)

)1/3

. (3.85)

Then, combining this with Eq. (3.83), we obtain a joint distribution in mass and radius, P (R,M).
The resulting distribution is also in rough agreement with the distributions derived in Ref.[100]
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Figure 3.9: AMC mass and radius distribution according to Refs. [31, 29] after having applied both
the AS cut and the WKB condition. This figure corresponds to Fig.7 in Ref.[113]

Density profile t = 2.5 Gyr t = 5 Gyr t = 10 Gyr
Lane-Emden Psurv = 94% Psurv = 90% Psurv = 82%
Hernquist Psurv = 99% Psurv = 98% Psurv = 94%

Table 3.1: Extracted survival probability from numerical simulations for the two different density
profiles, Lane-Emden and Hernquist, at the Sun’s location in the Galaxy at the three considered
times. This table corresponds to Tab.1 in Ref.[113].

based on semi-analytic methods. Note that here we assume that the massM and the overdensity δ
are independent, similarly to Ref.[55].
According to this prescription for the mass and radius probability distribution, it turns out that
P (R,M) is peaked at the lower cut-off Mmin. Hence a large fraction of the miniclusters would
violate the WKB/AS condition discussed in Sec.3.2.3. In order to restrict the analysis to objects for
which our approach applies, we renormalize the distribution after applying both the AS and WKB
cuts. The renormalized distribution Pz=99(R,M) is shown in Fig.3.9.

The overall survival of the Lane-Emden and Henrquist AMCs is finally calculated from Eq.(3.82)
and the results are shown in Tab.3.1. It can be appreciated that the Lane-Emden clumps have an over-
all lower survival probability at our location. Naively, this can be understood since from Sec.3.2.2 we
concluded that each perturbation increases their radius, leaving a more vulnerable clump afterward.
After 10 Gyr, we observed that 18% of the LE miniclusters are destroyed.
On the other hand, the Hernquist clusters decrease their radius after each interaction, making them
more resistant to further ones. As detailed in the previous section, the clumps are therefore less
impacted by the star encounters. However nearby the WKB/AS region, the cluster could become
an AS object following enough interactions. In the 6% of destroyed Hernquist cluster, we find that
95% actually formed an AS-like object. Hence, it is expected that star tidal interactions in the galaxy
generate a population of AS for Hernquist clumps.

3.3.3 Limitations and Future Prospects

The results obtained in this section are, however, subjects to some assumptions.
First, along this section we characterized the stellar population by the stellar density n∗(r), consid-
ered time independent. This is, of course, an approximation, since it neglects the star evolution. In
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Ref.[167], it has been shown that the rate at which the stars are created is higher than the one at
which they die. According to that result, using the today’s value of n∗(r) for the early times of the
galaxy would over-estimate the number of interactions. In addition, we assumed a common mass
of 1M⊙ for all the stars. It is clear that a realistic mass distribution should be taken into account in
the numerical simulation. Note, however, that the mass variation would be degenerated with the
impact parameter b and velocity v variations.
Similarly, the evolution of the dark matter halo needs to be taken into account. If we described it
as an NFW profile in this work, it is known that the concentration (related to the scale radius rs) is
time dependent [168, 169]. In line with the description we made of the miniclusters in the galaxy in
Sec.3.3.1, taking into account this dark matter halo time dependence is expected to affect their or-
bital properties. Of course, since part of the AMCs are destroyed by tidal interactions, the feed-back
effect on the dark matter halo profile should be accounted for as well.
Along this work, we also considered that the AMCs would relax toward the same type of density
profile. This is of course a strong assumption since we know from Refs.[145, 146] that the density
profile would converge toward a universal type of density profile after perturbations.
Furthermore, only a single type of interaction has been considered here. However, it is known that
other types of interaction may happen. For instance, crossing the galactic disk generates a tidal
source of stripping. This effect has been compared to the stellar tidal interactions considered in this
work and has been found subdominant. Tidal interactions between two AMCs could in the same
way lead to some stripping. However, since the effect of the tidal interactions scales as the perturb-
ing object mass squared, it is expected that perturbations induced by encounters among AMCs are
10−2411 times smaller than by a star with 1M⊙.
Finally, we did not consider the tidal disruption of the AS. Indeed, those objects can not be described
by the WKB solution constructed in this work and hence the whole formalism of tidal interactions
described in Sec.3.2.2 does not apply either. In order to understand how such an object would react
to stellar interactions, we need to solve the SP system explicitly for energy levels close to the ground
state. As already discussed, larger deviations from the particle picture results are expected if we then
apply a tidal perturbation on such a solution.

11For an AMC with mass 10−12M⊙.

64



3.3. SURVIVAL OF THE AXION MINICLUSTERS IN THE MILKY WAY

65



Chapter 4

Reconstructing the Axion-Photon
Coupling with Axion Miniclusters

This Chapter is based on Ref.[138]

In Sec.2.3, we introduced the axion-photon interaction as a model independent result of the PQ
solution to the strong CP-problem. Nowadays, as discussed in the same section, this coupling is
constrained by several experiments: haloscope experiments, with for instance ADMX [73], helio-
scope experiments with CAST [77] or again via the light shinning through the wall experiment with
OSQAR [71] (see Fig.2.2 for a summary of all the existing constraints).
However, at this stage, an important point has to be made on the assumptions taken to derive those
constraints. If we conclude, after some experiment runs, that no signal is observed, two conclusions
could indeed be reached. The first one is that the coupling must be objectively small in order to
account for the non-event observation. Whereas, the second explanation is that this dark matter
candidate constitutes only a small fraction of the local dark matter density so that it prevents a siz-
able event rate. In the haloscope experiments, the bounds on the axion-photon coupling have been
derived assuming the first scenario, considering that the axion constitutes the whole local dark mat-
ter abundance.
We can also reverse the previous situation and assume the hypothetical scenario in which a direct or
indirect detection is made. Again, it would be impossible to conclude on whether the signal is com-
ing from a dominant form of dark matter or if it comes from a sub-dominant one but more strongly
coupled. In other words, these experiments suffer from a coupling-density degeneracy and are only
sensitive to a power of the coupling and the dark matter density, gnaγγρ.
So, how do we disentangle the axion-photon coupling to the axion density? Naively, the degeneracy
can be lifted out if we couple the results of two experiments with different sensitivities on the cou-
pling and density. For instance, considering a first one depending only on the coupling (this could
be achieved via colliders) and a second one being a direct detection experiment. Unfortunately, it is
very challenging for axion searches to have such double experiments.

In this chapter we develop a method able to disentangle the axion-photon coupling to the density
via a single experiment, in particular the axion haloscope. This experiment, designed as a cavity
embedded in a strongmagnetic field, uses the axion-photon coupling to convert the incoming axions
from the dark matter halo into photons. Concretely, the incoming axion field acts as a source to
induce an electromagnetic field inside the cavity. The electromagnetic power extracted in the case
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of a homogeneous axion field with density ρ is [76]

P = 6.3× 10−22W

×
( gaγγ
10−15GeV−1

)2 ( ρ

0.3GeVcm−3

)

×
(
B

8T

)2(
V

220l

)(
Cnlm
0.69

)(
Q

70000

)(
3µeV

ma

)
,

(4.1)

where B is the magnetic field inside the cavity, V the cavity volume, Q the quality factor, and Cnlm
depends on the mode considered for the induced electromagnetic field (see Sec.4.1). As previously
advertised, this quantity is the product of the density and the coupling squared and as it is, no inde-
pendent information is available.
Nonetheless, the current (see for instance Ref.[76]) and future generations (see for instance Ref.[85])
of haloscopes are able to additionally extract the energy spectrum of the axion field with great pre-
cision. In recent works, the latter has for instance been used to extract the momentum distribution
of the axion field [128, 170, 171]. In this chapter, we show that in the case 1 of an encounter with an
axion minicluster, the energy spectrum might be used to extract the gravitational potential of the
cluster. This is, of course, an extremely valuable information since, with the use of the Poisson equa-
tion, the potential leads to an independent measurement of the cluster density. Together with the
power defined in Eq.(4.1), this allows to determine the axion-photon coupling g2aγγ . With this knowl-
edge, we are, furthermore, able to extract the fraction of the dark matter background density made
of axions, once the AMC has passed and that wemeasure the signal from the axion field background.

This chapter is decomposed as follows: In Sec.4.1 we review in more details the axion haloscope
principles and comment on the way the momentum distribution of the axion field may be extracted
from the energy spectrum. In Sec.4.2 we derive the properties of the signal induced in the haloscope
in the case of an encounter with an AMC. Finally, in Sec.4.3, we develop a method to reconstruct
the axion-photon coupling and apply it to realistic simulated signals.

4.1 Haloscope Experiments

4.1.1 General Formalism

We thus proceed to start this chapter by recalling the main points of the haloscope operation.
For a setup similar to ADMX [76], the latter is essentially designed as a small (around 1m long)
cylinder cavity embedded in a strong magnetic field (around 8T for ADMX). In presence of an axion
field2, the axion-photon coupling induces a source term in the Maxwell equations. These become
[33, 16]

∇.E = 0,

∇.B = 0,

∇×E = −∂B
∂t

,

∇×B =
∂E

∂t
− gaγγB

∂a

∂t
,

(4.2)

where in the last set of equations, the axion field has been assumed homogeneous in the cavity
volume (this is relevant since the de Broglie wavelength is much longer than the cavity length) and
no electromagnetic charge or current is considered. Note that in the precise case of a haloscope
experiment, the axion field a is expected to take its origin from the dark matter halo, whether it is

1Let’s already precise that this is the extremely lucky case.
2Note that here and from now on, we will always talk about "axion field" in the sense of a classical field. This is in line with the previous chapters

where we confirmed that the axions are better described as such.
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the dominant part or not.
If the cavity is embedded in an external magnetic field B0, the modified Maxwell equations induce
an electric field Eind given by [172]

(∂2t −∇2)Eind(x, t) = −gaγγB0(x)∂
2
t a(x, t). (4.3)

Assuming, for the moment, no specific geometry for the resonant cavity, it is common to expand
the electric field on the cavity modes Ej(x) [173],

Eind(x, t) =
∑

j

αj(t)Ej(x), (4.4)

where αj(t) are the time dependent coefficients of the modes.
In the absence of sources, the amplitude of each electric modes oscillate at a proper frequency ωj .
In addition, the modes decay at a rate exp (−Γjt/2), where Γj = ωj/Q and Q is the quality factor
of the cavity. The latter is of the order O(105) for current active cavities [73, 74, 75, 76].

Applying the mode expansion on Eq.(4.3), the equation of motion for the mode coefficients becomes

(∂2t + ω2
j + Γj∂t)αj(t) = −gaγγηj∂2t a(x, t), (4.5)

where we introduced explicitly the mode decay, and with ωj the frequency associated to the mode
Ej(x), and ηj an overlapping function decreasing with the wavelength of the mode, explicitly,

ηj =

∫
V
d3xE∗

j .B0∫
V
d3x|Ej|2

. (4.6)

In order to provide more insights on the physics behind these previous lines, let us first consider
a simple situation in which the axion field is given by a homogeneous field oscillating at a frequency
ω ≈ ma,

a(t) = a0e
−imat. (4.7)

In that case the solution for the electric field mode coefficient is trivial and is given by

αj(t) = a0gaγγηj
m2
a(

m2
a − ω2

j

)
− imaωj/Q

e−imat, (4.8)

Intuitively, the cavity mode Ej can get significantly enhanced if its frequency, ωj , is equal to the
axion mass. In that case, its coefficient gets increased by a factor proportional to the cavity quality
factor. The latter determines the width of the resonant peak.
The resulting power extracted from the cavity is given in terms of the electric field and the quality
factor of the cavity Q [174],

P =
ωj
Q

1

2

∫

V

d3x |αj(t)|2|Ej(x)|2,

=
ωj
Q

1

2
a0 (gaγγB0)

2 V G m2
a(

m2
a − ω2

j

)2
+ (maωj/Q)

2
,

(4.9)

where V is the cavity volume and we have introduced the form factor of the cavity G,

G =
|
∫
V
d3xE∗

j .B0|2
B2

0V
∫
V
d3x|Ej|2

. (4.10)

This last one depends on the cavity geometry and is usually of order O(1).
It is expected that the power, given in Eq.(4.9), is drastically reduced outside of the resonant region
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(determined by the quality factor Q). For this reason, in the usual axion searches in haloscope
experiments, the cavity shape is progressively modified, leading to a modification of the cavity mode
frequency ωj as well. Eventually, it is expected to find a large enhanced power in a scenario in which
the cavity frequency hits the axion mass. From Eq.(4.9), it can be appreciated that in that case the
power is given by

P =
ρDM

ma

(gaγγB0)
2 V GQ, (4.11)

where we took the usual definition, a20 = 2ρDM/m
2
a, with ρDM ∼ 0.45GeV/cm3 the local dark

matter density.
The last few equations constitute the starting point of the strategy to search for the axion. As stressed
in the introduction of the chapter, it is usually assumed that the local dark matter density is fully
composed of axions. In the current situation, where no power excess is detected as we progressively
changing the frequency ωj , we are then able to derive constraints in the mass-coupling plane.

4.1.2 Haloscope Signal for a Realistic Homogeneous Axion Field

However, as emphasised previously, the axion field considered in the previous example is only barely
reflecting the true physical situation. In the previous chapters we have stressed that recent numeri-
cal simulations have for instance demonstrated that, because of its wave behavior, the axion density
gets granular textures at scales around the de Broglie wavelength. Furthermore, in chapter 3, we
discussed that the so-called random phase model was able to recreate those granules, hence preserv-
ing the statistics of the axion field while providing a good analytical treatment. It follows that, in
order to correctly account for the axion properties, the field that must be considered takes the form
[121, 128, 170]

a(x, t) =

√
2ρDM

ma

∑

k

√
f(k)∆3k cos (ωkt− kx+ ϕk) , (4.12)

where f(k) is the momentum distribution, ωk ≈ ma + k2/(2ma) the mode frequency and ϕk the
random phases. It could be checked that this last expression returns a Gaussian random field with
mean density ρDM.
The signal in haloscopes for such axion field has been recently considered in Refs.[128, 170]. In-
tuitively, because the axion field is composed of a superposition of momentum modes, the electric
field coefficients will get contributions from each of them following [170]

αj(t) =

√
2ρDM

2ma

gaγγηj
∑

k

ω2
k(

ω2
k − ω2

j

)
− iωkωj/Q

√
f(k)∆3k

(
e−i(ωkt+ϕk) + c.c

)
. (4.13)

In the present situation, the equation for the power gets slightlymodify compared to Eq.(4.1). Indeed,
since taking only the modulus squared of αj(t) would not lead to a time independent quantity, we
proceed to an additional time average over the measurement period,

P =
ωj
Q

1

2

∫

V

d3x ⟨|αj(t)|2⟩|Ej(x)|2. (4.14)

Interestingly, because of the axion field statistics, the power is randomly distributed as well. This
is, of course, an important difference compared to the simplified version we considered in Eq.(4.9).
Intuitively, the power is still measuring the quantity ∼ ρDMg

2
aγγ , but since the axion density carries

randomly distributed granules, the latter now fills these random variations of density.
A usual way to rewrite the power is done via its frequency decomposition. Namely, if the coefficient
αj(t) is measured during a period T at frequency f (such that NT = fT measurements are made),
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we get

P =
ωj
2Q

∫

V

d3x 1

NT

NT−1∑

n=0

|αj(tn)Ej(x)|2,

=
ωj
2Q

1

N2
T

NT−1∑

d=0

|αj(wd)|2
∫

V

d3x |Ej(x)|2,

=
ωj
Q

1

4π

NT−1∑

d=0

∆ω
T

N2
T

|αj(wd)|2
∫

V

d3x |Ej(x)|2.

(4.15)

In the second line, the Parseval theorem has been used to relate the time average with a sum over
the Fourier modes of the electric field amplitude. For a finite measurement time T , only discreet
frequencies enter in the sum and we have ∆ω = 2π/T .
The argument of the sum is defined as the spectral power and is explicitly given by

S(ωd) ≡
T

N2
T

|αj(wd)|2
∫

V

d3x |Ej(x)|2. (4.16)

For good enough resolution, the power can be approximated by an integral and we have

P ≈ ωj
Q

1

4π

∫
dωS(ω). (4.17)

The spectral power for the axion field defined in Eq.(4.12) has been extensively studied in Refs.[128,
170]. As stressed in these works, still as consequence of the axion field statistics, the spectral power
is randomly distributed. In particular, it is found that it follows an exponential distribution3,

P (S(ωd)) =
1

S̄(ωd)
e−S(ωd)/S̄(ωd). (4.18)

where S̄(ωd) stands for the mean value of the spectral density. From Eq.(4.12) we get after applying
a random phase average [128, 170] (see App.C.1 for similar calculation),

S̄(ωd) = π
ρDM

m2
a

(gaγγB0)
2V G

(
f(ωd)

dk

dω

)
. (4.19)

It finally follows from the last expression that the mean power is given by

P̄ ≈ g2aγγρDM

4ma

B2
0G V Q. (4.20)

Note that in this last expression, it has been assumed that the width of the resonant peak ∼ ma/Q
was much larger than the width of the axion momentum distribution ∼ (maσ

2
v) with σv ∼ 10−3.

This is usually the case for setups like those proposed by ADMX with Q ∼ 105 [76] and an axion
massma ∼ 10−5eV.

The spectral power is at the center of this whole chapter. In the situation we are investigating
here, it is for instance clear that it brings additional information about the momentum distribution
f(k). Assuming a generic shape for this one (for instance a Maxwellian distribution), Refs.[128, 170]
used the spectral power to extract the parameters of the distribution; velocity dispersion, system
solar velocity in the galactic frame,... Of course, this is effectively possible only for haloscopes with
high enough frequency resolution such that the output signal can be Fourier transformed.
However, at this stage, it is clear that only the product g2aγγρDM can be extracted from either the
power or the spectral power. Based on a similar approach, we show in the next section that the
spectral power in the case of an AMC encounter would allow for a disentanglement of the latter
product.

3This can be easily concluded from noticing that the spectral power is the sum of two Gaussian random fields squared. It follows that it is described
by an exponential distribution similarly to the density discussed around Eq.(3.13).
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4.2 Axion Miniclusters in Haloscope Experiments

From the previous section, it is clear that a homogeneous axion field is not able to provide any infor-
mation on the axion-photon coupling. Following the example of the works done by Refs.[128, 170],
where it is has been shown that the velocity distribution parameters can be inferred from the spec-
tral power, we are going to prove in this section that in the lucky case of an AMC encounter with the
Earth, the spectral power can provide information on the gravitational potential of the cluster. This
would be, of course, crucial since, with the use of the Poisson equation, the gravitational potential
may lead to the density, which then disentangles the quantity g2aγγρ.

In the appendix C.1, we provide a detailed calculation of the power spectral density induced in
the case of an axion minicluster encounter. In particular, we take the axion field to be expressed via
the WKB approximation given in Eq.(3.24) and extended to a real field as

aAMC(x, t) =
1√
2ma

(
ψ(x, t)e−imat + ψ(x, t)∗eimat

)
, (4.21)

where ψ is the WKB wave function used throughout chapter 3.
In that case, we show that the spectral power is given by

S(ωd) ≈ T
(gaγγB0)

2 G V
2ma

(4.22)

×
∣∣∣∣∣
∑

nlm

ω2
nlm(

ω2
j − ω2

nlm − iωjωnlm/Q
)anlmψnlm(x) sinc

(
(ωnlm − ωd)

T

2

) ∣∣∣∣∣

2

,

where anlm are the wave function coefficients derived in Eq.(3.25), T is the measurement period and
ωnlm = Enlm+ma+ωamc with respectively the (non-relativistic) binding energy of the axion in the
cluster, the axion mass and its kinetic energy due to the cluster velocity. As for the smooth axion
field background discussed in the previous section, because of the finite measurement time, only
discreet frequencies are resolved by the spectral density and the bin width is given by∆ω = 2π/T .
Finally, note that the location x stands for the location of the earth in a frame where the origin is at
the cluster center.

Similarly as in the previous section, since the axion field is a Gaussian random field, the spectral
power will be exponentially distributed according to Eq.(4.18). In App.C.1, we derived the mean
value of the spectral power in the limit of a narrow sinc function (which is a good approximation
for most of the clusters we are going to consider in this chapter). We obtain,

S̄(ωd) ≈ 4π2 (gaγγB0)
2 G V ω4

d(
ω2
j − ω2

d

)2
+ (ωjωd/Q)

2
f(ωd −ma − ωamc)

×
√

(2ma (ωd −ma − ωamc −maϕ(r))),

(4.23)

with ϕ(r) and ρ(r) the mean potential and density of the cluster. We recall that f(E) is the distri-
bution function and can be obtained from the last two functions via the Eddington formula [175].
From this last equation, it is clear that the spectral power has non-zero value only in the range
[ma + ωamc +maϕ(r) , ma + ωamc]

4. Hence measuring its width directly provides the gravitational
energy maϕ(r). Interestingly, the width of the spectral power does not suffer from the statistical
fluctuations of the axion field. The reason comes from the fact that, at a given location x, only the
modes that have a non-zero wave function at this location contribute to the spectral power. All the
modes for which this location is in their classical "forbidden" region are therefore not contributing.
Since the random phases are only affecting the occupation number of the modes, they would then

4Of course, this result does not take into account the deviations from the sinc function in a short measurement time limit (see App.C.1). It is
therefore important to keep in mind that the following results account for a large measurement time.
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Haloscope/Axion Parameters
Axion ma = 50µeV

gaγγ = 10−15GeV−1

Experiment B0 = 8T
V = 220l
Q = 105

G = 0.69 (TM010 mode)
ωj = ma

Table 4.1: List of the axion/experiment parameters used for the following figures and numerical
calculations. We consider a cylinder cavity, as well as the transverse magnetic mode, TM010 [76].
We assume that the cavity is tuned in a way to have the frequency of mode ωj = ma. This table
corresponds to Tab.1 in Ref.[138].

not alter the width of the spectral power but rather its amplitude.
However, the finite binning of the spectral density will inevitably generate errors in the determina-
tion of the gravitational energymaϕ(r). We will discuss this matter later in this chapter.

Accordingly, the mean power is found to be given by the same expression as Eq.(4.24)5,

P̄ ≈ g2aγγρ(r)

4ma

B2
0G V Q, (4.24)

where the density ρ(r) is the mean density of the cluster at the radius r.
As already mentioned, the power is also randomly distributed. In particular, for a given realization
of the random phases, the latter will feel the granular structures of the AMC density and will be
∼ g2aγγρT where ρT is the local density averaged over the measurement time T 6.
In Chapter 3, we discussed that, in the random phase model, the variance of the AMC density was
given by the mean density, σρ = ρ(r). If a time average is additionally applied, we checked numer-
ically that the power variance is given by

σP
P̄

∼
√

2π

T

1

maϕ(r)
,

∼
√
Tgran
T

.

(4.25)

We recall that the time scale of the granules was defined as Tgran ∼ 1/(mav
2) ∼ 1/(maϕ)where v is

the velocity dispersion in the cluster at radius r. Hence, the longer is measured the signal, the smaller
the fluctuations in the power we will get. Naively, this effect can be understood as a consequence of
the fact, for long measurement sessions, we will go through many granular structures, so that the
signal feels the density averaged over them. However, we stress out here that the latter expression
holds in the limit of large measurement time T . As T → 0, we should recover the usual relation for
the variance σP = P̄ .

We show in Fig. 4.1 an illustrative example of mean spectral power (left) and integrated power
(right) for axion and haloscope parameters described in Tab.4.1. This signal is for an NFW cluster
(see Eq. (2.65)) with mass, radius and concentration respectively given by (10−5M⊙, 10

−5Pc, 10). In
the left panel, each colored line represents the mean spectral power at a different location inside
the cluster (from blue to red). At each location, the measurement time is taken to be T = 5× 104s,
leading to a bin width ∆ω ≈ 10−19eV. In the right panel, the corresponding mean power has
been calculated at each location (colored dots). Note that, since the cluster we have considered has a

5Where we again assumed that the width of resonance is broad compared to the width of the signal.
6Remember that we consider here the time averaged power so that it becomes proportional to the time averaged density as well.
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Figure 4.1: Averaged spectral power (left) and power (right). In this example the AMC has a mass
M = 10−5M⊙, radius R = 10−5 Pc, concentration c = 10 and velocity v = 10−4c. We are
crossing it with an impact parameter b = 10−6 Pc. Each measurement period is T = 5× 104s. Each
measurement location is depicted by different colored lines (dots) in both the left (right) panels (from
blue to red as we are moving toward the cluster center). The axion and cavity parameters are taken
from Tab.4.1. This figure corresponds to Fig.2 in Ref.[138].

density more than 10 orders of magnitude larger than the expected dark matter density background,
it is not surprising to find that the power gets the same scale difference compared to the background
axion field power Pbackground ∼ 10−22W [33, 76, 171]. For the same reason the noise will always be
irrelevant in our study and will be neglected in the next sections.

4.3 Reconstruction of the Axion-Photon Coupling

As it is, the spectral decomposition of the power induced by an axion minicluster allows us to de-
termine the gravitational energy maϕ(r) at the location of the measurement (up to some binning
erros). The overall power, on its side, provides the usual coupling squared density product ∼ g2aγγρ
(including the granular fluctuations discussed in the last section).
Intuitively, in a hypothetical scenario in which the axion mass has been found after some scan over
a wider mass range, the density of the cluster can be extracted from the gravitational potential ϕ(r)
via the Poisson equation,

∇2ϕ(r) = 4πGρ(r), (4.26)
so that the coupling-density is no longer entangled in the power measurements.
Based on this statement, we provide in this section a detailed method able to indeed extract the
coupling gaγγ from the simultaneous use of the power and its spectral decomposition.

4.3.1 General Method

Let’s first emphasized that our formalism applies to a post-axion discovery scenario, meaning that
its mass has already been found and is no longer an unknown parameter. Without this assumption,
the gravitational potential can not be extracted from the spectral power. Moreover, from the dis-
cussion initiated in the previous section, we are neglecting the different noise sources, both thermal
and quantum [176, 177].
If a signal is detected, measurements would be performed as we are moving within the cluster. Simi-
larly to Fig.4.1, the spectral power will therefore be obtained atN different locations corresponding
to N different measurement times ti, where t = 0 is the time at which the first measurement is
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performed. Intuitively, what is then obtained from the spectral power is actually not the gravita-
tional potential as a function of the radius but rather of the measurement time ti. It follows that the
Poisson equation cannot be used under its usual form. We instead consider a change of coordinates,
from space to time (see App.C.2),

ϕ̈(t)

ṙ(t)2
+

2ϕ̇(t)

ṙ(t)r(t)
−

¨r(t)ϕ̇(t)

ṙ(t)3
= 4πGρ(t), (4.27)

where r(t) is the radial motion of the Earth within the cluster, and ϕ(t) = ϕ(r(t)) is the time de-
pendent potential extracted from the spectral power. The radial motion of the Earth is, furthermore,
parameterized as

r(t) =

√
b2 +

(
vt−

√
R2 − b2

)2
. (4.28)

From these last two equations, we proceed to detail the reconstruction method in the following
steps:

• The gravitational potentialϕout(ti) and the density-coupling product (g2aγγρ(ti))out are extracted
from the spectral power and the power, respectively, at the N different measurement times ti.
Moreover, the velocity v of the AMC can be determined from the power spectral density as
well, since the signal is non-zero only in the range [ma + ωamc +maϕ(r) , ma + ωamc]. As the
mass is known, the cut on the right of the signal provides the velocity of the AMC.

• Via the Poisson equation in time coordinates, we construct the function, F(gaγγ, b, R; t),

F(b, R, gaγγ; ti) =
g2aγγ
4πG

(
ϕ̈out(ti)

ṙ(ti)2
+

2ϕ̇out(ti)

ṙ(ti)r(ti)
−

¨r(ti)ϕ̇out(ti)

ṙ(ti)3

)
. (4.29)

As a function of the chosen impact parameter, radius and coupling in the last equation,F(b, R, gaγγ; ti)
would return different profiles of g2aγγρ(ti).

• Finally, the parameters b, R and gaγγ are reconstructed by maximizing the function

L(b, R, gaγγ) =
∑

i

log

(
(g2aγγρ(ti))out

|(g2aγγρ(ti))out −F(b, R, gaγγ; ti)|

)
. (4.30)

Note that the choice of the maximizing function is not unique and different choices may alter
the reconstruction of the parameters. The degeneracy in the determination of the parameters
b,R and gaγγ is discussed in App.C.2.

Let’s finally stress that this reconstruction method suffers from both statistical and system errors.
As already pointed out, the spectral power is affected by the finite bin width, ∆ω = 2π/T , and the
reconstructed gravitational energy, maϕout(ti) is therefore extracted with an uncertainty propor-
tional to∆ω. Intuitively, this error propagates to the first and second derivatives used to define the
function F , so that the reconstruction of the axion-photon coupling applying Eq. (4.30) suffers from
a systematic error which gets stronger as ∆ω/(maϕ(r)) ≫ 1.
Secondly, we already claimed earlier that the power suffers from the statistical fluctuations of the
axion field and directly feels the effect of the granular substructures of the AMC. Hence, using the
formalism constructed in this section, the granule structures would affect the quantity (g2aγγρ)out ex-
tracted from the power measurement and lead to statistical fluctuations on the reconstructed axion-
photon coupling.
An important point is that both the statistical and systematic errors decrease as the averaged ratio
∆ω/(maϕ(r)) → 0. This last ratio constitutes the main parameter that controls the precision of
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Figure 4.2: Gravitational energy (left) and g2aγγρ(r) (right) for a simulated signal with a bin width
∆ω/(maϕ) ∼ 10−2. The total number of time data points is here N = 40. In the left panel, the
shaded gray region shows the expected variance σP of the power due to the granules of the AMC.
This figure corresponds to Fig.3 in Ref.[138].

the axion-photon coupling reconstruction. It is, however, expected that the number N of time data
points ti provides another source of systematic error. Indeed in the limit of small N , the poten-
tial is only reconstructed at few locations, hence its first and second derivatives get less accurately
reconstructed, leading to the same conclusion as before.

4.3.2 Reconstruction from Simulated Data

We now proceed to apply this method on data obtained from simulated signals. Ultimately, the goal
would be to estimate for what range of AMC parameters (i.e mass, radius, impact parameter,...) this
reconstruction method is the most efficient.
In our simulations, we practically consider AMCs with an NFW profile. Of course the whole set-up
is expected to be insensitive to the density profile choice. From the experiment perspective, the
velocity, impact parameter, radius and mass of the cluster are naturally assumed unknown.
Concretely, the spectral power is simulated at eachmeasurement time ti, with i = 0, ..., N , according
to the probability distribution (4.18) for each discreet frequency defined by the measurement period
T . For each simulated spectral power, the induced power is finally calculated according to Eq. (4.15).
The data are at the end composed ofN successive measurements of {S(ω; ti), P (ti)} for i = 0, ...N .

As an illustrative example of how the extracted gravitational energy and coupling-density prod-
uct are extracted from the data, we show in Fig.4.2 the output quantities (maϕ)out and (g2aγγρ)out
obtained from a simulated signal. More precisely, the data are the ones of a cluster with mass
M = 10−5M⊙, radius R = 10−5 Pc and concentration c = 10. The impact parameter and the
cluster velocity are b = 10−6 Pc and v = 10−4c. At each location the measurements are taken
during T = 2 × 105s and we collect data in total at N = 40 locations. The input axion mass and
coupling, as well as the experiment parameters, are taken from Tab.4.1.
Let’s briefly comment on the fluctuations appearing in both the gravitational potential and coupling-
density products. For the first one, (maϕ)out is matching extremely well the input potential. In this
example, ∆ω/(maϕ) ∼ O(10−2), hence the relative deviations from the finite binning were in-
deed expected to be small. On the other hand, larger fluctuations appear on the right panel for the
coupling-density product. This has to be understood as coming from the granular structures in the
density. We indeed proved in Chapter 3 that for a given realization of the phases, the density suffers
from fluctuations proportional to the mean density. In the present case, because the power is cal-
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Figure 4.3: Left: Reconstruction of the axion-photon coupling as a function of the AMC mass. For
each mass, the signal has been simulated 10 times. The shaded region shows the dispersion on the
reconstruction. The dashed lines show the average over the 10 simulated signals. The radius of the
cluster is fixed to R = 10−5 Pc, and its velocity to v = 10−4c. The measurement time is fixed to
T = 105s. We show the results for both 40 (blue) and 20 (red) time data points. Right: Parameter
space for which the coupling is reconstructed with 30% accuracy. The dashed orange lines show
the rectangle approximations used to infer the rate of encounters in Sec.4.4. This figure corresponds
to Fig.4 in Ref.[138].

culated via a time averaged, an extra factor ∼
√

∆ω/(maϕ) effectively reduces the variance of the
power. It might additionally be observed that the variance on the right panel (gray shaded region) is
larger at early and late times (meaning large radius). This is a direct effect of this last factor which
is naturally increasing at larger radii.

As mentioned, we aim to study the dependence of the coupling reconstruction on the AMC
parameters. For this reason, we show on the left panel of Fig.4.3 the ratio between the recon-
structed coupling, gout, and the input one, gin, as a function of the AMC mass. The other parameters
(v,R, b, T ) are respectively fixed to be (10−4c, 10−5Pc, 10−6Pc, 105s). For eachmass, the AMC signal
has been simulated 10 times and the coupling has been reconstructed according to our formalism
for each of them. Therefore, the dashed lines show the average reconstructed coupling whereas the
solid lines stand for the variance over the 10 signal realizations. It can be appreciated that the ratio
∆ω/(maϕ) decreases with the mass, hence leading to a less efficient reconstruction, as expected. In
addition, the statistical error gets as well larger as we go to lower masses. This reflects the larger
fluctuations induced in the power measurement. Finally, the red and blue curves show how the
number of time data points alter the reconstruction. In particular, the red and blue lines have been
simulated for N = 20 and N = 40 points, respectively.
Since it is expected from the reconstruction to mainly depend on the ratio∆ω/(maϕ) and the num-
ber of time data points N , we use the left panel plot to derive on the right one the parameter space
for which the reconstruction is at least 70% accurate. On the horizontal axis, we show the averaged
ratio expressed as ∆ω/(maϕ) ≈ [TGmaM/(2π)]−1 (log(R/b)/(R− b)) 7 and on the vertical one,
we express the number of data points as N ≈ 2R/(vT )

√
1− (b/R)2. We checked that our formal-

ism, applied to signals simulated from AMCs with parameters inside the shaded blue region, is able
to return the axion photon coupling with |1− gout/gin| ≤ 0.3.

7The average has been considered because this ratio depends naturally on the location r. Taking the average allows to take into account all the
locations from the impact parameter b to the radius R.
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4.4 Rate of Encountering Suitable AMCs

In the previous section, we have checked the efficiency of our coupling reconstruction method. Fur-
thermore, we have extracted from simulated data the parameter space that allows for a reasonable
reconstruction for both the experiment (measurement time) and the AMC (radius, mass, velocity,
impact parameter). But how often could we hope to have an encounter with an AMC with param-
eters allowing for a good reconstruction or, in other words, falling in the blue shaded region of
Fig.4.3?
Assuming an ideal picture where all the clusters have the samemass and radius, the total rate follows

Γ = nAMC(r)⟨σv⟩, (4.31)

with

nAMC(r) = fAMC
ρDM(r)

M
. (4.32)

In this last equation, ρDM is the local dark matter density. fAMC stands for the fraction of axion
bound in AMCs. Refs. [31, 111] find from numerical simulations that the fraction of axions bound
in AMCs is∼ 0.75 at redshift around z ∼ 100. However, it is quite uncertain how this evolves until
today. In any case, the numerical values in our figures show rates divided by fAMC. But to give
rough and optimistic numbers we assume fAMC ∼ 1. Finally,M is the AMC mass.

A good approximation consists in assuming that the cross section depends exclusively on the
impact parameter, σ(b) = πb2. With that, the differential rate becomes

dΓ

db
= nAMC(r)

〈
v
dσ

db

〉

= nAMC(r)

∫ vf

vi

vf(v)
dσ

db
dv, (4.33)

where f(v) is the DM velocity distribution. In the laboratory frame, it is common to assume the
following form,

flab(v) =
2v√
πv0vlab

e−v
2
lab/v

2
0 sinh

(
2vlab
v20

v

)
e−v

2/v20 , (4.34)

with v0 ≈ vlab ≈ 220km/s being respectively the velocity dispersion and the laboratory velocity,
both in the galactic frame [178].

The rate defined above consists in the total rate, hence taking account clusters for which the
reconstruction is not efficient. In order to extract the rate for suitable AMCs (in the sense that
they provide a reasonable coupling reconstruction), we use a rectangular approximation for the
blue shaded region of Fig.4.3, represented by the orange dashed lines in the latter figure (we show
two choices for the rectangular region). This approximation simplifies the parametrization of the
parameter space. We now have that clusters within the following range allow for a reasonable
coupling reconstruction,

αmin ≤ GmaM
log (R/b)

(R− b)
T,

Nmin ≤ 2R

vT

√
1− (b/R)2,

(4.35)

where in the most conservative choice8 , we have αmin ≈ 90 and Nmin ≈ 25.
Since the first inequality depends on the measurement period T , we optimized it with the use of

8Note that these values account for a conservative description of the blue shaded region in the left panel of Fig. 4.3. This "rectangular" approximation
provides easy-to-handle calculations and constitutes a first estimate for the rate. Considering the exact shape of this surface is expected not to alter
the results drastically and would lead to an increase of the encounter rate.
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Figure 4.4: Left: Two-dimensional rate of AMC encounters for which the coupling can reasonably
be reconstructed. Right: Similar but taking into account the survival probability (given in Ref. [113]).
In both panels, the vertical dashed lines show the number of years needed to cross the cluster for a
relative velocity given by the mean velocity of the considered distribution. This figure corresponds
to Fig.6 in Ref.[138].

the second inequality. Explicitly, for a given radius, impact parameter and velocity, the maximal
measurement period is Tmax(b, R, v) = 2R/(vNmin)

√
1− (b/R)2. The condition for a suitable re-

construction therefore becomes

αminNmin ≤ 2
GmaM

v

√
1− κ2

κ− 1
log(κ), (4.36)

where we have defined κ ≡ b/R.

For a fixed mass, the last inequality allows to define a maximal value, κmax (note that this in-
equality is solved numerically). Hence applying this constraint on the differential rate defined in
Eq.(4.33), we get that the rate for suitable AMC encounters is given by,

Γ(M,R) = nAMC(r)πR
2

∫ vf

vi

κmax(M, v)2vf(v)dv. (4.37)

The rate, as a function of the mass and the radius, is shown on the left panel of Fig.4.4. Let’s first
comment on the mass dependency. Intuitively, for increasing mass, the number density of AMCs
is decreasing (as observed from Eq.(4.32)). Therefore, it implies a decreasing rate as well. On the
other hand, decreasing the mass induces a lower ratio ∆ω/(maϕ), so that it prevents from a good
coupling reconstruction. In the low mass region, it is therefore expected that the rate (for suitable
AMC encounters) decreases as well. This is indeed what can be observed from the left panel of
Fig.4.4 with a maximal rate aroundM ∼ 10−5M⊙.
It can be appreciated from Eq.(4.36) that κmax does not depend on the radius. Hence it implies, from
Eq.(4.37), that the rate grows as ∼ R2, as it can be checked from Fig.4.4.
It has, however, been demonstrated in chapter 3 (see also recent works, [114, 116, 117, 147]) that the
survival of the AMCs in the galaxy was decreasing as their mean density increases. Although the
survival strongly depends on the density profile of the cluster, we show on the right panel of Fig.4.4
the rate accounting for the survival. In particular we took the survival, derived from a Lane-Emden
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profile [137], from Ref.[113].
Accounting for the tidal stripping in the galaxy, we obtain that the rate for suitable AMC encounters,
could reach Γ ∼ 10−6yrs−1. Of course increasing the radius would still increase this rate but, we
decide to stop the rate analysis around a crossing time of about 20 years (see dashed black lines).
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Chapter 5

Primordial Black Holes and Gravitational
Waves from Large Curvature Fluctuations

This Chapter is based on Ref.[179]

Sizable gravitational waves (GWs) may only be produced by violent enough events in the Uni-
verse. Hence the first detection, in September 2015 at the LIGO observatory [180], came from two
black holes (BH) that merged around two billion years ago. Such kind of astrophysical signal are
today well confirmed individual sources of GWs. On the other hand, it is expected that unresolved
super-positions of GWs generate a stochastic gravitational wave background (SGWB). It is, for in-
stance, known that super massive black hole binaries (SMBHBs) should act as a source for this
background [181, 182, 183, 184] 1. Beyond this astrophysical origin 2, the SGWB is expected to
be sourced by any violent process that occurred in the early Universe (inflation [186], enhanced
small scale perturbations [187], phase transitions [188], cosmic strings [189],...). It might, there-
fore, be seen as a way to probe physics phenomena that happened at energy scales much higher
than CMB. Its detection is one of the main targets of the future and present GW observatories
[190, 191, 192, 193, 194, 195, 196].
In particular, one of the early universe mechanism able to induce such a gravitational wave back-
ground is realized via the fluctuations inherited by inflation. If it is known that the scalar (or cur-
vature) perturbations evolve independently from the tensor perturbations at linear order, at second
order, the tensor modes are sourced by the curvature ones [42, 43, 44, 45, 46, 197, 198], those are
the so-called scalar induced gravitational wave (SIGW). We will discuss in detail this production
mechanism in Sec.5.1. The important point is that the GWs produced that way are nothing but the
consequence of General Relativity and do not constitute any new physics phenomena. Neverthe-
less, a sizeable amount of GWs is produced only in the scenario of large fluctuations, in order for
the second order perturbation theory to be relevant. It translates into the necessity to have large
amplitudes for the primordial curvature power spectrum Pζ . However, CMB and large scale struc-
ture (LSS) observations both indicate that Pζ ∼ 10−9 at scales larger than 1 Mpc [10], which implies
that only a very small amount of GW is produced at those scales. At scales much smaller than 1
Mpc, the curvature power spectrum is however still very weakly constrained and nothing prevents
it from having a significantly larger amplitude. Refs.[199, 200, 201] for instance derived ultra-slow
roll inflation models able to enhance the amplitude of the scalar power spectrum. Small scales cur-
vature perturbations are therefore an open window for the production of a SGWB.
The hypothesis of having large amplitudes for the curvature power spectrum at small scales is all
the more interesting as it provides a natural mechanism to form Primordial Black Holes (PBH) in
addition to GWs [48]. Indeed, the small scale density fluctuations δ inherited by the curvature per-
turbations ζ (the latter being constant at super horizon scales) would reenter the horizon during

1SMBHBs, with massM = 105 − 1010M⊙ form after galaxy mergers, each galaxy bringing their own central BH in the system [185].
2The SMBHB are often referred to astrophysical origin for the gravitational wave background. This is in opposition to the cosmological origin

discuss later in this chapter.
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radiation domination era. At this point, gravitational force may compete the radiation pressure for
large enough perturbations [202]. In particular, the usual Jeans length argument allows to estimate
that fluctuations that exceed at horizon reentry the critical overdensity δc ∼ 1/3 [48] collapse into a
black hole. Since the abundance of PBHs today depends crucially on this last quantity, it is important
to go beyond this simple approximation. The precise value of this threshold is, however, still under
debate and will be discussed in detailed in Sec.5.1. It is nevertheless estimated that PBHs produced
from the large curvature fluctuations would constitute a sizeable amount of the dark matter relic
abundance if the amplitude of the curvature power spectrum at small scales is Pζ > O(0.01). Being
able to detect the SGWB produced by large curvature fluctuations would then be the hint of the
existence of an exotic inflation period as well as the existence of PBHs.

Interestingly, a potential new signal of GWs has been recently observed in all Pulsar Timing
Array (PTA) communities (we will mainly focus in this chapter on NANOgrav 12 years (NG12)[191]
and the International Pulsar Timing Array (IPTA) [35], see Sec.5.2 for detailed discussion on those).
What are the PTAs? In short, it is known that pulsars generate electromagnetic pulses with an
extremely regular period. In this context, these experiments are observing an array of pulsars with
known periods and record the time of arrival (TOA) of their pulses. Many things can, however, alter
the regularity of the TOAs and, more interestingly in our case, an incoming GW would generate
a common time delay in the pulsar array in addition to a characteristic correlation between the
pulsars, named Hellings-Downs (HD) correlation [203]. The current PTAs are, however, still not
sensitive enough to draw conclusions on the existence of this correlation and only concluded on the
existence of a common process 3. A signal in the frequency range (1-10 nHz) of those experiments is
actually expected from the SGWBof the SMBHBs [39, 40]. Nonetheless, if future generations of PTAs
show evidence of Hellings-Downs correlations in this signal, it would be crucial to understand if any
cosmological origin might be contained in the signal as well. So could this signal come from the GWs
produced by large fluctuations discussed above? To bring light on this question, we perform in this
chapter a Bayesian search in the NG12 and IPTA data interpreting the signal as coming from GWs
produced by large amplitude curvature fluctuations parameterized by a lognormal power spectrum

Pζ(k) =
Aζ

(
√
2π∆)

exp
[
− log2(k/k⋆)

(2∆2)

]
(5.1)

where (Aζ , k⋆,∆) are parameters. As discussed earlier, for k⋆ peaked at small scales, this power
spectrum avoids constraints from CMB and LSS.
Wewill then study the posterior distributions in order to determine the range of parameters (Aζ , k⋆,∆)
able to explain the observed signal. Finally, a careful study of the PBH population induced by such
curvature power spectrum will be discussed and compared to the existing constraints on PBH abun-
dance.

This chapter will be decomposed as follows: In Sec.5.1 we derive in detailed the GW spectrum as
well as the PBH abundance induced by large curvature fluctuations. The existing PBH constraints
will be reviewed as well. In Sec.5.2, we proceed to analyze the data of NG12 and IPTA assuming
both SMBHBs and SIGWs. We finally discuss in this section the posterior distributions.

5.1 Phenomenology of a Large Curvature Power Spectrum

In this section, we review the GW and PBH production induced by the lognormal curvature power
spectrum defined in Eq.(5.1). It is, however, important to keep in mind that both the PBH abundance
and GW spectrum would depend drastically on the shape of the chosen power spectrum (see for
instance Refs.[204, 205] for similar study on a flat and power law power spectrum, respectively).

3As it will be commented at this end of this section, few months after this work has be released, the NANOGrav community released data from
15 years of observation. Whereas in this analysis, we used the 12.5 years data, the new data show a more significant evidence for HD correlation.
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The spectrum in Eq.(5.1) is normalized such that Aζ is the amplitude of the momentum integrated
power spectrum and not the peak amplitude. Note that the latter is instead given byAζ/(

√
2π∆) and

then diverges for∆ → 0. Studying such power spectrum shape is therefore particularly interesting
since in the limit of ∆ ≪ 1, we recover the Dirac delta case, Pζ = AζδD[log(k/k⋆)]. A study of the
GWs and the PBHs induced by such power spectrum has recently been conducted in the case of the
NANOgrav 11 years (NG11) data in Ref.[206]. On the other hand, the limit for ∆ ≫ 1 corresponds
to a broad power spectrum tending to similar flat spectrum considered in Ref.[205]. We can then
conclude that the lognormal spectrum in Eq.(5.1) is able to cover a wide range of possible shapes.

5.1.1 Scalar Induced Gravitational Waves

As mentioned in the introduction of this chapter, it is expected from cosmological perturbation
theory to induce tensor perturbations. However, as we will see only at second order will those GWs
be sourced by the scalar perturbations and then have potentially a sizable effect.
We start this discussion by considering the perturbed metric. As usually done, the perturbations in
the metric are written in terms of scalars, vectors and tensors components. In the Newton gauge,
only a single scalar perturbation, Ψ 4, usually appears. The vector and tensor perturbations are
actually decaying at linear order and are therefore most of the time not considered. However, since
we explicitly discuss the production of GWs, we include here the transverse traceless tensor hij . The
perturbed metric in Newton gauge is then,

ds2 = a2(η)
[
− (1 + 2Ψ) dη2 + ((1− 2Ψ) δij + hij) dx

idxj
]
, (5.2)

where η is the conformal time.
The scalar perturbation Ψ can be related in radiation domination to the primordial curvature per-
turbation ζ generated during inflation by

Ψ(k, η) =
2

3
T (k, η)ζ(k), (5.3)

where T (k, η) is the usual transfer function:

T (k, η) = 3

[
sin
(
kη/

√
3
)
−
(
kη/

√
3
)
cos
(
kη/

√
3
)

(
kη/

√
3
)3

]
. (5.4)

It implies that the scalar perturbations are frozen initially at super-horizon scales and its power
spectrum is given in terms of the curvature power spectrum in radiation via PΨ(k) =

4
9
Pζ(k).

In Eq.(5.2), the tensor perturbations can be decomposed in terms of the usual + and × components
and the Fourier modes hk,λ(η)

hij(η,x) =

∫
d3k

(2π)3/2

∑

λ=+,×

eλij(k)hk,λ(η)e
ik.x, (5.5)

where eλij(k) are the two orthonormal polarization tensors. The equation of motion for the Fourier
modes is written at second order in perturbation theory as

h′′k,λ(η) + 2Hh′k,λ(η) + k2hk,λ(η) = Sλ(k, η), (5.6)

where Sλ(k, η) is the source term vanishing at linear order. At second order, it is proportional to
the scalar modes Ψ(k, η),

Sλ(k, η) =
∫
d3l eλij(k)l

iljf(k, l, η)ψlψk−l, (5.7)

4Note that there are actually two scalar perturbations, Ψ and Φ. Only in the case of a negligible anisotropic stress we have Φ = −Ψ.
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withΨ(k, η) = T (kη)ψ(k) so that all the time dependence is contained inside the function f(k, l, η)
(see App.D.1 for an explicit expression of this function).
Again, it is important to stress here that only for large scalar (curvature) perturbations the source
term Sλ(k, η) is large enough to trigger a sizeable GW production. Since the curvature power spec-
trum has been constrained to be of the order Pζ ∼ O(10−9) at scales larger than 1 Mpc [10], the
power spectrum we consider in Eq.(5.1) must be peaked at scales much smaller in order to allow for
larger amplitudes. It naturally implies that all the wavelengths of interest would reenter the horizon
in radiation domination era.
We finally define the tensor power spectrum Ph(k, η) via

∑

λ=+,×

⟨eλijeijλ hk,λhq,λ⟩ =
2π2

k3
Ph(k, η)δ

(3)(k + p). (5.8)

The GWs produced through this mechanism are usually characterized in terms of their contribution
to the relic abundance Ωgw(f) [207],

Ωgw(f, η) =
1

ρc

dρgw
d log f

,

=
k2

12H2a2
Ph(k, η),

(5.9)

where f is the frequency of the gravitational wave and ρgw is the total gravitational wave energy
density.
As introduced earlier, the aim of the next section would be to understand if the GWs produced that
way could have induced the potential signal observed in PTAs. For that, we must, of course, have
an easily handling expression of the GW spectrum Ωgw(f, η0) at our current days, η0. To this point,
we first calculate the spectrum in radiation domination era, Ωgw,r(k),when all the wavelengths are
deep in the horizon and average over the oscillations, we get [208, 209, 210] (see details in App.D.1)

Ωgw,r(k) = 3

∫ ∞

0

d v

∫ 1+v

|1−v|
d u

T (u, v)

u2v2
Pζ(uk)Pζ(vk), (5.10)

with the transfer function T given by,

T (u, v) =
1

4

[
4v2 − (1 + v2 − u2)2

4uv

]2(
u2 + v2 − 3

2uv

)4

×
[ (

log |3− (u+ v)2|
|3− (u− v)2| −

4uv

u2 + v2 − 3

)2

+ π2Θ
(
u+ v −

√
3
)]

.

(5.11)

Then, since the GW energy density decays as radiation after equality, the GW spectrum today is
obtained just be re-scaling Eq.(5.10) [210, 211],

Ωgwh
2(f, η0) ≃ 10−5

(
g∗(T⋆)

17.25

)(
g∗s(T⋆)

17.25

)− 4
3
(

Ωr,0h
2

4× 10−5

)
Ωgw,r(f). (5.12)

In practice it is, however, challenging to obtain an analytical solution for Eq.(5.10) and most of the
time only a numerical integration can solve it. However, as we will see in the next section, the com-
putation time of the Bayesian search used to analyze the PTA data is dramatically increased if we
go for this last option. Hopefully, Ref.[211] derived an analytical estimated solution of Eq.(5.10) for
the lognormal power spectrum considered in Eq.(5.1) in the narrow (∆ ≪ 1) and broad (∆ ≥ O(1))
regimes. We confirmed that such analytical estimates are in good agreement with an exact numeri-
cal calculation inmost of the frequency range. However, we pointed out that in the narrow spectrum
limit, the low frequency tail is actually not well fitted by the approximation proposed in Ref.[211].
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Figure 5.1: Gravitational wave spectrum induced by large scalar perturbations parameterized by a
lognormal curvature power spectrum. The colored lines have been obtained via numerical integra-
tion for different spectrum widths ∆, whereas the black dashed lines correspond to the analytical
approximation (see Eq.(5.14),(5.13)). The gray solid line shows the analytical approximated given in
Ref.[211]. This figure corresponds to Fig.1 in Ref.[179].

For this reason we adapted the analytical estimation in order to fully match the numerical results.
We obtain that the GW spectrum in Eq.(5.10) is given by:

Narrow peak

Ωgw,r(f/f⋆,∆)

A2
ζ

≈ 3α2e∆
2

[
erf
(

1

∆
arcsinhαe

∆2

2

)
− erf

(
1

∆
arcoshαe

∆2

2

)](
1− 1

4
α2e2∆

2

)2

×
(
1− 3

2
α2e2∆

2

)2
{[

1

2

(
1− 3

2
α2e2∆

2

)2

log
∣∣∣∣1−

4

3α2e2∆2

∣∣∣∣− 1

]2

+
π2

4

(
1− 3

2
α2e2∆

2

)2

Θ
(
2−

√
3αe∆

2
)}

(5.13)

Broad peak

Ωgw,r(f/f⋆,∆)

A2
ζ

≈ 4

5
√
π
α3 e

9∆2

4

∆

[(
log2K +

∆2

2

)
erfc

( logK + 1
2
log3

2

∆

)
− ∆√

π
exp

(
−
(
logK + 1

2
log3

2

)2

∆2

)

×
(
logK − 1

2
log3

2

)]
+

0.0659

∆2
α2e∆

2exp
(
−
(
logα +∆2 − 1

2
log4

2

)2

∆2

)

+
1

3

√
2

π
α−4 e

8∆2

∆
exp

(
− log2α

2∆2

)
erfc

(
4∆2 − logα/4√

2∆

)
,

(5.14)

where α = f/f⋆ and K = α exp (3∆2/2).
In Fig.5.1, we show the GW spectrum of the lognormal power spectrum defined in Eq.(5.1) for three
different choices of width ∆. We could see that the numerical calculated spectrum (colored thick
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lines) is in good agreementwith our analytical approximation (dashed gray lines). The solid gray line
represents the approximation of Ref.[211] and deviates at lower frequencies. The general features of
this spectrum are actually simple to understand. First, it is peaked closed to f⋆ = k⋆/(2π). Around
the peak, it increases as f 3 for f ≪ f⋆, as dictated by causality, and decreases exponentially for
f ≫ f⋆ following the decrease of the curvature power spectrum. The precise location of the peak
and the behavior around it depends on the width of the power spectrum∆ [211]. Hence, for∆ > 1,
there is a lognormal peak at f = f⋆, with a width ∆/

√
2 whereas for ∆ < 0.2, a double peak

structure appears [212]. First a sharper peak at f/f⋆ = (2/
√
3)e−∆2 and secondly a broader one at

f/f⋆ = 1/e. Moreover, they are separated by a dip at f/f⋆ = (
√
2/3)e−∆2 . The presence of the

sharp peak is due to resonant amplification of tensor modes, see [212]. Notice that as ∆ → 0, the
amplitude of the IR tail of the GW signal, arising from scalar perturbations with anti-aligned wave
vectors generating an IR GW, is independent of∆. We note that in this case, there is an intermediate
region with slope f 2 for f⋆ > f > 2∆e−∆2 .

5.1.2 Primordial Black Holes

NANOGrav 12.5 years and IPTA data released 2 have detected a potential GW signal with spectrum
amplitude Ωgw(f) ≥ 10−10 in a frequency range f ∼ 10−9 − 10−8 Hz. Considering the lognormal
spectrum in Eq.(5.1), it implies for it to be peaked around k⋆ ∼ 105 − 108Mpc−1 and to have an
amplitude of the order Aζ ∼ O(10−2). As mentioned in the introduction of this chapter, such large
amplitudes would naturally induce the formation of PBHs when the associated density fluctuations
reenter the horizon during radiation domination. Hence, it is fair to claim that any significant pro-
duction of GWs via the above formalism would imply a, potentially, non-negligible PBH population.
The fraction of PBHs in the total amount of dark matter, fPBH = ΩPBH/ΩDM with ΩDM = 0.26, is,
however, strongly constrained. In Fig.5.2, we show a complete list of the existing ones. As we will
see later in this section, the lognormal curvature power section in Eq.(5.1) with values of k⋆ in the
appropriate range of detection on NG12 and IPTAwould produce solar mass PBHs. The most impor-
tant constraints are coming (from left to right in Fig.5.2) from microlensing [213, 214, 215, 216, 217],
PBH merger rates as deduced by LIGO-VIRGO collaboration [218] and from accretion signatures in
CMB [219, 220]. In the remaining parts of this section, we therefore proceed to calculate the PBH
fraction, fPBH, as a function of the curvature power spectrum parameters (Aζ , k⋆,∆). To this point,
we will first discuss the general formation of PBHs in the early universe. We then proceed to de-
rive the PBH abundance using the Press-Schechter formalism. Finally, we will translate the existing
bounds of Fig.5.2 into constraints on (Aζ , k⋆,∆).

Primordial Black Hole Formation

Lets consider a spherically symmetric density perturbation δ in the early universe. Locally, the
perturbed region is usually described via the metric [221]

ds2 = −dt2 + a(t)2e2ζ(r̂)
(
dr̂2 + r̂2dΩ2

)
, (5.15)

where the radial coordinate r̂ is related to the comoving radius as r = r̂eζ(r̂), and to the physical
radial coordinate as R = a(t)r̂eζ(r̂)5. Finally, ζ(r̂) represents the curvature perturbation.
In these coordinates, density perturbation δ(r̂) is related to the curvature as [222]

δ(r̂, t) = −4(1 + ω)

5 + 3ω

(
1

aH

)2

e−5/2ζ(r̂)∇2eζ(r̂)/2,

= −4

3
Φ(t)

(
1

aH

)2

e−5/2ζ(r̂)∇2eζ(r̂)/2.

(5.16)

where in the last line we have defined the function Φ(t) that encodes the time dependence of the
equation of state ω such that in radiation domination, Φ = 2/3.

5In this section, capital letters will refer to physical coordinates, whereas r and r̂ will be respectively for comoving and comoving slicing gauge.
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Figure 5.2: Observational constraints on the primordial black hole abundance fPBH. The curvature
power spectrum able to fit NG12 and IPTA data would induce PBH in the mass rangeM ∼ 10−3 −
102M⊙. In such a range the strongest constraints are coming from microlensing [213, 214, 215,
216, 217], PBH merger rates as deduced by LIGO-VIRGO collaboration [218] and from accretion
signatures in CMB [219, 220]. Figure taken from Ref.[202].

This perturbation is furthermore characterized by its physical radius Rm and is assumed to be ini-
tially at super-horizon scales. At horizon crossing, if the volume averaged perturbation δm at that
time exceeds the critical threshold δc (see below for discussion of its numerical value), gravity over-
comes pressure forces and the perturbation collapses into a black hole [223, 221, 222]. The mass of
the PBH has been found to be proportional to the horizon massMH [224, 225],

M(δm) = κMH(rm) (δm − δc)
γ , (5.17)

with the horizon mass at a given scale k given by [204],

MH(k) ≡ 4π
M2

p

H
≃ 20M⊙

(
k

106 Mpc−1

)−2 [g4∗,s(Tk)g−3
∗ (Tk)

17.25

]−1/6

, (5.18)

in the previous expression, κ ≈ 4 [223] and γ ≈ 0.36 [225] are fixed parameters and rm the comov-
ing radius of the perturbation. Note that the value of κ is considered in some references to have
slightly larger values κ ≈ 3− 10. We discuss in the next parts how this affects our results.
As we will see, the way to calculate the volume averaged density contrast δm is not unique and
leads to important deviations in the PBH abundance between the different formalism. In particu-
lar, the volume averaged density contrast is usually calculated with the use of a window function,
W (R;Rm), smoothing over the perturbation scale [221]

δm ≡
∫ ∞

0

dR 4πR2 δρ

ρb
(R, tH)W (R;Rm), (5.19)

where the radial integral is performed over the physical radial coordinate R. This last quantity is
calculated at horizon crossing, characterized by the time tH .
It might be hoped that different choices of window functions do not affect significantly the properties
of the PBH population. But, as it will be checked, different choices bring instead drastic differences.
For this reason, we will display our results for two different window functions: a real space top-hat
(TH)WTH and a Gaussian (G) window functionWG. In Fourier space, they are respectively written
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[226]

WTH(k, k
′) = 3

sin (k/k′)− k/k′ cos (k/k′)

(k/k′)3
,

WG(k, k
′) = exp

(
−(k/k′)2

4

)
,

(5.20)

where k′ = 1/rm, stands for the comoving scale of the perturbation.

What about the statistics of δm? If it is known that small perturbations, i.e at linear order, are
Gaussian, it must be expected that in the present case, δm is large in order to form PBHs and hence
non-linear and non-Gaussian [223, 227, 228]. Nevertheless, δm can be expressed as a combination
of a linear Gaussian component, δl, that follows a Gaussian distribution P (δl) ∼ exp(−δ2l /(2σ2))
(more details in the following section)[222, 229, 230].
To see this (seeApp.D.2 for further details), let’s use the linearized Eq.(5.16) in order to solve Eq.(5.19).
We get at linear order, using the top-hat window function,

δm = −2Φr̂mζ
′(r̂m) ≡ δl, (5.21)

where by definition, δl is a Gaussian variable.
Finally, using the full Eq.(5.16) the non-linear expression for δm is given in terms of δl as

δm =

(
δl −

1

4Φ
δ2l

)
. (5.22)

Hence, although δm is not longer described by a Gaussian distribution, it can be statistically charac-
terized by δl which, on its side, is Gaussian distributed (see App.D.2).
With that, we find that the PBH mass formed from a perturbation characterized by the linear Gaus-
sian component δl is given by

M(δl) = κMH(rm)

(
δl −

1

4Φ
δ2l − δc

)γ
. (5.23)

The non-linear effects might therefore be seen as decreasing the production of PBH. Indeed, if at
linear order perturbations with δl > δc would collapse, we now have that a PBH would be formed
only for perturbations with δl > 2

(
Φ−

√
Φ2 − Φδc

)
.

If one uses the Gaussian window function to define the average density contrast instead, it has been
shown in Ref.[221, 231] that it implies a change for the critical threshold δc and parameter κ,

(δc)
TH ≈ 2.17× (δc)

G,

(κ)TH ≈ 4

2.742 × 2.17γ
(κ)G

, (5.24)

where "TH" stays for top-hat and "G" for modified Gaussian. We will see that even taking into those
adapted parameters, the PBH abundance would appear to show important differences whether the
Gaussian or the top-hat is used.
So what about the critical threshold δc? Simple computation in Newton gravity allows to estimate
that perturbations with density contrast greater than δc ≈ 1/3 6 would be sufficient to cause the
collapse [48]. Incorporating general relativity corrections allow to refine this last value and give
δc ≈ 0.4 [233] (for top-hat window function). Recently, the collapse of large perturbations has been
studied via numerical simulations. It has been found that the critical threshold is actually depen-
dent on the shape of the curvature power spectrum and falls in the range 0.4 < δc < 2/3 [222, 234].
Finally, in Ref.[235], the results of the numerical simulations have been used to derive a simple pre-
scription to relate the power spectrum shape and its associated critical threshold. In the left panel of

6This value is actually the speed of sound in a radiation fluid.
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Figure 5.3: Left: Evolution of the critical threshold δc as a function of the lognormal spectrum
width ∆ (for a TH window function) (see Ref. [202]). Right: Variation of the critical threshold
around QCD phase transition as a function of the horizon massMH [232]. This figure corresponds
to Fig.8 in Ref.[179].

Fig.5.3, we show the evolution of the critical threshold as a function of the width∆ of the lognormal
curvature power spectrum defined in Eq.(5.1). The interpretation given in Ref.[235] is the following:
as the spectrum gets broader, more modes are involved in the collapse. This essentially decreases the
gradient pressure and facilitate the collapse by decreasing the critical threshold δc. For ∆ ≈ 0 − 1
we obtain δc ≈ 0.6− 0.4.
Moreover, as already briefly mentioned, it is expected for the equation of state to be time depen-
dent. In particular, during QCD phase transition, the change in the number of degrees of freedom
introduces a decrease from the initial value of w = 1/3 during that period. This translates into a
decrease of the pressure and thus favors the collapse. The natural consequence is a diminution of
the critical threshold at that time. We show in the right panel of Fig.5.3 the numerical results from
Ref.[232] (see also Ref.[236]) for the variation of the critical threshold as a function of the horizon
mass7 for both ∆ = 0.05 and ∆ = 1.
Finally, it is important to highlight here that the previous results have been derived using a top-hat
window function. The threshold values used in line with a Gaussian window function are simply
found by means of Eq.(5.24).

PBH Abundance from Press-Schechter Formalism

We now proceed to calculate the PBH abundance induced by the primordial curvature power spec-
trum via the Press-Schechter formalism [56].
In the previous part, we have stated that a perturbation with comoving size rm can collapse when
reentering the horizon if the linear density contrast satisfies δl > 2

(
Φ−

√
Φ2 − Φδc

)
. But what is

the probability to have such large density contrast? Assuming Gaussian statistics for δl, we get that
the probability distribution for overdensities with comoving scale k = 1/rm at the time when this
one reenters the horizon is given by

Pk(δl) =
1√
2πσk

exp

(−δ2l
2σ2

k

)
, (5.25)

7The horizon mass could be easily translated into a temperature or comoving scale dependence.
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where σk, the variance of the distribution, is directly related to the primordial curvature power
spectrum via [204, 223, 221]

σ2
k = ⟨δ2l ⟩,

=

∫ ∞

0

dk′
k′

W 2(k′; k)Pδ(k
′, tH),

=
4

9
Φ2

∫ ∞

0

dk′
k′

(k′/k)4T 2(k′, k)W 2(k′; k)Pζ(k
′).

(5.26)

In the last expression, Pδ(k′, tH) is the density power spectrum evaluated at the horizon-crossing
time tH of the scale k = 1/rm. Furthermore, T (k′, k) is the transfer function taking into account the
damping of the modes at sub-horizon scales and in the last line, we have used the relation between
the density power spectrum Pδ and the curvature power spectrum [221]. Note that the window
function,W (k′, k), used to smooth the power spectrum over the scale of interest must be the same
as the one used to derive the volume averaged overdensity in Eq.(5.19). Furthermore, from now on,
the critical threshold and other parameters of the mass function Eq.(5.23) must be chosen in line
with the window function used in Eq.(5.26) as well.
From this probability distribution, it is possible to calculate the fraction of the total energy density,
βk(M), that collapses into a PBH of massM at a scale k [48]

βk(M) =

∫ ∞

δc

dδl
M(δl)

MH(k)
Pk(δl) δD

[
ln M

M(δl)

]
. (5.27)

With that, the PBH abundance ΩPBH = ρPBH/ρc today is nothing but the integral of the density
fraction βk(M) over all the possible collapse scales k and massM . Furthermore, We must take into
account the fact that during radiation domination, the PBH number density evolves as matter. It
means that the number density of PBHs increases proportionally to the scale factor until matter-
radiation equality and stays constant afterwards [237]. We then get,

ΩPBH =

∫
d log(k) d log(M)βk(M)

(
Meq

MH(k)

)1/2

,

=

∫
d log(M)ψ(M),

(5.28)

where the factor (Meq/MH(k))
1/2 takes into account the increase of the density during radiation.

In the last line we have introduced the function ψ(M), such that the quantity ψ(M)/(MΩPBH) can
be interpreted as the mass distribution.
In Fig.5.4, we show an explicit example of the PBH mass function extracted from the lognormal
power spectrum defined in Eq.(5.1). In particular, we show results for a power spectrum peaked
at k⋆ = 106Mpc−1 and for both ∆ = 0.05 (cyan lines) and ∆ = 1 (olive lines). The amplitude
Aζ is chosen in order to have fPBH = ΩPBH/ΩDM = 1. For both choices of spectrum width,
we computed the mass function using the top-hat window function (solid lines) and the Gaussian
window function (dashed lines). It can be appreciated that, if the choice of the window function
is followed by an appropriate choice of collapse parameters (see discussion of the previous sec-
tion), the mass function is only barely affected by it. Finally, we obtain from the mass functions
that the mean mass for ∆ = 1(0.05) is M ≈ 60(100)M⊙. It is interesting to note that, despite
the usual naive estimation of the mean PBH mass being given by the horizon mass at the scale
k⋆ (MH(k⋆ = 106Mpc−1) ≈ 20M⊙), we obtain here larger mean masses. This behavior has al-
ready been observed in recent works, see for instance Refs.[226, 238], and could be explained by
the fact that σk is actually peaked at smaller values of k. It means that for a curvature power spec-
trum peaked at a scale k⋆, the typical fluctuations would have a larger characteristic scale and then
naturally produce heavier PHBs since they collapse at times when the horizon mass is larger as well.
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Figure 5.4: PBH mass function ψ̃(M) = ψ(M)/ΩPBH for a log-normal curvature power spectrum
peaked at k⋆ = 106 Mpc−1 (MH ≈ 20M⊙) (note that the amplitude has negligible impact on the
normalized mass function). Note that the mean mass is shifted to higher values for decreasing
spectrum width [226] (the turquoise and olive lines are respectively for ∆ = 0.05 and ∆ = 1).
Moreover, unlike the PBH abundance, for consistent choice of thresholds and window functions, the
mass distribution looks similar for both the TH and G window function. This figure corresponds to
Fig.7 in Ref.[179].

Let’s conclude this part by discussing the sensitivity of the PBH abundance on the different pa-
rameters. From the probability distribution introduced at the beginning of this section in Eq.(5.25),
we note that PBHs are actually produced from the tail of the distribution. Hence even a small change
in the critical threshold induces exponential effects on the PBH abundance [204]. For the same rea-
son, fPBH is exponentially sensitive to modifications on the variance σk. Such change is for instance
inducedwhen changing thewindow function. We found that evenwhen adapting the critical thresh-
old δc to the choice of window function (see Eq.(5.24)), the PBH abundance still depends drastically
on which window function is used. For this reason, we will display our results using both the Gaus-
sian and the top-hat window function. The variance σk is also affected by the curvature power
spectrum itself. Hence, we observe that fPBH is exponentially sensitive to the amplitude Aζ . In line
with that, it is expected that different power spectrum shapes lead to different PBH abundance as
well.

From PBH Abundance to Constraints on Curvature Power Spectrum

As alreadymentioned, the PBH abundance fPBH is relatively strongly constrained (see Fig.5.2). From
the last section, it implies that for some range of the lognormal curvature power spectrum param-
eters (Aζ ,∆, k⋆) the induced PBH abundance might spoil existing constraints. Hence, since the
purpose of the next section will be to identify the range of parameters (Aζ ,∆, k⋆) able to produce
the GW signal potentially identified in PTA experiments, it is important to first clearly determine
the parameter space which is in agreement with the PBH constraints. Explicitly, we proceed now to
translate the constraints fPBH(MPBH) of Fig.5.2 into constraints on the power spectrum amplitude
as a function of the peak location, Amax

ζ (k⋆), for a fixed width ∆.
The usual way to achieve this task is to find for a given point fPBH(MPBH), the pair (Amax

ζ , k⋆) for
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Figure 5.5: Limit fPBH = 1 translated into constraints on Aζ(k⋆) for ∆ = 1. Left: Effect on the
limit fPBH = 1 considering the Press-Schecter formalism (PS) with the non-linear (NL) and linear
(L) relation for the density. Results using Peak Theory (PT) and with a lower threshold (δc = 0.2)
are also shown. Right: Similar but changing this time only the parameter κ . Both are calculated
for a lognormal power spectrum with top-hat window function. This figure corresponds to Fig.9 in
Ref.[179].

which,
1

ΩDM

∫
d log(M)ψ(M ;Amax

ζ , k⋆,∆) = fPBH,

1

ΩPBH

∫
dM ψ(M ;Amax

ζ , k⋆,∆) =MPBH,

(5.29)

for a fixed value of the width ∆.
Unfortunately, using this method does not incorporate the extended mass distribution of the PBHs
produced via the curvature power spectrum since it only takes into account the mean mass. Hence,
we instead follow the recent work of Ref.[239] which allows to find the value of Amax

ζ as function of
k⋆ (still for fixed ∆) solving the function

1

ΩDM

∫
d log(M)

ψ(M ;Amax
ζ , k⋆,∆)

fPBH(M)
≤ 1. (5.30)

As it should, this integral imposes that the extended PBH mass distribution produced by the power
spectral density does not spoil the constraints defined by fPBH(M). Of course, the absolute limit
fPBH = 1 can be simply obtained by setting the denominator to 1 in the last equation.
In Fig.5.5 we show the limits from fPHB = 1 translated on the amplitude Aζ as a function of the
peak location k⋆ for the width ∆ = 1. Note that the range of k⋆ has been chosen in order for the
produced GWs to fall in the frequency range of NG12 and IPTA (see Sec.5.2). All the lines have
been calculated using a top-hat window function. In the left panel, we show explicitly how our
results change depending on the PBH formation mechanism used to calculate the abundance. As
it can be observed, the Press-Schechter formalism combined with the appropriate threshold (see
above discussion) and taking into account the non-linear relation for the volume average density
(see Eq.(5.19)), leads to the weakest constraints on the amplitude (olive solid line). The dark dashed
blue line and the light dashed green line show respectively how the limits are affected depending
on whether the Peak Theory [240] is used instead of the Press-Schechter or if we do choose a much
lower threshold δ = 0.2. Finally, the cyan dashed line shows the limits when the non-linear relation
for the volume averaged density contrast is not considered. As expected, considering only the lin-
ear relation increase the production of PBHs and naturally leads to stronger constraints. It can be
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appreciated that in each case (expected for the line with δc = 0.2), the limits are not straight lines
but show instead a dip around k⋆ = 106 − 107Mpc−1. This corresponds to curvature power spectra
where the typical fluctuations reenter the horizon during QCD phase transition. Hence, the critical
threshold is decreased with respect to its initial value. This effect favors the production of PBHs and
then leads to stronger constraints on the amplitude.
On the right panel, we show how the olive line from the left one changes as the parameter κ in
Eq.(5.23) deviated from κ = 4 (used in the left plot). As briefly mentioned earlier, this parameter is
estimated from numerical simulations to fall in the range κ ≈ 3− 10 (even if most of the literature
uses κ = 4). We see, however, that changing κ has a minor impact on the limit fPBH = 1.

5.2 Curvature Power Spectrum Probed by Pulsar Timing Arrays Data

In this section, we interpret the NG12 and IPTA excess as coming from scalar induced GWs. To
this point, we perform a Bayesian search over their data and study the posterior distributions for
the parameters (Aζ , k⋆,∆). Secondly, we interpret the parameter space able to explain the signal in
terms of PBHs, following the calculation of Sec.5.1. Interestingly, we come to the conclusion that
the evidence region of the IPTA experiment might lead to an overproduction of black holes.
Before going into the Bayesian analysis, we first discuss the pulsar timing arrays and the way they
recorded their data. We also derive the usual likelihood function used in the further Bayesian anal-
ysis.

5.2.1 Pulsar Timing Arrays

Pulsar timing arrays use the high regularity of the millisecond pulsars to detect any kind of phenom-
ena able to alter the predictable period of those pulsars [241]. In practice, the observatory records
the periodic electromagnetic pulses emitted by the pulsar, which are usually named times of ar-
rivals (TOAs). In an ideal scenario, mathematical models are constructed to accurately predict the
future TOAs of the pulses. Those models carefully take into account all the known delays induced
for instance by the mass distribution in the solar system or the interstellar medium [241]. The tim-
ing models are usually optimised to find the best fitting solution but still remains some deviations
between the observed and predicted TOAs. Those deviations are collected in a time residual array
δtmod expressed as

δtmod = Mϵ, (5.31)
with M and ϵ respectively the timing model design matrix and the vector encoding the deviation
between the model and the observation.
In addition to the error on the TOA modeling, many astrophysical mechanisms, such as spin noise
or pulse profile changes, can induce a time-correlated stochastic red noise in the time residuals
[242, 243, 244]. In the usual situation where an array of pulsars is observed, those red noises sources
show up as unique sources for each pulsars. The usual way to parameterize the residuals for time-
correlated red noise is via a decomposition on Fourier modes [245]

δtRN =

Nmodes∑

j=1

[
aj sin

(
2πjt

T

)
+ bj sin

(
2πjt

T

)]
,

= Fa

(5.32)

with T the total observation time andNmodes the number of modes 8. We also introduced the Fourier
design matrix F which contains alternate sine and cosine functions for each modes and a the mode
coefficients. The statistics of the red noise is characterized by its covariance matrix,

⟨aiaj⟩ = P (fi)δij, (5.33)
8This last one will be discussed more in detail later in this section.
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In practice, the power spectrum P (f) is taken according to a power law model with two distinct
parameters (ARN, γRN) for each pulsar [191],

P (f) =
A2

RN

12π2

(
f

fyr

)−γRN

f−3
yr . (5.34)

Finally, three white noise sources are usually considered in pulsar timing arrays. They take into
account a scale parameter on the TOA uncertainties (EFAC), an additional variance (EQUAD) and
a per-epoch variance (ECORR) for each backend. Their time residuals are characterized by the co-
variance matrix CWN that can be found in Ref.[246].
Hence, so far, the time residuals captured by PTAs are modeled by time model errors and random
Gaussian intrinsic red noise and intrinsic white noise,

δt = δtmod + δtRN + δtWN. (5.35)

Nevertheless, it is expected that in the presence of a SGWB, an additional time delay is induced
in the TOAs [247, 248]. Unlike the previously considered cases for which the noise sources were
intrinsic to each pulsar, a SGWB would induce a common red noise to all pulsars. In addition,
for an isotropic GW background it is expected for this red noise to observe a specific correlation
between pulsars, this correlation is called "Hellings-Downs" (HD) [203] or quadrupolar correlation.
The time delay induced by the SGWB, δtgw, can be written similarly to the previous intrinsic red
noise, as decomposition on Fourier modes. The cross-power spectral density Sab(f), characterizing
the process, is expressed in terms of the GW spectrum Ωgw(f) [249],

Sab(f) = Γab(f)
H2

0

16π4f 5
Ωgw(f). (5.36)

In this last equation, Γab(f) are the HD coefficients encoding the correlation between the pulsar a
and b. If no cross-correlation is observed, this equation simply reduces to common red noise and
Γab(f) = δab.
The total time delay in the presence of a SGWB is then given by

δt = δtmod + δtRN + δtWN + δtgw,

= δtmod + δtGauss

(5.37)

where in the last line tGauss contains all the Gaussian process.
With that, the usual way to analyze the PTA data, is done via the likelihood [250]

L =
1√

det (2πΣ)
exp

(
−1

2
RTΣ−1R

)
, (5.38)

where we define R ≡
[
δt1Gauss, δt

2
Gauss..., δt

N
Gauss

]
with N the number of pulsars in the array, and

Σ ≡ ⟨RRT ⟩ the covariance matrix. Note that this likelihood is usually marginalized over the model
parameter ϵ [245, 251].

In their last data released, both NG12 and IPTA [36, 252], have claimed strong evidence for a
common process in their sensitivity frequency range, f = 1 − 10 nHz. Even if no evidence for
HD cross-correlation has been found, numerous number of studies have been done interpreting this
signal as a SGWB detection. In particular, it is expected for SMBHBs to produce a SGWB at those
frequencies [39, 40]. In that case, the cross power spectral density defined in Eq.(5.40) is modeled as
a power law similar to the one used in Eq.(5.34) [191],

SSMBHB
ab (f) = Γab(f)

A2
SMBHB

12π2

(
f

fyr

)−γSMBHB

f−3
yr , (5.39)
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Figure 5.6: Left: Posterior distribution from Ref.[35] for the SMBHB parameters (ASMBHB, γSMBHB).
The green line shows the location predicted by theoretical model [256]. Right: Probability distribu-
tion of ASMBHB with γSMBHB fixed to its expected theoretical value γ = 13/3. In both panels, the
orange and blue lines show the difference when the cross HD correlation is added to the analysis.
This figure is taken from Ref.[35].

with this time the same parameters (ASMBHB, γSMBHB) for all pulsars since it is a common process.
In Refs.[191, 35], a Bayesian search has been performed implementing such SGWB from SMB-
HBs. In particular, the likelihood defined in Eq.(5.38) has been evaluated using the public codes
enterprise, enterprise_extensions [253] and PTMCMC [254] to obtain Monte Carlo
samples. The white noise sources were fixed according to their maximum likelihood a posteriori
values from single pulsar analyses without GW parameters such that we are left with two red noise
parameters per pulsar (Ared, γred) and a pair of GWparameters from Eq.(5.39) (ASMBHB, γSMBHB) for
the whole set of pulsars. Finally, the posterior distributions for those parameters are obtained with
GetDist [255]. Note that in Refs.[191, 35] this analysis has been performed with and without HD
correlations, meaning considering or not the function Γab in Eq.(5.39). The posterior distributions
obtained in Ref.[35] are shown in Fig.5.6 for the parameters ASMBHB and γSMBHB. It can be appre-
ciated that the theoretical values predicted by Ref.[256] (green lines in the left panel) are falling in
the 3σ C.L. region. Note that the posterior distributions are not depending strongly on whether the
HD correlation is added in the analysis. It implies that there is for the moment no evidence in favor
nor against HD correlations.
With those results, the SMBHB interpretation of the NG12 and IPTA potential signal seems to be an
attractive solution. If the signal gets confirmed by the future experiments and data, it is, however,
crucial to understand if other interpretations could be given. In particular, we are now going to
use the gravitational spectrum derived in Sec.5.1 for large curvature fluctuations to see if, for some
parameters (Aζ , k⋆,∆) of the curvature power spectrum (5.1), it may have contributed to the NG12
and IPTA signal.
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Figure 5.7: Left: One-dimensional posterior distribution for the amplitude Aζ and momentum k⋆
(marginalized over the width ∆). The prior for Aζ has been chosen to avoid PBH overproduc-
tion: log10Aζ ≤ −1.22, see text for details. The dark (light) shaded regions show 68% and 95%
C.L. regions respectively. We, additionally, show for ∆ = 1 the astrophysical constraints on PBH
overproduction as the gray dotted line. The region above the dashed red curve is constrained by
LIGO/Virgo for ∆ = 1, see [218]. All the constraints in the plot are obtained using a top-hat win-
dow function. They would be stronger (weaker) for smaller (larger) ∆. Right: Two-dimensional
posterior distributions. This figure corresponds to Fig.3 in Ref.[179].

5.2.2 Bayesian Search in the IPTA data released 2 and NANOgrav 12.5 years

Detection Analysis

Similarly to the analysis done in the case of SMBHB, we proceed now to a Bayesian search in the
NG12 and IPTA data including GWs from large curvature fluctuations. We remind that for common
processes the cross-power spectral density is described via

Sab(f) = Γab(f)
H2

0

16π4f 5
Ωgw(f), (5.40)

where here the GW spectrum Ωgw(f) is taken from Eq.(5.12) in line with the analytical approxima-
tions Eq.(5.13)-(5.14). Note that we properly account for the temperature dependence of the number
of relativistic degrees of freedom g∗, using results of Ref.[59], since the frequency range of NG12
and IPTA would correspond to k⋆ values around the QCD scales where g∗ changes significantly.

Exactly as for the SMBHB analysis done in Ref.[35, 191], we consider three white noise sources
with parameters fixed according to their maximum likelihood for a single pulsar analysis. In addi-
tion, the intrinsic red noises are parameterized by the correlation function defined in Eq.(5.34) and
the parameters (ARN, γRN), proper to each pulsar and free during the Bayesian search. Finally, we
have the three parameters of the GW spectrum, (Aζ , k⋆,∆).
Asmentioned in the previous section, it is expected for sizable productions of GWs to induce a signif-
icant population of PBHs. For this reason, the priors for the amplitude Aζ must be chosen in way to
assure that the resulting PBH population is not spoiling any existing constraints. Hence, we choose
logarithmic priors log10∆ ∈ [log10(0.5), log10 3], log10Aζ ∈ [−3,−1.22], log10 k⋆/Mpc−1 ∈ [4, 9]
such that the upper limit on the curvature power spectrum amplitude is dictated by the fPBH ≤ 1
constraint for ∆ = 3 and k⋆ = 105 Mpc−1 (for top-hat window function). This is indeed a conser-
vative prior choice since the constraint for PBH overproduction on the amplitude Aζ gets stronger
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Figure 5.8: GW spectra obtained after maximizing the likelihood. We compare the scalar induced
GW spectrum, according to our "Scalar induced GW only" search (solid curves), obtained with the
parameters Aζ ≃ 0.04 (0.04), k⋆ ≃ 5.5 (2.2) · 106 Mpc−1,∆ ≃ 0.9 (2.1) for IPTA DR2 (NG12) to
the GW spectrum obtained from SMBHBs (dotted lines), setting ASMBHBs ≃ 3 (2) · 10−15 for IPTA
DR2 (NG12).The free spectrum posteriors obtained by converting the results of [191] (NG12) and [35]
(IPTA DR2) are also shown (violin shapes, lower limits due to prior choices). This figure corresponds
to Fig.4 in Ref.[179].

as the width ∆ decreases. Moreover, even stronger constraints would be obtained if instead of im-
posing fPBH ≤ 1, we would translate the astrophysical constraints (see Fig.5.2) on the amplitude Aζ
with the use of Eq.(5.30). The different sources of noise as well as all the parameters and their priors
are summarized in App.E.1.
In the right panel of Fig.5.7, we show the posterior distributions for the curvature power spectrum
parameters (Aζ , k⋆,∆) for both the IPTA (dark-blue contours) and NG12 (green contours) data in-
cluding HD correlation. It can be appreciated that, as expected, both NG12 and IPTA are indicating a
curvature power spectrum with k⋆ ∼ 105 − 107Mpc−1. This indeed corresponds to a GW spectrum
peaked in the frequency range of the PTA experiments. We note that NG12 data accommodates
with the whole range of widths ∆, even if it prefers larger values. This was expected since the
GW spectrum observed in NG12 is essentially flat and then well fitted by a broad ∆ ≥ 1 power
spectrum. On the other hand, IPTA tends to prefer smaller width ∆ ≤ 1. As mentioned, since for
smaller values of ∆ the fPBH ≤ 1 constraint on the amplitude Aζ gets stronger, it is important to
investigate whether the IPTA evidence region is spoiling it. Hence, in the left panel of Fig.5.7, we
show the 2σ C.L. region for the parameters Aζ and k⋆ with the fPBH ≤ 1 constraint for ∆ = 1
shown explicitly (dashed-dotted line). It can be concluded that most of the IPTA evidence region
is excluded by PBH overproduction. Moreover, since most of the IPTA posteriors sit in the ∆ ≤ 1
region and because lower values of∆ lead to even stronger constraints on Aζ , we conclude that the
large curvature GW interpretation of the IPTA signal is strongly affected by PBH overproduction
constraints. On the same panel is also shown the astrophysical PBH constraints translated on the
amplitude Aζ for ∆ = 1 (black dotted lines). The red dashed line represents in particular the limits
coming from LIGO/Virgo BH merger rates [218]. Of course, considering those limits further rein-
forces our previous assertion.
In Fig.5.8 we show the maximum likelihood GW spectra from both large curvature fluctuations

(solid lines) and SMBHBs (dotted lines) together with the free spectrum obtained from IPTA (blue
violins) and NG12 (green violins). As already concluded from Fig.5.7, IPTA data are better fitted by
smaller width and larger amplitude than those of NG12. Interestingly, we see from Fig.5.8 that the
IPTA (NG12) excess is fitted by the small (high) frequency tail of the spectrum.
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Figure 5.9: One- and two-dimensional posterior distributions of our analysis including a SGWB
from both SIGW and SMBHB. As before, the upper prior on Aζ is chosen to avoid PBH overproduc-
tion. The dark (light) shaded regions show 68% and 95% C.L. regions respectively. Left: ∆ = 1,
with upper prior log10Aζ ≤ −1.44. Right: ∆ = 0.05, with upper prior log10Aζ ≤ −1.57. This
figure corresponds to Fig.5 in Ref.[179].

At the end of this first analysis, it is possible to conclude that both SMBHBs and scalar induced
GWs are able to generate the excess observed in PTA experiments, although the latter might be in
conflicts with PBH overproduction. In order to capture which model is the most favored by the
data, we continue our analysis by considering both sources of GWs in the likelihood defined in
Eq.(5.38). The stochastic GW background would then be characterized by four parameters: three
coming from the scalar induced GWs, (Aζ , k⋆,∆), and one coming from the SMBHB ASMBHB if we
assume that the power γSMBHB is fixed to 13/3 according to the Ref.[40]. In this analysis we do not
include the HD correlation since including them do not alter the posteriors strongly but reduces
the computational time considerably. Since the PBH overproduction limit depends strongly on the
width ∆, we chose to perform the Bayesian search for two specific choices, ∆ = 1 and ∆ = 0.05.
For the priors, we proceed as for the previous analysis and impose that log10(Aζ) ≤ −1.44(−1.57)
for ∆ = 1(0.05). Those values correspond to the limit fPBH ≤ 1 at k⋆ = 105Mpc−1 and then
to the weakest limit in the scale range of interests (the fPBH ≤ 1 limit decreases as k⋆ increases
as it might be seen in Fig.5.5). We finally impose logarithmic priors on the remaining parameters:
4 ≤ log10(k⋆/Mpc−1) ≤ 9, −18 ≤ log10(ASMBHBs) ≤ −13.
The posterior distributions are shown in Fig.5.9 for both ∆ = 0.05 (left panel) and ∆ = 1

(right panel). We start by considering the results for NG12 (green curves). In both panels, we
see that the posteriors (Aζ , ASMBHB) cover two distinct regions. The first one is centered around
ASMBHB ≈ 10−15 and spans all the values up to Aζ ≤ 10−2. This region has to be understood as
the range of parameters for which the NG12 excess is modeled by the SMBHB GWs only. On the
other hand, the second region is centered around Aζ ≈ 0.02(0.015) for∆ = 1(0.05) and covers the
whole range up to ASMBHB ≤ 10−14. In that region, the signal can be modeled only by the scalar
induced GWs. Naively, in the intersection region, the excess is well modeled by a combination of
both sources. Similar behavior is observed in the posteriors (k⋆, ASMBHB): for the region centered
around ASMBHB ≈ 10−15, k⋆ is outside of the PTA range such that there is no contribution in the
signal from scalar induced GWs.
For IPTA (blue curves), the situation is significantly different. As already mentioned, IPTA data re-
quire a larger amplitude Aζ , making it challenging to not spoil the PBH overproduction constraint.
In the posteriors (Aζ , ASMBHB) of the left panel (∆ = 1) we see that only the region centered around
ASMBHB ≈ 10−15 is modeling at 2σ the IPTA excess correctly . Scalar induced GWs are here not
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Bayes Factors

Experiments ∆ = 0.05 ∆ = 1

NG12 log10(Bζ,SMBHB) = 0.05 log10(Bζ,SMBHB) = 0.3

IPTA log10(Bζ,SMBHB) = 0.9 log10(Bζ,SMBHB) = 2.2

Table 5.1: Bayes Factors computed assuming that the PTA excess is either only scalar induced GW
or only SMBHB.

able to explain the signal because of the prior choice and hence PBH overproduction. For∆ = 0.05,
similar trends exist even if the scalar induced region is disfavored only at 1σ.
Even if this last analysis gives a first insight on which model provides the best explanation for the
PTA excess, the best way to determine any preference for one model or the other is to calculate the
Bayes factors assuming the stochastic GW background to be either purely scalar induced or coming
from SMBHBs. From Tab.5.1, we see that, as expected from the previous analysis, IPTA tends to
prefer a scenario where the excess is caused by SMBHB GWs. This is particularly clear in the case
∆ = 1, where the Bayes factor is given by log10(Bζ,SMBHB) = 2.2. For NG12, we find no substantial
evidence for one model against the other as already concluded in Fig.5.9.

The conclusion of this whole analysis is therefore that the scalar inducedGW interpretation of the
IPTA excess is disfavored compared to the SMBHB one, and this because of the strong constraints
coming from PBH overproduction. NG12 is on its side fitted equally well by both models. It is,
however, important to keep in mind that only the constraint fPBH ≤ 1 has been used. Using the
astrophysical constraints (see Fig.5.2) would have a stronger impact on the possible parameter space
for the amplitudeAζ and eventually disfavor evenmore the scalar induced GW interpretation. Those
conclusions therefore motivate to look for upper limits on the amplitude Aζ instead of evidence
regions.

Upper Limit Analysis

Supported by the previous conclusions, we assume here that the signal is not coming for scalar
induced GWs and thus proceed to derive upper limits on the amplitude of the curvature power
spectrum Aζ .
We follow the following strategy to derive upper limits on the amplitudeAζ : We first fix the param-
eterASMBHB inferred from the SMBHB analysis only of the NG12 and IPTA collaborations. For each
value of the k⋆ in the range considered above, we derive the upper limit on the parameter Aζ . The
width∆ is kept fixed for this analysis. Note that the SMBHB parameterASMBHB is given within a 2σ
interval: log10(ASMBHBs) ∈ [−14.86,−14.57] for NG12 [191] and log10(ASMBHBs) ∈ [−14.7,−14.4]
for IPTA [35]. For this reason, we derived our upper limits taking both the lower and upper bounds
of those intervals. In order to derive upper limits, note that we do not impose any prior for the
amplitude Aζ (see App.E.2 for the explicit list of parameters in the case of the upper limit search).
In Fig.5.10, we show such upper limits for both ∆ = 0.05 (right panel) and ∆ = 1 (left panel).

Two main features are clearly visible. First, the constraints are stronger for ∆ = 0.05. This was
indeed expected since, for the same amplitude, the GW spectrum presents a larger peak for a nar-
rower spectrum. Secondly, the upper limits are broader for ∆ = 1. This can be understood as a
consequence of the exponential decay for frequencies larger than f⋆ (see Fig.5.1). In the case of the
narrow spectrum,∆ = 0.05, if the spectrum peak f⋆ is displaced at a smaller frequency than the first
data bin, the exponential decay would prevent any signal in the frequency range of the experiment.
For this reason we do not have any upper limit in the low frequencies. Naturally, for the broader
spectrum,∆ = 1, even if the spectrum peak is displaced at smaller frequencies than the first bin, the
exponential decay is less important and a signal can be obtained, therefore leading to constraints in
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Figure 5.10: 95% C.L. upper limits on the amplitude Aζ , considering the presence of an astrophys-
ical GW background with log10ASMBHBs (fixed according to the posteriors of [191, 35]). Left: ∆ = 1.
Right: ∆ = 0.05. The blue (green) shaded regions are constrained by IPTA DR2 (NG12), assuming
the upper 95%C.L. posterior value log10ASMBHBs = −14.4(−14.57). The dashed curves are obtained
assuming the lower 95% C.L. posterior value log10ASMBHBs = −14.7(−14.86) for IPTA DR2 (NG12)
instead. Constraints from PBH overproduction are shown as black (gray) dot-dashed curves for a
top-hat (Gaussian) window function, and have been obtained using δc = 0.46(0.59), κ = 4 for the
Top-Hat, and δc = 0.21(0.27), κ = 10 for the modified Gaussian, for∆ = 1(0.05). Constraints from
astrophysical observations are shown as black (gray) dotted curves for a top-hat (Gaussian) window
function. The two gray-shaded regions are constrained by CMB observations: the upper region be-
cause GWs contribute to the effective number of neutrino species (∆Neff ≤ 0.28 at 95% C.L. from
Planck18+BAO [10]); the left corner region in the left panel because curvature perturbations cause
µ-distortions (constrained by COBE/FIRAS [257]). The frequency of GWs corresponding to k⋆ is
shown in the first upper x-axis. The horizon mass at re-entry of the mode k⋆ is shown in the second
upper x-axis. This figure corresponds to Fig.6 in Ref.[179].

the present analysis. We remind that we performed this analysis fixing ASMBHB to both the upper
and lower limits of the 2σ intervals derived in Refs.[35, 191]. This is depicted in Fig.5.10 by the solid
and dashed colored lines.
Finally, we have added in Fig.5.10 the upper limits from PBH overproduction, fPBH ≤ 1, calculated
using both the top-hat and Gaussian window functions (see Sec.5.1 for a detailed discussion on the
window function choice). It can be appreciated that the upper limits onAζ calculated fromNG12 and
IPTA are significantly stronger than those from PBH overproduction in the case of the top-hat win-
dow function. There are however similar in the case of the Gaussian window function. In addition,
the astrophysical constraints have been translated to constraints on the amplitude Aζ following the
last section formalism. We find that those are competitive with our upper limits. Other constraints,
such as scalar induced GW contribution to the number of degrees of freedom [10] as well as from
µ-distortion [257], are shown as grey shaded regions.
Last but not least, we have represented on the upper-x axis the horizon mass when at re-entry of the
mode k⋆. Since the mean PBH mass has been found in the previous section to be only slightly larger
than the horizon mass, the scales constrained by PTAs correspond to PBH with average masses
0.05M⊙ ≤MPBH ≤ 103 M⊙ for broad spectra and 0.01M⊙ ≤MPBH ≤ 20M⊙ for narrow spectra.
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5.2.3 Comparison with Previous Works and Future Expectations

In this section we comment on the previous works relative to scalar induced GWs and PBHs.
First, we discuss the constraints on the curvature power spectrum and the PBH abundance de-
rived from PTA observations. In Ref.[206], upper limits have been derived on the 11-year data of
NANOGrav for a power spectrum parameterized by a Dirac delta. Since this power spectrum is re-
covered in the limit∆ → 0, their results are similar to ours derived for∆ = 0.05. Additionally, they
translated those upper limits on the amplitude Aζ into upper limits on the PBH abundance fPBH.
As mentioned, in Sec.5.1, this last quantity suffers from exponential sensitivities related mainly to
the choice of the threshold δc and the window function. In ref.[206], the threshold has been fixed to
δc = 1 9 which naturally decreases considerably the abundance of PBHs. Hence, very strong con-
straints on fPBH have been derived from the upper limits on the amplitude Aζ (see similar effects in
Ref.[258]).
More recently, Ref.[259] has studied the implications of NG12 for scalar induced GWs. However,
instead of performing a Bayesian search in the data set, they used the five bins of the free spectrum
to derive posteriors of a curvature power spectrum parameterized by a broken power law. This last
one is similar to ours in the case∆ ≥ 1. The posterior distribution for the amplitude of their power
spectrum is in line with what we find. Moreover, they compared their 2σ evidence region for the
amplitude to the upper limits coming for PBH astrophysical constraints. On this point, we find a
deviation compared to our results. This one is most probably caused by their use of a critical thresh-
old δc appropriate for a modified Gaussian window function whereas the rest of their calculation is
made with a standard Gaussian window function.
In Ref.[260], similar Bayesian search has been performed on the NG12 data using similar lognormal
power spectrum. However, we note that the number of frequency modes used in Eq.(5.32) has been
set to 30whereas indications from Ref.[191] indicates that 5must be used. Indeed, it has been proven
that too large a number of modes would induce a coupling between red and white noises and leads
to very different posteriors. In addition, they chose too large a threshold δc leading as before to very
aggressive upper limits on fPBH.
In Ref.[238], a lognormal power spectrum with ∆ = 1 has been considered and it was found that
the signal could be explained by a curvature power spectrum amplitude Aζ ∼ 0.02 − 0.04 which
is in line we what we found in our work. They conclude that this corresponds to a solar mass PBH
population. Again, this is in line with the analysis made in this work even if a broader range of
masses could be reached. They nevertheless used too large a threshold and did not consider the
non-linear relation for the volume averaged density (see Sec.5.1) which naturally leads to deviations
on the PBH abundance.

Let’s finally mention that few months after this work has been published, the NANOGrav col-
laboration [37, 261] (as well as the EPTA [38]) released their new data, corresponding to 15 years of
observation. Interestingly, whereas previous data were neither for nor against HD correlation, the
new version of the data tends to prefer a correlated spectrum with a Bayes factor ∼ 200− 1000 to
a common uncorrelated spectrum. In the same time, they analysed the possibility that this signal
came from large curvature fluctuations. Their evidence analysis show posterior distributions com-
patible with our IPTA DR2 evidence regions. This might be understood by the fact that IPTA, since
regrouping all the different PTA communities, is always more sensitive than the NANOGrav data
only published at the same period. Hence, it is expected for IPTA data release 3 (IPTA DR3) to be
even more sensitive than NG15 and therefore might be able to decide on the HD correlation issue. In
conclusion, the new PTA data are excluding even more the SIGW interpretation of the signal since,
following the results presented in this thesis, IPTA DR2 was already strongly in tension with PBH
overproduction constraints.

9In comparison for∆ = 0.05 we choose δc = 0.59.
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Chapter 6

Conclusion and Outlook

This thesis had for main purpose to study the phenomenology of clustered dark matter structures.
In particular, the present work was dedicated to both axion miniclusters and primordial black holes.

The first part of this thesis was dedicated to axions. After a review of the strong CP-problem
and the PQ solution, we discussed in chapter 2, the main production channel: the misalignment
mechanism. We highlighted that, in the post-inflation scenario, the axions would collapse already
around matter-equality into axion miniclusters. As mentioned, the evolution of these clusters have
been studied numerically, but the late times - when the clusters are already part of the Milky Way
- are not reachable with current numerical methods. In order to fill this gap, we studied the impact
of tidal interactions with galactic stars on the axion miniclusters.
The first step was to account for the classical wave treatment of the axion field. In order to construct
the wave function of an axion minicluster, we solved the Schrodinger-Poisson system with the use
of the random phase anzats for the amplitude of each modes. The consequence of this assumption,
is that the cluster wave function would describe a spherically symmetry density profile only on av-
erage over the random phases. For a given realization of those, the latter will feature some granular
density fluctuations.
Because the wave function is described by the Schrodinger equation (although there is no quan-
tum interpretation for the wave function), the tidal interactions with stars can be described using
the well-known formalism of perturbation theory in quantum mechanics (assuming a small enough
interaction). Hence, based on this formalism, we studied the impact of a galactic stellar encounter
on the mass, radius and energy of the minicluster. We demonstrated that our results are in line
with what would have been obtained if the cluster was described in a classical particle picture (as
for instance obtained in Refs.[116]). This conclusions might have been expected since, for the clus-
ters considered in this work (with mass M ∼ 10−12M⊙ and radius R ∼ 10−5Pc), the de Broglie
wavelength is small compared to the cluster itself (making the particle picture legit). Nonetheless,
for much lighter clusters or ultra light axions (ma ∼ 10−20eV), for which this last statement is no
longer correct, it is expected to observe stronger deviations from the particle picture. A natural ex-
tension to our work would therefore be to apply this formalism to these objects.
We concluded this work by confirming that the survival of the miniclusters in the galaxy strongly
depends on their density profile and the way the energy levels are populated (i.e the shape of the
distribution function). Moreover, a dedicated study must be conducted on how the clusters would
relax after a tidal interaction. If in this work we assumed that they would keep the same density
profile (hence only modifying the radius and the mass), this assumption seems unphysical and may
lead to some uncontrolled errors in the overall calculated survival. Although, our results confirmed
what has been obtained for different studied density profiles, and show that a significant fraction of
the miniclusters would survive in the Milky Way.

In line with this analysis, we then performed a study on haloscope signals induced by an en-
counter with an axion minicluster. Motivated by the known degeneracy between density and axion-

102



photon coupling appearing in the measured power in such haloscope experiments, we showed that
in the lucky case of an encounter, the power spectral decomposition may lead to a measure of the
gravitational potential of the cluster. Hence with the use of the Poisson equation, relating the po-
tential to the density, we can disentangle the coupling-density product in the power.
Therefore, in Chapter 4, we have constructed a method able to extract the axion-photon coupling
from the induced electric field generated by the minicluster when crossing the haloscope. We stud-
ied in details the different sources of errors and established a parameter space region (for the cluster
mass, radius and velocity, as well as the measurement time, and number of data points taken along
the cluster crossing) for which the coupling is recovered with reasonable accuracy. We have finally
deduced the rate at which a suitable minicluster (i.e with parameters allowing for a good coupling
reconstruction) would cross the Earth. Taking into account the result for the survival derived in the
previous chapter, we obtain that the rate is around one cluster per 106 years.

In the second part of the manuscript, we studied the recent gravitational wave signal observed
in both IPTA DR2 and NANOGrav 12 years. In particular, we have investigated the possibility for
the latter to be caused by scalar induced gravitational waves, i.e from large curvature fluctuations
at scales unconstrained by CMB observations.
Assuming that the curvature fluctuations at small scales are described by a lognormal power spec-
trum, parameterized by a peak location in momentum space k⋆, a width ∆ and an amplitude Aζ ,
we performed a Bayesian evidence search on the public available data from NANOGrav 12.5 years
and IPTA DR2 and extracted the 1 and 2σ C.L regions for these parameters. As expected the am-
plitude required to induce a sizeble GW spectrum is of the order of Aζ ∼ O(10−2) at scales around
k⋆ ∼ 106Mpc−1.
While from this part of the analysis, it might be concluded that the the PTA signal can be explained
by scalar induced gravitational waves, we proved that, in addition of inducing a SGWB, such large
fluctuations would naturally generate primordial black holes. Using the Press-Schechter formalism,
we have consistently calculated the PBH abundance associated with a given set of curvature power
spectrum parameters and concluded that the parameter space able to explain the signal is in tension
with known observational constraints on PBH abundance. This conclusion is therefore strongly
limiting the scalar induced hypothesis for the PTA signal.
At the time this analysis was performed, only the 12.5 years data from NANOGrav were available.
However, shortly before the submission of this thesis the new data set (15 years) has been released.
Interestingly, it shows even stronger evidence for a GW background. In the same time, similar
analysis of the scalar induced hypothesis has been performed by the NANOGrav collaboration and
converged to similar conclusion, i.e the population of primordial black holes produced along to the
GWs are still in tension with the current observational constraints.
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Appendix A

Units

If not explicitly mentioned, the natural units are used by default along this thesis, i.e c = h̄ = 1.
This unit system has the useful advantage to express all quantities in energy units. This appendix
lists the conversions most frequently used throughout this thesis.

Using that, in SI units system, c = 3× 108m/s and h̄ = h/(2π) = 1.05× 10−34 kgm2/s, we get
for the fundamental units,

1m = 5.0× 106 eV−1,

1 s = 1.5× 10−15 eV−1,

1 kg = 5.63× 1035 eV.

(A.1)

Throughout this thesis, the gravitational constant G has been extensively used. Its SI value is G =
6.67× 10−11m3 kg−2 s−2, which leads in natural units to

G = 6.71× 10−57 eV−2. (A.2)

Finally, since we are also dealing with astrophysical units, we translate them here in natural units:

1M⊙ = 1.99× 1030 kg,

= 1.11× 1066 eV.
(A.3)

1 pc = 3.1× 1016m,

= 1.52× 1023 eV−1.
(A.4)
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Appendix B

Tidal Interactions in Wave Picture

B.1 Derivation of the Schrodinger-Poisson System

In this appendix, we proceed to give more insights on how, from the relativistic axion field, described
by the Klein-Gordon equation coupled to Einstein gravity, we arrive to the Schrodinger-Poisson sys-
tem in the non-relativistic limit.

Let’s start with the general axion field action coupled to gravity considered in Eq.(3.1),

Sa =

∫
d4x

√−g
(
−1

2
gµν∂µa∂

νa− V (a, T ) +
R

16πG

)
. (B.1)

The equations of motion derived from this action are the usual Klein-Gordon equation in a curved
background (characterized by the metric gµν and the Ricci scalar R) and the Einstein equation
sourced by the energy tensor of the axion field T µνa (see Eq.(3.2)),

1√
g
∂µ
(√−ggµν∂ν

)
a+ V ′(a),

Rµν − 1

2
gµν = 8πGT µνa .

(B.2)

We are interested in evaluating this set of equations in two limits: the weak gravitational field and
the non-relativistic axion limits. The first allows to consider small perturbations around a flat metric
(neglecting here the expansion of the universe). In the Newton Gauge, the metric becomes 1,

ds2 = (1 + 2Φ) dt2 − (1− 2Φ) δijdx
idxj, (B.3)

where in this expression the scalar perturbation Φ must be interpreted as the usual gravitational
potential. With this assumption, the metric determinant becomes

√−g ≈ 1 − 2Φ and the Ricci
scalarR ≈ 2 (∇ϕ)2.
The second limit allows to rewrite the axion field in terms of a complex non-relativistic field ψ,

a(x, t) =
1√
2ma

(
ψ(x, t)e−imat + ψ∗(x, t)eimat

)
, (B.4)

where ψ is slowy oscillating in time compared to the fast mass oscillation: ψ̇ ≪ mψ, ψ̈ ≪ m2ψ.
With that, the initially considered action becomes

Sψ =

∫
d4x

(
(∇Φ)2

8πG
−maΦψψ

∗ + i/2
(
ψ̇ψ∗ − ψψ̇

)
− (∇ψ) (∇ψ∗)

2ma

)
. (B.5)

Finally, varying this actionwith respect toΦ andψ gives respectively the Poisson and the Schrodinger
equation.

1Note that the complete expression in Newton gauge also include vector and tensor modes. Moreover, this expression assumes no anisotropy
stress so that the two usual scalar perturbations Φ and Ψ are equal.
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B.2 Density of the Non-Relativistic Axion Field

In this appendix, we derive the usual expression for the non-relativistic axion density ρ = ma|ψ|2.
Let’s start with the real axion field a(x, t) written as a function of the non-relativistic field ψ(x, t),

a(x, t) =
1√
2ma

(
ψ(x, t)e−imat + ψ∗(x, t)eimat

)
. (B.6)

In the mean text, we found for the 00 component of the stress-energy tensor

T00 = ρ =

(
1

2
ȧ2 +

1

2
m2
aa

2

)
. (B.7)

Note that in this last expression, the gradient term, initially present, brings a term ∼ k2a2. In the
non-relativistic limit, this is by definition much smaller than the two other terms that are ∼ m2

aa
2.

Plugging Eq.(B.6) in the latter expression for the energy density, we get,

1

2
ȧ2 =

1

4ma

(
ψ̇e−imat − imaψe

−imat + ψ̇∗eimat + imaψ
∗eimat

)2
,

≈ 1

4ma

(
−imaψe

−imat + imaψ
∗eimat

)2
,

≈ ma

2
|ψ|2,

(B.8)

where in the second line, ψ̇ ≪ imaψ still because of the non-relativistic approximation. In the last
line, the remaining terms oscillating with the mass have been averaged to zero.
Similarly,

1

2
m2
aa

2 ≈ ma

2
|ψ|2. (B.9)

Summing both contributions, we finally obtain

ρ = ma|ψ|2. (B.10)

B.3 Statistics of the Axion Field

In this appendix, we show that the variance of the density is given by σρ = ρ̄, where ρ̄ is the mean
density of the minicluster.

Let’s assume that the axion field is given by

ψ(x, t) =
∑

i

aie
iϕiψi(x)e

−iEit, (B.11)

where i labels the eigenmodes ψi, ϕi are the random phases, ai the mode coefficients and Ei the
eigenenergies.
As mentioned in the main text, the axion density associated with this field is

ρ(x, t) = ma|ψ(x, t)|2,
= ma

∑

ij

aia
∗
je
iϕie−iϕjψi(x)ψ

∗
j (x)e

−i(Ei−Ej)t, (B.12)

with mean value,
ρ̄(x) = ma

∑

i

|ai|2|ψ(x)|2. (B.13)
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Furthermore, by definition, the variance of the density is given by

σ2
ρ = ⟨ρρ⟩ − ρ̄2,

= m2
a

∑

ij

∑

kl

aia
∗
jaka

∗
l ⟨eiϕie−iϕjeiϕke−iϕl⟩ψi(x)ψ∗

j (x)ψk(x)ψ
∗
l (x)e

−i(Ei−Ej+Ek−El)t − ρ̄2.

(B.14)

Using the usual properties of the random phases, we get,

⟨eiϕie−iϕjeiϕke−iϕl⟩ = δijδkl + δilδjk. (B.15)

Inserting the latter relation in the variance we find the final result,

σ2
ρ = 2ρ̄2 − ρ̄2,

= ρ̄2.
(B.16)

B.4 Calculation of the Perturbed Coefficients

In this appendix we derive the variation of the coefficients |C(0)
nlm| at second order in perturbation

theory. Explicitly, the variation is given by

∆|Cnlm|2 = |Cnlm(∞)|2 − |C(0)
nlm|2, (B.17)

where |Cnlm(∞)|2 = |C(0)
nlm+C

(1)
nlm(∞)+C

(2)
nlm(∞)|2. As discussed in the main text, the coefficients

are calculated at t = ∞ when the interaction term is turned off. For the remaining calculations, we
will always refer to the coefficient at that time.
Expanding the modulus square and keeping only the terms up to second order we get

∆|Cnlm|2 = |C(1)
nlm|2 +

(
C

(0)
nlmC

(1)∗
nlm + c.c.

)
+
(
C

(0)
nlmC

(2)∗
nlm + c.c.

)
. (B.18)

Let’s derive those different contributions by solving Eq.(3.51).

The perturbing star is assumed to have a velocity v, impact parameter b and massM∗. We also
choose our frame such that its trajectory lies in the x, y plane. The motion of the star is then given
by

r∗(t) = (r∗(t), θ∗, ϕ∗(t)),

= (
√
b2 + (vt)2, π/2, arctan(vt/b)) .

(B.19)

The effect of the star on the AMC appears as a time dependent perturbation in the Schrodinger
equation and is defined from Eq.(3.48),

H1(t) = maϕtidal(r, t),

= ma
GM∗

r∗(t)

(
r

r∗(t)

)2

P2(cos γ(t)) .
(B.20)

The first step in the calculation of the perturbed coefficients is to derive explicitly thematrix element,
⟨nlm|H1(t) |n′l′m′⟩, that appears in Eq.(3.48). Expanding the Legendre polynomial inH1(t), we get

⟨nlm|H1(t) |n′l′m′⟩ = A

α
⟨nl| r2 |n′l′⟩

∑

m′′=0,±2

I lm,l
′m′

m′′ Tnn′m′′(t) , (B.21)
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where we defined the functions

⟨nl|r2 |n′l′⟩ =
∫
dr r4Rnl(r)Rn′l′(r)

I lm,l
′m′

m′′ =

√
4π

5

∫
dΩ Y ∗

lm(θ, ϕ)Yl′m′(θ, ϕ)Y2m′′(θ, ϕ)

Tnn′m′′(t) =

√
4π

5

α

(1 + (αt)2)3/2
Y2m′′(θ∗, ϕ∗(t)) .

(B.22)

and A = −GM∗ma

b3
and α = v

b
.

As usually done in quantum mechanics, the calculation of the matrix element brings explicit selec-
tion rules. In our case, the integral over I lm,l

′m′

m′′ could be carried out analytically and leads to

m′′ −m+m′ = 0 |l − 2| ≤ l′ ≤ l + 2 l + l′ = even . (B.23)

In addition, we remind that the WKB approximation imposes that l ≫ 1. In that case the transi-
tion in angular momentum are negligible such we assume l ≈ l′ and m ≈ m′. We will consider
this approximation in the remaining calculations expected in the Winger functions (see below) and
Kronecher deltas. The selection rules translate into

I lm,l
′m′

m′′ ≈ δm′,m−m′′(δl′,l−2 + δl′,l + δl′,l+2) d
2
0, l−l′(π/2) d

2
m′′, l−l′(arccos(m/l)) , (B.24)

where dab,c(θ) are the Wigner functions.
The first order coefficientC(1

nlm could be calculated by integrating Eq.(3.51) from t = −∞ to t = +∞
and including the expression found for the matrix element in Eq.(B.21), it leads to

C
(1)
nlm ≈ −iA

α

∑

n′

∑

l′=l,l±2

∑

m′=0,±2

C
(0)
n′,l′,m−m′ ⟨nl| r2 |n′l′⟩ d20, l−l′(π/2)

× d2m′, l−l′(arccos(m/l)) τn,n′,m′ ,

(B.25)

where the function τn,n′,m′ comes from the time integral and is defined as

τnn′m =

∫ ∞

−∞
dt Tnn′m(t) e

i∆Enn′ t . (B.26)

As expected the coefficients C(1)
nlm are expressed as a sum over the unperturbed coefficients C(0)

nlm.
As mentioned in the main text, those ones carry a random phase for each different mode |nlm⟩
such that the coefficients C(1)

nlm are by nature random as well. However, in the further steps, we will
interested about the mean reaction of the AMC to a tidal interactions, for this reason, Eq.(B.32) will
be evaluated on average over the random phases. It leads to

⟨|C(1)
nlm|2⟩ ≈

(
A

α

)2

(4π)2ma

∑

n′,B

dEn′ Nn′l f(En′) ⟨nl| r2 |n′l⟩2 glmnn′ , (B.27)

where we have replaced the coefficientC(0)
nlm by their value defined in Eq.(3.25) and the function glmnn′

is given by

glmnn′ =

(
1− 3m2

2l2

)2

τ 2n,n′,0 +
3

8

m4

l4
(τ 2n,n′,2 + τ 2n,n′,−2) . (B.28)

The index B if the sum of Eq.(B.27) stands for bound states since only those ones have a non zero
C

(0)
nlm coefficient.

Eq.(B.27) is however still fairly complicated and in the purpose to use it in the main text calculation,
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we perform an additional simplification by averaging over the anugular momentumm,

⟨|C(1)
nlm|2⟩ =

1

2l + 1

l∑

m=−l

|C(1)
nlm|2ens

≈
(
A

α

)2

(4π)2ma

∑

n′

dEn′ n′l f(En′) ⟨nl| r2 |n′l⟩2 gnn′ ,

(B.29)

where

gnn′ =
1

2l + 1

l∑

m=−l

glmnn′

≈ 3

20

(
3τ 2n,n′,0 +

1

2
(τ 2n,n′,2 + τ 2n,n′,−2)

)
,

≈ 19

40
e
−
(

|∆Enn′ |
cα

)a

,

(B.30)

with a = 1.304 and c = 1.426.
The coefficient calculated in Eq.(B.29) constitutes the first term of Eq.(B.32). Using again the average
over the random phases, it is possible to see that the second term in bracket would vanish. We then
move on directly to the third term of Eq.(B.32).
Following the same steps as for the first order coefficients, we obtain

⟨C(0)
nlm

∗
C

(2)
nlm + c.c.⟩ ≈ −

(
A

α

)2

(4π)2ma dEnNnl f(En)
∑

n′

⟨nl| r2 |n′l⟩2 glmnn′ , (B.31)

where the sum over n′ runs now over both bound and unbound states and similar average over the
angular momentumm could be performed.

Hence the variation of the coefficients following the tidal interaction could be finally estimated
as

⟨∆|Cnlm|2⟩ = ∆(+)|Cnlm|2 +∆(−)|Cnlm|2, (B.32)
with

∆(+)|Cnlm|2 =
(
A

α

)2

(4π)2ma

∑

n′

dEn′ Nn′l f(En′) ⟨nl| r2 |n′l⟩2 gnn′

=

(
A

α

)2∑

n′

|C(0)
n′lm|2 ⟨nl| r2 |n′l⟩2 gnn′

∆(−)|Cnlm|2 = −
(
A

α

)2

(4π)2ma dEn Nnl f(En)
∑

n′

⟨nl| r2 |n′l⟩2 gnn′

= −
(
A

α

)2

|C(0)
nlm|2

∑

n′

⟨nl| r2 |n′l⟩2 gnn′ .

(B.33)

B.5 Details on the Sum Rules

In order to solve the integral for the energy injected by the star, in Eq.(3.56), we used the quantum
mechanical sum rule. In this appendix we re-derive this relation based on Refs.[148, 149].
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Let’s consider the following Hamiltonian,

H =
P 2

2ma

+ V (r), (B.34)

whereP 2 and V (r) are respectively themomentum operator and a arbitrary potential. We define the
eigenstates of this Hamiltonian as |n⟩, with corresponding energy levelsEn, so thatH |n⟩ = En |n⟩.
The summation for which we would like to obtain an easily-handled expression is given by

∑

n

(En − Em) |⟨m|F (r) |n⟩|2 = ⟨m| [F (r), H]F (r) |m⟩|2, (B.35)

where F (r) is an arbitrary operator and [., .] stands for the usual commutator. To obtain the rhs
term, the completeness of the eigenstate basis is essentially used:

∑
n |n⟩ ⟨n| = 1. Furthermore, if

F is a Hermitian operator, we additional get,
∑

n

(En − Em) |⟨m|F (r) |n⟩|2 = −⟨m|F (r)[F (r), H] |m⟩|2, (B.36)

so that, using both relations,
∑

n

(En − Em) |⟨m|F (r) |n⟩|2 = 1

2
⟨m| [F (r), [F (r), H]] |m⟩|2. (B.37)

From the previously defined Hamiltonian, we get for the commutator,

[F (r), [F (r), H]] =
1

ma

(∇F (r)) . (∇F (r)) . (B.38)

Using this last relation to re-write the sum, we get,
∑

n

(En − Em) |⟨m|F (r) |n⟩|2 = 1

2ma

⟨m| (∇F (r)) . (∇F (r)) |m⟩ . (B.39)

In the situation considered in the main text, F (r) = r2 so that∇F (r).∇F (r) = 4r2. For the set
of eigenfunctions derived for the minicluster, |nlm⟩, the sum rule therefore becomes,

∑

n′l′m′

(En′l′m′ − Enlm)| ⟨nlm| r2 |n′l′m′⟩ |2 = 2

ma

⟨nlm| r2 |nlm⟩ . (B.40)

Moreover, since the r2 acts as an operator only the radial part of the eigenfunction, this expression
simplifies

∑

n′l′m′

(En′l′m′ − Enlm)| ⟨n| r2 |n′⟩ |2 δll′,mm′ =
2

ma

⟨nlm| r2 |nlm⟩ ,

∑

n′

(En′lm − Enlm)| ⟨n| r2 |n′⟩ |2 = 2

ma

⟨nlm| r2 |nlm⟩ ,

≈
∫ ∞

Emin(l)

dE ′ gl(E
′)(E ′ − E)| ⟨nlm| r2 |n′lm⟩ |2 = 2

ma

⟨nlm| r2 |nlm⟩ ,

(B.41)

where in the last expression we have used the density of states gl(E) to transform the sum into an
integral. In the continuum limit we have expressed the energy levels of the modes |nlm⟩ and |n′lm⟩
respectively as E and E ′.
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Figure B.1: Density distribution of stars in the Milky Way from both the bulge (dashed blue) and
the disk (dashed red) regions. The sum of the two contributions is shown by the solid orange line.
This figure corresponds to Fig.10 in Ref.[113].

B.6 Comment On Perturbativity

We stressed in the main text that, in order for the perturbation theory to be valid, we need to have
small enough perturbations. Practically, it means that we need to require that the variation of the
initial coefficients |C(0)

nlm|2 is small. This gives us roughly the condition
A

α
R2 =

GM∗maR
2

b2v
< 1 . (B.42)

ForM∗ =M⊙ andma = 10−5 eV, the condition becomes
R

b
< 5× 10−3 v1/2 . (B.43)

Of course, for some encounters in the galaxy, the latter relation might be violated. However, most of
the interactions are extremely small and therefore satisfy the perturbativity condition. Moreover, in
numerical simulations, when∆E/|E| becomes of order one, the cluster is assumed to be destroyed
and removed from the initial sample.

B.7 Stellar Density in the Milky Way

In Sec.3.3, an explicit stellar distribution is needed in order to accurately predict the number of in-
teractions the axion miniclusters will get in their lifetime. We detail in this appendix the model of
stellar distribution used in the main text numerical simulations.

The star distribution in the galaxy can be decomposed into a high-density and quickly decaying
central bulge and a more extended disk. The bulge can be approximated by an axisymmetric profile
[262]

ρbulge(rc, z) = ρ0
e−(r′/rcut)2

(1 + r′/r0)
λ
, (B.44)

with rcut = 2.1 kpc, λ = 1.8, r0 = 0.075 kpc, ρ0 = 99.3M⊙ pc−3, r′ =
√
r2c + (2z)2, and rc denotes

the radial coordinate in cylindrical coordinates. Note that, in the main text, we have averaged over
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the angle in order to obtain a spherically symmetric distribution.

On its side, the disk is modeled as two sub-disks, thin (t) and thick (T) disks, each of them de-
scribed by an axisymmetric double exponential model [166]:

ρdisk(rc, z) =
Σd

2zd
exp
(
− rc
rd

− |z|
zd

)
, (B.45)

with Σt
d = 816.6M⊙ pc−2, ΣT

d = 209.5M⊙ pc−2, rtd = 2.90 kpc, rTd = 3.31 kpc, ztd = 0.3 kpc,
zTd = 0.9 kpc [116]. As before, during the numerical simulations, we perform an average over
angles in order to have a spherically symmetric profile.

We show in Fig. B.1 the full distribution accounting for the two previous contribution (after the
angular average). Finally, to obtain the number density of stars, we assumed in our simulations a
unique mass of 1M⊙ for all stars so that the number density is given by

n∗(r) =
1

1M⊙

(
ρdisk(r) + ρbulge(r)

)
. (B.46)
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Appendix C

Axion Miniclusters in Haloscope
Experiments

C.1 Power Spectral Density

In this appendix we proceed to extract the spectral power in the case of an encounter with an AMC.
The axion field that enters as a source for the Maxwell equation is taken from the WKB approxima-
tion constructed in Eq.(3.24). In addition, since we have to consider the real axion field, we have

aAMC(x, t) =
1√
2ma

(
ψe−imat + ψ∗eimat

)
, (C.1)

where ψ is given by Eq.(3.24). With this, the power spectral density is by definition calculated as
[128, 170]

S(ωd) =
(∆t)2

T

∣∣∣∣
∑

nlm

Cnlm

NT−1∑

n=0

eiωdn∆t
(
anlmψnlm(x)e

−iωnlmn∆t + c.c.
) ∣∣∣∣

2

,

=
1

T

∣∣∣∣
∑

nlm

Cnlm

NT−1∑

n=0

∆t eiωdn∆t
(
anlmψnlm(x)e

−iωnlmn∆t + c.c.
) ∣∣∣∣

2

,

≈ 1

T

∣∣∣∣
∑

nlm

Cnlm

∫ T/2

−T/2
dt eiωdt

(
anlmψnlm(x)e

−iωnlmt + c.c.
) ∣∣∣∣

2

,

(C.2)

where ∆t = T/NT , with NT the number of time data points taken during the measurement, and
we have introduced the coefficients Cnlm as

Cnlm =

√
(gaγγB0)

2 Gj V
ω2
nlm√

2ma

(
ω2
j − ω2

nlm − iωjωnlm/Q
) . (C.3)

In this last equation Gj is the usual form factor and is of the order O(1), V is the cavity volume
and ωnlm = Enlm + ma + ωamc respectively the (non-relativistic) binding energy of the axion in
the cluster, the axion mass and its kinetic energy due to the cluster velocity. Note that the wave
functions ψnlm(x) depends on the location x (in a frame centered at the origin of the cluster) at
which we are doing the measurement in the cluster. We assumed in the main text that the cluster is
moving slowly enough so that its motion is neglected during the measurement period T .
The time integral can be solved easily and we obtain

S(ωd) ≈ T

∣∣∣∣∣
∑

nlm

Cnlmanlmψnlm(x) sinc

(
(ωnlm − ωd)

T

2

) ∣∣∣∣∣

2

. (C.4)
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The average value of the power spectral density is derived by taking the average over the random
phases. Explicitly,

S̄(ωd) = T

〈∣∣∣∣
∑

nlm

Cnlmanlmψnlm(x)

(
(ωnlm − ωd)

T

2

) ∣∣∣∣
2〉
,

= T
∑

nlm

∣∣Cnlmanlmψnlm(x)
∣∣2 sinc2

(
(ωnlm − ωd)

T

2

)
.

(C.5)

Finally, with the definition of the coefficients anlm given in Eq. (3.25) and the assumption that the
distribution function f(E) is constant in the width of the sinc, we get

S̄(ωd) ≈ 4π2 (gaγγB0)
2 G V ω4

d(
ω2
j − ω2

d

)2
+ (ωjωd/Q)

2
f(ωd −ma − ωamc)

×
√

(2ma (ωd −ma − ωamc −maϕ(r))).

(C.6)

C.2 Comment on the Poisson Equation in Time Coordinate

In Sec.4.3, we discussed how, from the gravitational potential obtained from the spectral power
width, the Poisson equation can be used to have access to the density and hence disentangle the
coupling-density degeneracy. However, the potential is only obtained as a function of time (times at
which the induced electric field is measured). In this appendix, we show how the Poisson equation
has to be modified in order to be described in time coordinate.

In spherical coordinates, (r, θ, ϕ) the Poisson equations reads,

1

r2
∂

∂r

(
r2
∂

∂r

)
ϕ(r) = 4πGρ(r), (C.7)

where ϕ(r) and ρ(r) are respectively the gravitational potential and density of the minicluster.
Let’s parameterize arbitrarily the radial motion of the cluster through the Earth as r = r(t). We
then have the differential relation between both variables,

∂

∂r
=
∂t

∂r

∂

∂t
,

=
1

ṙ(t)

∂

∂t
,

(C.8)

where the dot stands for the time derivative.
With that, we get

1

r2
∂

∂r

(
r2
∂

∂r

)
ϕ(r) =

1

r2(t)ṙ(t)
∂t

(
r2(t)

ṙ(t)
ϕ̇(t)

)

=
1

r2(t)ṙ(t)
∂t

(
2r(t)ṙ(t)

ṙ(t)
ϕ̇(t) +

r2(t)

ṙ2(t)
ϕ̈(t)− r2(t)r̈(t)

ṙ2(t)
ϕ̇(t)

)
,

=
ϕ̈(t)

ṙ(t)2
+

2ϕ̇(t)

ṙ(t)r(t)
−

¨r(t)ϕ̇(t)

ṙ(t)3
.

(C.9)

This last expression is the Poisson equation in time coordinate we used in Eq.(4.27).

Let’s, finally, briefly comment on the degrees of freedom appearing in the time Poisson equation
if we impose a specific parametrization as the one in Eq.(4.28),

r(t; b, R, v) =

√
b2 +

(
vt−

√
R2 − b2

)2
, (C.10)
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with b, R and v respectively the impact parameter, the radius of the cluster and the Earth velocity
in a frame centered at the origin of the cluster.
As mentioned in the main text, the velocity of the cluster can be obtained from the right cut in the
spectral power. This one is therefore no longer an unknown parameter in the parametrization of
the radial motion. Moreover, the time dependent potential ϕ(t) is limited in a specific time range,
corresponding to the time needed for the Earth to cross the cluster. This, in addition to the knowl-
edge on the velocity allows us to further constrain the parameter space. More concretely, defining
the ratio of the impact parameter and the radius (b/R)2 ≡ χ, we have the following constraint,

χ = 1−
(
T1/2v

R

)2

, (C.11)

where T1/2 is the time at which r(t) = b corresponding to the minimum of the function ϕ(t).
With that the radial motion of the Earth throughout the minicluster is given by

r(t;R) = R

√
χ(R) +

(
vt/R−

√
1− χ(R)

)2
, (C.12)

where only the radius remains as free parameter.
With this conclusion, the maximization of the function L(b, R, gaγγ) defined in Eq.(4.30) is actually
made only over two parameters: the radius and the axion-photon coupling. The impact parameter
being fixed by Eq.(C.11). We have checked that the determination of both was not associated to
any degeneracy, since the axion-photon coupling appears as an overall factor whereas the radius
influence the shape of the returned density by means of Eq.(C.9).
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Appendix D

Phenomenology of Large Curvature
Fluctuations

D.1 Scalar Induced Gravitational Waves

In this appendix we proceed to give more detailed calculation on the scalar induced gravitational
wave spectrum introduced in Sec.5.1.
Let’s start by recalling the GW equation of motion,

h′′k,λ(η) + 2Hh′k,λ(η) + k2hk,λ(η) = Sλ(k, η), (D.1)
with the source term given by

Sλ(k, η) =
∫
d3l eλij(k)l

iljf(k, l, η)ψlψk−l. (D.2)

In both equations, λ stands for the polarisations + and ×, η is the conformal time and Ψ(k, η) =
T (kη)ψ(k) is the scalar perturbation in the Newton gauge. Finally, the function f(k, l, η) encodes
the time dependence of the latter perturbation and is given by [211]

f(k, l, η) = 6T (|k − l|η)T (lη) + 3η (∂ηT (|k − l|η))T (lη) + 2η2∂ηT (|k − l|η)∂ηT (lη). (D.3)
Eq.(D.1) can be solved with the use of the Green’s function. In particular, we find

hk,λ(η) =
1

a(η)

∫ η

η0

dη̄ Gk(η, η̄)a(η̄)S(k, η̄), (D.4)

with η0 some initial time and the Green’s function satisfying the equation

G′′
k(η, η̄) +

(
k2 − a′′(η)

a(η)

)
= δ(η − η̄). (D.5)

In a radiation dominated universe, this last equation has the simple solution,

Gk(η − η̄) =
sin(k(η − η̄))

k
. (D.6)

From this solution, the GW power spectrum is calculated as
∑

λ=+,×

⟨eλijeijλ hk,λhq,λ⟩ =
2π2

k3
Ph(k, η)δ

(3)(k + p), (D.7)

with

⟨eλijeijλ hk,λhq,λ′⟩ = δ(3)(k + q)δλλ′e
λ
ij(k)e

ij
λ (q)

∫ η

η0

dη̄1
a(η̄1)

a(η)

∫ η

η0

dη̄2
a(η̄2)

a(η)
Gk(η, η̄1)Gq(η, η̄2)

×
(
4

9

)2

8π4

∫
d3l

(2π)3/2
liljf(k, l, η̄1)

∫
d3p

(2π)3/2
pipjf(q,p, η̄2)

Pζ(l)Pζ(|k − l|)
l3|k − l|3 δ(3)(l + p).

(D.8)
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In Ref.[210], the time integrals have been performed analytically. More precisely, the solution of
these integrals can be further simplified by considering the late time behavior (taking the limit
kη ≫ 1) and an oscillation average (see Eq.(26) of Ref.[210]).
Using the explicit expression for the polarisation tensor, eij(k)lilj = l2 sin2(θ) with θ the angle
between the vectors l and k and defining the new variables, u = |k − l|/k and v = l/k we finally
get for the GW power spectrum in radiation,

Ωgw,r(k) = 3

∫ ∞

0

d v

∫ 1+v

|1−v|
d u

T (u, v)

u2v2
Pζ(uk)Pζ(vk), (D.9)

with the transfer function T given by,

T (u, v) =
1

4

[
4v2 − (1 + v2 − u2)2

4uv

]2(
u2 + v2 − 3

2uv

)4

×
[ (

log |3− (u+ v)2|
|3− (u− v)2| −

4uv

u2 + v2 − 3

)2

+ π2Θ
(
u+ v −

√
3
)]

.

(D.10)

D.2 The Non-Linear Relation of the Density Constrast

As mentioned in the main text, a density fluctuation characterized by its volume averaged density
contrast δm would collapse into a black hole if δm > δc, with δc the critical threshold. This, somehow,
requires to have large overdensities. If at linear level, the density fluctuations are Gaussian random
variables, this is non longer true when they are large enough to consider their non-linear evolution.
In other words, the probability distribution for the density contrast δm is expected to not follow a
Gaussian distribution. Nevertheless, we show in this appendix that δm can be expressed as a com-
bination of its linear component which is, on its side, described by a Gaussian distribution.

Let’s star by recalling the definition of the volume averaged density contrast,

δm ≡
∫ ∞

0

dR 4πR2 δρ

ρb
(R, tH)W (R;Rm), (D.11)

where, in this appendix, the window function will be chosen to be the top-hat one. The previous
equation becomes

δm =
3

4πR3
m

∫ Rm

0

dR 4πR2 δρ

ρb
(R, tH), (D.12)

where the latter is given in term of the physical radial coordinate. We furthermore remind that, the
density contrast is given as a function of the curvature fluctuation by

δ(r̂, t) = −4(1 + ω)

5 + 3ω

(
1

aH

)2

e−5/2ζ(r̂)∇2eζ(r̂)/2,

= −4

3
Φ(t)

(
1

aH

)2

e−5/2ζ(r̂)∇2eζ(r̂)/2,

(D.13)

where, this time, r̂ denotes the radial coordinate in comoving slicing gauge, R = a(t)r̂eζ(r̂).

We first proceed to calculate δm at linear order, i.e for small enough perturbations. We get,

δlin(r̂, t) = −2

3
Φ(t)

(
1

aH

)2

∇2ζ(r̂). (D.14)

In these coordinates, the linear expression for the volume averaged density contrast becomes,

δl =
3

(r̂meζ(r̂m))3

∫ r̂m

0

dr̂ (r̂eζ(r̂))′(r̂eζ(r̂))2δlin(r̂, tH), (D.15)
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where ′ denotes the derivative with respect to r̂.
Inserting the expression for δlin(r̂, tH) we obtain [221],

δl = −2Φ(t)r̂mζ(r̂m)
′. (D.16)

Accordingly, this last quantity is described by a Gaussian probability distribution.

The full non-linear relation for δm is obtained by inserting the full expression for δ(r̂, tH) in the
radial integral. We get [221],

δm =
3

(r̂meζ(r̂m))3

∫ r̂m

0

dr̂ (r̂eζ(r̂))′(r̂eζ(r̂))2δ(r̂, tH),

= −2

3
r̂mζ(r̂m)

′ (2 + r̂mζ(r̂m)
′) ,

= δl −
3

8
δ2l .

(D.17)

Hence, although in the non-linear regime δm is not described by a Gaussian distribution, the latter
can be described via δl which is Gaussian. This method will used in the main text when the Press-
Schechter mechanism is introduced.
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Appendix E

List of Bayesian Seach Parameters and
Priors

E.1 Detection Analysis

Detection analysis
Parameter Description Prior Comments

White Noise
Ek EFAC per backend/receiver system Uniform [0, 10] single-pulsar only
Qk[s] EQUAD per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only
Jk[s] ECORR per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only (NG12, NG9)

Red Noise
Ared Red noise power-law amplitude log-Uniform [−20,−11] one parameter per pulsar
γred Red noise power-law spectral index Uniform [0, 7] one parameter per pulsar

DM Variations Gaussian Process Noise
ADM DM noise power-law amplitude log-Uniform [−20,−11] one parameter per pulsar (IPTADR2)
γDM DM noise power-law spectral index Uniform [0, 7] one parameter per pulsar (IPTADR2)

scalar induced GW Background, w/ SMBHBs
Aζ ,∆ = 1 Power spectrum amplitude log-Uniform [−3,−1.44] one parameter for PTA
Aζ ,∆ = 0.05 Power spectrum amplitude log-Uniform [−3,−1.57] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum log-Uniform [4, 9] one parameter for PTA

scalar induced GW Background, w/o SMBHBs
Aζ ,∆ = 1 Power spectrum amplitude log-Uniform [−3,−1.52] one parameter for PTA
Aζ ,∆ = 0.05 Power spectrum amplitude log-Uniform [−3,−1.65] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum log-Uniform [4, 9] one parameter for PTA

scalar induced GW Background, w/o SMBHBs, w/ HD correlations
Aζ Power spectrum amplitude log-Uniform [−3,−1.22] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum log-Uniform [4, 9] one parameter for PTA
∆ Width of the power spectrum log-Uniform [log10(0.5), log10 3] one parameter for PTA

Supermassive Black Hole Binaries (SMBHBs)
AGWB Strain amplitude log-Uniform [−18,−13] one parameter for PTA

Table E.1: List of priors used in our Bayesian search (detection analysis). This table corresponds to
Tab.1 in Ref.[179].
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E.2 Upper Limit analysis

Upper limit analysis
Parameter Description Prior Comments

White Noise
Ek EFAC per backend/receiver system Uniform [0, 10] single-pulsar only
Qk[s] EQUAD per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only
Jk[s] ECORR per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only (NG12, NG9)

Red Noise
Ared Red noise power-law amplitude Linear-Exponent [−20,−11] one parameter per pulsar
γred Red noise power-law spectral index Uniform [0, 7] one parameter per pulsar

DM Variations Gaussian Process Noise
ADM DM noise power-law amplitude Linear-Exponent [−20,−11] one parameter per pulsar (IPTADR2)
γDM DM noise power-law spectral index Uniform [0, 7] one parameter per pulsar (IPTADR2)

scalar induced GW Background
Aζ Power spectrum amplitude Linear-Exponent [−3, 0.] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum Fixed, see text one parameter for PTA

Supermassive Black Hole Binaries (SMBHBs)
ASMBHBs, NG12 Strain amplitude Fixed to −14.57 (−14.86) one parameter for PTA
ASMBHBs, IPTA DR2 Strain amplitude Fixed to −14.4 (−14.7) one parameter for PTA

Table E.2: List of priors used in our upper limit analysis. This table corresponds to Tab.2 in Ref.[179].
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Appendix F

Gravitational Waves Induced by Axion
Density Fluctuations

Few months after the publication of the study conducted on NANOGrav 12.5 years [179], the new
data set (15 years) has been released. As discussed in the main, they confirmed some of the conclu-
sion alreadymade in the previous data set and brought even stronger evidence on theHellings-Down
correlation [37]. On the other hand, if some cosmological models have been ruled out in the process,
numerous stay plausible (although the SMBHB explanation seems to stay one of the most statistical
favored). It is, therefore, important to keep studying all possible cosmological sources of SGWB.
In this appendix, we consider the density fluctuations naturally produced within the random phase
model (Sec.3.1.2). We recall that those are large, O(1), time-dependent over densities. Therefore, it
can be, naively, thought that their time fluctuations can then be associated with GW production. We
proceed to demonstrate that this GW production is extremely small (essentially zero) in the galaxy.

Let’s start by considering an axion field, a(x, t), as a sum over momentum modes with for each
a different phase. On average, it therefore reproduces the mean local density ρDM, and specific
realizations of the phases bring granular fluctuations in the density. Explicitly,

a(x, t) =

√
2ρDM

ma

∑

k

√
∆3kf(k) cos (ωkt− k.x− ϕk) , (F.1)

where ∆3k = (2π)3/V with V the galaxy volume, f(k) is the momentum distribution function,
ωk ≈ ma + k2/(2ma) and ϕk are the random phases.
By definition, the gravitational waves produced by a source, i.e a non-zero energy-momentum tensor
Tµν , is given by the usual formula,

hij(x, t) = 4G

∫

Vs

d3x′
Tij(x

′, t− |x− x′|)
|x− x′| , (F.2)

where the integral is performed over the volume of the source Vs.
In this particular case, the energy momentum tensor can be written as

Tij(x, t) = ∂ia(x, t)∂ja(x, t),

=
∑

kq

kiqjαkαq cos (ωkt− k.x− ϕk) cos (ωqt− q.x− ϕq) , (F.3)

where in the last line we have defined αk as the Fourier coefficient of the modes. Note that we have
not included the other terms of the energy tensor since they are vanishingwhen taking the TT gauge.

Let’s now assume that we evaluate this field at large distances to the source, so that the de-
nominator of the last expression can be approximated to |x − x′| ≈ rs. On the other hand, the
same quantity appearing in the energy momentum tensor can not be approximated that way since
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it would imply to neglect the fast oscillations of the axion field. If this is usually the assumption
made for GWs produced by binary black holes, considering individual sources forces us to assume
a volume in which many wavelengths are contained. Instead, we expand it as |x−x′| ≈ rs− r̂sx

′,
with r̂s = rs/rs.
The GW tensor becomes,

hij(x, t) = 4G
∑

s

1

rs

∫

Vs

d3x′ Tij(x
′, t− (rs − r̂sx

′)),

= 4G
∑

s

1

2rs

∑

kq

kiqjαkαq

∫

Vs

d3x′ cos [ωk(t− (rs − r̂sx
′))− k.x′ − ϕk]

× cos [ωq(t− (rs − r̂sx
′))− q.x′ − ϕq]

(F.4)

where the first sum goes over all the sources. Let’s calculate explicitly the space integral,

I(k, q, t) =
∫

Vs

d3x′ cos [ωk(t− (rs − r̂sx
′))− k.x′ − ϕk] cos [ωq(t− (rs − r̂sx

′))− q.x′ − ϕq] ,

=
1

4

∫

Vs

d3x′ (exp [i (ωk(t− (rs − r̂sx
′))− k.x′ − ϕk)] + c.c.)

× (exp [i (ωq(t− (rs − r̂sx
′))− q.x′ − ϕq)] + c.c.) .

(F.5)
Since it has been assumed that many wavelengths are contained inside the source volume, the inte-
gral over space will lead to Dirac deltas. Explicitly,

I(k, q, t) = 1

4
[exp(i((ωk + ωq)t− (ϕk + ϕq))δ

(3)(k + q − (ωk + ωq)r̂s)

+ exp(i((−ωk + ωq)t− (−ϕk + ϕq))δ
(3)(−k + q − (−ωk + ωq)r̂s)

+ exp(i((−ωk − ωq)t− (−ϕk − ϕq))δ
(3)(−k − q − (−ωk − ωq)r̂s)

+ exp(i((ωk − ωq)t− (ϕk − ϕq))δ
(3)(k − q − (ωk − ωq)r̂s)].

(F.6)

Let’s have a closer look at the delta functions. They would lead to two different conditions:
k + q = 2mar̂s,

k − q =

(
k2

2ma

− q2

2ma

)
r̂s.

(F.7)

The first one leads to the condition |vk+vq| = 1, with vk = k/ma, which implies that axions should
be relativistic in order to fulfill it. However, in the galaxy it is known that the typical velocity is of
the order O(10−3), so that the momentum distribution f(k) is essentially zero when fulfilling the
first Dirac delta condition.
The second condition implies the same large velocity constraint in addition to the trivial solution,
k = q. Therefore, the latter indeed produces GWs, but it might be observed that applying the Dirac
delta makes hij time independent. Hence, the gravitational wave energy arising from this solution,

ρgw =
⟨∂thij∂thij⟩

32πG
, (F.8)

would be zero as well.

We conclude here that no SGWB would be induced by the density fluctuations inherited by the
random phase model. The interpretation of this result is the following: The retarded Green’s func-
tion induces space oscillations with wavelengths given by the frequency 1/ωk. Those are fast oscil-
lations compared to the mode oscillations proportional to 1/k. Hence, the multiplication of those
two averages to zero expect in the limit of similar wavelengths, which is the condition given by the
Dirac deltas. In the present situation, the velocity distribution with variance given by σv ∼ 10−3

makes it therefore impossible to obtain a sizeable GW spectrum.
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