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Abstract

Soft matter modelling has a wide range of applications, such as polymer
additive manufacturing, organics electronics, and biomolecular engineering.
Many physical properties and phenomena of soft matter are determined by
interactions and processes at a wide range of length and time scales. Therefore,
it is challenging for theoretical models to simulate processes involving features
frommultiple scales. To reach the mesoscopic scales for soft matter behaviour,
coarse-grainedmodels have been developed to accelerate the atomistic models
by projecting out the relevant degrees of freedom, allowing coverage of a
wider range of scales. However, due to the lack of a formalism to capture the
dynamics and anisotropy of the system, conventional coarse-grained model
shows significant errors in dynamical properties and inconsistent soft matter
behaviour.

In this thesis, a generalised systematic formalism for coarse-graining is pre-
sented. The Mori-Zwanzig formalism provides a dynamically-guided pro-
jection to construct a mesoscopic system directly from the underlying mi-
croscopic system. Moreover, the Gay-Berne functional is introduced to de-
scribe the anisotropic effect of the pairwise interactions at mesoscopic level.
The performance of the model is demonstrated by comparing it to other
coarse-grained models using benzene as an example, which shows significant
improvement in both static and dynamical properties. For application, crystal-
lization of pentacene is studied by treating pentacene molecule as ellipsoidal
particle. Furthermore, a modified atomistic model and a modified continuum
model are employed to simulate mesosopic behaviour of polymers in elec-
trospinning and electro-optical poling, demonstrating mesoscopic modelling
from the atomistic and continuum limits.
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1. Introduction

Soft condensed matter is indispensable and ubiquitous in our daily life. Poly-
mers, colloids, liquid crystals, and other materials that are structurally altered
by thermal or mechanical energy in the magnitude of thermal fluctuations
are all considered to be soft matter[1]. Soft matter has recently been the
basis for many novel technological developments, including 3d printing[2],
organic electronics[3], chip fabrication[4], and biomedical applications[5].
The main feature that sets soft matter apart from conventional condensed
matter is that it exhibits strong self-organizing properties, which involve
processes over a wide range of scales in both length and time[6]. Soft matter
behaviour, such as order-flow coupling in liquid crystals[7] and entanglement
in polymer rheology[8], is originated by molecular interactions and exhibits
phenomena on macroscopic lab scale. In order to study the behaviour of soft
matter, access to the intermediate mesoscopic scale is necessary. However, it
is challenging for theoretical models to simulate processes involving features
from multiple scales.

In general, there are two main types of theoretical models for material simu-
lations: particle-based models and grid-based models. Particle-based model is
a model that tracks each particle individually through the simulation. One of
the most prevalent particle-based models is molecular dynamics (MD)[9], in
which each particle in the simulation corresponds to an atom. The interaction
between particles is described by a forcefield[10, 11], which is typically ex-
tracted from the quantum mechanical calculations or experimental data. The
particle-based model is effective for studying phenomena at the molecular
level, but the computational cost increases drastically with the number of
particles, making it infeasible to simulate systems beyond the microscopic
scale. On the other hand, the grid-based models, also known as continuum
models (CM)[12], divide the material space into many grid points with local
material properties. The bulk material properties are described by continuous
functions derived from physical laws. However, in continuum model, the

1



1. Introduction

molecular interactions are neglected as it is assumed that each grid has a
large number of atoms in thermal equilibrium.

To enable computational models accessible to the mesoscopic scale, the coarse-
grained (CG) method[13, 14] has been developed by simplifying the atomistic
details of MD simulations. As a result, the computational complexity is dras-
tically reduced, making it feasible to simulate systems with larger length and
time scales. The CGmodel has been applied to study macromolecular systems,
such as protein folding[13, 15], complex polymer structure formation[16],
and self-assembly of amino acids[17]. Additionally, different approaches have
been developed to simulate the dynamical behaviour of various mesoscopic
problems. For example, dissipative particle dynamics[18, 19] has been applied
to study polymer melts[20] and red blood cells dynamics[21], multi-particle
collision dynamics [22, 23] is employed to simulate shear flow of star poly-
mers[24], and lattice Boltzmann method[25] is used to model the flow in
porous media[26]. Every model has unique features and limitations, partic-
ularly in terms of the spatio-temporal scale. Therefore, selecting the right
model for a specific problem necessitates knowledge of both the model and
the system of interest.

Figure 1.1.: Schematic diagram of theoretical models in a multiscale hierarchy.
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1.1. Objective of the thesis

1.1. Objective of the thesis

The objective of this thesis is to develop a computational model for the
simulations of various mesoscopic phenomena in soft matter. The length- and
time-scale of different models are shown in fig.(1.1), where the atomistic model
operates on microscopic scale (10−9m - 10−7m) and the continuum model
operates on macroscopic scale (>10−5m). Mesoscopic models, such as the
coarse-grained (CG) approach and dissipative particle dynamics (DPD), enable
the simulations of the intermediate mesoscopic scale, which lies between the
micro- and macro-scopic scales. The CG model and the DPD model are both
particle-based models employing a pseudo particle approach, but they are
derived from different theoretical backgrounds: the CG model is constructed
from the microscopic model by eliminating irrelevant degrees of freedom[13],
whereas the DPD model considers fluid elements as particles to relate the
macroscopic non-Newtonian flow properties of fluids[19]. As a result, they
are applied to different mesoscopic problems. For example, the CG model
is employed to study macromolecular systems, such as protein folding[15],
and the DPD model is used to study the dynamics of polymer solutions, i.e.
rheology[27]. However, due to the lack of a general formalism of coarse-
graining, both models show deficiencies in mesoscopic modelling, in which
the CG model shows significant errors in long-time dynamical properties,
and the DPD model lacks the chemical descriptions of the systems[28].

The Mori-Zwanzig(MZ) formalism[29, 30] is an order reduction technique for
theoretical models that provides a systematic formalism for performing coarse-
graining. Based on the framework of the DPD model, the MZ formalism
projects out the collective variables and maps the dynamics of the atomistic
system to a mesoscopic system[31]. As a result, the MZ formalism bridges
the gap between the CG model and the DPD model and inherits the features
of both models, in which the chemical descriptions of the atomistic system
are captured and the dynamical properties are consistently reproduced.

In this thesis, the formulation of the MZ approach for the DPD model is
presented, where the forcefield is constructed from the underlying atomistic
model. One key result of this work is the development of an anisotropic
DPD model via the MZ formalism (AMZDPD). While most CG models use a
spherical representation, many molecules, especially those with ring struc-
tures, cannot be accurately approximated by a sphere. In order to better
approximate the geometric shape of atomic clusters in coarse-graining, the
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1. Introduction

Gay-Berne potential was developed to describe non-spherical clusters using
an ellipsoidal representation [32, 33]. The AMZDPD model presented here
employs the ellipsoidal representation and follows the MZ formalism, result-
ing in a significant improvement in the dynamical properties. In addition, the
AMZDPD model is applied to model the crystallization of pentacene in this
work. Crystallization of organic molecules is a mesoscopic process in which
molecules spontaneously form ordered aggregates via self-assembly[34]. It
is an important process for fabricating high-quality organic thin films in or-
ganic electronics[35]. By using the AMZDPD model, the pentacene molecules
self-assemble to form brick-wall structure at the CG level, demonstrating its
ability to simulate mesoscopic behaviour in soft matter.

Apart from the AMZDPD model, two other models, i.e. the atomistic MD
and the continuum model, are presented to simulate two other mesoscopic
phenomena in this thesis: 1) In the 3d printing with electrospinning approach,
the deposition of nanofiber is determined by the charge dissipation inside
polymer[36]. To study the underlying mechanism of the electrospinning fiber
deposition, a trapped state of charge carrier is introduced to the continuum
model in order to simulate the deposition behaviour of charged polymeric fiber
during electrospinning. 2) Poling is a process to align the dipolar functional
groups and activate the non-linear optical effect of the electro-optical (EO)
materials in chip fabrication for optical devices[37]. A virtual system, where
the polymer chain is divided into oligomers and functional sidechains, is
employed to study the poling process using atomistic MD simulations.

1.2. Outline of the thesis

Mesoscopic modelling is a challenging topic in material modelling as it needs
to describe features from multiple scales, ranging from the molecular to the
macroscopic level. Even with the most powerful computer, the explanation
of mesoscopic phenomena by quantum mechanics or macroscopic laws is
restricted due to the constraints of theoretical models. As a result, mesoscopic
schemes are essential for overcoming the barrier of accessing the complex
intermediate mesoscopic scale. With the development of these schemes, the
mesoscopic models can be applied to and facilitate advancements in a wide
range of fields. To present a comprehensive study of mesoscopic modelling,
this thesis is organized as follows:
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• Chapter(2) briefly introduces the theoretical foundations of different
computational models used in material simulations, including the
atomistic molecular dynamics, coarse-grained model, dissipative
particle dynamics, and continuum model. The technical aspects,
features, and limitations of these models are discussed to provide a
general overview for mesoscopic modelling.

• Chapter(3) presents a detailed formulation of a dynamically
consistent coarse-grained approach for mesoscopic modelling. This
chapter introduces the Mori-Zwanzig formalism for coarse-graining a
molecular system and provides a detailed parameterization procedure
for constructing an anisotropic mesoscopic forcefield using benzene
as an example. A comparison between the AMZDPD model and other
CG models in terms of static and dynamical properties is also
presented, demonstrating the performance of the AMZDPD model in
mesoscopic modelling.

• Chapter(4) presents three different examples of the mesoscopic
schemes applied to soft matter phenomena. The first example studies
the crystallization of pentacene using the AMZDPD model in order to
investigate its ability in mesosocpic modelling by simulating the
crystallization process with anisotropic particles. The second example
investigates the charged fiber deposition in electrospinning using the
continuum model, revealing how residue charges in polymer
determine the mechanical behaviour of the fiber deposition. The third
example employs the atomistic MD to study the poling process in EO
materials, examining the effects of linkers, poling temperature, and
poling field on poling. With these three examples, this chapter
demonstrates how mesoscopic modelling assists in material research.

• Chapter(5) summarizes the mesoscopic simulations for soft matter
and provides an outlook on the development of mesoscopic modelling.
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2. Theoretical Background

Many material phenomena, particularly in soft matter, exhibit important
features at multiple scales in space and time. However, each model operates
at a different scale. To enable modelling of phenomena at multiple scales,
multiscale modelling is developed to bridge the gap between models with dif-
ferent scales. A typical method for connecting models is to parameterize one
model using another, as presented in fig.(2.1). When a model is parameterized
by a lower resolution model, this is called the "top-down" approach. On the
contrary, when a model is parameterized by a higher resolution model, this
is known as the "bottom-up" approach. As a result, the model can inherit
features from the connecting model through model parameterization.

In this chapter, the fundamental concepts of theoretical models for material
modelling at different scales are introduced in ascending order, as shown in

Figure 2.1.: Multiscale modelling connects models at different scales via parameterization of the
"top-down" and "bottom-up" approach.
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2. Theoretical Background

fig.(1.1). First, the principles of molecular dynamics, which models materials
at the microscopic scale, are presented in sec.(2.1). Then, the coarse-grained
model and the dissipative particle dynamics, both operating at the mesoscopic
scale, are introduced in sec.(2.2) and sec.(2.3). Finally, sec.(2.4) gives a brief
introduction to the grid-based continuum model at the macroscopic scale.

2.1. Atomistic Molecular Dynamics

Molecular dynamics (MD) is one of the most influential computational tools
in modern science[9, 38, 39]. Based on the insights from quantum mechanics
and statistical mechanics, MD simplifies the complicated, expensive, or even
unsolvable computations for complex systems into a set of simple classical
Newton’s equations, allowing for analysis of atomic and molecular move-
ments. The development of MD enables the study of structural, chemical, and
physical properties of molecular systems and accelerates the advancement of
various fields, including biology[40], chemistry[41], material science[42].

Since the twentieth century the development of quantum mechanics has
explained the problem of many-body interactions[43], where an N-body
system can be described probabilistically using the Schrödinger equation

𝑖ℏ
𝜕𝜓𝜓𝜓

𝜕𝑡
=

𝑁∑︁
𝑖

[− ℏ2

2𝑚𝑖

∇2 +𝑈 (r𝑖1, r𝑖2 . . . r𝑖𝑁 )]𝜓𝜓𝜓, (2.1)

where 𝑖 is the imaginary unit, ℏ is Planck’s constant,𝑚𝑖 is the mass of particle
𝑖 , 𝜓𝜓𝜓 is the unknown wave function, and 𝑈 is the atomic potential energy
function with variable r𝑖 𝑗 denotes the relative coordinates between particle
i and j in the system. However, solving the many-body system is not easily
achieved due to computational complexity. Even for a simple molecule like
water, the basic description of the probability distribution for a water molecule
is a complex-valued function of 39 variables in three-dimensional space.

Since the mass of the nucleus is much larger than the mass of the electron
in an atom, the electronic timescale is much faster than the ionic timescale.
Therefore, one can assume that the positions of the nuclei are fixed in an
atomic system. This assumption is known as the Born-Oppenheimer approxi-
mation[44]. As a result, the ionic and electronic motions decouple, and the
stationary electronic Schrödinger equation can be extracted. By solving the
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H-O-H bond angle O-H bond length

En
er
gy

Figure 2.2.: Illustration of Born-Oppenheimer surface of a water molecule as a function of O-
H bond length and H-O-H bond angle. The minimum energy, indicated by the blue region,
corresponds to the optimized molecular structure with a bond length of 0.0958 nm and a bond
angle of 104.5°.

static electronic structure problem, the potential energy landscape in terms
of the nuclei positions can be obtained, which is also referred to as the Born-
Oppenheimer surface, as shown in fig.(2.2). In the end, the Born-Oppenheimer
surface can be utilized as the potential in the ionic Schrödinger equation to
compute the dynamics of nuclei[45].

Nevertheless, solving the time-independent Schrödinger equation is still a
challenging task. To further simplify the computations, the empirical force-
field method has been developed, which uses empirical models to represent
the complex functional form of the Born-Oppenheimer surface. This method
is known as Molecular Mechanics (MM)[46]. The interaction between atoms
is approximated by an empirical forcefield[47, 48] which sums up the contri-
butions of different interactions, such as pairs, triples and quadruples. As a
result, the problem is converted from quantummechanics to classical mechan-
ics. Instead of solving the linear partial differential equation (the Schrödinger
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equation), the time evolution of the molecular system is now described by
ordinary differential equation (the Newtonian equation)

𝑚
𝑑2r
𝑑𝑡2 = −F(r) = −∇𝑈 (r), (2.2)

where F(r) is the forcefield and 𝑈 (r) is the problem-specific interaction
potential. For a specific molecule, the interaction potential can be divided
into bonded and non-bonded interaction

𝑈 = 𝑈𝑏𝑜𝑛𝑑𝑒𝑑 +𝑈𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 . (2.3)

The non-bonded potential is given by the sum of the Coulomb potential and
the Lennard-Jones potential between the atom 𝑖 and 𝑗

𝑈𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 =
∑︁
𝑖 𝑗

(𝑈𝐶𝑜𝑢𝑙𝑖 𝑗 +𝑈 𝐿𝐽

𝑖 𝑗
). (2.4)

The Coulomb potential is given by

𝑈𝐶𝑜𝑢𝑙𝑖 𝑗 =
𝑄𝑖𝑄 𝑗

4𝜋𝜖0 |r𝑖 𝑗 |
, (2.5)

where 𝑄𝑖 and 𝑄 𝑗 are the partial charge on atom 𝑖 and 𝑗 , 𝜖0 is the vacuum
permittivity, and |r𝑖 𝑗 | is the separation between the atoms. The Lennard-Jones
potential consists of a long-range attractive part and short-range repulsive
part and is given by

𝑈
𝐿𝐽

𝑖 𝑗
= 4𝜖𝑖 𝑗 (

𝜎12
𝑖 𝑗

|r𝑖 𝑗 |12 −
𝜎6
𝑖 𝑗

|r𝑖 𝑗 |6
), (2.6)

where 𝜖𝑖 𝑗 and 𝜎𝑖 𝑗 are the strength and range parameter to describe the inter-
action between atom 𝑖 and 𝑗 .

The bonded potential can be divided into 3 parts

𝑈𝑏𝑜𝑛𝑑𝑒𝑑 =
∑︁
𝑏𝑜𝑛𝑑𝑠

𝑈𝑏𝑜𝑛𝑑 +
∑︁
𝑎𝑛𝑔𝑙𝑒𝑠

𝑈𝑎𝑛𝑔𝑙𝑒 +
∑︁

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 , (2.7)

which is given by the sum of the bond, angle and dihedral interactions, and
they correspond to the intra-molecular 2-body, 3-body, and 4-body terms,
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Figure 2.3.: Functional form of non-bonded forcefield contribution (a) Coulomb potential (b)
Lennard-Jones potential

respectively. For the bond and angle potential, they are usually described by
a harmonic form

𝑈𝑏𝑜𝑛𝑑 =
1
2𝑘𝑏 (𝑟 − 𝑟0)2, (2.8)

where 𝑘𝑏 is the force constant, 𝑟 is the bond length, and 𝑟0 is the equilibrium
bond length.

𝑈𝑎𝑛𝑔𝑙𝑒 =
1
2𝑘𝜃 (𝜃 − 𝜃0)2, (2.9)
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where 𝑘𝜃 is the force constant, 𝜃 is the angle, and 𝜃0 is the equilibrium angle.
The dihedral potential is usually given by a periodic function

𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 =
1
2𝑘𝜙 [1 + 𝑐𝑜𝑠 (𝑛𝜙 + 𝛾)], (2.10)

where 𝑘𝜙 is the force constant, 𝜙 is the dihedral angle, 𝑛 is a integer, and 𝛾 is
the phase angle.

Figure 2.4.: Illustration of the bonded forcefield contribution (a) bond potential (b) angle potential
(c) dihedral potential (adapted from [49] with permission from MDPI)

Once the problem-specific forcefield is obtained, the force acting on each
individual particle can be computed. As a result, the Newton’s equation for a
set of atoms can be numerically solved to simulate the time evolution of the
molecular system, know as Molecular Dynamics (MD). The implementation
of MD relies on the discretization of the particle trajectories using a finite time
step Δ𝑡 . There are several numerical schemes available to solve the Newton’s
equation for MD, such as Euler scheme[50], Verlet leap frog scheme[51], and
velocity-Verlet scheme[52]. In this work, the velocity-Verlet scheme is used
due to its higher numerical precision and its ability to prevent round-off
errors. For the integration in each time step, the coordinate and velocity of
particle 𝑖 , denotes as r𝑖 (𝑡 + Δ𝑡) and v𝑖 (𝑡 + Δ𝑡), are evaluated as follows:

r𝑖 (𝑡 + Δ𝑡) = r𝑖 (𝑡) + v𝑖 (𝑡)Δ𝑡 +
1
2a𝑖 (𝑡)Δ𝑡

2

v𝑖 (𝑡 + Δ𝑡) = v𝑖 (𝑡) +
1
2 (a𝑖 (𝑡) + a𝑖 (𝑡 + Δ𝑡))Δ𝑡, (2.11)

where a𝑖 (𝑡) = F𝑖 (𝑡 )
𝑚𝑖

is the acceleration of particle 𝑖 computed from the force-
field. Moreover, the choice of timestep Δ𝑡 is crucial in the simulation. A
timestep that is too small wastes computational time without bringing the
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2.1. Atomistic Molecular Dynamics

Figure 2.5.: Schematic diagram to illustrate the periodic boundary conditions, in which the left
panel shows atoms of the central simulation cell are repeated in each neighboring cell, and the
right panel shows an atom reenter via the opposite boundary when it leaves the central cell
(reproduced from [54] with permission from the Springer Nature)

system to the desired state, while a timestep that is too large can lead to
nonphysical results. The shortest timescale in the system, which is typically
the frequency of bond vibration, determines the timestep for the MD sim-
ulation. A typical timestep of MD simulations usually falls in the range of
femtoseconds.

The boundary conditions for the MD simulation should be carefully chosen
based on the system of interest. For instance, periodic boundary condi-
tions[53] are employed to study properties in the bulk phase by repeating
the atoms of the central simulation cell to neigbouring cells, as in fig.(2.5).
Due to the limitation of the particle number in MD simulations, periodic
boundary conditions are realistic at replicating the behaviour of bulk system
in experiment. On the other hand, fixed boundary conditions can be used to
simulate interfaces by applying a refection potential at the boundary of the
simulation cell.

The surrounding environment has a significant effect on the system of interest
in MD simulation, so that it is treated as an extended system of MD, i.e. heat
bath or a pressurizing medium. In order to include the effect of the extended
system, different schemes for thermodynamic ensembles can be employed.
The NVT and NPT ensembles, also known as the Nosé-Hoover thermostat[55,
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2. Theoretical Background

56] and the Nosé-Hoover-Andersen barostat[57, 58], are two commonly used
methods in MD simulations. In the NVT ensemble, the system is connected
to an external degrees of freedom (the extended system), representing a heat
bath to control the simulation temperature. The velocity of each individual
atom is rescaled by subjecting to a frictional term. The scaling factor that
rescales the atoms’ velocities is defined as

𝜆𝑇 (𝑡) =

√︄
1 + Δ𝑡

𝜏𝑇
( 𝑇0
𝑇 (𝑡) − 1), (2.12)

where 𝜏𝑇 is the coupling parameter,𝑇 (𝑡) is the instantaneous temperature, and
𝑇0 is the target temperature. In the NPT ensemble, the system is connected
to an external degrees of freedom, representing a barostat to control the
simulation pressure by adjusting the simulation box volume. The scaling
factor 𝜆𝑃 (𝑡) that rescales the atoms’ coordinates is defined as

𝜆𝑃 (𝑡) = [1 + 𝛽Δ𝑡
𝜏𝑃

(𝑃0 − 𝑃 (𝑡))]
1
3 , (2.13)

where 𝜏𝑃 is the coupling parameter, 𝑃 (𝑡) is the instantaneous pressure, 𝛽 is
the isothermal compressibility , and 𝑃0 is the target pressure.

The outline of a molecular dynamics code is presented in fig.(2.6). At each
simulation timestep, the forces acting on each particle are computed based on
the forcefield and the particles’ current state. Additional information, such as
the thermostat, barostat, and boundary conditions, can be introduced into the
MD computation to correct the coordinates and velocities of particles. The
coordinates and velocities are then updated for the next timestep by solving
the Newton’s equation. This routine is repeated until the final state of the
system or the final timestep is reached. Furthermore, this is the basic outline
of the particle-based models, where the energy potential landscape of each
particle is computed and used to update the states. The state-of-the-art MD
simulation packages, such as LAMMPS[59], GROMACS[60], and NAME[61],
have been implemented and widely used in a variety of applications. However,
many physical phenomena in biology, chemistry, and material science, which
are caused by the process at the atomistic scale, determine the material
behaviour on the larger scale. Due to computational limitation, atomistic MD
is infeasible to study long-time phenomena in large-scale systems, in which
the scales are far beyond the atomistic scales[62].
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2.2. Coarse grained model

Figure 2.6.: Flowchart of MD code, in which the coordinates and velocities of each particle
are updated in each timestep based on the force computed from the forcefield and additional
information, i.e. boundary conditions, temperature and pressure control.

2.2. Coarse grained model

To enable simulation at the mesoscopic scale, a common approach is to reduce
the resolution of the model by eliminating most of the atomistics details while
retaining the essential information that reproduces consistent results with
the atomistic level. This is known as coarse-grained (CG) modelling[13–15,
63]. CG methods capture the slow collective motions and average out the fast
local motions, as a result there is less degrees of freedom at the CG level.
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Atomistic configuration
space r

CG configuration
space R

Projection operator P

Figure 2.7.: Schematic diagram of projection of the atomistic representation in the high-
dimensional space onto the CG representation in the low-dimensional space using coarse-graining
method

A proper CG model should be capable of reproducing the physical and chemi-
cal properties of the underlying atomistic system. In other words, the statisti-
cal equilibrium distribution of the CG model should be closely resemble that
of the atomistic model. Considering the atomistic representation in the high-
dimensional space is given by r ∈ R3𝑁 , which contains all atomistic details.
The CG representation is the projection of the atomistic representation from
the high-dimensional space to the low-dimensional space by eliminating the
irrelevant fast degrees of freedom. It is given by

R = P(r) ∈ R3𝑛 (2.14)

where 𝑁 > 𝑛 and P is a projection operation from the high-dimensional
space to the low-dimensional space, where it depends on the choice of the
mapping scheme. The relation between the equilibrium distribution of the
atomistic model and that of the CG model is given by

𝑝𝐶𝐺 (R) =
∫

𝛿 (R − P(r))𝑝𝐹𝐺 (r)𝑑r (2.15)

where 𝑝𝐹𝐺 (r) is equilibrium distribution of the atomistic model and 𝑝𝐶𝐺 (R)
is equilibrium distribution of the CG model. In order to construct a CG model
with a consistent equilibrium distribution, two criteria need to be satisfied: 1)
a suitable CG mapping scheme 2) appropriate interactions between the CG
sites.

In practice, the mapping scheme refers to replacing a cluster of heavy atoms
with a pseudo-particle known as a CG bead. However, there is no unique way
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2.2. Coarse grained model

for mapping a set of atoms to a CG bead, and random mapping is also not
possible. The CG mapping scheme requires priori knowledge, particularly
the chemical intuition[64]. The choice of CG description should be based on
the physical and chemical properties of the material to ensure the CG model
preserves the physical properties, structural correlations, and thermodynam-
ics[65, 66].

To implement the CG mapping, the CG representation is connected to the
atomistic representation by placing a CG bead at the center of mass (COM)
of a group of atoms. The position R and the momentum P of the CG bead are
given by

R =
1
𝑀

𝑁𝑐∑︁
𝑖=1

𝑚𝑖r𝑖 , (2.16)

P =

𝑁𝑐∑︁
𝑖=1

p𝑖 , (2.17)

where 𝑀 is the total mass of the cluster 𝑀 =

𝑁𝑐∑︁
𝑖=1

𝑚𝑖 with 𝑁𝑐 atoms in the

cluster. Here r𝑖 , p𝑖 , and 𝑚𝑖 denote the position, momentum, and mass of
particle 𝑖 in the cluster respectively.

After determining the CG representation using a mapping scheme, appro-
priate interactions between the CG beads have to be constructed. These
interactions in the CG model should capture the effects in the lower res-
olution model and reflect the correct physics, so that the model not only
provides efficiency, but also fundamental insight and quantitative predictions.
In order to construct the forcefield for CG model, there are two commonly
used approaches: (i) top-down approach, (ii)bottom-up approach.

For the top-down approach, the CG model is based on the experimental
observations at the length scales of the CG model[67, 68]. To construct the
top-down model, the CG forcefield parameters are optimized to reproduce
experimental phenomena or macroscopic thermodynamics properties[69, 70].
This approach is able to reproduce experimental observations and predict
phenomena based on the general symmetry principles, which determine the
properties that are preserved with increasing length scales. Therefore, the top-
down CG forcefields provide a high transferability across different systems.
However, there is no direct connection between the microscopic description
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2. Theoretical Background

Figure 2.8.: Schematic illustration to map the atomistic representation of molecules to the CG
representation using a mapping scheme based on the chemical and physical intuition (reproduced
from [15] with permission from the American Chemical Society).

and the top-down CGmodel, resulting in the inability to accurately reproduce
the structural and static properties of the underlying atomistic system.

In contrast, the bottom-up approach constructs the CG model based on the
atomistic model of the same system. The forcefield parameters of the bottom-
up model are optimized by matching microscopic static and structural prop-
erties obtained from the high-resolution model[71–73]. There are several
methods to construct the bottom-up CG forcefield. The Boltzmann inver-
sion[74] is a straightforward approach that constructs the CG potential from
the atomistic distribution function in eq.(2.15). The potential constructed by
the Boltzmann inversion method is equivalent to the atomistic pair potential
of mean force

𝑈 (𝑟 ) = −𝑘𝐵𝑇 ln𝑔(𝑟 ), (2.18)

where 𝑔(𝑟 ) is the radial distribution function (RDF) obtained from the atom-
istic model. The Boltzmann inversion potential is a statistical pair potential,
which provides an accurate description of isolated interactions. However,
it fails to accurately reproduce atomistic distribution functions in strongly
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2.2. Coarse grained model

Figure 2.9.: Schematic diagram of the energy landscape of the atomsitic system (left) and the
CG system (right), in which the energy landscape in the CG model is smoothened, lowering the
energy barrier between CG sites.( reproduced from [64] with permission from MDPI).

coupled system as the CG distribution only reflects the single potential. An-
other widely used approach is the force-matching method[75, 76], which
samples all atomic conformations to obtain the effective pair force between
CG beads, corresponding to the potential of mean force. Since the PMF in
force-matching approach is conformationally dependent, it can reproduce the
structural features of the atomistic model accurately. While the transferability
of the bottom-up models is lower than that of the top-down models, they are
better at capturing the structural characteristics and static properties of the
system.

There are three main reasons attribute to the significant increase in com-
putational speed in the CG model. Firstly, there is a drastic reduction in
the number of particles used in the simulation. Each CG particle represents
several atoms along with associated hydrogen atoms. With fewer number of
particles, the computation cost of the force calculations and particles propa-
gation are significantly reduced. Secondly,the fastest oscillation frequencies
in the CG simulation are decreased. In the atomistic model, bond potentials
typically have the fastest oscillation frequency. However, in the CG model,
the masses of the CG particles are higher, resulting in a reduction of the
bond oscillation frequency. Consequently, the timestep of integration can be
usually increased by a factor of ten. Lastly, the energy landscape in the CG
simulation is much smoother compared to the atomistic model. The atomistic
energy landscape exhibits local energy minima and traps, as shown in fig.(2.9),
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2. Theoretical Background

which can significantly slow down the dynamics of the system or trap it in
certain configurations. In contrast, the energy landscape in the CG system is
averaged between CG sites, smoothing out some local traps.

The CG model enables to simulate system at a larger time and length scales,
however during coarse-graining it eliminates the fast degrees of freedom that
contribute to the dynamical properties of the system. Various phenomena
of complex fluid or soft matter, i.e. polymer solutions, colloids, and liquid
crystals, are related to the dynamical behaviour at the mesoscopic scale[6, 77].
Therefore, conventional CG model exhibits significant errors in reproducing
the dynamical properties of soft matter [78], limiting their ability to study
long-time dynamical behaviour of soft matter systems.

2.3. Dissipative Particle Dynamics

Both molecular interactions and transport behaviour in soft matter have
significant impacts on its properties[7, 79]. To accurately model soft matter, it
is essential to describe hydrodynamics, molecular interactions, as well as ther-
mal fluctuations of the system. Several simulation methods for mesoscopic
modelling, such as Langevin dynamics[80], dissipative particle dynamics[28],
multiparticle collision dynamics[23], have been developed based on the frame-
work of the CG model. Dissipative particle dynamics (DPD), which is the
method closest to the CG model, is a particle-based approach that takes hy-
drodynamics and thermal fluctuations into account and can be employed
to simulate complex fluids and soft matter at mesoscopic level. DPD was
initially introduced by Hooger-brugge and Koelman[18], and later improved
by Espanol and Warren with a proper statistical mechanics foundation by
solving the Fokker–Planck–Boltzmann equation[19].

The original DPD model was developed to study the fluid dynamics of molec-
ular fluids, which is consistent with the Navier-Stokes equations.[18]. In
contrast to the CG model discussed in the previous chapter, in which a group
of atoms is replaced by a pseudo particle, the DPD model considers each
particle as a fluid element. The motion of the pseudo particles is governed
by three types of pairwise forces: conservative force, dissipative force, and
random force. The equation of motion of the DPD particle is given by[19]
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2.3. Dissipative Particle Dynamics

Figure 2.10.: Illustration of the interactions between a DPD particle pair which consist of 1)
conservative force 𝐹𝐶 , 2) dissipative force 𝐹𝐷 , and 3) random force 𝐹𝑅 (adapted from [28] with
permission from the American Institute of Physics)

𝑀𝐼

𝑑V𝐼
𝑑𝑡

=
∑︁
𝐽 ≠𝐼

F𝐼 𝐽 =
∑︁
𝐽 ≠𝐼

(F𝐶𝐼 𝐽 + F𝐷𝐼 𝐽 + F𝑅𝐼 𝐽 ), (2.19)

where F𝐼 𝐽 , F𝐶𝐼 𝐽 , F
𝐷
𝐼 𝐽
and F𝑅

𝐼 𝐽
are total force, conservative force, dissipative force

and random force acting on particle I by particle J.

For the conservative force, it is given by the gradient of the potential energy
𝑈 (R)

F𝐶𝐼 𝐽 = − 𝜕𝑈 (R)
𝜕R𝐼

, (2.20)

where the functional form of the potential should be translational and rota-
tional invariant to ensure the conservation of linear and angular momentum.
In the original DPD formalism, the purely repulsive potential is used

𝑈 (R) = 1
2
∑︁
𝐼 𝐽

𝑎𝐼 𝐽 (1 − |R𝐼 𝐽 |/R𝑐 )2, (2.21)

where R𝐼 𝐽 = R𝐽 − R𝐼 is the relative coordinates between particles I and J, 𝑎𝐼 𝐽
is a interaction constant, and R𝑐 is the cutoff distance. When R𝐼 𝐽 exceeds R𝑐 ,
the conservative force is zero.

The dissipative force F𝐷
𝐼 𝐽

reduces the radial velocities differences between
particles and it is given by

F𝐷𝐼 𝐽 (R,V) = −𝛾𝜔𝐷 (R𝐼 𝐽 ) (V𝐼 𝐽 · e𝐼 𝐽 )e𝐼 𝐽 , (2.22)
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where 𝛾 is a friction coefficient, 𝜔𝐷 (R𝐼 𝐽 ) is a dissipative force weight function
related to R𝐼 𝐽 , V𝐼 𝐽 = V𝐼 − V𝐼 is the relative velocity, and e𝐼 𝐽 is the unit vector
of the radial direction between particles I and J.

The random force F𝑅
𝐼 𝐽

accelerates the movement of the DPD particles by
keeping the system’s temperature constant and it is given by

F𝑅𝐼 𝐽 (R) = −𝜎𝜔𝑅 (R𝐼 𝐽 )
𝑑𝑊𝐼 𝐽

𝑑𝑡
e𝐼 𝐽 , (2.23)

where 𝜎 is a random force constant, 𝜔𝑅 is the random force weight function,
𝑑𝑊𝐼 𝐽 is an independent increment of Wiener process. To satisfy the condition
of the fluctuation-dissipation theorem[19], the random force constant 𝜎 is
linked to 𝛾 directly, i.e. 𝜎2 = 2𝛾𝑘𝐵𝑇 , and the random force weight func-
tion 𝜔𝑅 (𝑟𝐼 𝐽 ) is also connected to the dissipative force weight function, i.e.
𝜔𝐷 (𝑟𝐼 𝐽 ) = [𝜔𝑅 (𝑟𝐼 𝐽 )]2. Here 𝑘𝐵 denotes the Boltzmann constant and 𝑇 is the
temperature of the system.

The static properties of the DPD system are determined by the conservative
force, which can be modified by adding additional interactions[81], such
as spring, attractive potential or repulsive potential. The static probability
distribution of the DPD system is given by the Gibbs canonical ensemble

𝜌 (R,V) = 1
𝑍
𝑒𝑥𝑝{−

𝑁∑︁
𝑖

( 1
2𝑀𝐼𝑉𝐼 +𝑈 (R))/𝑘𝐵𝑇 }, (2.24)

where 𝑍 is the canonical partition function. On the other hand, the dynamical
properties of the DPD system are governed by the dissipative and random
forces. Since all forces are pairwise in the DPD model, both linear and
angular momentum are conserved. As a result, the DPD model reproduces
hydrodynamic behaviour and satisfies the Navier-Stokes equation[82].

There are three main advantages of the DPD model: 1) The pairwise interac-
tion in the DPD system is relatively soft, allowing for a large timestep that
improves the computational efficiency. 2) Due to the conservation of momen-
tum, the DPD model exhibits hydrodynamic behaviour and is consistent with
the Navier-Stokes equation. Additionally, the random force acts as a thermo-
stat to include the thermal fluctuations to the system. Therefore, the DPD
model is efficient at simulating complex fluids, where both hydrodynamics
and thermal fluctuation are included. 3) The DPD model is particle-based and
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2.4. Continuum model

meshfree, making it suitable for simulating complex fluid flows with moving
interfaces.

Compared to conventional CG model, the DPD model is more effective in
studying complex fluid transport behaviour at the mesoscopic level. Each
pseudo particle in the DPD model represents a fluid element, and the in-
teractions between them are constructed by matching the hydrodynamic
behaviour of the complex fluid. However, the pseudo particles and the inter-
actions in the DPD model lack a detailed physical derivation and description
to relate them with the microscopic system. Therefore, the interaction be-
tween pseudo particles is oversimplified, unphysical, and inconsistent with
the microscopic system, restricting the ability of the DPD model to study
mesoscopic behaviour in soft matter.

2.4. Continuum model

Even though the DPDmodel can simulate phenomena at the mesoscopic level,
macroscopic scale modelling remains impractical for it due to the drastic in-
crease in computational cost with the number of particles. To simulate the
system at larger scales, one can model material as a continuous mass instead
of discrete particles, which is known as the continuum model (CM)[12, 83].
CM is a coarse version of the particle system, where the length scale is much
larger than the interatomic distance. In the continuum model, the material is
governed by physical laws such as mass conservation, momentum conserva-
tion, and energy conservation. As a result, CM is based on the macroscopic
material behaviour and ignores the microscopic molecular interactions.

To represent a system with a set of particles by a system with continuous
material domain, two main assumptions are made: 1) the continuum limit:
each volume element in the CM should contain a large number of atoms[84]
and 2) the local equilibrium assumption: the volume of the element should
be large enough to reproduce the thermodynamic behaviour of the whole
system.[85] Consequently, each space point in the CM can be considered
as a microscopic system with local thermodynamic equilibrium. Moreover,
the differences of the physical quantities, i.e. temperature, pressure, and
concentration, between a volume element and its neighbour are assumed to be
small, such that the behaviour of the system can be described mathematically
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by partial differential equations, which are the foundation of many physical
laws at the macroscopic scale.

In continuum mechanics, the behaviour of a material is approximated as
continuous with space and time, and the physics of the material is governed
by the following coupled fundamental equations[86]:

¤𝜌 + 𝜌 (∇ · v) = 0, (2.25)

𝜌v − ∇ · 𝜎𝜎𝜎 + 𝜌b = 0, (2.26)

𝜎𝜎𝜎 = 𝜎𝜎𝜎𝑇 , (2.27)

𝜌 ¤𝑒 − 𝜎 : (∇v) + ∇ · q − 𝜌𝑠 = 0, (2.28)

where 𝜌 is the element density, v is the element velocity, 𝜎𝜎𝜎 is the Cauchy
stress tensor, b is the body force, 𝑒 is the internal energy density, q is the
heat flow vector, and 𝑠 is the source term of the energy density. The four
equations correspond to the conservation of mass, linear momentum, angular
momentum, and energy, respectively.

Under the framework of the continuum mechanics, the general coupled
equations can be modified and applied to various basic physics problems,
such as diffusion and heat transport in the materials, as well as the flow of
Newtonian fluids in fluid mechanics. Additionally, there are numerous other
applications, such as charge transport in charge-carrying materials[87] and
the interfacial phenomena in multiphase systems[88].

To solve the coupled partial differential equations, two main approaches are
commonly used: the finite element method (FEM)[89] and the finite difference
method (FDM)[90]. In this thesis, only FDM approach will be employed.
In the FDM approach, the material domain is divided by a set of nodes,
forming a group of subdomains known as grids, as presented in fig.(2.11). A
finite difference function is used to approximate the derivatives of physical
quantities at each node. In order to solve the partial differential equation, it
can be approximated by a linear equation by taking the neighbouring nodes
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Figure 2.11.: Illustration of the finite difference method (FDM), in which the material domain is
divided by the nodes to form a group of subdomains.

into account. By using the central difference scheme, the first derivative 𝜕𝑢
𝜕𝑥

of physical quantities 𝑢 at a node 𝑛 can be approximated

𝜕𝑢

𝜕𝑥
= lim
ℎ→0

𝑢 (𝑥 + ℎ) − 𝑢 (𝑥 − ℎ)
2ℎ ≈ 𝑢 (𝑥 + ℎ) − 𝑢 (𝑥 − ℎ)

2ℎ , (2.29)

where 𝑥 is the position of node 𝑛 and ℎ is the separation between the neigh-
bouring nodes. Moreover, the second derivative 𝜕2𝑢

𝜕𝑥2 of the physical quantities
𝑢 at node 𝑛 is approximated as

𝜕2𝑢

𝜕𝑥2 ≈
𝜕𝑢
𝜕𝑥

��
𝑥=𝑥+ℎ

2
− 𝜕𝑢

𝜕𝑥

��
𝑥=𝑥− ℎ

2

ℎ
=
𝑢 (𝑥 + ℎ) − 2𝑢 (𝑥) + 𝑢 (𝑥 − ℎ)

ℎ2 . (2.30)

Furthermore, the choice of boundary conditions in the continuum model is
crucial for obtaining the correct interpolation function to describe the physics
of the system[91]. One of the most commonly used boundary conditions is
the Dirichlet boundary condition, which fixes the boundary value of physical
quantities 𝑢 by a given value

𝑢 (𝑎) = 𝐴1, (2.31)

where 𝑎 is the boundary of the system and𝐴1 is a given value at the boundary.
This boundary condition is suitable for simulating systems which are con-
nected to a giant neighbouring system, such as heat bath. On the other hand,
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Figure 2.12.: Illustration of the finite difference approximation for the first and second derivative
of physical quantities 𝑢 at node 𝑛.

the Neumann boundary condition is another common boundary condition in
the continuum model, where the normal derivative of the physical quantities
𝑢 is fixed by a given value

𝑛̂ · ∇𝑢 (𝑎) = 𝐴2, (2.32)

where 𝑛̂ the normal vector of the system boundary and 𝐴2 is a given value
at the boundary. This boundary condition is suitable to simulate an isolated
system, which has zero flux at the boundary.

When all the partial differential equations and the boundary conditions of
the system are all known, the physical states of every node in the system can
be computed. The Jacobi method[92], which is a simple and straightforward
iterative algorithm for solving a system of linear equations, is employed.
ConsideringAAAx = b is a system of 𝑛 linear equations with unknown x, it can
be written as

𝑛∑︁
𝑖 𝑗

𝑎𝑖 𝑗𝑥 𝑗 = 𝑏𝑖 , (2.33)

where 𝑎𝑖 𝑗 is the element in matrix AAA, 𝑥 𝑗 is the element in vector x and 𝑏𝑖
is the element in vector b. The algorithm starts with an initial guess of the
solution x(0) . In each iteration of the Jacobi method, the solution of the 𝑘-th
iteration x(𝑘 ) is given by
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𝑥
(𝑘 )
𝑖

=
𝑏𝑖 −

∑
𝑖≠𝑗 𝑎𝑖 𝑗𝑥

(𝑘−1)
𝑗

𝑎𝑖𝑖
, (2.34)

which is related to the solution of the (𝑘 − 1)-th iteration. The solution of the
𝑘-th iteration is then used as the input in eq.(2.34) to generate the solution
of the next iteration. By repeating this procedure, the final solution of x is
obtained when the convergence condition is satisfied.

The outline of the code of a continuum model is presented in fig.(2.13). Before
the start of the simulation, the governing equations of the system and the
boundary conditions are defined. At the initial timestep, an initial guess of
the solutions for the physical states of all nodes is used as the input to solve
the partial differential equations using a solver. At each simulation timestep,
the current states of all nodes are used as the input to solve the governing
equations, and the physical states of each node are updated accordingly. This
routine is repeated until the end time of the simulation, and the dynamical
behaviour of the system can then be obtained. This is also the general outline
of the grid-based models, where the states of each node are computed by solv-
ing partial differential equations at every timestep. However, it is important
to note that the grid-based models are limited in mesoscopic modelling due to
lack of the resolution required to describe the molecular interactions. There-
fore, the continuum model is unable to capture the details of the underlying
physics contributing to the mesoscopic behaviour.
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Figure 2.13.: Flowchart of the code for the continuum model, in which the physical states of each
nodes are updated from the previous states and the boundary conditions by solving the partial
difference equations in every timestep
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3. Dynamically consistent coarse
grained Molecular Dynamics

In the previous chapter, I presented different models for simulating material
properties, each with its own advantages and limitations. Classical MD has
high resolution but is computationally expensive and limited to the atomistic
resolution. Coarse-grained model can simulate systems at larger scales but
exhibits significant errors in dynamical properties over long timescales. Dis-
sipative particle dynamics is consistent with hydrodynamic properties but
lacks a proper chemical description for pseudo particles. Continuum model,
based on grids rather than particles, can simulate much larger scales but lose
the details of molecular interactions. To enable simulation of mesoscopic
phenomena in soft matter, a model should be able to 1) access large length
and time scales, 2) provide consistent dynamical properties, and 3) capture
the atomistic details and interactions.

In the 1960s, Mori and Zwanzig proposed a derivation of a generalized
Langevin equation (GLE) via a projection operator, which is known as the
Mori-Zwanzig formalism (MZ) [29, 30]. This formalism provides a systematic
way to relate the mesoscopic variables to the microscopic variables, such
that the GLE describes the non-equilibrium evolution of collective variables
which directly extracted from the phase-space of the microscopic system.
However, the GLE is too complicated to be employed as a computational
tool as solving the numerical integration of an integro-differential equation
is difficult. Recently, various approaches have been proposed to make the
Mori–Zwanzig formalism computationally practical[93, 94]. In this chapter, I
will present the Mori-Zwanzig formalism and the coarse-graining procedure
for a molecular system in detail. I will also demonstrate the formulation of
the anisotropic MZDPD model and analyse its performance by comparing it
with other CG models.
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3.1. Mori-Zwanzig formalism

In this section, the derivation of the Mori-Zwanzig formalism is presented.
Considering P is a projection operator

P(Γ) = Γ𝑠𝑙𝑜𝑤, (3.1)

where Γ is the phase space of a system and Γ𝑠𝑙𝑜𝑤 is the subspace of slow
variables in Γ, such that P projects out the slow degrees of freedom. Moreover,
an orthogonal counterpart Q of the projection operator can be defined as

Q = 1 − P . (3.2)

When the projection operator acts on a variable 𝑋 in phase space Γ, the
projection is given by

P𝑋 =
⟨𝐴,𝑋 ⟩
⟨𝐴,𝐴⟩𝐴, (3.3)

where 𝐴 is a collective variable in the subspace Γ𝑠𝑙𝑜𝑤 .

Considering the Liouville equation of the collective variable 𝐴

𝑑𝐴

𝑑𝑡
− 𝑖L𝐴 = 0, (3.4)

where L is the Liouville operator, the solution of eq.(3.4) is given by

𝐴(𝑡) = 𝑒𝑖L𝑡𝐴. (3.5)

By inserting operator P and Q into eq.(3.4), it can be rewritten as

𝑑𝐴

𝑑𝑡
= 𝑖𝑒𝑖L𝑡 (P + Q)L𝐴

= Ω𝐴(𝑡) + 𝑖𝑒𝑖L𝑡QL𝐴, (3.6)

where Ω𝐴(𝑡) = 𝑖𝑒𝑖L𝑡PL𝐴 and Ω denotes the frequency matrix.

For the second term in eq.(3.6), the Dyson identity gives us

𝑖𝑒𝑖L𝑡QL𝐴 = 𝑖𝑒𝑖QL𝑡 𝑖QL𝐴 + 𝑖
∫ 𝑡

0
d𝑠𝑒𝑖L(𝑡−𝑠 )PL𝑒QL𝑠QL𝐴, (3.7)
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3.2. Coarse-graining of molecular system

where the random force 𝐹 Q (𝑡) = 𝑖𝑒𝑖QL𝑡QL𝐴 and the memory function
𝐾 (𝑡) = 𝑖PL𝑒𝑖QL𝑡QL are defined. In the end, the generalized Liouville
equation is given by

𝑑𝐴

𝑑𝑡
= Ω𝐴(𝑡) +

∫ 𝑡

0
d𝑠𝐾 (𝑠)𝐴(𝑡 − 𝑠) + 𝐹 Q (𝑡). (3.8)

P

Γ

Γ𝑠𝑙𝑜𝑤

𝐴(0)

𝑋 (0)

𝐴(t)

𝑋 (t)

Figure 3.1.: Schematic diagram of the Mori-Zwanzig formalism, in which the projection operator
P, represented by the red arrows, projects a variable 𝑋 , which is indicated by the blue arrow, in
phase space Γ into a collective variable 𝐴, which is indicated by the black arrow, in the subspace
Γ𝑠𝑙𝑜𝑤 . In the MZ formalism, the dynamics of 𝐴 is guided by the dynamics of 𝑋 to ensure the
dynamical consistency.

3.2. Coarse-graining of molecular system

Based on the Mori-Zwanzig formalism, a N-body problem can be simplified by
separating the slow and fast degrees of freedom, such that the coarse-graining
of molecular systems can be performed in a systematic way. Recalling the CG
model and the DPD model in ch.(2), they both show deficiencies in coarse-
graining. The CG model eliminates the fast degrees of freedom, leading
to significant errors in dynamical properties, while the DPD model lacks a
connection with the underlying microscopic system. A question arises: is it
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3. Dynamically consistent coarse grained Molecular Dynamics

possible to connect these two models in a way that captures the microscopic
system and ensures consistent dynamical properties?

The answer is yes. On the left hand side of the expression of the general-
ized Liouville equation in eq.(3.8), there are three terms: the projected term,
memory term, and fluctuating term. When compared to the equation of
motion of the DPD particle in eq.(2.19), these three terms can be related to the
conservative, dissipative, and random forces in the DPD model. This suggests
that an N-particle system can be coarse-grained using the MZ formalism
within the framework of the dissipative particle dynamics. As a result, the CG
model gives the intuition for mapping groups of atoms to pseudo particles,
the MZ formalism provides a systematic way to project information from
the microscopic system to the mesoscopic system, and the DPD framework
ensures the consistency of the hydrodynamic behaviour for a system over
time.

However, the complexity of solving the integro-differential equation is another
problem that hinders the practical use of the MZ approach. In order to realize
the MZ formalism as a computational tool, Hijon[93] proposed constrained
CG degrees of freedom to make the Markovian approximation exact, while
Lei[94] performed constrainedMD simulations by fixing the radius of gyration
to construct CG system. In the following, the details of coarse-graining an
N-particle system using the MZ formalism are presented.

Considering an N-particle system in a microscopic state Γ = {r𝑖 , p𝑖 }, with
instantaneous positions r𝑖 and momenta p𝑖 of particle 𝑖 , where 𝑖 = 1...𝑁 . The
atomistic Hamiltonian of the system is given by

𝐻 (Γ) =
𝑁∑︁
𝑖=1

p2
𝑖

2𝑚𝑖

+ 1
2
∑︁
𝑖≠𝑗

𝑈 (r𝑖 𝑗 ), (3.9)

where𝑚𝑖 is the mass of particle 𝑖 . In order to abstract the atomic details, the
N-particle system is mapped into a K-cluster system by grouping atoms into
clusters. The dynamics of the clusters can be described by proper CG variables
with lower resolution. The position R and the translational momentum P
of the center of mass (COM) of a cluster of atoms are given by eq.(2.16) and
eq.(2.17) respectively.

The dynamics of the high-resolution system with full atomistic detail is
determined by the atomistic Hamiltonian in eq.(3.9), and the time evolution
of microscopic state is described by the Liouville equation
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3.2. Coarse-graining of molecular system

𝜕Γ

𝜕𝑡
+ 𝑖LΓ = 0. (3.10)

The projection operator P and its orthogonal counterpart Q are employed
to decompose the system into the fast and slow degrees of freedom. The CG
variables, which are the slow degrees of freedom that of our interest, are
projected out by the projection operator P, while the remaining fast degrees
of freedom, which correspond to the irrelevant atomistic details, are projected
out by Q. By using the Mori-Zwanzig projection, the equation of motion
(EOM) of a CG particle can be written in terms of the CG variables[93–95]

d
d𝑡 P𝐼 =

1
𝛽

𝜕

𝜕R𝐼
l𝑛𝜔 (R)

− 𝛽
𝐾∑︁
𝐽 =1

∫ 𝑡

0
𝑑𝑠 ⟨[𝛿FQ

𝐼
(𝑡 − 𝑠)] [𝛿FQ

𝐽
(0)]𝑇 ⟩

P𝐽 (𝑠)
𝑀𝐽

+ 𝛿FQ
𝐼
(𝑡),

(3.11)

where 𝛽 = 1/𝑘𝐵𝑇 with 𝑇 denotes the temperature and 𝑘𝐵 denotes the Boltz-
mann constant. R = {R1,R2, . . . ,R𝐾 } is the phase point in the CG phase space,
𝜔 (𝑅) is the normalized partition function of all microscopic configurations at
phase point R, and 𝛿FQ is the Q-projected random force. In the right hand
side of eq.(3.11), each term corresponds to a conservative force, dissipative
force and random force respectively, which is consistent with the framework
of the DPD model. The conservative force represents the many-body mean
force by the change of microscopic configurations. Both dissipative force and
random force depend on the choice of the projection operator P, such that
they compensate the missing degrees of freedom during coarse-graining. The
dissipative force is computed from the time convolution of the memory kernel
of the random force and the momenta of the cluster. And the Q-projected
random force is given by

𝛿FQ
𝐼
(𝑡) = e−Q𝑖L𝑡𝛿F𝐼 (𝑡), (3.12)

where 𝛿F𝐼 (𝑡) is the fluctuating force acting on cluster 𝐼 and is given by
𝛿F𝐼 (𝑡) = F𝐼 (𝑡) − ⟨F⟩ with F𝐼 (𝑡) denotes the instantaneous force on cluster
𝐼 . By using the zeroth order approximation[96], i.e. e−Q𝑖L𝑡 ≈ e−𝑖L𝑡 , the
random force correlation function can be approximated by the fluctuating
force correlation function

⟨[𝛿FQ
𝐼
(𝑡 − 𝑠)] [𝛿FQ

𝐽
(0)]𝑇 ⟩ ≈ ⟨[𝛿F𝐼 (𝑡 − 𝑠)] [𝛿F𝐽 (0)]𝑇 ⟩. (3.13)
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3. Dynamically consistent coarse grained Molecular Dynamics

Figure 3.2.: Illustration of the MZ formalism to coarse grain an atomistic system to a mesoscopic
system, in which the collective variables are mapped to conservative force, the fast variables
are mapped to the stochastic force, and the effects from the collective and fast variables are
approximated by the dissipative force. Red sphere indicates the atomic particle and purple sphere
indicates the CG particle.

When the fast degrees of freedom couples with the slow degrees of freedom,
a strong non-linear memory effect on the dynamics of the CG variables has
been observed[97]. In this thesis, I only consider systems that the timescale
of the force, which is determined by the collision time, is faster than the
characteristic timescale of the momenta, which is proportional to the mass of
particle. As a result, the characteristic timescale of the momenta (the slow
variable) and the force (the fast variable) are well-separated, and thus the
system can treated as a Markovian process. In this limit, the auto-correlation
function of the fluctuating force can be replaced by delta function via the
Markovian approximation

𝛽 ⟨[𝛿F𝐼 (𝑡 − 𝑠)] [𝛿F𝐽 (0)]𝑇 ⟩ = 2𝛾𝐼 𝐽 𝛿 (𝑡 − 𝑠), (3.14)
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3.2. Coarse-graining of molecular system

𝛽

∫ 𝑡

0
𝑑𝑠 ⟨[𝛿F𝐼 (𝑡 − 𝑠)] [𝛿F𝐽 (0)]𝑇 ⟩

P𝐽 (𝑠)
𝑀𝐽

= 𝛾𝐼 𝐽
P𝐽 (𝑡)
𝑀𝐽

, (3.15)

where 𝛾𝐼 𝐽 = 𝛽
∫ 𝑡

0 𝑑𝑠 ⟨[𝛿F𝐼 (𝑡 − 𝑠)] [𝛿F𝐽 (0)]
𝑇 ⟩ is the frictional tensor.

The force acting on a CG particle in eq.(3.11) depends on the microscopic
state in phase space, which is determined by the positions and momenta of
all other clusters in the system. However, the direct evaluation of the multi-
body interaction is very demanding even for one-dimensional harmonic
system[31]. In practice, two approximations are employed here. First, the
multi-body interactions are assumed to be negligible and all interactions are
pairwise. Second, the non-bonded interactions are assumed to be pairwise
decomposable[98]. As a result, the total force on a cluster can be rewritten as
a sum of pairwise additive forces

F𝐼 ≈
∑︁
𝐽 ≠𝐼

F𝐼 𝐽 . (3.16)

Moreover, the fluctuating force is assumed to be pairwise and uncorrelated
in time by employing the Markovian approximation. The multi-body interac-
tions[99] of the fluctuating terms are also negligible, so that it can be written
as

𝛿F𝐼 ≈
∑︁
𝐽 ≠𝐼

𝛿F𝐼 𝐽 . (3.17)

As a result, the memory kernel can be approximated by an additive pairwise
expression

⟨[𝛿F𝐼 (𝑡 − 𝑠)] [𝛿F𝐽 (0)]𝑇 ⟩V𝐽 (𝑠) ≈
∑︁
𝐽 ≠𝐼

[𝛿F𝐼 𝐽 (𝑡 − 𝑠)] [𝛿F𝐼 𝐽 (0)]𝑇 ⟩V𝐼 𝐽 (𝑠), (3.18)

where V𝐼 𝐽 = V𝐽 − V𝐼 is the relative velocity between particle 𝐼 and 𝐽 . In the
end, the EOM of the CG particle in eq.(3.11) can be expressed in a Markovian
pairwise additive form

d
d𝑡 P𝐼 =

∑︁
𝐽 ≠𝐼

F𝐼 𝐽 (𝑡) =
∑︁
𝐽 ≠𝐼

[⟨F𝐼 𝐽 ⟩ − 𝛾𝐼 𝐽 V𝐼 𝐽 (𝑡) + 𝛿F𝐼 𝐽 (𝑡)] . (3.19)
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3. Dynamically consistent coarse grained Molecular Dynamics

3.3. Isotropic Mori-Zwanzig Dissipative Particle
Dynamics approach

This section presents the procedure for implementing an isotropic CG model
using theMZ approach, where a cluster of atoms is represented by an isotropic
spherical CG particle. The procedure presented here follows Li’s approach,
which constructs the isotropic CG forcefield using unconstrained MD systems
of star polymer melts to avoid the effects from artificial constraints[100]. In
an isotropic system, the pairwise force between CG particle pair is distance-
dependent and the EOM can be expressed in a distance-dependent form

d
d𝑡 P𝐼 =

∑︁
𝐽 ≠𝐼

[⟨F𝐼 𝐽 (R𝐼 𝐽 )⟩ − 𝛾𝐼 𝐽 (R𝐼 𝐽 )V𝐼 𝐽 (𝑡) + 𝛿F𝐼 𝐽 (R𝐼 𝐽 ) (𝑡)], (3.20)

where R𝐼 𝐽 = R𝐽 − R𝐼 is the relative position between the COM of CG particle
𝐼 and 𝐽 . A system of star polymer is employed as the microscopic system, and
a spherical CG particle is used to represent each star polymer, as presented
in fig.(3.3).

Figure 3.3.: Schematic diagram to illustrate star polymer represented by a spherical CG particle
in coarse-graining, where 𝑁𝑐 is the total number of atoms in the CG bead (reproduced from
[100] with permission from the Royal Society of Chemistry)

To extract the information from themicroscopic system, a melt of star polymer
is sampled, such that the interactions and dynamics between the cluster can
be evaluated from the MD trajectories.

To compute the conservation force in eq.(3.20) from the star polymer system,
a binning method is employed, in which the distance between two molecules
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3.3. Isotropic Mori-Zwanzig Dissipative Particle Dynamics approach

is divided into many bins with width 𝛿 . As a result, the molecule pair 𝐼 and 𝐽
with intermolecular distance between 𝑅𝐼 𝐽 + 𝛿

2 and 𝑅𝐼 𝐽 − 𝛿
2 is considered as a

pair within the bin of distance 𝑅𝐼 𝐽 . By averaging the interaction force over all
pairs in the bins, the distance-dependent conservation force can be computed.
Moreover, the conservation force is approximated by an empirical function
in order to make the computation efficient. Typically, a bell-shaped function
is employed to approximate the average conservation force[100].

The frictional force is computed from the product of the auto-correlation
function of the fluctuating force and the relative velocity between cluster as
in eq.(3.18). The fluctuating force is given by

𝛿F𝐼 𝐽 = F𝐼 𝐽 − ⟨F𝐼 𝐽 ⟩, (3.21)

where F𝐼 𝐽 is the instantaneous force exerted on particle 𝐼 by 𝐽 , and ⟨F𝐼 𝐽 ⟩ is the
ensemble average of F𝐼 𝐽 that is computed in the conservative force. Moreover,
as presented in fig.(3.4), the fluctuating force can be decomposed into radial
and perpendicular components

𝛿F𝐼 𝐽 = 𝛿F
∥
𝐼 𝐽
+ 𝛿F⊥𝐼 𝐽 , (3.22)

where 𝛿F∥
𝐼 𝐽

is the radial component and 𝛿F⊥
𝐼 𝐽

is the perpendicular component
of the fluctuating force, respectively. The memory tensor, which is the integral
of the auto-correlation function of the fluctuating force, can be computed
separately along radial and perpendicular direction

𝜙 ∥ (R𝐼 𝐽 ) = 𝛽
∫ ∞

0
𝑑𝑡 ⟨𝛿F∥

𝐼 𝐽
(𝑡) · 𝛿F∥

𝐼 𝐽
(0)⟩, (3.23)

𝜙⊥ (R𝐼 𝐽 ) = 𝛽
∫ ∞

0
𝑑𝑡 ⟨𝛿F⊥𝐼 𝐽 (𝑡) · 𝛿F⊥𝐼 𝐽 (0)⟩, (3.24)

where 𝜙 ∥ (R𝐼 𝐽 ) and 𝜙⊥ (R𝐼 𝐽 ) are the radial and perpendicular components of
the friction coefficient, respectively. Similar to the conservative force, the
average frictional coefficient, which is a function of the pair separation 𝑅𝐼 𝐽 ,
is approximated by a bell-shaped function. Furthermore, the random force
can be computed from the frictional force via the fluctuation-dissipation
theorem.
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3. Dynamically consistent coarse grained Molecular Dynamics

Figure 3.4.: Illustration of the pairwise interaction force between two CG particles, which is
decomposed into a radial component and two perpendicular components (reproduced from [100]
with permission from the Royal Society of Chemistry).

In the end, the equation of motion of the CG particle in the isotropic MZDPD
model is given by

dP𝐼/d𝑡 =
∑︁
𝐽 ≠𝐼

F𝐼 𝐽 =
∑︁
𝐽 ≠𝐼

𝑤𝐶 (R𝐼 𝐽 )e𝐼 𝐽

+
∑︁
𝐽 ≠𝐼

𝑤
∥
𝐷
(R𝐼 𝐽 ) (e𝐼 𝐽 · V𝐼 𝐽 )e𝐼 𝐽

+
∑︁
𝐽 ≠𝐼

𝑤⊥
𝐷 (R𝐼 𝐽 ) [V𝐼 𝐽 − (e𝐼 𝐽 · V𝐼 𝐽 )e𝐼 𝐽 ]

+
∑︁
𝐽 ≠𝐼

𝑤⊥
𝐷 (R𝐼 𝐽 ) (

R𝐼 𝐽
2 × (ΩΩΩ𝐼 +ΩΩΩ 𝐽 ))

+
∑︁
𝐽 ≠𝐼

1
√

3
𝜎∥𝑤

∥
𝑅
(R𝐼 𝐽 )Δ𝑡−1/2𝑡𝑟 {𝑑W𝐼 𝐽 }e𝐼 𝐽

+
∑︁
𝐽 ≠𝐼

√
2𝜎⊥𝑤⊥

𝑅 (R𝐼 𝐽 )Δ𝑡−1/2𝑑W𝐴
𝐼 𝐽 · e

⊥
𝐼 𝐽 ,

(3.25)

where e𝑖 𝑗 is the unit vector of the radial direction, i.e. e𝐼 𝐽 =
R𝐼 𝐽

|R𝐼 𝐽 | ,𝑤𝐶 (R𝐼 𝐽 ) is
the weighting function of the conservative force,𝑤 ∥

𝐷
(R𝐼 𝐽 ) and𝑤⊥

𝐷
(R𝐼 𝐽 ) are

the weighting function of the frictional coefficient along the radial direction
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and perpendicular direction respectively, and ΩΩΩ𝐼 and ΩΩΩ 𝐽 are the angular
velocity of CG particle 𝐼 and 𝐽 . Moreover, 𝑑W𝐼 𝐽 is a matrix of independent
Wiener increments and 𝑑W𝐴

𝐼 𝐽
= 1

2 (𝑑W
𝜇𝜈

𝐼 𝐽
− 𝑑W𝜈𝜇

𝐼 𝐽
) is an antisymmetric noise

matrix. In order to satisfy the fluctuation-dissipation theorem, it requires
𝜎∥ = 𝜎⊥ = 2𝑘𝐵𝑇 and relates the weighting functions of𝑤𝑅 to𝑤𝐷 , such that

𝑤
∥
𝑅
=

√︃
𝑤

∥
𝐷
and𝑤⊥

𝑅
=

√︃
𝑤⊥
𝐷
.

Figure 3.5.: Outline of the mesoscopic forcefield construction in the MZDPD approach, in which
multiple MD trajectories are employed to optimize the forcefield parameters (adapted from [100]
with permission from the Royal Society of Chemistry).
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3.4. Anisotropic Mori-Zwanzig Dissipative Particle
Dynamics approach

The isotropic MZDPD model, like most coarse-grained models, exhibits inac-
curacies when representing non-spherical molecular structures using spher-
ical CG particles. This is especially problematic for molecules with ring
structures, such as benzene and pentacene. The spherical CG beads poorly
approximate the geometric shape of these molecules, leading to significant
errors in isotropic CG models.

To address this limitation, the Gay-Berne (GB) potential was developed[32,
33]. Berne and Pechukas[101] proposed this Lennard-Jones potential exten-
sion for aspherical particles by introducing range parameter and strength
parameter, which represent the shape and size of an ellipsoidal particle, to
describe the interparticle interactions in terms of the relative orientation with
respect to the particles’ principal axis. Golubkov proposed a model combining
the GB potential and the point multipole expansion to construct the CG force-
field for benzene and methanol[102]. Tripathy extracted GB parameters for
poly-aromatic hydrocarbons via a force matching approach[103]. Moreover,
Tanis[104] and Goujon[105] illustrated that treatment of anisotropic effects at
the CG level improves structural and static properties. However, the dynami-
cal properties of the anisotropic CG system is not guaranteed to be consistent
with the underlying atomistic system, since the pairwise non-conservative
force is also anisotropic for ellipsoidal CG particles[106].

In this section, I extend the MZDPD formalism to anisotropic system, aiming
to improve the dynamical accuracy of aspherical particles at the CG level.
Here I construct a molecule-specific anisotropic forcefield that maps directly
from the atomistic model and accurately reproduces the dynamical properties
at the CG level. To preserve the dynamics, the anisotropic forcefield must
properly represent the interactions in terms of distance and relative orien-
tation, implying that much more complex potentials must be fitted than in
the isotropic model. The EOM of the anisotropic CG particle via MZDPD
approach is given by

d
d𝑡 P𝐼 =

∑︁
𝐽 ≠𝐼

[⟨F𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 )⟩ − 𝛾𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 )V𝐼 𝐽 (𝑡) + 𝜎𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 )𝜉𝐼 𝐽 ],

(3.26)
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where u𝐼 and u𝐽 are the unit vectors of the orientation of ellipsoid 𝐼 and
𝐽 respectively, as shown in fig.(3.6a). The conservative force F𝐼 𝐽 and the
frictional tensor 𝛾𝐼 𝐽 are dependent on R𝐼 𝐽 , u𝐼 and u𝐽 . 𝜎𝐼 𝐽 is related to 𝛾𝐼 𝐽
through the fluctuation-dissipation relation and 𝜉𝐼 𝐽 is the Gaussian random
variable with zero mean and unit variance.

In the following, I will present the procedure to coarse-grain an anisotropic
system consisting of many anisotropic molecules at the atomistic level. To
illustrate the procedure, I consider benzene as our system of interest, such
that the mesoscopic forcefield is constructed directly from the trajectories of
a benzene MD simulation.

Figure 3.6.: Schematic diagram of coarse-graining an anisotropic model. (a) A benzene molecule
is represented by an ellipsoidal CG particle(in orange). Red arrows indicate the normal vector of
the symmetry plane. (b) Coarse-graining of anisotropic molecules in a simulation box.

3.4.1. Parameterization procedures

3.4.1.1. Microscopic system

In order to generate the microscopic data for coarse-graining, an atomistic
system of 1000 benzene molecules is considered. The atomistic MD simu-
lations was performed using LAMMPS[107] (large-scale atomic/molecular
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massively parallel simulator) and the forcefield parameters for the intra- and
inter-molecular interaction were obtained from the OPLS forcefield[10]. The
cutoff of both Lennard-Jones (LJ) potential and Coulomb potential are 11
𝐴 and the electrostatic force is calculated with the Particle Particle Particle
Mesh method (P3M) with real space cutoff of 11 𝐴.

For the details of the system configuration, 1000 benzene was simulated in a
periodic simulation boxwith length 52.9451𝐴, which results in a density of the
system of 0.874𝑔/𝑐𝑚3. An arbitrary initial configuration was prepared and the
NVT ensemble was performed until the system reached a thermal equilibrium.
Further NVT simulations were performed to generate trajectories that were
used to construct the anisotropic mesoscopic forcefield. Moreover, the time
scale of the force and the momenta were computed and compared to ensure
that the timescales are well-separated, allowing the system to be treated as a
Markovian process.

3.4.1.2. Construction of conservative force

In order to represent benzene molecules by oblate ellipsoidal particles, the
intermolecular interaction between the ellipsoid pairs is described by the uni-
axial Gay-Berne (GB) potential[33, 101], which represents the size, shape and
interaction strength. Each GB particle is characterized by its COM position
and an orientation defined by the normal vector to the molecule’s symmetry
plane. Moreover, a GB particle pair is characterized by the pair distance |R𝐼 𝐽 |
and angles formed by the direction of the distance vector e𝐼 𝐽 =

R𝐼 𝐽

|R𝐼 𝐽 | and
the normal vectors u𝐼 and u𝐽 , eg. Θ = {𝜃𝛼 , 𝜃𝛽 , 𝜃𝛾 }, with 𝜃𝛼 = cos−1 (u𝐼 · u𝐽 ),
𝜃𝛽 = cos−1 (e𝐼 𝐽 · u𝐼 ) and 𝜃𝛾 = cos−1 (e𝐼 𝐽 · u𝐽 ) as shown in fig.(3.7).

To construct the conservative forcefield, the force-matching approach[103] is
employed, in which the CG conservative forcefield is approximated by com-
paring to the atomistic MD trajectories. By employing the binning method,
the distance |R𝐼 𝐽 | and the orientation Θ = {𝜃𝛼 , 𝜃𝛽 , 𝜃𝛾 } between two molecules
are divided into many bins with width of 𝛿𝑅 , 𝛿𝛼 , 𝛿𝛽 and 𝛿𝛾 respectively. The
magnitude of the conservative force F𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 ) is then obtained by aver-
aging the results over the pairs with distance and orientation in the specific

42



3.4. Anisotropic Mori-Zwanzig Dissipative Particle Dynamics approach

Figure 3.7.: Schematic illustration to the configuration of oblate ellipsoidal CG particle pairs.
(a) Each CG pair is characterized by the pair distance |R𝐼 𝐽 | and the relative orientation Θ =

{𝜃𝛼 , 𝜃𝛽 , 𝜃𝛾 }, (b) the illustration of three configurations, i.e. side-to-side(STS), face-to-face(FTF)
and T-shape(T).

distance bin and orientation bin. The LJ interaction between pair of GB
particles 𝐼 and 𝐽 is approximated by the GB potential, which is given by

𝑈𝐺𝐵 (R𝐼 𝐽 ,u𝐼 , u𝐽 ) = 4𝜖 (e𝐼 𝐽 , u𝐼 , u𝐽 ) × [R12 − R6],

R =
𝑑𝑤𝜎0

|R𝐼 𝐽 | − 𝜎 (e𝐼 𝐽 , u𝐼 , u𝐽 ) + 𝑑𝑤𝜎0
, (3.27)

where 𝜎 and 𝜖 are the range parameter and the strength parameter, respec-
tively. The range parameter describes the size and the shape of the ellipsoid
and is determined by two variables 𝑙 and 𝑑 , which represent the length and
the width of an ellipsoid, respectively. The strength parameter represents the
interaction strength for different orientations and is determined by another
two parameters 𝜖0 and 𝜖𝐹

𝜖𝑆
, which refer to the well-depth of cross configuration

and the ratio between the well-depth of face-to-face configuration 𝜖𝐹 and that
of side-to-side configuration 𝜖𝑆 , respectively[108]. The term 𝑑𝑤 is introduced
to control the "softness" of the potential[109]. Therefore, there are in total
five parameters to fully specify a GB potential. The full expressions for 𝜎 and
𝜖 can be found in the Appendix.
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3. Dynamically consistent coarse grained Molecular Dynamics

TheGay-Berne force is computed from the gradient of the Gay-Berne potential
and can be decomposed into the components along the direction of three
non-orthogonal unit vectors e𝐼 𝐽 , u𝐼 and u𝐽

F𝐺𝐵 (R𝐼 𝐽 , u𝐼 , u𝐽 ) = −∇𝑈𝐺𝐵 (R𝐼 𝐽 , u𝐼 , u𝐽 ),
= 𝑓𝑅e𝐼 𝐽 + 𝑓𝑢𝐼 u𝐼 + 𝑓𝑢 𝐽

u𝐽 , (3.28)

where 𝑓𝑅 , 𝑓𝑢𝐼 , 𝑓𝑢 𝐽
are the components of the total Gay-Berne force defined

as
𝑓𝑅 = − 𝜕𝑈𝐺𝐵

𝜕R𝐼 𝐽
,

𝑓𝑢𝐼 = − 𝜕𝑈𝐺𝐵

𝜕(e𝐼 𝐽 · u𝐼 )
,

𝑓𝑢 𝐽
= − 𝜕𝑈𝐺𝐵

𝜕(e𝐼 𝐽 · u𝐽 )
.

(3.29)

To extract five parameters at the same time is inefficient, a small deviation from
the MD data can result in unstable parameterization. Therefore, a two-step
parameterization was performed to extract the GB parameters as illustrated in
fig.(3.8). I first considered each relative orientation Θ = {𝜃𝛼 , 𝜃𝛽 , 𝜃𝛾 } separately
and extracted the corresponding parameters 𝜎 and 𝜖 . By fixing the relative
orientation, the GB potential depends only on the pair distance |R𝐼 𝐽 |. The GB
force of a pair with fixed relative orientation is given by the gradient of the
GB potential

F𝐺𝐵 (R𝑖 𝑗 , 𝜖, 𝜎) = − 𝑑𝑈𝐺𝐵
𝑑 |R𝐼 𝐽 |

= −4 𝜖

𝑑𝑤𝜎0
[12R13 − 6R7] . (3.30)

A set of 𝜎 and 𝜖 in terms of the relative orientation was obtained from the
first parameterization. I utilized this data set of 𝜎 and 𝜖 to perform the second
parameterization and extracted the GB parameters from the expression of 𝜎
and 𝜖 in Appendix.

Fig.(3.9) illustrates how the Lennard-Jones forces are approximated by the
Gay-Berne force using the two-step parameterization, where I only present
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3.4. Anisotropic Mori-Zwanzig Dissipative Particle Dynamics approach

Figure 3.8.:Outline of two-step parameterization. The range parameter 𝜎 and strength parameter
𝜖 are optimized for each individual relative orientation 𝑘 = 1 . . . 𝑀 in the first step. The GB
parameters, e.g., 𝑑 , 𝑙 , 𝜖0 and 𝜖𝐹

𝜖𝑆
are parameterized from the data set of 𝜎 and 𝜖 in the second

step.

the results of three relative orientations: face-to-face(FTF), side-to-side(STS)
and T-shape, in the thesis. In the top panel, a set of 𝜎 and 𝜖 were obtained
separately by fitting eq.(3.30) in the first parameterization. The data set of 𝜎
and 𝜖 to were then used to perform the second parameterization, such that
the GB parameters 𝑑𝑤 , 𝑑 , 𝑙 , 𝜖0 and 𝜖𝐹

𝜖𝑆
were obtained by fitting the expression

of 𝜎 and 𝜖 in Appendix, as shown in the middle panel. In the end, the fitting
of the LJ force with the optimized GB parameters is presented in the bottom
panel.

For the electrostatic interactions between the oblate ellipsoidal particles,
the long-range electrostatic force is approximated by an electric multipole
potential (EMP)[102, 110]. In order to replace the charge distribution of the
molecule at the atomistic level, a multipole expansion is placed at the COM
of particle. The potential energy between two multipole sites is given by a
polytensor form[111]

𝑈EMP = M𝑡
𝑖𝑇𝑖 𝑗M 𝑗 , (3.31)

where
M = [𝑞, 𝑑𝑥 , 𝑑𝑦, 𝑑𝑧, 𝑄𝑥𝑥 , 𝑄𝑥𝑦, . . . , 𝑄𝑧𝑧], (3.32)
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3. Dynamically consistent coarse grained Molecular Dynamics

Figure 3.9.: The upper panel shows (a) the Lennard-Jones force |F𝐿𝐽 | versus the pair distance
|R𝐼 𝐽 | for fixed relative orientation in the first parameterization. The middle panel shows (b) the
fitting of the range parameter 𝜎 and (c) the fitting of the strength parameter 𝜖 in the second
parameterization. The bottom panel shows (d) the fitting of the Lennard-Jones force |F𝐿𝐽 | versus
the pair distance
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3.4. Anisotropic Mori-Zwanzig Dissipative Particle Dynamics approach

Figure 3.10.: The fitting of the electrostatic force |F𝐸𝑀𝑃 | versus the pair distance

denotes thatM,𝑞,𝑑 ,𝑄 aremultipole expansion, charge, dipole and quadrupole
moments, respectively. For large separation, the multipole expansion can
reproduce an accurate electrostatic potential. However, when the CG parti-
cles are close to each other, the point multipole expansion fails to accurately
represent the actual overlap of charge distribution. This results in a penetra-
tion error. To address this, a damping function is employed to modify the
short-range multipole[112]

𝜆 = 1 − 𝑒−𝑎𝑢3
, (3.33)

where 𝑢 = |R𝐼 𝐽 |/(𝛼𝑖𝛼 𝑗 )1/6 is the effective separation between CG particles 𝐼
and 𝐽 , and 𝛼 indicates the "size" of the particle. The factor 𝑎 is a dimensionless
parameter that controls the damping strength and was set to 0.49 in this thesis.
To avoid the penetration error, the damping function modulates the regular
formula of the multipole potential by replacing the point multipole with a
smeared charge distribution. The electric multipole force of the ellipsoid pair
is given by

FEMP = −𝜆∇𝑈EMP, (3.34)

which is also orientation-dependent. The electrostatic force of the ellipsoidal
pair is fitted by the electric multipole force as shown in fig.(3.10). The total
pairwise conservative force between the CG particle is approximated by the
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3. Dynamically consistent coarse grained Molecular Dynamics

sum of the GB force and the electric multipole force, i.e. ⟨F𝐼 𝐽 ⟩ = F𝐺𝐵 + FEMP.
Fig.(3.11) depicts the fitting result for the total pairwise conservative force.

Figure 3.11.: The fitting of the total conservative force ⟨F⟩ versus the pair distance

3.4.1.3. Construction of non-conservative force

In the MZ formalism, the non-conservative force recovers the missing degrees
of freedom by an orthogonal operator 𝑄 . To construct the non-conservative
forcefield, the fluctuating force on each CG particle is considered. To compute
the magnitude of the fluctuating force 𝛿𝐹 (R𝐼 𝐽 , u𝐼 , u𝐽 ), I employed the same
binning method for the conservation force, where the distance bins and
orientation bins are considered, as presented in the previous section.

Similar to the conservative forces, the components of the fluctuating forces
along the direction of three non-orthogonal unit vectors e𝐼 𝐽 , u𝐼 and u𝐽 are
given by

𝛿F𝑅𝐼 𝐽 = (𝛿F𝐼 𝐽 · e𝐼 𝐽 )e𝐼 𝐽 ,
𝛿F𝑢𝐼

𝐼 𝐽
= (𝛿F𝐼 𝐽 · u𝐼 )u𝐼 ,

𝛿F𝑢 𝐽

𝐼 𝐽
= (𝛿F𝐼 𝐽 · u𝐽 )u𝐼 ,

(3.35)
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3.4. Anisotropic Mori-Zwanzig Dissipative Particle Dynamics approach

respectively. The frictional tensor between CG particle 𝐼 and 𝐽 can be com-
puted from the memory kernel which is determined by the time convolution
of the fluctuating force[99], i.e.

∫ ∞
0 ⟨𝛿F𝐼 𝐽 (𝑡)𝛿F𝐼 𝐽 (0)𝑇 ⟩𝑑𝑡 . As a result, the fric-

tional coefficients along three directions e𝐼 𝐽 , u𝐼 and u𝐽 are computed from
the components of the fluctuating force in eq.(3.35) and are given by

ΦΦΦ𝑅𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 ) = 𝛽
∫ ∞

0
⟨𝛿F𝑅𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 ; 𝑡)𝛿F

𝑅
𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 ; 0)𝑇 ⟩𝑑𝑡,

ΦΦΦ𝑢𝐼
𝐼 𝐽
(R𝐼 𝐽 , u𝐼 , u𝐽 ) = 𝛽

∫ ∞

0
⟨𝛿F𝑢𝐼

𝐼 𝐽
(R𝐼 𝐽 , u𝐼 , u𝐽 ; 𝑡)𝛿F𝑢𝐼𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 ; 0)𝑇 ⟩𝑑𝑡,

ΦΦΦ
𝑢 𝐽

𝐼 𝐽
(R𝐼 𝐽 , u𝐼 , u𝐽 ) = 𝛽

∫ ∞

0
⟨𝛿F𝑢 𝐽

𝐼 𝐽
(R𝐼 𝐽 , u𝐼 , u𝐽 ; 𝑡)𝛿F

𝑢 𝐽

𝐼 𝐽
(R𝐼 𝐽 , u𝐼 , u𝐽 ; 0)𝑇 ⟩𝑑𝑡 .

(3.36)

In the integral, the correlation functions are integrated from time zero to
infinity. In practice, Kirkwood introduced a cutoff upper limit 𝑡0[113], which
should be large enough to attain a plateau of the integral in eq.(3.36), but
short enough that the correlation function does not decay appreciably to
zero[114]. In this thesis, the upper time limit was set at 𝑡0 = 40𝑓 𝑠 , where the
plateau is attained as shown in fig.(3.12). As the distance and the relative
orientation of the particle pairs change with time, I only considered the pairs
that remain in the same distance bin and orientation bin over time, so that
the ensemble averages of the fluctuating force expectation value over time
can be computed.

In order to simplify the computation, the frictional tensor is assumed to be
non-zero along only one direction. As a result, it can be reduced to a vector
and decomposed into three components along e𝐼 𝐽 , u𝐼 and u𝐽 directions

ΦΦΦ𝐼 𝐽 = 𝜑
𝑅
𝐼 𝐽 e𝐼 𝐽 + 𝜑

𝑢𝑖
𝐼 𝐽
u𝐼 + 𝜑

𝑢 𝐽

𝐼 𝐽
u𝐽 , (3.37)

where the frictional coefficient along each direction can be expressed by the
components

|ΦΦΦ𝑅𝐼 𝐽 | = 𝜑
𝑅
𝐼 𝐽 + 𝜑

𝑢𝐼
𝐼 𝐽
e𝐼 𝐽 · u𝐼 + 𝜑

𝑢 𝐽

𝐼 𝐽
e𝐼 𝐽 · u𝐽 ,

|ΦΦΦ𝑢𝐼
𝐼 𝐽
| = 𝜑𝑅𝐼 𝐽 e𝐼 𝐽 · u𝐼 + 𝜑

𝑢𝐼
𝐼 𝐽

+ 𝜑𝑢 𝐽

𝐼 𝐽
u𝐼 · u𝐽 ,

|ΦΦΦ𝑢 𝐽

𝐼 𝐽
| = 𝜑𝑅𝐼 𝐽 e𝐼 𝐽 · u𝐽 + 𝜑

𝑢𝐼
𝐼 𝐽
u𝐼 · u𝐽 + 𝜑

𝑢 𝐽

𝐼 𝐽
.

(3.38)
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3. Dynamically consistent coarse grained Molecular Dynamics

Figure 3.12.: Time correlations of the fluctuating force for one of the relative orientation, i.e.
Θ = {35◦, 45◦, 75◦}, along the direction of (a) the unit vector of the pair distance e𝐼 𝐽 (b) the
normal vector of particle 𝐼 u𝐼 (c) the normal vector of particle 𝐽 u𝐽 . The insets show the memory
kernel along the specific direction.

The expressions of𝜑𝑅
𝐼 𝐽
, 𝜑𝑢𝐼
𝐼 𝐽

and𝜑𝑢 𝐽

𝐼 𝐽
are presented in detail in the Appendix. By

obtaining the value of the frictional coefficient components, The magnitude
and direction of the frictional kernel can be computed and the dissipative
force between the neighbouring CG particles can also be determined.

In order to approximate the frictional kernel, a modified repulsive Gay-Berne
(mrGB) functional is proposed in this thesis, in which the attractive part
of the GB functional form is removed and the repulsive part is modified to
match the friction profile. Since the frictional force is always positive for all
orientations, the attractive part of the regular GB potential is excluded in
the mrGB functional. The power of the range parameter and the well-depth
parameter are also adjusted based on the short-range and hard nature of
the frictional force. As a result, the mrGB functional is able to describe the
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3.4. Anisotropic Mori-Zwanzig Dissipative Particle Dynamics approach

Figure 3.13.: (a) The top panel shows (a) the memory kernel ΦΦΦ𝐼 𝐽 versus the pair distance |R𝐼 𝐽 |
for fixed relative orientation in the first parameterization. The middle panel shows (b) the
fitting of the range parameter 𝜎 and (c) the fitting of the strength parameter 𝜖 in the second
parameterization. The bottom panel shows (d) the fitting result of the memory kernelΦΦΦ𝐼 𝐽 versus
the pair distance |R𝐼 𝐽 |

frictional interaction between the ellipsoidal particle pairs and is given by the
form

𝑈𝑚𝑟𝐺𝐵 (R𝐼 𝐽 , u𝐼 , u𝐽 ) =4𝜖8 (e𝐼 𝐽 , u𝐼 , u𝐽 ))

× [( 𝑑𝑤

|R𝐼 𝐽 | − 𝜎 (e𝐼 𝐽 , u𝐼 , u𝐽 ) + 𝑑𝑤𝜎0
)4], (3.39)
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and the frictional kernel is given by the gradient of the mrGB functional

ΦΦΦ𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 ) = −∇𝑈𝑚𝑟𝐺𝐵 (R𝐼 𝐽 , u𝐼 , u𝐽 ). (3.40)

Similar to the parameterization of the conservative forces, the two-step param-
eterization was employed to parameterize the frictional kernel. By fixing the
relative orientation, the frictional kernel depends only on the pair distance

ΦΦΦ𝐼 𝐽 (R𝐼 𝐽 , u𝐼 , u𝐽 ) = −d𝑈𝑚𝑟𝐺𝐵
d|R𝐼 𝐽 |

= −16𝜖8R5

𝑑𝑤𝜖0
.

(3.41)

The parameters 𝜎 and 𝜖 of frictional kernel were extracted for each relative
orientation Θ = {𝜃𝛼 , 𝜃𝛽 , 𝜃𝛾 } in the first parameterization. Then a set of values
of 𝜎 and 𝜖 for different relative orientation were employed to fit the range
and the strength parameters 𝜎 and 𝜖 . The parameters of mrGB functional 𝑑𝑤 ,
𝑑 , 𝑙 , 𝜖0 and 𝜖𝐹

𝜖𝑆
can be obtained by fitting 𝜎 and 𝜖 presented in the Appendix.

The results of fitting the frictional kernel using the two-step parameterization
are presented in fig.(3.13).

3.4.1.4. Mesoscopic model

For an anisotropic MZDPD particle, the fixed body-frame of the particle
along its normal vector is considered. The rotational matrix R𝑖 (𝑡) represents
a rotational transformation of the normal vector from fixed body-frame of
particle 𝐼 to the simulation box frame at time 𝑡 . Given that the ellipsoidal
particle has the semi-principal axes with length 𝐿𝑎 , 𝐿𝑏 and 𝐿𝑐 , a shape matrix
S, which indicates the size and the shape of particle, and a quadratic form
matrixM can be defined

S = 𝑑𝑖𝑎𝑔(𝐿𝑎, 𝐿𝑏, 𝐿𝑐 ),
M𝑖 = R

𝑇
𝑖 S

2
𝑖R𝑖 ,

M𝑗 = R
𝑇
𝑗 S

2
𝑗R𝑗 .

(3.42)
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The time evolution of the angular motion of an ellipsoidal particle is governed
by the angular equation of motion

dL𝐼/d𝑡 =
∑︁
𝑖≠𝑗

T𝐼 𝐽 =
∑︁
𝑖≠𝑗

G𝐼 𝐽 R𝐼 𝐽 × F⊥𝐼 𝐽 , (3.43)

where T𝑖 𝑗 is the torque exerted on particle 𝐼 by 𝐽 and F⊥
𝐼 𝐽
is the component

of the pairwise force acting on particle 𝐼 by 𝐽 perpendicular to the radial
direction of two particles. G𝐼 𝐽 is a prefactor matrix that accounts for the
contributions of the interacting particles with different sizes and shapes[106].
It is considered as a generalization of the scalar factor defined in the isotropic
single-particle DPD method[115]. The prefactor matrix is defined as G𝐼 𝐽 =
M−1
𝑖 (M−1

𝑖 +M−1
𝑗 )−1, which satisfies the condition G𝐼 𝐽 + G𝐽 𝐼 = I. Moreover,

the relative angular velocity ΩΩΩ𝐼 𝐽 between ellipsoidal DPD particles is given
by

ΩΩΩ𝐼 𝐽 = 𝜔𝜔𝜔 𝐼 × G𝐼 𝐽 R𝐼 𝐽 +𝜔𝜔𝜔 𝐽 × G𝐽 𝐼R𝐼 𝐽 , (3.44)

where𝜔𝜔𝜔 𝐼 and𝜔𝜔𝜔 𝐽 are the angular velocity of particle 𝐼 and 𝐽 , respectively.

The translational equation of motion governing the motion of an anisotropic
MZDPD particle is given by

dP𝐼/d𝑡 =
∑︁
𝐽 ≠𝐼

F𝐼 𝐽 =
∑︁
𝐽 ≠𝐼

𝑊𝐶 (R𝐼 𝐽 , u𝐼 , u𝐽 )e𝐶𝐼 𝐽

+
∑︁
𝐽 ≠𝐼

𝑊
∥
𝐷
(R𝐼 𝐽 , u𝐼 , u𝐽 ) (e𝐼 𝐽 · V𝐼 𝐽 )e𝐼 𝐽

+
∑︁
𝐽 ≠𝐼

𝑊
⊥,𝑉
𝐷

(R𝐼 𝐽 , u𝐼 , u𝐽 ) [V𝐼 𝐽 − (e𝐼 𝐽 · V𝐼 𝐽 )e𝐼 𝐽 ]

+
∑︁
𝐽 ≠𝐼

𝑊
∥
𝐷
(R𝐼 𝐽 , u𝐼 , u𝐽 ) (e𝐼 𝐽 · ΩΩΩ𝐼 𝐽 )e𝐼 𝐽

+
∑︁
𝐽 ≠𝐼

𝑊
⊥,Ω
𝐷

(R𝐼 𝐽 , u𝐼 , u𝐽 ) [ΩΩΩ𝐼 𝐽 − (e𝐼 𝐽 · ΩΩΩ𝐼 𝐽 )e𝐼 𝐽 ]

+
∑︁
𝐽 ≠𝐼

1
√

3
𝜎∥𝑊

∥
𝑅
(R𝐼 𝐽 , u𝐼 , u𝐽 )Δ𝑡−1/2𝑡𝑟 {𝑑W𝐼 𝐽 }e𝐼 𝐽

+
∑︁
𝐽 ≠𝐼

√
2𝜎⊥𝑊 ⊥,Ω

𝑅
(R𝐼 𝐽 , u𝐼 , u𝐽 )Δ𝑡−1/2𝑑W𝐴

𝐼 𝐽 e
⊥
𝐼 𝐽 ,

(3.45)
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where e𝐶
𝐼 𝐽
is the unit vector of the conservative force acting on particle 𝐼 by

𝐽 in eq(3.28).𝑊𝐶 ,𝑊𝐷 and𝑊𝑅 are the weighting functions of F𝐶 , F𝐷 and F𝑅 ,
respectively:

𝑊𝐶 = |F𝐶 |,

𝑊
∥
𝐷
= ΦΦΦ𝐼 𝐽 · e𝐼 𝐽 ,

𝑊
⊥,𝑉
𝐷

= ΦΦΦ𝐼 𝐽 · e⊥,𝑉𝐼 𝐽 ,

𝑊
⊥,Ω
𝐷

= ΦΦΦ𝐼 𝐽 · e⊥,Ω𝐼 𝐽
,

(3.46)

where e⊥,𝑉
𝐼 𝐽

=
V𝐼 𝐽 −(e𝐼 𝐽 ·V𝐼 𝐽 )e𝐼 𝐽
|V𝐼 𝐽 −(e𝐼 𝐽 ·V𝐼 𝐽 )e𝐼 𝐽 | and e⊥,Ω

𝐼 𝐽
=

ΩΩΩ𝐼 𝐽 −(e𝐼 𝐽 ·ΩΩΩ𝐼 𝐽 )e𝐼 𝐽
|ΩΩΩ𝐼 𝐽 −(e𝐼 𝐽 ·ΩΩΩ𝐼 𝐽 )e𝐼 𝐽 | are the unit vec-

tor of the perpendicular component of V𝐼 𝐽 and ΩΩΩ𝐼 𝐽 to the radial direction.
The weighting function of conservative force𝑊𝐶 is the magnitude of con-
servative force.𝑊 ∥

𝐷
is the weighting function of frictional force along radial

direction, while𝑊 ⊥,𝑉
𝐷

and𝑊 ⊥,Ω
𝐷

are the weighting functions of frictional
force perpendicular to radial direction, where they are not necessarily equal
as their direction could be different. Similar to the isotropic model, the
fluctuation-dissipation theorem requires the relation 𝜎∥ = 𝜎⊥ = 2𝑘𝐵𝑇 and

relates the weighting functions of𝑊𝑅 to𝑊𝐷 , such that𝑊 ∥
𝑅

=

√︃
𝑊

∥
𝐷
and

𝑊
⊥,Ω
𝑅

=

√︃
𝑊

⊥,Ω
𝐷

.

In contrast to the isotropic model, the EOM of the anisotropic model depends
on both pair separation and relative orientation. The optimized parameters
of the AMZDPD model are shown in Table(A.1) in the Appendix. The results
are presented and analysed in the next section.

3.4.2. Performance of the model

In this section, I present and discuss the simulation results of the anisotropic
dissipative particle dynamics model via the MZ formulation (AMZDPD),
employing benzene as an example. The results of the AMZDPD model is
compared with the reference atomistic molecular dynamics and also other
coarse-graining methods, e.g., Martini 3[116], isotropic Mori-Zwanzig dissi-
pative particle dynamics (MZDPD)[100] and Gay-Berne coarse-graining(GB-
CG)[102, 103], to illustrate that the AMZDPD model yields a better perfor-
mance in terms of both static and dynamical properties. The simulation for
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all models were performed with 1000 benzene molecules in 0.1ns, and the
computational speeds are shown in table(3.1).

Table 3.1.: Computational speed of different models for 1000 benzene in 0.1ns
Models CPU time (second)
Atomistic MD 7817.22
Martini 3 108.66
MZDPD 76.63
GB-CG 102.05
AMZDPD 276.03

Martini3 is a CG forcefield which is widely used in biomolecular simulations.
Martini employs a four-to-one mapping scheme (on average four heavy atoms
and associated hydrogen atoms are mapped into one CG bead), and is pa-
rameterized using a mixed top-down and bottom-up strategy by matching
the thermodynamic partitioning data. Non-bonded interactions between the
neutral beads in Martini are only described by the Lennard-Jones potentials,
while the charged beads include the Coulomb interactions. For an aromatic
ring compound, such as benzene, 2-to-1 atoms-to-bead mappings are em-
ployed in the Martini 3 model[117]. Benzene is described by a three-bead
model, with each bead representing the two consecutive carbon atoms and
the associated hydrogen atoms. Based on the top-down approach, a bond
length of 0.29nm is used, resulting in a mass density for liquid benzene of
0.890𝑔𝑐𝑚−3, which is in a good agreement with the experimental value of
0.877𝑔𝑐𝑚−3.

The isotropic Mori-Zwanzig Dissipative particle dynamics (MZDPD) is a
bottom-up coarse-graining approach that constructs mesoscopic forcefield
directly from the microscopic dynamics. By grouping a cluster of atoms into a
spherical CG particle, the interactions between the neighbouring clusters are
computed. Based on the MZ formalism, the effective dynamics of the meso-
scopic system is projected directly from the underlying atomistic dynamics.
Since MZDPD employs spherical representation, the conservative and the
non-conservative interactions are only distance-dependence. The inclusion
of the anisotropy is the main difference between the MZDPD and AMZDPD
model.

Gay-Berne coarse-graining(GB-CG) is a bottom-up forcematchingmethod[103]
that treats molecules as soft uniaxial ellipsoidal particles interacting via a
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AMZDPD & CG-GBMartini 3MZDPD

Figure 3.14.: Schematic diagram of the mapping scheme of different CG models to coarse-grain a
benzene molecule: MZDPD employs spherical representation, Martini3 uses 2-to-1 atoms-to-bead
mappings, and GB-CG and AMZDPD employ oblate ellipsoidal CG bead.

generalized anisotropic GB potential[101]. The CG potential parameters are
extracted by comparing the cluster COM trajectories with the underlying
atomistic trajectories. For each snapshot, the interacting force between the
ellipsoid particle pairs was computed in terms of the separation and relative
orientation. The conservative force is parameterized in the same way as the
AMZDPD model by evaluating the potential of mean force from ensemble
averages. The difference between GB-CG and AMZDPD is that the dynamics
of GB-CG is determined by the Nosé–Hoover thermostat, whereas that of
AMZDPD is determined by the non-conservative forces, which compensate
the missing degrees of freedom during coarse-graining.

3.4.2.1. Static properties

In order to assess the performance of static properties of a CG model, the
radial distribution functions (RDF) is used to analyse the local structure of
benzene melt by comparing with the reference atomistic MD. The RDF is
defined as

𝑔(𝑅) = 𝑃 (𝑅)
𝑛(𝑅) , (3.47)

where 𝑃 (𝑅) is the probability to find another molecule at a distance 𝑅, and
𝑛(𝑅) is normalization factor such that the RDF becomes 1 for large separations
in a homogeneous system.
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Figure 3.15.: The radial distribution function (RDF) of (a) Martini3 (b) isotropic dissipative
particle dynamics via Mori-Zwanzig formalism(MZDPD) (c) Gay-Berne coarse grained(GB-
CG) (d) anisotropic dissipative particle dynamics via Mori-Zwanzig formalism (AMZDPD) in
comparison with the MD result

The results for the RDF of the different CG methods are shown in fig.(3.15).
The RDF result of Martini 3 is depicted in fig.(3.15a), which shows a less struc-
tured local environment than the atomistic MD. Since the benzene molecule
is represented by three spherical CG particles in the Martini3 model, this
mapping scheme is not flexible enough to adjust the length or the width of
the molecule separately. When the radius of the CG bead is increased, the
width and length of molecule are both increased. The interaction strength of
face-to-face or side-to-side orientation are closely related to the size and also
not flexible to adjust independently. Furthermore, the Martini3 parameters
are extracted using the top-down approach, there is no direct correlation
between the forcefield and local environment structure. Due to the inaccu-
rate representation of the size, the shape and the corresponding interaction
strength, Martini3 has shifted peaks in the RDF and the intensity of the peaks
is also much reduced.
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Fig.(3.15b) depicts the RDF result of MZDPD. As the parameters of theMZDPD
model are extracted from the bottom-up force-matching approach, the struc-
ture of the RDF curve of the MZDPD improves. This allows the forcefield
to capture the atomistic details directly and more accurately reproduce the
local structure. However, since the MZDPD model uses spherical represen-
tation, the anisotropic details of the CG particles are completely lost. For
example, the face-to-face and the side-to-side orientation are different in the
atomistic scale, but MZDPD is unable to distinguish the differences, resulting
in significant error due to the information loss.

In fig.(3.15c), the RDF of GB-CG model shows more accurate results for both
peak position and intensity. GB-CG possesses the flexibility to tune the
parameters of the generalized anisotropic GB potential, which represents the
length, width, and well-depth of the CG pairs, to approximate the potential
of mean force. GB-CG can accurately describe the molecule’s size, shape and
interaction strength, and thus the local environment structures are reproduced
as the atomistic details from the MD data are captured. However, as the
interaction in CG level is generally softer, the empirical fitting approach
results in a small but noticeable reduction in the peak intensity of the GB-CG
model.

The RDF of the AMZDPD model is shown in fig.(3.15d). Since the frictional
force and stochastic force in the AMZDPD affect only the dynamical proper-
ties, they do not contribute to the local structural properties. The conservative
forcefield of AMZDPD and GB-CG implemented in this thesis are identical,
therefore this gives the same RDF results for them. The small deviation
between the AMZDPD and GB-CG model shown in the figure is due to
the uncertainties, which can be minimized by taking more ensembles into
account.

3.4.2.2. Dynamical properties

To assess the performance of dynamical properties of a CG model, the veloc-
ity auto-correlation function (VACF) is computed for the evaluation. VACF
is a time-correlation function, which describes the dynamical correlation
in molecular motion in liquids, and is very useful in both theoretical and
experimental studies of dynamical and transport properties of liquids. The

58



3.4. Anisotropic Mori-Zwanzig Dissipative Particle Dynamics approach

Figure 3.16.:The velocity auto-correlation function (VACF) of (a) Martini3 (b) isotropic dissipative
particle dynamics via Mori-Zwanzig formalism (MZDPD) (c) Gay-Berne coarse grained(GB-
CG) (d) anisotropic dissipative particle dynamics via Mori-Zwanzig formalism (AMZDPD) in
comparison with the MD result

expression of the normalized VACF is given by the expectation value of the
relative velocity of a particle pair separated by a time interval 𝑡

𝐶𝑣 (𝑡) =
⟨V(𝑡) · V(0)⟩
⟨V(0) · V(0)⟩ , (3.48)

For short timescales, the particle exhibits ballistic behavior, where the VACF
decays exponentially. For long timescales, the velocity of the particle pair
decorrelates and the VACF eventually decays to zero. The oscillation of VACF
results from the correlated motion of the particles when the particles are
tightly packed.

The results of the VACF of all CG models and the reference MD are shown in
fig.(3.16). Fig.(3.16a) shows the VACF results of Martini3, which illustrates
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large differences betweenMartini 3 and the referenceMD. Themain difference
is that there is no negative region in the Martini3 VACF curve. The negative
value of VACF indicates a persistent tendency of the diffusing molecules
to invert their direction of motion and remain localized. In contrast to the
reference MD, the CG benzene pair in Martini3 shows a higher tendency to
diffuse away from one another instead of oscillating in the local region. The
error of Martini 3 in dynamical behaviour could be due to a too soft potential.
The inaccurate description of the CG potential, in particular the interaction
strength, in Martini3 results in too soft interactions between the benzene
pairs. When the molecules interact with a very soft environment, they would
easily diffuse away from the local region. As a result, there is a significant
error in the dynamical behaviour for the Martini3 model.

The VACF result of MZDPD is depicted in fig.(3.16b), where it still shows a
clear differences with the reference MD. For the VACF curve of MZDPD, it
decays rapidly in short time and this indicates that the frictional force is too
strong. Since theMZDPD employs a spherical representation, the CG particles
lose the anisotropic properties. In an anisotropic system, particles are able
to rotate until reaching an energetically favourable orientation. However,
an isotropic system, like MZDPD model, does not possess this anisotropic
property and instead averages the ensembles of all orientations. As the
MZDPD averages of all possible orientation of a spherical particle pair, the
particle experiences a stronger frictional force. As a result, the velocity of
the CG particle pair decorrelates very quickly and there is also no negative
region in the MZDPD’s VACF curve. Without the orientation-dependence, the
MZDPD model exhibits significant deviation in the dynamical behaviour.

The VACF of the GB-CG in fig.(3.16c) shows a better agreement with the
dynamical behaviour of the reference MD , where the negative region in the
VACF is presence. Since the potential of the GB-CG is constructed directly
from the atomistic trajectories, the interaction strength is more accurately
described and the potential of GB-CG is relatively harder than that of Mar-
tini3. Moreover, the frictional force in the GB-CG is softer than that of the
MZDPD by introducing the anisotropy into the system. However, there are
still errors in the dynamical behaviour between the GB-CG and the reference
MD, especially in the short-time regime, where the GB-CG’s VACF decays
much slower and reaches a less negative minimum compared to the reference
MD. The slow decay in the VACF curve indicates the change of particle’s
velocity is small, which implies the CG particle experiences less frictional
force to hinder its motion. Since the GB-CG simulation is performed in the
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NVT ensemble, each atom is coupled to a heat bath with a fluctuating term
and a frictional term to maintain the system’s temperature. As a result, the
dynamical behaviour in the GB-CG does not capture directly from the micro-
scopic system, resulting in an inaccurate description of the dynamical motion
in the GB-CG model.

Among the CG models, the AMZDPD shows the best results and is in good
agreement with the reference MD simulation, as shown in fig.(3.16d). The
AMZDPD model projects the fast degrees of freedom in the microscopic
system systematically into the dissipative and the stochastic term of the
non-conservative forcefield at the CG level. Therefore, the model is able
to reproduce the dynamical behaviour in the short time regime. Yet, there
is a deviation in the minimum of the VACF curve. This suggests the CG
forcefield is softer than that of the reference MD, which results in a weaker
backscattering effect.

In order to analyse the dynamical performance of CG methods with respect
to a physical observable, the diffusion constant 𝐷 is computed from the
non-normalized VACF via the Green-Kubo relations

𝐷 =
1
3

∫ ∞

0
⟨V(𝑡) · V(0)⟩𝑑𝑡 . (3.49)

Using the VACF data, the diffusivity can be computed in both atomistic MD
and CG methods. The results are presented in fig(3.17). The diffusivity curves
converge in long time limit and this gives the diffusion constant value for
different models. As shown in table(3.2), the AMZDPD model gives the value
of 2.28 which is the method that comes closest to the MD value 2.20 with
a error of 3.6%. This is also consistent with the VACF result, where the
AMZDPD model outperforms all other CG methods used in this thesis.

Table 3.2.: Diffusion constant of different models
Model Diffusion constant 𝐷 (error %)
Atomistic MD 2.20
Martini 3 7.41(+237)
MZDPD 0.99(-55)
GB-CG 4.35(+97.7)
AMZDPD 2.28(+3.6)
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Figure 3.17.: Diffusivity value of different CG methods in comparison with the MD result
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4. Simulation of mesoscopic
phenomena in soft matter

Mesoscopic phenomena refer to phenomena that occur at a spatio-temperal
scale ranging from 10−104nm and 1−106ns. At this scale, bothmicroscopic and
macroscopic features play significant roles, making modelling of mesoscopic
phenomena is highly challenging. In the previous chapter, the MZDPD model
was introduced to simulate mesoscopic phenomena, where it is able to capture
the atomistic details and reproduce consistent dynamical properties. Apart
from the MZDPD model, atomistic MD and continuum model can be applied
to qualitatively model particular mesoscopic systems using specific schemes.
In this chapter, I will present three examples of the mesoscopic phenomena
simulation using three different models: the AMZDPD model discussed in
ch.(3); a continuum model; and an atomistic MD.

4.1. Crystallization of pentacene

Crystallization of organic molecules is an important mesoscopic phenomena
in organic material production and has attracted interest from various fields
such as organic electronics[35, 118] and pharmaceutical research[119, 120].
Crystallization is a process based on the molecular self-assembly, where the
components spontaneously form ordered aggregates[34]. Self-assembly is
scientifically important as it enables the formation of complex structures
in biological system[121], including lipid membranes, structured nucleic
acids, and folded proteins, and the formation of regular structures for various
materials, such as molecular crystals[122] and liquid crystals[123].

Organic semiconductors (OSC) are vital for the production of high-performance
organic electronic devices in organic electronics. Specifically, organic thin-
film transistor(OTFT) is a key component that utilize an electric field to control
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the current across a semiconductor thin film[124, 125]. To fabricate OTFT,
OSCs are deposited on a substrate and then crystallized to form the organic
thin film. To understand the crystallization of organic molecules, numerous
studies have been carried out [120, 126]. Moreover, atomistic MD simulations
have been employed to study the order-emerging stage of crystallization in
the solution of pentacene and its derivatives[118].

However, crystallization is a mesoscopic behaviour, in which the scales of the
self-assembly process could range fromnanometers tomicrometers. Atomistic
MD enables the study of self-assembly mechanism at molecular level, but it is
computationally demanding for it to analyze the effects of crystallization on a
larger scale. Moreover, the anisotropic effect is eliminated in most CG models,
the crystallization of CG particles has not yet been achieved. Here, the system
of pentacene is considered, and the AMZDPD approach presented in ch.(3) is
employed to study the self-assembly and crystallization of pentacene at the
CG level.

4.1.1. Anisotropic CG model for pentacene

In the previous chapter, the AMZDPDmodel was demonstrated using benzene
as an example. Benzene is a molecule that is symmetric along the plane vector,
such that the orientation of the CG benzene is characterized only by the plane
vector. However, pentacene molecule has three principal axes with different
lengths. As a result, the anisotropic model is reformulated to describe the
dissimilar ellipsoidal CG particle, which is characterized by three principal
semi-axes of length 𝐿𝑎 , 𝐿𝑏 and 𝐿𝑐 , as shown in fig.(4.1).

Figure 4.1.: Schematic diagram of coarse-graining a pentacene molecule, in which a pentacene is
represented by a dissimilar ellipsoidal CG particle with principal semi-axes of length 𝐿𝑎 , 𝐿𝑏 and
𝐿𝑐 .
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The Lennard-Jones interaction between the dissimilar ellipsoidal CG parti-
cles[127] is rewritten as

𝑈𝐺𝐵 (R𝐼 ,R𝐽 ,R𝐼 𝐽 ) = 𝑈𝑟 (R𝐼 ,R𝐽 ,R𝐼 𝐽 , 𝛾) · 𝜂 (R𝐼 ,R𝐽 ) · 𝜒 (R𝐼 ,R𝐽 ,R𝐼 𝐽 ), (4.1)

where R𝐼 and R𝐽 are the rotational transformation from the simulation box
frame to the body frame of the CG particle, 𝜂 and 𝜒 are two orientation-
dependent functions, and 𝑈𝑟 is the shifted distance dependent interaction
which is given by

𝑈𝑟 (R𝐼 ,R𝐽 ,R𝐼 𝐽 , 𝛾) = 4𝜖 (𝜚 12 − 𝜚 6),

𝜚 =
𝜎

ℎ𝐼 𝐽 (R𝐼 ,R𝐽 ,R𝐼 𝐽 ) + 𝛾𝜎
,

(4.2)

where 𝜖 is the effective interaction strength, 𝜎 is the minimum effective
particle radii, ℎ𝐼 𝐽 (R𝐼 ,R𝐽 ,R𝐼 𝐽 ) is the distance of closest approach between the
two particles, and 𝛾 is the shift parameter.

The first orientation-dependent function 𝜂 is defined as

𝜂 = [
2𝑠𝐼𝑠 𝐽

det(G𝐼 𝐽 )
]1/2,

𝑠 = (𝐿𝑎𝐿𝑏 + 𝐿𝑐𝐿𝑐 ) (𝐿𝑎𝐿𝑏)1/2,
(4.3)

where G𝐼 𝐽 is the sum of the form matrix in eq.(3.42), i.e. G𝐼 𝐽 = M𝐼 +M𝐽 . A
relative energy matrix E = 𝑑𝑖𝑎𝑔(𝜖−1/2

𝑎 , 𝜖
−1/2
𝑏

, 𝜖
−1/2
𝑐 ) represents the relative

interaction strength, i.e. 𝜖𝑎 , 𝜖𝑏 , 𝜖𝑐 , with respect to the orientation along the
principal semi-axes. The second orientation-dependent function 𝜒 is given
by

𝜒 = [2e𝐼 𝐽B−1
𝐼 𝐽 e𝐼 𝐽 ]2,

B𝐼 𝐽 = R
𝑇
𝐼 E𝐼R𝐼 + R

𝑇
𝐽 E𝐽R𝐽 = B𝐼 + B𝐽 , (4.4)

where e𝐼 𝐽 is the unit vector of the radial distance between particle 𝐼 and 𝐽 .
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Moreover, due to the quadrupole moment of the pentacene molecule, the
electrostatic interaction between dissimilar ellipsoidal CG particles is given
by

𝑈𝑒𝑚𝑝 =

∑
𝑖 𝑗 𝑄𝐼 ,𝑖 𝑗e𝐼 𝐽 ,𝑖e𝐼 𝐽 , 𝑗

∑
𝑖′ 𝑗 ′ 𝑄 𝐽 ,𝑖′ 𝑗 ′e𝐼 𝐽 ,𝑖′e𝐼 𝐽 , 𝑗 ′

|R𝐼 𝐽 |5
,

(4.5)

where 𝑄𝐼 ,𝑖 𝑗 and 𝑄 𝐽 ,𝑖 𝑗 are the elements of the quadrupole moment tensor of
particle 𝐼 and 𝐽 with the Cartesian components 𝑖 and 𝑗 , i.e. 𝑖, 𝑗 = 𝑥,𝑦, 𝑧.

Similarly, the modified GB functional that describes the frictional interaction
between the dissimilar ellipsoidal CG particles is rewritten as

𝑈𝑚𝑟𝐺𝐵 (R𝐼 ,R𝐽 ,R𝐼 𝐽 ) = 𝑈𝑓 (R𝐼 ,R𝐽 ,R𝐼 𝐽 , 𝛾) · 𝜂 (R𝐼 ,R𝐽 ) · 𝜒 (R𝐼 ,R𝐽 ,R𝐼 𝐽 ),
𝑈𝑓 (R𝐼 ,R𝐽 ,R𝐼 𝐽 , 𝛾) = 4𝜖𝜚 8,

(4.6)

where the functional 𝑈𝑓 is modified to match the profile of the frictional
interaction as presented in the previous chapter. As a result, the equation of
motion for the dissimilar ellipsoidal CG particles is given by eq.(3.45). The
main difference between this model and the model presented in ch.(3)is the
expression of the fitting function. Since the dissimilar ellipsoidal CG particles
have principal semi-axes with different lengths, the fitting function used in
this model has additional parameters to accurately capture the anisotropic
behaviour of the dissimilar ellipsoidal particles.

4.1.2. Parameterization of the CG model

To parameterize the pentacene system in the AMZDPD model, I followed the
procedure in ch.(3), where the conservative force and dissipative force are ex-
tracted from the MD trajectories and then approximated using force-matching
approach. In order to extract the atomistic information of a pentacene system,
an all-atom MD simulation with 400 pentacene molecules was performed.
The forcefield parameters were obtained from the GROMOS forcefield[128]
and the cutoff of both Lennard-Jones potential and Coulomb potential are 12𝐴.
The simulation was performed in a periodic simulation box with a length of
52.20𝐴, resulting in a density of 1.3𝑔/𝑐𝑚3. NVT simulations were performed
to generate the MD trajectories, which were then used to extract the atomistic
data of the system and construct the CG forcefield.

66



4.1. Crystallization of pentacene

Figure 4.2.: Results of fitting the conservative force between pentacene pair with the sum of the
GB force and the quadrupole interaction

The average force was computed in terms of the pair separation and related
orientation using the binning method. As the dissimilar ellipsoidal CG parti-
cles lack symmetry, the relative orientation between a pair is more complex
than the oblate ellipsoidal pair. In this thesis, only the face-to-face and T-
shape configurations are considered in the parameterization procedure. The
conservative forcefield for the dissimilar ellipsoidal CG particles was then
approximated by the sum of the gradient of the GB potential in eq.(4.1) and
the quadrupole potential in eq.(4.5). The fitting results of the conservative
force are presented in fig.(4.2).

I also followed the parameterization procedure for the non-conservative force-
field presented in the last chapter. The memory kernel was computed using
the time correlations of the fluctuating force in terms of the pair separation
and relative orientation. To obtain the frictional coefficient, the integration
of the correlation function was computed with an upper time cutoff of 60𝑓 𝑠 .
The frictional coefficient was then approximated by the gradient of the modi-
fied GB functional in eq.(4.6). The fitting results of the frictional kernel are
shown in fig.(4.3). The optimized parameters for the pentacene molecule in
the AMZDPD model can be found in the table(A.2) in the Appendix.
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Figure 4.3.: Results of fitting the frictional coefficient between pentacene pair with the modified
GB functional

4.1.3. Self-assembly of dissimilar ellipsoidal CG particles

In order to quantify the degree of crystallization of a pentacene system,
two order parameters are considered: the second-rank orientational order
parameter ⟨𝑃2⟩, also called the nematic order parameter, and the herringbone
order parameter ⟨𝑆ℎ⟩[129].

⟨𝑃2⟩ indicates the long-range orientational order of the molecular structure
along a specific direction. It is calculated using the order parameter tensor 𝑇 ,
which is commonly used to study the order of nematic liquid crystals

𝑇𝛼𝛽 =
1

2𝑁

𝑁∑︁
𝑖

(3𝑒𝑖𝛼𝑒𝑖𝛽 − 𝛿𝛼𝛽 ), (4.7)

where 𝑒𝑖𝛼 and 𝑒𝑖𝛽 are the unit vectors of the principal axis of ellipsoid 𝑖 in the
simulation box frame, i.e. 𝛼, 𝛽 = 𝑎, 𝑏, 𝑐 . By considering all ellipsoidal particles
in the system, 𝑇 can be computed, and the value of the order parameter ⟨𝑃2⟩
is obtained from its largest eigenvalue. ⟨𝑃2⟩ = 1 indicates perfectly aligned
vectors, while ⟨𝑃2⟩ = 0 implies random orientations.
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4.1. Crystallization of pentacene

Figure 4.4.: Schematic diagram of (a) the herringbone structure of the perfect pentacene crystal
(b) the brick-wall structure formed using the AMZDPD model (c) the quadrupole moment of
the pentacene molecule (d) the pentacene crystal with herringbone structure used as the initial
configuration in the simulation.

⟨𝑆ℎ⟩ indicates the short-range order of the herringbone structure in a local
region

𝑆ℎ (𝜃 ) =
1
4

4∑︁
𝑖=1

𝑠𝑖𝑛𝜃𝑖0, (4.8)

where 𝜃 is the herringbone angle between the 𝜋-plane (c-axis) of a central
molecule and the 𝜋-plane of the neighbouring molecules, as shown in fig.(4.4).
To compute the herringbone order parameter, four nearest neighbouring
molecules are chosen within a cutoff distance of 6𝐴 from the central molecule.
When 𝑆ℎ=1, it indicates a perfect T-shape structure, whereas 𝑆ℎ=0 indicates a
𝜋-stacking structure.

For a perfect pentacene crystal, the pentacenemolecules form the herringbone
structure with herringbone angle of 51.3◦, resulting in a value of ⟨𝑆ℎ⟩=0.781.
Moreover, the value of the long-range order parameter ⟨𝑃2⟩ along the a-axis
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is ⟨𝑃𝑎⟩ = 0.632 and along the b-axis is ⟨𝑃𝑏⟩ = 0.996. In the simulation, the
system started with an initial configuration of a perfect pentacene crystal with
herringbone structure. If the herringbone structure remains throughout the
simulation, it indicates the crystal structure is energetically favourable and
the crystallization of the CG pentacene is achieved. Otherwise, the AMZDPD
model fails to reproduce the crystallization of pentacene if the crystal melts
throughout the simulation.

The results of the crystallization of CG pentacene is presented in fig.(4.5).
Fig.(4.5a) shows the change of the order parameters over time and fig.(4.5b)
shows the energy function of two CG pentacene in the FTF and T-shape
configuration with varying distance. Since the FTF configuration has a lower
energy minimum than the T-shape configuration, it is more energetically
favourable. As a result, in the simulation, ⟨𝑆ℎ⟩ decreases to near zero, and
both ⟨𝑃𝑎⟩ and ⟨𝑃𝑏⟩ increase to near one. This indicates that the herring-
bone structure of the pentacene crystal is destroyed, and the CG pentacene
molecules rotate and rearrange to the FTF configuration, which is the lowest
energy state. As a result, the CG pentacene molecules self-assemble to form
the brick-wall structure instead of the herringbone structure.

The lowest energy state of the Gay-Berne interaction is the FTF configuration,
whereas that of the quadrupole interaction was the T-shape configuration. As
a result, the formation of the brick-wall structure in the simulation is due to
the dominance of the Gay-Berne interaction. In order to make the quadrupole
interaction dominant over the Gay-Berne interaction, the quadrupole inter-
action is increased. Fig.(4.5c) and fig.(4.5d) show the change of the order
parameters over time and the energy function of the FTF and T-shape configu-
rations after increasing the quadrupole interaction by a factor of 10. Although
the quadrupole interaction is ten times stronger, the energy minimum of the
FTF configuration is still lower than that of the T-shape configuration, as
shown in fig.(4.5d). As a result, herringbone order parameter ⟨𝑆ℎ⟩ in fig.(4.5c)
is slightly higher than that in fig.(4.5a), but it is still close to zero. Therefore,
the CG pentacene molecules still form the brick-wall structure even after
increasing the quadrupole interaction by ten times.

Fig.(4.5e) and fig.(4.5f) depict the change of the order parameters over time and
the energy function of the FTF and T-shape configuration after increasing the
quadrupole interaction by a factor of 25. In fig.(4.5f), the T-shape configuration
has a lower energy minimum than the FTF configuration. As a result, the
herringbone order parameter ⟨𝑆ℎ⟩ at T=0.5ns in fig.(4.5e) has a value of 0.290,
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Figure 4.5.:The change of order parameters over time for the system with quadrupole interaction
with factor of (a) 1, (c) 10, (e) 25. The dotted lines indicate the order parameters of a perfect
pentacene crystal with herringbone structure, where ⟨𝑆ℎ ⟩=0.781, ⟨𝑃𝑎 ⟩ = 0.632, ⟨𝑃𝑏 ⟩ = 0.996. The
energy function of the FTF and T-shape configuration for the system with quadrupole interaction
with factor of (b) 1, (d) 10, (f) 25.
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indicating that some CG pentacene molecules form the herringbone structure.
However, more energy is introduced into the system when the quadrupole
interaction increases, and excessive energy can destroy the crystal structure.
As a result, long-range order parameters ⟨𝑃𝑎⟩ and ⟨𝑃𝑏⟩ decrease over time,
indicating that the crystal melts.

In this section, the AMZDPD model developed in ch.(3) is applied to model
the crystallization of pentacene using dissimilar ellipsoidal CG particles. To
investigate the ability of the AMZDPD approach to simulate pentacene crys-
tallization , the simulation started with a perfect pentacene crystal with the
herringbone structure. If the AMZDPD approach fails to reproduce the crys-
tallization, it would be indicated by themelting of the pentacene crystal. In the
simulation, due to the dominance of the GB interaction over the quadrupole
interaction, the CG pentacene molecules rearrange from the herringbone
structure to the brick-wall structure. Increasing the quadrupole interaction
allows some CG pentacene to form the local herringbone structures, but
the long-range crystal structure is lost as excessive energy is introduced
into the system. This indicates that the description of the GB interaction
and quadrupole interaction in the AMZDPD model may not be accurate.
The failure of the AMZDPD model in simulating pentacene crystallization
could be attributed to the use of the GROMOS forcefield in the atomistic
system, which does not account for the quadrupole moment of the pentacene
molecule. Consequently, the construction of the mesoscopic system is based
on an incorrect representation of the atomistic system. Despite the failure
to accurately model the crystallization of pentacene, the AMZDPD model
demonstrates the self-assembly of pentacene molecules to form a organized
brick-wall structure at the CG level.

4.2. Deposition of polymer fiber in electrospinning

Nanoscale additive manufacturing(AM) is a method of fabricating complex
nanoscale structures via self-assembly or directed assembly.[130–132]. Com-
pared to conventional subtractive manufacturing methods, AM offers greater
flexibility and programmability in fabricating complex structural architec-
tures.[133]. As a result, AM has gained significant interests in various fields,
such as sensors[134, 135], energy devices[136, 137], and biomedical appli-
cations[138–140]. There are several available additive nanomanufacturing
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Figure 4.6.: Schematic diagram of the electrospinning experimental setup. The top right panel
illustrates the formation of the Taylor cone. The bottom right panel shows the electrospinning
fiber deposition (adapted from [144] with permission from the Wiley Online Library).

technologies, such as e-beam lithography[141], direct laser writing[142], and
direct ink writing[143]. Among these options, near-field electrospinning
(NFES) has emerged as a promising approach for rapid, scalable, and flexible
fabrication of complex 3D structures with programmable properties.

Electrospinning[145, 146] is a continuous nanofiber production technique
driven by an electric field between a metallic nozzle and a grounded substrate,
as depicted in fig.(4.6). In this process, electric charges induced by the electric
field accumulate on the surface of the droplet. The electric force pulling the
charged droplet towards the substrate competes with surface tension, which
tends to maintain its shape, resulting in the formation of Taylor cone[147].
When the electric force exceeds the surface tension, the surface of the droplet
breaks and ejects an electrified thin jet. In conventional electrospinning, the
nanofiber deposition is inaccurate due to the bending instability[148]. In
order to improve the controllability of fiber collections, near-field electrospin-
ning was developed by reducing the operating distance and applied electric
field[149, 150]. Thus, the nanofibers can be precisely controlled by depositing
them before the whipping motion.
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NFES offers several advantages, including high speed (>20cm/s), high reso-
lution (<100nm), and applicable to a wide range of materials such as poly-
mers[151, 152], carbon[153, 154] and metal oxides[155, 156]. However, the
major limitation of NFES is the accumulation of charges in the deposited
fibers. During the fiber deposition, the in-flight fibers tend to stack on top of
the deposited fibers in a self-aligned manner[157–159], enabling the forma-
tion of wall-like structures. When the charge dissipation is slow, the residual
charges accumulate within the fibers. This can result in electric repulsion
between fibers, limiting the self-alignment of the fibers and the effectiveness
of the NFES process.

4.2.1. Continuum model for charge transport

In order to model the charge transport within the fiber of the NFES process, a
charge transport model in a dielectric medium[160] is employed, in which the
charge is transferred from the deposited fiber to the grounded substrate under
an external electric field. The dielectric charge transport models have been
used to study the dynamics of space charges in various dielectric materials,
e.g. charge injection in dielectric thin film[161], polyethylene[162], and space
charge accumulation in high voltage cable[163, 164].

Due to the symmetry along the radial direction, the charge transport is
assumed to be only along the vertical z-direction, and thus a one-dimensional
model is employed in this thesis, as presented in fig.(4.7a). Considering the 1D
fiber has an infinitesimal small width 𝑑𝑥 and height ℎ and is stacked on top of
the deposited fiber wall for each deposition time 𝑡𝑑 . The charge distribution
of the 1D fiber is described by a Gaussian distribution

𝜌 (𝑧) = 𝜌0𝑒
− 1

2 (
𝑧−(ℎ−𝑤)

𝜎
)2
, (4.9)

where 𝜌0 denotes a charge constant that determines the charge density of
the fiber,𝑤 and 𝜎 denote the width and standard deviation of the Gaussian
distribution, respectively.

As only one of the charge carriers is dominant in the electrified jet of NFES,
only positive charge is considered in the charge transport model here. The
following set of coupled equations describes the dynamics of the positive
charge carriers in the deposited fibers:
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1) Transport equation

J(𝑧, 𝑡) = 𝜇E(𝑧, 𝑡)𝜌 (𝑧, 𝑡) − 𝐷∇𝜌 (𝑧, 𝑡), (4.10)

2) Continuity equation

𝜕J(𝑧, 𝑡)
𝜕𝑧

+ 𝜕𝜌 (𝑧, 𝑡)
𝜕𝑡

= 0, (4.11)

3) Poisson equation
𝜕E(𝑧, 𝑡)
𝜕𝑧

=
𝜌 (𝑧, 𝑡)
𝜖𝜖0

, (4.12)

where J is the transport current, E is the electric field strength, 𝜌 is the
charge density, 𝜇 is the mobility of the charge carriers, 𝐷 is the diffusivity of
the charge carriers, 𝜖 is the dielectric constant, and 𝜖0 is the permittivity of
vacuum. On the right-hand side of eq.(4.10), the first term and the second
term corresponds to the drift flux and diffusion flux, respectively.

As illustrated in fig.(4.7b), charges can be stored in the trapped states of
polymeric materials for a long time[36]. These trapped states are typically
determined by the crystallinity[165], polymer structure[166], and the presence
of additives[167]. In order to introduce the trapped and mobile states into the
model, the total charge density is divided into trapped and mobile states

𝜌 = 𝜌𝑡 + 𝜌 𝑓 , (4.13)

where 𝜌𝑡 is the charge density in the trapped states and 𝜌 𝑓 is the charge
density in the mobile states. Furthermore, the source terms of the trapped
states and the mobile states are given by

𝑆𝑡 = 𝑅𝑓→𝑡𝜌𝑡 (1 −
𝜌𝑡

𝑁𝑡
) − 𝑅𝑡→𝑓 𝜌 𝑓 , (4.14)

𝑆 𝑓 = −𝑅𝑓→𝑡𝜌𝑡 (1 −
𝜌𝑡

𝑁𝑡
) + 𝑅𝑡→𝑓 𝜌 𝑓 , (4.15)

where 𝑅𝑓→𝑡 is the rate of charge transfer from the mobile state to the trapped
state, 𝑅𝑡→𝑓 is the rate of charge transfer from the trapped state to the mobile
state, and 𝑁𝑡 is the density of the trapped state.

75



4. Simulation of mesoscopic phenomena in soft matter

Figure 4.7.: Schematic diagram of (a) charge transport from the top of the deposited structure
down to the grounded substrate (b) trapped state inside the polymeric material (c) charge
injection from the polymeric material to the substrate material through an energy barrier along
the interface.

As a result, the continuity equation in eq.(4.11) can be split into the trapped
and mobile states

𝜕𝜌𝑡 (𝑧, 𝑡)
𝜕𝑡

= 𝑆𝑡 , (4.16)

𝜕J(𝑧, 𝑡)
𝜕𝑧

+
𝜕𝜌 𝑓 (𝑧, 𝑡)

𝜕𝑡
= 𝑆 𝑓 . (4.17)

At the interface between the deposited fiber and the grounded substrate,
the charges are transported from one material to another via a hopping
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mechanism, as shown in fig.(4.7c), in which the charges have to overcome an
energy barrier. As a result, a current boundary condition at the fiber/substrate
interface is proposed as

J(𝑧 = 0, 𝑡) = 𝜇E(0, 𝑡)𝜌 (0, 𝑡)𝑒𝑥𝑝 (− Δ

𝑘𝐵𝑇
), (4.18)

where Δ denotes the energy barrier, 𝑘𝐵 denotes the Boltzmann constant and
𝑇 denotes the temperature.

To validate the charge transport model, it is compared with an NFES experi-
mental setup. As shown in fig.(4.6), a stainless steel needle is positioned at a
short distance(1-2 mm) above a rotating grounded drum, and a substrate is
placed on the rotating drum to collect the depositing nanofiber. As a result,
the short distance minimizes the fiber deflection and enables layer-by-layer
deposition. The drum has a diameter of 14 cm and rotates at a speed of 100
cm/s, which is equivalent to the deposition rate of 440𝑚𝑠−1. A voltage of
900-1000V is applied to the needle while the drum is grounded. Addition-
ally, polyethylene oxide (PEO) is employed as the electrospinnable polymer
feedstock, with a solvent consisting of 40% methanol and 60% water.

The model parameters are presented in tab(A.3) in the Appendix. In order to
reduce the computational cost, a system with a smaller operating distance,
i.e. 𝐿=300𝜇𝑚, between the needle and the substrate and a rescaled voltage,
i.e. 𝑉=187.5𝑉 , was employed in the simulation. In the implementation, the
charge transport model is based on the continuummodel, in which the system
is divided into many grids and the charge density of the grids is computed at
each timestep. The workflow of the simulation follows the algorithm of the
general grid-based models presented in fig.(2.13).

4.2.2. Charge dissipation in polymer fiber

In order to investigate the effect of the trapped state on charge dissipation,
the change of total charges inside the deposited polymer fiber i) without the
trapped state and ii) with the trapped state are computed over time. As in
eq.(4.9), the charge distribution in the fiber at initial time 𝑡 = 0 is described
by a Gaussian distribution at its surface. For the fiber without the trapped
state, all charge carriers are in the mobile states, i.e. 𝜌 𝑓 = 𝜌 and 𝜌𝑡 = 0.
Additionally, the rate of charge transfer from the mobile state to the trapped
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Figure 4.8.: The charge distribution of the deposited fiber a) without the trapped state and b)
with the tapping state at 𝑡 = 0𝑚𝑠 and 𝑡 = 440𝑚𝑠 and (c) the change of total charges inside the
deposited fiber over time

state or from the trapped state to the mobile state is both zero, i.e. 𝑅𝑓→𝑡 = 0
and 𝑅𝑡→𝑓 = 0. For the fiber with the trapped state, I set 30% of the charge
carriers in the mobile states while the remaining in the trapped states at 𝑡 = 0,
i.e. 𝜌 𝑓 = 0.3𝜌 and 𝜌𝑡 = 0.7𝜌 . Moreover, the value of 𝑅𝑓→𝑡 and 𝑅𝑡→𝑓 are
presented in table(A.3).

Fig.(4.8a) and (4.8b) depict the charge distribution inside the deposited fiber
at 𝑡 = 0𝑚𝑠 and 𝑡 = 440𝑚𝑠 i) without the trapped state and ii) with the trapped
state, respectively. The charge distribution of both systems are the same
at initial time 𝑡 = 0𝑚𝑠 . The charge distribution of the system without the
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trapped state falls to zero after 400𝑚𝑠 , while the charge distribution of the
system with the trapped state decays but remains non-zero.

Fig.(4.8c) shows the change of total charge in the deposited polymeric fiber
over time. For the curve without the trapped state, the total charge quickly
decreases to zero within 20ms. Under an electric field, the charges are rapidly
dissipated since they can move from the fiber surface to the substrate at a high
velocity without being trapped. Because of the contribution of the mobile
charges, the curve with the trapped state decays at almost the same rate as
the curve without the trapped state at the beginning. After a few milliseconds,
the decay rate slows down as most of the charge carriers are in the trapped
states. As a result, the residue charge in the system with trapped state is
non-zero after t=440ms, implying that charges accumulate.

4.2.3. Breakdown of fiber self-alignment

In the previous section, I demonstrated that the charge accumulation results
from the trapped state of charge carriers within the polymeric material. In this
section, a charged polymer fiber deposits on top of the deposited structure
for every 440ms. The charge distribution in every newly deposited fiber
is described a Gaussian distribution in eq.(4.9), where 30% of the charge
is in the mobile states and 70% is in the trapped states. To analyze the
electromechanical behaviour of the charged fiber deposition, the electric field
at the deposited fiber surface 𝐸𝑠𝑢𝑟 is computed over time. As the in-flight
polymer fiber is positively charged, a negative value of the surface E-field
indicates an attractive interaction between the in-flight fiber and the deposited
fibers, whereas a positive value indicates a repulsive interaction.

Fig.(4.9a) shows the charge distribution inside the deposited fibers at t=2200ms,
just before the deposition of the fifth layer. In the deposited fiber, charges are
continuously transferred between the trapped states and the mobile states.
When the charges are in the mobile states, they move rapidly toward the
substrate. The charge distribution of the earlier deposited layers has a lower
peak value and is shifted nearer to the substrate 𝑧=0 as more charges have
been transferred from the trapped to the mobile states in the earlier deposited
layers. Moreover, the charge density at the interface between the deposited
layer and the substrate is non-zero, indicating some charges accumulate along
the interface.
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Figure 4.9.: (a) The charge distribution inside the deposited structure with four layers at 2200ms,
(b) the electric field at the surface of deposited structure before the deposition of the i-th layer
polymer fiber, (c) the experimental results of the aspect ratio of the wall structure with the
number of deposited layers.

The surface electric field 𝐸𝑠𝑢𝑟 before the deposition of the i-th layer, i.e.
𝑖 = 1, 2, 3 . . . , is depicted in fig.(4.9b). The surface E-field is negative when
there are only a few layers, so that the in-flight fiber is attracted by the
deposited layers. Although the positive residual charges are present within
the deposited fiber, the charges inside are shielded by the dielectric property
of the polymeric material. As a result, the electrostatic force enables stacking
the positively charged in-flight fibers on top of the wall structure, a process
known as self-alignment stacking[157]. This allows the nanofibers to form an
organized structure among themselves without external direction. Since the
charges dissipate at a rate slower than the charge added by the fiber deposition,
accumulated charges inside the wall structure increase with the number of
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deposited layer. Thus, the surface E-field also increases with the number
of deposited layer. After a certain number of layers, the dielectric medium
is not able to shield all residual charges and the surface E-field eventually
becomes positive, where the in-flight polymer fiber is then repelled by the
deposited fibers. The self-alignment of the fiber deposition breaks down, and
the polymer fibers are not able to stack smoothly on top of the wall structure,
limiting the control of the printing. According to the simulation results, the
first layer with positive surface E-field, which is referred as the breakdown
layer, is 49.

In order to verify the simulation result, it is compared to an aspect ratio in
the experiment, which is a ratio of the height to the thickness of the wall
structure formed by the deposited fiber. The aspect ratio is typically used to
quantify the controllability of fiber deposition. The experimental results of the
aspect ratio with increasing number of deposited layers are shown in fig.(4.9c).
When there are few layers in the wall structure, the aspect ratio gradually
increases, implying that the fibers are deposited in a self-aligned manner.
The aspect ratio starts to decrease after 80 layers, indicating that the self-
alignment breaks down. When comparing the simulation results (>49 layers)
to the experimental results (>80 layers), the simulation qualitatively agrees
with the experiment by showing the breakdown of the fiber self-alignment.

4.2.4. Effect of substrate materials

The substrate in a typical NFES setup is usually made of a material other than
the polymer fiber. Due to the material mismatch, the charges in the polymer
medium have to overcome a material-dependent energy barrier in order to
transport to the substrate. As a result, an energy barrier at the interface
between the deposited fibers and substrate is introduced by implementing a
current boundary condition as in eq.(4.18). The system used here is identical
to the system in sec.(4.2.3), while the current boundary condition at 𝑧=0 is
implemented with an energy barrier ranging from 0eV to 0.9eV at 300K. When
there is no energy barrier Δ=0eV, the system is equivalent to the system in
sec.(4.2.3).

Fig.(4.10a) shows the charge distributions in the deposited structure with
energy barriers of Δ=0eV,0.1eV, and 0.2eV at t=2200ms. Since only charges
with sufficient energy can pass through the energy barrier, the remaining
charges are trapped and accumulate along the interface. Increasing the energy
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Figure 4.10.: (a) The charge distribution inside the wall structure with different energy barriers
at t=2200ms, (b) the layer of breakdown with varying height of energy barrier and (c) the surface
electric field of the wall structure at t=8800ms(before the deposition of the 20-th layer) with
varying height of energy barrier. (d) The experimental results of the aspect ratio with different
substrate material, (e)-(g) show the scanning electron microscope (SEM) images of the wall
structure using SiO2, Si and Ar/Cu as the substrate, respectively ((e)-(g) reproduced from [144]
with permission from the Wiley Online Library).

barrier leads to more charges accumulate along the interface, therefore the
curve Δ=0.2eV has a higher charge density than the curve Δ=0.1eV and 0eV
at the interface.

Fig.(4.10b) depicts the breakdown layer of the fiber deposition with varying
energy barrier, while fig.(4.10c) depicts the surface E-field before the deposi-
tion of the 20-th layer with varying energy barrier. When there is no energy
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barrier, i.e. Δ=0, the breakdown layer of the self-alignment is 49, as discussed
in the previous section, and the surface E-field is also the most negative. As
the dielectric medium can shield the accumulated charges, a slight increase in
the barrier, i.e. Δ=0.1eV, has no significant impact on the breakdown layer or
the surface E-field. When the energy barrier increases further, the breakdown
layer clearly decreases and the surface E-field clearly increases. The dielectric
medium is unable to completely shield all residual charges, so that the inner
residual charges contribute to the electric field at the surface of the wall
structure, hindering the self-alignment of the fiber deposition. When the
energy barrier is very high, all charges are unable to pass through. As a result,
the breakdown layer and the surface E-field are not significantly affected by
further increases in the energy barrier after a certain value.

In order to validate the simulation results, it is comparedwith the experimental
results, where the aspect ratio and the scanning electron microscope (SEM)
images of the 20-layer structures on three different substrate materials, i.e.
i) insulator(SiO2) ii) semiconductor(Si) iii) conductor(Cr/Au), are presented
in fig.(4.10d) and fig.(4.10e-g), respectively. For the conductor substrate, the
charges are injected from the polymer medium to the conduction band of the
conductive material, so that they can be easily transferred to the substrate.
As a result, the conductor substrate is equivalent to the system without
energy barrier and has the best aspect ratio among all substrates. For the
semiconductor and the insulator substrates, the charges are injected from the
polymer to the substrate via the hopping mechanism. This corresponds to
the system with an energy barrier, where only charge with sufficient energy
can activate the transport process. Therefore, the semiconductor/insulator
substrate has a lower aspect ratio as less charges possess sufficient energy,
and the charges accumulate along the interface.

In this section, I presented a continuummodel to simulate the charge transport,
dissipation, and accumulation within polymeric fibers in NFES. Within the
framework of the grid-based model, 1) the trapped state and the mobile
state of charge carrier and 2) the energy barrier along the interface was
introduced into the continuum model to capture the behaviour of the charges
in polymeric medium. As a result, this allows to investigate the charge
dynamics in the solidified electrospinning fibers under an external electric
field and the electromechanical behaviour of the charged fiber deposition in
the NFES process.
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4.3. Poling of electro-optical materials

Due to the increasing demand for high-speed information processing, optical
communications have been developed rapidly in the recent years, in which
the high-bandwidth electro-optical (EO) modulator is a key component of its
development[168]. An EOmodulator is a device that converts electrical signals
into optical signals driven by a low voltage, and can be applied to optical
communications, optical signal processing[169], and optical metrology[170].
In order to achieve better performance, an EO modulator should possess a
high modulation efficiency, which means it can produce a large phase shift
with a small driving voltage and device length.

In this section, a Mach–Zehnder modulator(MZM) is considered to demon-
strate the modulation efficiency of an optical device. As shown in fig(4.11),
the MZM is used to determine the relative phase shift variations between two
light beams derived by splitting light from a single source. The modulation
efficiency of the MZM is quantified by the product𝑈𝜋𝐿, where 𝐿 is the phase
shifter length and 𝑈𝜋 is the voltage necessary to achieve a phase shift of 𝜋
between the optical signals at the output of the MZM arms[37].

Figure 4.11.: Schematic diagram of the Mach–Zehnder modulator, in which the phase difference
of light in upper and lower arm produces modulation effect (graphics from Luceda Photonics).

In EO modulators, the performance is typically determined by the electro-
optical materials, which exhibits change in the optical properties in response
to an electric field. The electro-optical effect of an EO material is quantified
by the EO figures of merit 𝑛3𝑟33, where 𝑛 is the refractive index and 𝑟33 is
the EO coefficient. These EO figures of merit are inverse proportional to
the modulation efficiency, meaning that materials with stronger non-linear
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4.3. Poling of electro-optical materials

optical effects result in more efficient phase shifts during modulation. Organic
non-linear optical chromophores have been widely studied to achieve a high
EO coefficient[171], in which the EO coefficient of chromophores depends on
the density, hyperpolarizability, and orientation of the chromophores[172]

𝑟33 ∝ 𝑁𝛽 ⟨𝑐𝑜𝑠3𝜃⟩, (4.19)

N denotes the density of the system, 𝛽 denotes the hyperpolarizability, and
𝑐𝑜𝑠𝜃 denotes the orientation of the chromophores. Among the high efficient
EO modulators, silicon-organic hybrid (SOH) devices, which combine organic
EO materials (chromophores) with silicon photonic waveguide structures,
show promising low𝑈𝜋𝐿 values down to 0.5Vmm[173].

Figure 4.12.: (a) Illustration of the poling process, in which the EO materials are aligned by
applying external electric field. (b) Illustration of a silicon-organic hybrid (SOH) devices, where
the EO materials are aligned by applying poling field (blue arrows) and then exhibit large phase
shift by applying modulation field (red arrows).

To activate the modulation with a non-zero EO coefficient, the chromophores,
which are initially randomly orientated, can be aligned through a poling
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4. Simulation of mesoscopic phenomena in soft matter

process[37]. During poling, the SOH chip is heated above the glass transition
temperature 𝑇𝑔 of the chromophores, and a DC voltage is applied across
the electrodes to align the dipoles of the chromophores in the two slots, as
presented in fig.(4.12). By subsequently cooling the device while maintaining
the DC poling field, the orientation of the chromophores is preserved at room
temperature.

4.3.1. Atomistic model for chromophores poling

To model the poling process of the chromophores system, atomistic MD
simulations are employed. The system under consideration consists of co-
polymer with three different monomers: MMA, AdMA, and HEMA, in a
ratio of 40:50:10, as shown in fig.(4.13). The chromophore functional group
is attached to the HEMA monomer via a linker. Three types of linkers are
considered: IPDI, TDI, and HMDI, as depicted in fig.(4.13). However, the
timescales required for the alignment of the polymer system are typically
beyond the limits of atomistic simulation. To make the simulation compu-
tationally feasible for studying the poling behaviour, a virtual system of
chromophores is employed, as illustrated in fig.(4.14). Instead of considering
the entire polymer chain, I considered the oligomers with 5 repeating units of
MMA and AdMA, as well as the HEMA with the connecting chromophores.
The HEMA monomers are fixed at specific positions with springs, allowing
the dipolar chromophores to rotate but not translate under an electric field.
The virtual system is more flexible than the polymer system, enabling the
atomistic MD simulations to study the poling behaviour effectively.

During the simulation, the chromophore system was initially heated above
the glass temperature 𝑇𝑔, and an external electric field was applied to align
the dipolar chromophores during the poling process. The NPT ensemble was
performed throughout the simulation. For the first 0.1ns, the temperature
of the system was increased from 300K to the poling temperature 𝑇𝑝 . The
poling electric field 𝐸𝑝 was then applied to the system at 𝑇𝑝 , causing the
chromophores to orient along the electric field. In the end, the system was
cooled down to 300K while maintaining a constant electric field 𝐸𝑝 .

In order to study the alignment of the chromophores, the angle 𝜃 between the
dipole moment of the chromophores and the electric field was computed
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Figure 4.13.: Chemical structure of MMA, AdMA, and HEMA in the co-polymer system, and the
chromophores are linked to the HEMA monomer with three different linkers: IPDI, TDI, and
HMDI.

Figure 4.14.: Schematic diagram of the virtual system in which a polymer chain is divided into
oligomers and side-chain segments with fixed position by spring.

𝑐𝑜𝑠𝜃 =
∑︁
𝑖

𝑞𝑖r𝑖 · E𝑝 (4.20)

where 𝑞𝑖 and r𝑖 are the partial charge and position of atom 𝑖 in the chro-
mophores. In this thesis, 𝑐𝑜𝑠3𝜃 is considered as a measure of the alignment of
the chromophore system, as it can be directly related to the EO coefficient in
eq.(4.19).
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To prepare the simulation, the oligomers and side-chains were prepared by au-
tomated forcefield topology builder (ATB)[174] and the forcefield parameters
were obtained from the GROMOS forcefield[128]. The initial configurations
of the system were generated using PACKMOL[175] and the simulations
were performed in LAMMPS[107]. Moreover, the computation of the align-
ment was obtained from the ensemble average to minimize the errors and
fluctuations.

4.3.2. Effect of types of linker

Here I performed the poling simulation of the chromophores with different
linkers with 𝐸𝑝=0.2𝑉𝐴−1 and 𝑇𝑝=500K. Fig.(4.15) illustrates the evolution
of the side-chain alignment ⟨𝑐𝑜𝑠3𝜃⟩ over time. For the first 20ns, the tem-
perature is increased to 𝑇𝑝 and an electric field is applied at 𝐸𝑝 , so that the
chromophores are flexible to orient along the electric field. As a result, the
alignment ⟨𝑐𝑜𝑠3𝜃⟩ increases with time until reaches a constant value. The
alignment cannot be increased further since the neighbouring molecules
hinder the movement of the side-chains in a dense system. Moreover, the
fluctuation of the curve indicates the competition between the effect of the
thermal fluctuation and the electric field on the configuration of the system.
After 20ns, the system is cooled to 300K while the electric field is maintained.
The alignment of the sidechains remains constant as the sidechains are less
flexible to orient when the temperature decreases. As a result, the system is
"frozen" and the alignment of the chromophores is preserved after the poling
process.

To compare the modulation efficiency of different organic EO materials,
fig.(4.15a) shows the alignment of chromophores with different linkers in
poling, and (4.15b) and table(4.1) shows the average alignment of the chro-
mophores with different linkers after poling from 20ns to 30ns. The alignment
values ⟨𝑐𝑜𝑠3𝜃⟩ of TDI-, IPDI-, and HMDI-linked chromophores are 0.1625,
0.1519, and 0.1414, respectively. The differences in alignment among different
linkers are small, possibly due to the thermal fluctuations in the system. There-
fore, there is no clear influence for using different linkers in the chromophores
poling process.
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Table 4.1.: Average alignment of chromophores with different linkers over time after poling
Linkers ⟨𝑐𝑜𝑠3𝜃⟩
TDI 0.1625
IPDI 0.1519
HMDI 0.1414

Figure 4.15.: (a)Alignment of the chromophores with different linker types over time (b) average
alignment of the chromophores with varying linkers after poling

4.3.3. Effect of poling temperature

The effect of poling temperature on chromophore poling is investigated here,
where the HMDI-linked system is employed with 𝐸𝑝=0.02𝑉𝐴−1 and varying
𝑇𝑝 , i.e. 300K, 400K, and 500K. The alignment of chromophores over time with
varying 𝑇𝑝 is depicted in fig.(4.16a) and the average alignment after poling
with varying 𝑇𝑝 is presented in fig.(4.16b) and table(4.2). For 𝑇𝑝=300K, this
corresponds to the system remains at constant temperature without applying
poling temperature. Therefore, the curve of 300K does not increase with time
and the value of the average alignment over time is given by 0.0535, which is
close to zero. For the curve 𝑇𝑝=400K, the alignment of the chromophores is
slightly higher than the curve of 300K and the value of average alignment after
poling is only 0.0592, which is also close to zero. Although the system is heated
to 400K, the poling temperature is still below the glass temperature. As a result,
below the glass temperature, the system is still rigid, limiting the sidechains
to move and align. For𝑇𝑝=500K, the alignment of the chromophores increases
rapidly in a short time until reaching a constant value. Since𝑇𝑝=500K is above
the glass temperature, the system is flexible and the sidechains are able to

89



4. Simulation of mesoscopic phenomena in soft matter

move and align along the electric field, resulting in the average alignment
with a value of 0.1414. This implies the alignment of the EO materials can be
achieved only above the glass temperature in the poling process.

Table 4.2.: Average alignment of chromophores with varying poling temperature over time after
poling

Poling temperature 𝑇𝑝 (K) ⟨𝑐𝑜𝑠3𝜃⟩
300 0.0535
400 0.0592
500 0.1414

Figure 4.16.: (a) Alignment of the chromophores with varying poling temperature over time (b)
average alignment of the chromophores with varying poling temperature after poling

4.3.4. Effect of poling field

In the end, the effect of poling field on the chromophores alignment during
poling is studied. Here a HMDI-linked system with 𝑇𝑝=500K and varying 𝐸𝑝 ,
i.e. 0.01V/𝐴, 0.02V/𝐴, and 0.03V/𝐴, is considered. Fig.(4.17a) shows the results
of the chromophores alignment with varying 𝐸𝑝 and the average alignment
after poling with varying 𝐸𝑝 is presented in fig.(4.17b) and table(4.3). For
𝐸𝑝=0.01V/𝐴, the chromophores alignment does not increase with time. As the
poling field is too low, the thermal fluctuation of the sidechains is stronger
than the electric force on them. As a result, the chromophores do not show
any alignment and the average alignment after poling is only 0.0452. For
𝐸𝑝=0.02V/𝐴, the alignment of the chromophore increases with time and the
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value of the average alignment after poling is 0.1414. When a stronger poling
field is applied to the system, the effect of the electric force dominates over
the thermal fluctuation, enabling the dipolar groups of the sidechains to
orient along the electric field. Thus, this results in a higher alignment value.
For 𝐸𝑝=0.03V/𝐴, the alignment increases more rapidly than that of 0.02V/𝐴,
resulting in a higher value of average alignment after poling, which is 0.2489.
When the poling field increases, the electric field introduces more energy
into the system to align the dipolar chromophores along the applied field.
Therefore, the higher the electric field, the higher the alignment of the organic
EO materials. This is also in agreement with the previous experimental study,
in which the EO figures of merit 𝑛3𝑟33 increases linearly with the poling field
[176].

Table 4.3.: Average alignment of chromophores with varying poling field over time after poling
Poling field 𝐸𝑝 (V/𝐴) ⟨𝑐𝑜𝑠3𝜃⟩
0.01 0.0452
0.02 0.1414
0.03 0.2489

Figure 4.17.: (a) Alignment of the chromophores with varying poling field over time (b) average
alignment of the chromophores with varying poling field after poling

In this section, the atomstic MD simulations are employed to investigate the
molecular alignment of organic EO materials in poling. Due to the computa-
tional limitation of the atomistic MD for simulating the mesoscopic behaviour,
a virtual system is considered here. In the virtual system, the polymer chain
is divided into oligomers, and the sidechains are fixed at particular posi-
tions with springs. As a result, the sidechains are more flexible to orient
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compared to the entire polymer chain, allowing the atomistic MD to simu-
late chromophores alignment under an external electric field. By using the
virtual system scheme, the effects of different linkers, poling temperature,
and poling field on the alignment of chromophores can be studied. As a
result, the behaviour of the EO materials in poling can be better understood.
This approach enables the exploration of EO materials in the poling process,
providing insights for the fabrication of effective EO modulators.

92



5. Summary and outlook

5.1. Summary

Mesoscopic behaviour in soft matter is typically triggered by molecular in-
teractions and exhibits properties at the macroscopic scale. This implies that
mesoscopic phenomena cover a wide range of scales. Therefore, it is challeng-
ing for theoretical models to study the mescosopic effects. In order to model
mesoscopic behaviour in soft matter systems, various approaches, such as the
CG model and the DPD model, have been developed and successfully applied
to different soft matter problems. However, these models have certain defi-
ciencies when it comes to accurately capturing mesoscopic phenomena. The
CG model shows inconsistent dynamical properties, while the DPD model
lacks the chemical descriptions of the system. Therefore, there is a need for a
proper derivation of coarse-graining.

In this thesis, a systematic formalism for coarse-graining is presented. In
ch.(3), I employed theMori-Zwanzig formalism, which divides themicroscopic
system into slow and fast degrees of freedom. The slow degrees of freedom
are projected onto the collective variables as the conservative forces, while
the fast degrees of freedom are approximated by dissipative and stochastic
terms as the non-conservative forces in the mesoscopic system. This approach
allows for the derivation of a closed equation of motion for the collective
variables, capturing the chemical descriptions of the system and consistently
reproducing long-time dynamical properties. One of the key results in this
work is the development of an anisotropic DPDmodel using theMZ formalism.
With an example of benzene, an appropriate forcefield was derived using
ellipsoidal CG particles to represent benzene molecules. The interactions
between the ellipsoidal particles are determined not only by their separation
but also by their relative orientation. For the conservative forcefield, the
pairwise conservative force was approximated by the sum of the Gay-Berne
force and the electric multipole force. For the non-conservative forcefield,
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I noted that it is not necessarily isotropic. A modified repulsive Gay-Berne
functional, which is a GB-like functional without attractive part, was proposed
to approximate the frictional force. In order to parameterize the complex
conservative and frictional forcefields efficiently, a two-step parameterization
was employed. Additionally, the stochastic force was obtained from the
frictional force via the fluctuation-dissipation theorem. The performance
of the AMZDPD model was evaluated by comparing it to other CG models,
including Martini3, MZDPD and GB-CG. The AMZDPD model demonstrated
outstanding performance in both static and dynamical properties. For the
computed diffusion constant, the AMZDPD model outperforms the other CG
models, with only a 3.6% error compared to the reference MD value.

In ch.(4), I presented the applications of three different models to three meso-
scopic phenomena. The first example studied the crystallization process of
pentacene using the AMZDPD model, where pentacene molecules were rep-
resented by dissimilar ellipsoidal CG particles. Crystallization is a mesoscopic
phenomenon in which molecules interact, aggregate and self-assemble to
form an ordered structure. The degree of crystallization was evaluated using
the long-range nematic order parameter and the short-range herringbone
order parameter. The results obtained from the AMZDPD model, however,
shows incorrect predictions, with the CG pentacene self-assembling into
a brick-wall structure instead of the expected herringbone structure. This
discrepancy may be attributed to the construction of the mesoscopic system
using an incorrect atomistic forcefield for crystallization process. Neverthe-
less, the AMZDPD model demonstrated the self-assembly of pentacene to
form ordered structure at the CG level using anisotropic CG particles.

The second example used a continuum model to investigate the electrome-
chanical mechanism of electrospinning fiber deposition. The residue charges
inside the electrospinning polymer fibers determine the deposition process
and the quality of 3d printing. In order to study the charge dynamics in
polymeric medium, a one-dimensional charge transport model was employed.
The results of the charge dissipation revealed that the trapped state of charge
carrier is the main source of charge accumulation in polymeric medium.
Moreover, the surface electric field of the deposited fibers was computed
to analyze the electromechanical behaviour of the fiber deposition, and the
break-down of the fiber self-alignment after a certain number of deposition
was illustrated. The effect of different substrates on fiber deposition was also
investigated, demonstrating that conductors yield the best deposition results,
which is in good qualitative agreement with the experiment.
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The last example employed the atomistic MD to study the poling process of
electro-optical materials, specifically the chromophores. Poling is a meso-
scopic process that aligns the dipolar functional groups under an external
electric field, so that the non-linear optical effect of EO materials is activated.
To simulate the poling process with atomistic MD, a virtual system was em-
ployed, where the polymer chain is divided into oligomers and side-chain
segments with fixed position, increasing the flexibility of the side-chains
to rotate. Various operating parameters, such as the linker types, poling
temperature, and poling field, were varied to study the poling process of the
chromophores. The results indicate that the linker type does not significantly
influence the poling process, whereas the poling temperature shows a clear
increase in the side-chain alignment when the system is above the glass
temperature. Moreover, the alignment of side-chains increases with higher
poling field as more energy is introduced into the system to align the dipolar
groups.

To conclude this thesis, I have presented three different schemes for meso-
scopic modelling. The modified atomistic MD and the modified continuum
model discussed in ch.(4) are constructed from the limit of the atomistic
and continuum scales, with introducing the artificial modifications into the
system to describe the mesoscopic effects. In order to obtain physical and
logical results from these artificial modifications, priori knowledge of the
models, systems of interest, and the effects of the modification is necessary.
Although there are some deficiencies, i.e. incorrect timescales or oversim-
plified interactions, these schemes are relatively easy to implement and can
qualitatively model specific mesoscopic problems at a low computational
cost. The AMZDPD model, on the other hand, is derived from a systematic
formalism of coarse-graining, enabling to generate accurate and consistent
results for mesoscopic modelling. In the example of benzene, it shows the abil-
ity to reproduce the static and dynamical properties quantitatively. Despite
the need for further studies and improvements, this dynamically consistent
CG approach shows great potential for studying various dynamical-related
mesoscopic problems in soft matter, such as diffusion in polymer solutions,
self-assembly of biomolecules, or phase transitions.

95



5. Summary and outlook

5.2. Outlook

As shown in this work, the developed AMZDPD approach shows promising
potential in mesoscopic modelling. However, there are a few issues that
would be worth studying in order to improve or apply it to more complex
systems. Firstly, the heterogeneous system should be studied when the model
is applied to more complex systems. For instance, mixing rules, i.e. geometric
mixing, could be a direction for modelling heterogeneous systems. Addition-
ally, the intramolecular CG interaction is important when complex molecules
require multiple CG particles to describe their structures. A possible improve-
ment could be the implementation of distance- and orientation-dependent
intramolecular CG potentials using the Boltzmann inversion method[177].

The complexity of parameterization is one of the bottlenecks for the AMZDPD
model. To parameterize a system in the AMZDPD approach, it requires a sig-
nificant amount of time to approximate the complex interactions. Moreover,
the transferability from one system to another is limited. Recently, machine
learning (ML) has demonstrated promising potential in mesoscopic mod-
elling. Recent work proposed a ML framework to select CG representations
based on variational auto-encoders, so that the CG mapping can be optimized
automatically without priori considerations[66]. Another study proposed
a CG forcefield constructed using an ML approach, which provides better
approximation than conventional functional-forms forcefield as it includes
multibody effects and nonlinearities automatically[178]. Therefore, machine
learning could offer a possibility for further development of the AMZDPD
model as well as mesoscopic modelling, as it enables automatic CG mapping
and provides more efficient forcefield construction. With the advancement of
computational power and the development of algorithm, mesosocpic mod-
elling has enormous potential for applications in a wide range of fields, such
as polymers, macromolecules, and biological systems.
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A. Appendix

A.1. Range and strength parameter in Gay-Berne
functional

The range parameter 𝜎 (e𝐼 𝐽 , u𝐼 , u𝐽 ) is given by

𝜎 (e𝐼 𝐽 , u𝐼 , u𝐽 ) =

𝜎0 [{
𝜒𝛼2 (u𝐼 · e𝐼 𝐽 ) + 𝜒𝛼−2 (u𝐽 · e𝐼 𝐽 ) − 2𝜒2 (u𝐼 · e𝐼 𝐽 ) (u𝐽 · e𝐼 𝐽 ) (u𝐼 · u𝐼 )

1 − 𝜒2 (u𝐼 · u𝐼 )2 }]− 1
2 ,

(A.1)
where
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and 𝑙 and 𝑑 denote the length and breadth of the GB particles, respectively,
and 𝜒𝛼2, 𝜒𝛼−2 and 𝜒2 are given by

𝜒𝛼2 =
(𝑙2
𝐼
− 𝑑2

𝐼
)
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𝐽
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, (A.5)
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The strength parameter 𝜖 (e𝐼 𝐽 , u𝐼 , u𝐽 ) is given by

𝜖 (e𝐼 𝐽 , u𝐼 , u𝐽 ) = 𝜖0𝜖
𝜈
1 (u𝐼 , u𝐽 )𝜖

𝜇

2 (e𝐼 𝐽 , u𝐼 , u𝐽 ), (A.8)

where 𝜖1 and 𝜖2 are defined as

𝜖1 (u𝐼 , u𝐽 ) = [1 − 𝜒2 (u𝐼 , u𝐽 )2]− 𝜈
2 , (A.9)

𝜖2 (e𝐼 𝐽 , u𝐼 , u𝐽 ) =

1 − {
𝜒 ′𝛼 ′2 (u𝐼 · e𝐼 𝐽 ) + 𝜒 ′𝛼 ′−2 (u𝐽 · e𝐼 𝐽 ) − 2𝜒 ′2 (u𝐼 · e𝐼 𝐽 ) (u𝐽 · e𝐼 𝐽 ) (u𝐼 · u𝐽 )

1 − 𝜒 ′2 (u𝐼 · u𝐽 )2 },

(A.10)
denote that
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𝑆 𝐽
+ 𝜖1/𝜇

𝐹𝐼
))

((𝜖1/𝜇
𝑆 𝐽

− 𝜖1/𝜇
𝐹 𝐽

)) × (𝜖1/𝜇
𝑆𝐼

+ 𝜖1/𝜇
𝐹 𝐽

)
] 1

2 , (A.11)

𝛼 ′2 = [
((𝜖1/𝜇

𝑆𝐼
− 𝜖1/𝜇

𝐹𝐼
)) × (𝜖1/𝜇

𝑆 𝐽
− 𝜖1/𝜇

𝐹 𝐽
))

((𝜖1/𝜇
𝑆 𝐽

+ 𝜖1/𝜇
𝐹𝐼

)) × (𝜖1/𝜇
𝑆𝐼

+ 𝜖1/𝜇
𝐹 𝐽

)
] 1

2 , (A.12)

where 𝜖𝐹 is the well-depth of face-to-face configuration, and 𝜖𝑆 is the well-
depth of side-to-side configuration. The parameters 𝜈 and 𝜇 are set to 1.0 and
2.0, respectively. And 𝜒 ′𝛼 ′2, 𝜒 ′𝛼 ′−2 and 𝜒 ′2 are given by

𝜒 ′𝛼 ′2 =
(𝜖1/𝜇
𝑆𝐼

− 𝜖1/𝜇
𝐹𝐼

)

((𝜖1/𝜇
𝑆𝐼

+ 𝜖1/𝜇
𝐹 𝐽

)
, (A.13)

𝜒 ′𝛼 ′−2 =
(𝜖1/𝜇
𝑆 𝐽

− 𝜖1/𝜇
𝐹 𝐽

)

((𝜖1/𝜇
𝑆 𝐽

+ 𝜖1/𝜇
𝐹𝐼

)
, (A.14)

𝜒 ′2 = [
((𝜖1/𝜇

𝑆𝐼
− 𝜖1/𝜇

𝐹𝐼
)) × (𝜖1/𝜇

𝑆 𝐽
+ 𝜖1/𝜇

𝐹𝐼
))

((𝜖1/𝜇
𝑆 𝐽

− 𝜖1/𝜇
𝐹 𝐽

)) × (𝜖1/𝜇
𝑆𝐼

+ 𝜖1/𝜇
𝐹 𝐽

)
] . (A.15)

A.2. Components of frictional coefficient

The components of the frictional tensor are given by

𝜑𝑅𝐼 𝐽 = Δ(( |u𝐼 · u𝐽 |2 − 1) |ΦΦΦ𝑅𝐼 𝐽 | + (|e𝐼 𝐽 · u𝐼 | − |u𝐼 · u𝐽 | |e𝐼 𝐽 · u𝐽 |) |ΦΦΦ𝑢𝐼𝐼 𝐽 |
+ (|e𝐼 𝐽 · u𝐽 | − |e𝐼 𝐽 · u𝐼 | |u𝐼 · u𝐽 |) |ΦΦΦ

𝑢 𝐽

𝐼 𝐽
|)),

(A.16)
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𝜑
𝑢 𝐽

𝐼 𝐽
= Δ(( |e𝐼 𝐽 · u𝐼 | − |u𝐼 · u𝐽 | |e𝐼 𝐽 · u𝐽 |) |ΦΦΦ𝑅𝐼 𝐽 | + (|e𝐼 𝐽 · u𝐽 |2 − 1) |ΦΦΦ𝑢𝐼

𝐼 𝐽
|

+ (|u𝐼 · u𝐽 | − |e𝐼 𝐽 · u𝐼 | |e𝐼 𝐽 · u𝐽 |) |ΦΦΦ
𝑢 𝐽

𝐼 𝐽
|)),

(A.17)

𝜑
𝑢 𝐽

𝐼 𝐽
= Δ(( |e𝐼 𝐽 · u𝐽 | − |e𝐼 𝐽 · u𝐼 | |u𝐼 · u𝐽 |) |ΦΦΦ𝑅𝐼 𝐽 |

+ (|u𝐼 · u𝐽 | − |e𝐼 𝐽 · u𝐼 | |e𝐼 𝐽 · u𝐽 |) |ΦΦΦ𝑢𝐼𝐼 𝐽 | + (|e𝐼 𝐽 · u𝐼 |2 − 1) |ΦΦΦ𝑢 𝐽

𝐼 𝐽
|)),
(A.18)

where Δ = −1/(1−|e𝐼 𝐽 ·u𝐼 |2−|e𝐼 𝐽 ·u𝐽 |2−|u𝐼 ·u𝐽 |2+2|e𝐼 𝐽 ·u𝐼 | |e𝐼 𝐽 ·u𝐽 | |u𝐼 ·u𝐽 |).

A.3. Parameters for benzene in AMZDPD model

Table A.1.: Optimized parameters for benzene in the AMZDPD model
Force Parameter Value

𝑎 0.49
𝛼 170

Electric Multipole 𝛽 0.710
𝑄𝑝𝑝 4.584
𝑄𝑧𝑧 -9.169
𝑑𝑤 0.922
𝑙 2.288

Gay-Berne 𝑑 4.309
𝜖0 1.191
𝜖𝐹 /𝜖𝑆 2.675
𝑑𝑤 0.384
𝑙 3.767

Frictional kernel 𝑑 4.493
𝜖0 1.550
𝜖𝐹 /𝜖𝑆 0.479
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A. Appendix

A.4. Parameters for pentacene in AMZDPD model

Table A.2.: Optimized parameters for pentacene molecules in the AMZDPD model
Force Parameter Value

𝜖 2.322
𝜎 8.072
𝛾 1.000
𝐿𝑎 2.784

Gay-Berne 𝐿𝑏 5.708
𝐿𝑐 1.596
𝜖𝑎 1.097
𝜖𝑏 0.060
𝜖𝑐 3.617
𝑄𝑎𝑎 5.59

Quadrupole 𝑄𝑏𝑏 7.34
𝑄𝑐𝑐 -12.93
𝜖 2.553
𝜎 8.072
𝛾 1.000
𝐿𝑎 2.784

Frictional kernel 𝐿𝑏 5.708
𝐿𝑐 1.596
𝜖𝑎 1.888
𝜖𝑏 0.260
𝜖𝑐 3.607
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A.5. Parameters of charge transport model for electrospinning

A.5. Parameters of charge transport model for
electrospinning

Table A.3.: The parameters of the charge transport model

Physical meaning Parameter Value
Distance L 300𝜇m
Voltage Φ 187.5V
Height of the fiber h 2𝜇m
Charge constant 𝜌0 1×1012 𝜇𝑚−1

Width of the Gaussian w 0.5𝜇m
Standard deviation of the Gaussian 𝜎 0.2𝜇m
Charge mobility in PEO 𝜇 1×10−5𝑐𝑚2𝑉 −2𝑠−1

Charge diffusivity in PEO 𝐷 5𝑐𝑚2𝑠−1

Permittivity of PEO 𝜖𝑝𝑒𝑜 5
Transfer rate from mobile to trapped state 𝑅𝑓→𝑡 2×10−3 𝑚𝑠−1

Transfer rate from trapped to mobile state 𝑅𝑡→𝑓 2×10−3 𝑚𝑠−1

Density of the trapped state 𝑁𝑡 1×1012 𝜇𝑚−1
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