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Abstract

ElectionGuard is a toolkit used to enable end-to-end verification of elections. Since

ElectionGuard uses exponential ElGamal, it is vulnerable to later vote decryption when

faced with quantum adversaries. Therefore, to avoid influences on voter behaviour, a

post-quantum adaption of ElectionGuard is needed to make the toolkits usage secure for

the foreseeable future.

In this work, we present cryptographic components that can be used to construct a

post-quantum version of ElectionGuard. We use the homomorphic encryption scheme

BGV and the commitment scheme BDLOP in a lattice setting. Applying existing and

new zero knowledge proofs, we construct the elements needed to show that votes are

well-formed and later aggregated correctly. As a final step, we show how to verifiably

decrypt the resulting tally.

In this paper, we lay the foundation for realising post-quantum secure ElectionGuard.

We provide the components for post-quantum vote encryption, aggregation, tallying and

verifiable decryption. Our work can be extended by distributed key generation and the

components for end-to-end verification.
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1. Introduction

In this work we present a post-quantum secure version of ElectionGuard, the “open source

software development kit (SDK) that improves confidence and participation in elections”
1
.

We first give an overview over how ElectionGuard works and then provide an explanation

of the motivation behind making ElectionGuard post-quantum secure.

In the chapters of this work we initially provide a preliminaries section to set the

mathematical framework. Then, we describe the different building blocks we use, i.e. the

BGV encryption scheme, the BDLOP commitment scheme and various zero knowledge

proofs. In the proceeding section we describe how to construct an election system from our

building blocks and go into detail how to select parameters for exemplary instantiations

and describe the compatibility with ElectionGuard as well as a security evaluation of our

approach, concluding our work.

1.1. Overview over ElectionGuard

We first want to provide a short introduction to ElectionGuard and its underlying principles.

ElectionGuard is mainly supported and developed by Microsoft and is in parts based on

the PhD-thesis of Josh Benaloh [9]. The general principle is to encrypt votes as ciphertexts

and to form the tally using homomorphic addition, which is a different approach than

using mixnets like the Helios voting system does [1]. It is open-source and available on

Github
2

and can be used to implement end-to-end verifiable voting systems or to add this

functionality to other, already existing election systems. Note that we refer to specification

v1.1 as available on the ElectionGuard website [10].

The basic principle of ElectionGuard is to use homomorphic encryption as a way to

calculate the tally of elections. Specifically, ElectionGuard uses exponential ElGamal which

is additively homomorphic. After an election has been set up including the key generation,

voters can cast their votes by encrypting 0 (candidate not selected) or 1 (candidate selected)

for each candidate. Then, non-interactive zero knowledge proofs are generated to show

that the votes are in fact either a encryption of zero or one (and not any other value) and

that the sum of all encrypted values is equal to the number of candidates the voter is

allowed to cast votes for. In case a voter wants to cast less votes than he is allowed to,

he casts the remaining votes into placeholder options instead. Once the vote is complete,

the voter can submit it and receive a confirmation code which is used for end-to-end

verifiability. Then the voter can choose to either finally cast their ballot or reject it to

verify it and then start again.

1https://www.electionguard.vote/, Date accessed: 07.12.2023

2https://github.com/microsoft/electionguard/, Date accessed: 07.12.2023
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1. Introduction

Once the election time is up and the voters have cast their votes, the tally can be

calculated as the additively homomorphic sum of all submitted votes for each of the

candidates. Anyone can perform this operation since the votes are all published. Finally,

the trustees decrypt the final tally and calculate a non-interactive zero knowledge proof of

verifiable decryption ensuring that the decryption is correct.

These three steps 1) casting votes and ensuring their correctness, 2) tallying using

the additive homomorphic property and 3) verifiable decryption are the centerpiece of

ElectionGuard. Other features like end-to-end-verifiabilty or threshold encryption are

essentially added “on-top”. To keep the work in this thesis within bounds, we focus on the

three basic steps and leave detailed consideration of other features for future work.

1.2. Motivation

Since ElectionGuard currently uses exponential ElGamal its security is based on the discrete

logarithm assumption, i.e. that its hard to calculate discrete logarithms. However, quantum

computers can solve discrete logarithms easily using Shor’s Algorithm [21], voiding

ElectionsGuard’s underlying security assumption. The consequence is that attackers with

sufficiently advanced quantum computers can break ElectionGuard and decrypt ballots

without access to the election authorities secret keys. This would mean that ElectionGuard

is entirely insecure.

The problem however, is even more severe than it appears at first. Since all cast votes

are published to ensure end-to-end-verifiability, a public record of all voters choices - in an

encrypted format - remains. Given the developments in quantum computers, it is plausible

that Shor’s algorithm can be run in the next decades and subsequently the decryption of

the published votes is a plausible outcome. This yields a major problem even for elections

run today: The fact that your vote can be become known might influence your election

behaviour. This can reach from minor cases like “I don’t want anyone to know that I voted

for candidate XY” to more severe cases like coercion “If you don’t vote for candidate XY I

will harm you when I find out”.

The implication of this problem is that we should switch to post-quantum cryptography

for elections even before quantum computers are advanced enough. We need the secrecy

guarantee to hold far longer than the election was running, because threats in the future

impact coercion resistance right now. Hence, the aim of this work is to create to underlying

framework for a new version of ElectionGuard that uses post-quantum encryption and

can therefore guarantee long lasting security of the voters opinions.

There already exists some research on post-quantum e-voting schemes, however they

cover other systems, e.g. Helios [17]. We are not aware of a post-quantum version of

ElectionGuard so far.

2



2. Preliminaries

We first provide a definition of zero knowledge proofs. Then, we describe out mathematical

setting in detail, i.e. our lattice, the normal distributions we use and some properties of

polynomial rings. Afterwards we state the hardness assumptions we use for security.

2.1. Zero Knowledge Proofs

A zero knowledge proof allows a prover P to convince a verifier V that a specific statement

is true without revealing any other information than the one given in the statement. The

statements can be expressed as 𝑢 ∈ L, where L is a language in NP. A witness 𝑤 is a

witness iff (𝑢,𝑤) ∈ 𝑅 with 𝑅 being a polynomial time decidable binary relation associated

with L. Zero knowledge proofs need to fulfil three properties:

• Completeness: If the prover P runs his protocol, then for 𝑥 ∈ L, the verifierV
accepts the common input 𝑥 with probability 1. In other words, the prover can

convince the verifier of 𝑥 ∈ L [15].

• Soundness: The prover P can run any program and for every constant 𝑐 > 0 and

large enough 𝑥 ∉ L the verifier V the verifier rejects 𝑥 with probability at least

1 − |𝑥 |−𝑐 . In other words, the prover cannot fool the verifier [15].

• Statistically Honest Verifier Zero Knowledge: There exists an expected ppt

simulator S such that for ∀𝑥 ∈ L the distributions S(𝑥) (simulated transcripts) and

ViewV (⟨P,V⟩(𝑥)) (real transcripts) are statistically indistinguishable [8].

A proof of knowledge is a zero knowledge proof where an extractor can extract the

witness 𝑤 given two transcripts with the different challenges. Since 𝑤 can be extracted

in this case, we can assume that the prover also knows 𝑤 (or can at least calculate it), i.e.

that the prover knows the witness 𝑤 . If a proof fulfils the proof of knowledge property, it

also fulfils soundness. We transform our zero knowledge proof into non-interactive proofs

with the Fiat-Shamir heuristic adapted to the quantum random oracle model [13, 18].

2.2. The Setting

We use a similar setting as Baum, Damgård, Lyubashevsky, Oechsner and Peikert [7] with

some changes and additions as described in the following.

Define the ring 𝑅 = Z[𝑥]/⟨𝑥𝑁 + 1⟩ with ring dimension 𝑁 . We use an index to denote a

modulus, for example 𝑅𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑁 + 1⟩ denotes the set of polynomials with degree

smaller than 𝑁 and all coefficients from Z𝑞 . We center the coefficients around 0, i.e. for

3



2. Preliminaries

𝑔 ∈ 𝑅𝑞 with 𝑔 =
∑

𝑖 𝑔𝑖𝑥
𝑖

we represent each 𝑔𝑖 with an 𝑔𝑖 ∈
{
−𝑞−1

2
,
𝑞−1
2

}
such that 𝑔𝑖 = 𝑔𝑖

mod 𝑞. Different rings with varying moduli will be used throughout this work with

equivalent notation and behaviour.

For all 𝑓 ∈ 𝑅 write 𝑓 =
∑

𝑖 𝑓𝑖𝑥
𝑖

to define the norms of 𝑓 :

𝓁1 : | |𝑓 | |1 =
∑︁
𝑖

|𝑓𝑖 |

𝓁2 : | |𝑓 | |2 =
√︄∑︁

𝑖

|𝑓𝑖 |2

𝓁∞ : | |𝑓 | |∞ = max

𝑖
|𝑓𝑖 |

There are a few inequalities to note here. For 𝑓 ∈ 𝑅𝑞 it holds that

| |𝑓 | |1 ≤
√
𝑁 | |𝑓 | |2 ≤ 𝑁 | |𝑓 | |∞ and | |𝑓 | |∞ ≤ ||𝑓 | |2 ≤ ||𝑓 | |1.

Additionally, we can give a bound on the norm of a product due to the choice of the

polynomial 𝑥𝑁 + 1. For 𝑓 , 𝑔 ∈ 𝑅𝑞 : [7]

If | |𝑓 | |∞ ≤ 𝛽, | |𝑔 | |1 ≤ 𝛾 then | |𝑓 · 𝑔 | |∞ ≤ 𝛽 · 𝛾
If | |𝑓 | |2 ≤ 𝛽, | |𝑔 | |2 ≤ 𝛾 then | |𝑓 · 𝑔 | |∞ ≤ 𝛽 · 𝛾

For positive integers 𝛼 define 𝑆𝑅𝑞,𝛼 = {𝑓 ∈ 𝑅𝑞 | | |𝑓 | |∞ = 𝛼} to be used as the set of

“small” polynomials over 𝑅𝑞 (and other rings respectively). Also, define a challenge space

C𝑅𝑞,𝜅 = {𝑐 ∈ 𝑅𝑞 | | |𝑐 | |∞ = 1, | |𝑐 | |1 = 𝜅} and a set of differences C𝑅𝑞,𝜅 = {𝑐 − 𝑐′ | 𝑐 ≠ 𝑐′ ∈
C𝑅𝑞,𝜅}. It holds that ∀𝑓 ∈ C𝑅𝑞,𝜅 : | |𝑓 | |∞ ≤ 2, | |𝑓 | |1 ≤ 2𝜅. We use this in combination with

Theorem 1 (see Section 2.2.2) and by setting the parameters of the rings in a way that

all non-zero elements of 𝓁∞-norm at most 2 will be invertible in the corresponding ring,

which especially makes all elements in C𝑅𝑞,𝜅 invertible. When choosing 𝜅 we aim to have

the size of C be 2
𝜆

which can be achieved by setting 𝜅 with

(𝑁
𝜅

)
· 2𝜅 > 2

𝜆
[7]. For example,

if 𝜆 = 256, 𝑁 = 8192 we can set 𝜅 B 24.

We write← for storing the result of a randomised algorithm in a variable, e.g. 𝑥 ← A
and

$←− to signify drawing a uniformly random sample from a set and storing it in a variable,

e.g. 𝑥
$←− {−1, 0, 1} or 𝑥

$←− 𝑆𝑅𝑞,1. When storing the value of a deterministic operation, we

write B, for example 𝑥 B 5𝑦 + 3

2.2.1. Normal Distributions

Just as the general setting, we use normal distributions in a similar notation as Baum et.

al. [7] as described in the following.

For a continuous normal distribution over R𝑁 centered at v ∈ R𝑁 with a standard

deviation 𝜎 the probability density function is

𝜌𝑁v,𝜎 (𝑥) =
1

√
2𝜋𝜎
· exp

(−||𝑥 − v| |2
2

2𝜎2

)

4



2.2. The Setting

For a discrete normal distribution over 𝑅𝑘 centered at v ∈ 𝑅𝑘 with a standard deviation 𝜎

we use the following distribution function for all 𝑥 ∈ 𝑅𝑘 . Note that omitting the subscript

v means that it is zero and omitting the superscript 𝑘 means that it is one.

N𝑘
v,𝜎 (𝑥) = 𝜌𝑘 ·𝑁v,𝜎 (𝑥)/𝜌𝑘 ·𝑁𝜎 (𝑅𝑘) with 𝜌𝑘 ·𝑁𝜎 (𝑅𝑘) =

∑︁
𝑥∈𝑅𝑘

𝜌𝑘 ·𝑁𝜎 (𝑥)

Lemma 1 Since we work with “small” vectors, we also need a tail-bound version of the
normal distribution to ensure that we don’t sample far outliers. We use the tail-bound from
[6] (also see Remark 1 in [7] and Lemma 3.3 in [19]) where for any 𝛿 > 0 and 𝜎 > 0

Pr[| |𝑧 | |2 > 𝛿𝜎
√
𝑘𝑁 | 𝑧 ← N𝑘

𝜎 ] < 𝛿𝑘𝑁 · exp
(
𝑘𝑁

2

(1 − 𝛿2)
)

We set 𝛿 B 2 which is sufficient for the tail-bound to hold with a probability that is
overwhelming in 𝜆 since 𝑁 = Ω(𝜆) [7].

We use the following lemma to show that a normal distribution centered around 0 and a

normal distribution with another center adjusted with rejection-sampling are statistically

indistinguishable in our security parameter.

Lemma 2 Let 𝑉 = {𝑣 ∈ 𝑅𝑘 | | |𝑣 | |2 < 𝑇 } ⊆ 𝑅𝑘 and 𝜎 ∈ R with 𝜎 ∈ 𝜔 (𝑇
√︁
log(𝑘𝑁 )) and let

ℎ : 𝑉 → R be a probability distribution. Then there exists𝑀 ∈ O(1) such that the probability
distribution between the following to algorithms A,S lies within statistical distance 2−𝜎/𝑀
for 𝜎 ∈ 𝜔 (𝑇

√︁
log(𝑘𝑁 ))

A:

1. 𝑣 ← ℎ

2. 𝑧 ← N𝑘
𝑣,𝜎

3. Output (𝑣, 𝑧) with probability min

(
N𝑘

𝜎 (𝑧)
𝑀N𝑘

𝑣,𝜎 (𝑧)
, 1

)
S:

1. 𝑣 ← ℎ

2. 𝑧 ← N𝑘
𝜎

3. Output (𝑣, 𝑧) with probability 1/𝑀

Note that A outputs something with probability at least 1−2−𝑙
𝑀

for 𝑙 ∈ 𝜔 (log(𝑘𝑁 )). By
setting 𝜎 = 𝛼𝑇 we obtain𝑀 = exp(12/𝛼 + 1/(2𝛼2)) and therefore the statistical distance of
the outputs of A,S is at most 2−100/𝑀 and A outputs something with probability at least
(1 − 2−100)/𝑀 . In practice we choose 𝑘𝑁 ≫ 128 but even for 𝑘𝑁 = 128 we obtain𝑀 ≈ 4.5

which just decreases for larger choices [7, 19].

5



2. Preliminaries

2.2.2. Polynomial ring properties

We use some properties of polynomial rings 𝑅𝑞 = Z𝑞 [𝑥]/(𝑥𝑁 + 1) for our protocol, for

example for embedding votes into polynomials.

Theorem 1 [20, Corollary 1.2] Let 𝑁 ≥ 𝜔 > 1 be powers of two and 𝑞 = 2𝜔 +1 mod 4𝜔

be a prime. Then the polynomial 𝑥𝑁 + 1 factors as

𝑥𝑁 + 1 =
𝜔∏
𝑗=1

(𝑥𝑁 /𝜔 − 𝑟 𝑗 ) mod 𝑞

for distinct 𝑟 𝑗 ∈ Z∗𝑞 where 𝑥𝑁 /𝜔 − 𝑟 𝑗 are irreducible in the ring Z𝑞 [𝑥]. Furthermore, any
𝑦 ∈ Z𝑞 [𝑥]/(𝑥𝑁 + 1) that satisfies either

0 < | |𝑦 | |∞ <
1

√
𝜔
· 𝑞1/𝜔

or

0 < | |𝑦 | |2 < 𝑞1/𝜔

has an inverse in Z𝑞 [𝑥]/(𝑥𝑁 + 1).

Since we want all challenge polynomials and their differences (i.e. elements 𝑐 ∈ C𝑅𝑞,𝜅
which have | |𝑐 | |∞ ≤ 2) to be invertible, we have to ensure that 2 < 1√

𝜔
· 𝑞1/𝜔 . For example,

with 𝜔 = 8 we get that 𝑞 > 2
20

[20]. Note that 𝑞 has to be chosen with 𝑞 = 2𝜔 +1 mod 4𝜔 .

Since 𝜔 represents the number of “slots” corresponding to the number of candidates of the

election, this relation is crucial when choosing parameters and will be further discussed in

Section 4.2.1 regarding the parameter selection.

Theorem 2 In the case of Theorem 1 as stated above, all factors 𝑥𝑁 /𝜔 − 𝑟 𝑗 are relatively
coprime to each other.

With the Chinese remainder theorem it follows that

Z𝑞 [𝑥]/(𝑥𝑁 + 1) � Z𝑞 [𝑥]/(𝑥𝑁 /𝜔 − 𝑟1) × Z𝑞 [𝑥]/(𝑥𝑁 /𝜔 − 𝑟2) × · · · × Z𝑞 [𝑥]/(𝑥𝑁 /𝜔 − 𝑟𝜔 )

are isomorph to each other. Calculations in of the rings can therefore be performed in the
other and vice versa. Note that

Z𝑞 [𝑥]/(𝑥𝑁 /𝜔 −𝑟1) ×Z𝑞 [𝑥]/(𝑥𝑁 /𝜔 −𝑟2) × · · ·×Z𝑞 [𝑥]/(𝑥𝑁 /𝜔 −𝑟𝜔 ) ⊇ Z𝑞×Z𝑞×· · ·×Z𝑞 = Z𝜔𝑞

which we can use to store values from Z𝜔𝑞 in 𝑅𝑞 , i.e. for storing the votes. Multiplying or
adding polynomials in Z𝑞 [𝑥]/(𝑥𝑁 +1) corresponds to the respective component-wise operation
in Z𝜔𝑞 .

6



2.3. Hardness Assumptions

The factors of Z𝑞 [𝑥]/(𝑥𝑁 + 1) are coprime to each other because they are irreducible

and therefore don’t have any divisors.

Storing values fromZ𝜔𝑞 inZ𝑞 [𝑥]/(𝑥𝑁 /𝜔−𝑟1)×Z𝑞 [𝑥]/(𝑥𝑁 /𝜔−𝑟2)×· · ·×Z𝑞 [𝑥]/(𝑥𝑁 /𝜔−𝑟𝜔 )
is achieved by setting the value in each of the components as the coefficient of 𝑥0, i.e. the

constant term.

2.3. Hardness Assumptions

Definition 1 The search knapsack problem in the 𝓁2-norm (in short SKS2) is defined as
follows: The SKS2 problem is to find a short, non-zero vector x of 𝓁2-norm less than or equal

to 𝛽 in 𝑅2

𝑞 with
[
𝑎 1

]
· 𝑥 = 0 for a given uniformly random 𝑎

$←− 𝑅𝑞 . An algorithm A has
advantage 𝜖 in solving SKS2

𝑁,𝑞,𝛽
if

Pr

[ [
𝑎 1

]
· 𝑥 = 0

∧||𝑥𝑖 | |2 ≤ 𝛽
𝑎

$←− 𝑅𝑞
0 ≠ 𝑥 ∈ 𝑅2

𝑞 ← A(𝑎)

]
≥ 𝜖

The SKS2 problem corresponds to the Ring-SIS problem in its Hermite Normal form [22].

Lemma 3 Let 1 < 𝜔 < 𝑁 be a power of 2. If 𝑞 is a prime congruent to 2𝜔 +1 mod 4𝜔 and

𝛽 < 𝑞1/𝜔 , and

𝛽 <

√︂
𝑁

2𝜋𝑒
· 𝑞𝑛/𝑘 · 2−128/(𝑘 ·𝑁 ) −

√
𝑁 /2

then any (all-powerful) algorithm A has advantage at most 2−128 in solving SKS2
𝑛,𝑘,𝛽

[7].

Definition 2 The decisional knapsack problem in the 𝓁∞-norm (in short DKS∞) is defined as
follows: The DKS∞ problem is to distinguish the distribution

[
𝑎 1

]
·𝑥 , for a short 𝑥 , from the

uniform distribution when given uniformly random 𝑎
$←− 𝑅𝑞 . An algorithm A has advantage

𝜖 in solving the DKS∞
𝑁,𝑞,𝛽∞

problem if����Pr [
𝑏 = 1 | 𝑎 $←− 𝑅𝑞 ;𝑥

$←− 𝑆𝑅𝑞,𝛽∞ ;𝑏 ← A(𝑎,
[
𝑎 1

]
· 𝑥)

]
−Pr

[
𝑏 = 1 | 𝑎 $←− 𝑅𝑞 ;𝑢

$←− 𝑅𝑞 ;𝑏 ← A(𝑎,𝑢)
] ���� ≥ 𝜖

The DKS∞ problem corresponds to the Ring-LWE problem when the number of samples is
limited [22].

Lemma 4 Let 1 < 𝜔 < 𝑁 be a power of 2. If 𝑞 is a prime congruent to 2𝜔 +1 mod 4𝜔 and

𝑞𝑛/𝑘 · 2256/(𝑘 ·𝑁 ) ≤ 2𝛽 ≤ 1

√
𝜔
· 𝑞1/𝜔

then any (all-powerful) algorithm A has advantage at most 2−128 in solving DKS∞
𝑛,𝑘,𝛽

[7].
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3. Building Blocks

3.1. Vote Encoding

We represent votes as vectors ®𝑣 ∈ Z𝜔𝑡 where each of the 𝜔 entries is used to represent a

candidate. Setting an entry to 1 signifies casting a vote for the corresponding candidate

and respectively setting it to 0 signifies not casting a vote for the corresponding candidate.

Note that not all 𝜔 entries have to be used for candidates, instead some of these “slots”

can remain empty in case there are less than 𝜔 candidates.

Depending on the election, a voter can cast votes for up to 𝜏 candidates (e.g 3 or 5). Since

the number of votes cast needs to add up to 𝜏 , we use empty slots without corresponding

candidates as filler and in case someone only wants to cast votes for 𝜌 candidates (with

𝜌 < 𝜏) the remaining 𝜏 − 𝜌 votes will be filled in to the next empty slots each as a 1. This

is similar to the placeholder votes in ElectionGuard in its specification [10]. Since a voter

could potentially abstain from casting any of their 𝜏 votes, the number of empty slots

needs to be at least 𝜏 so that they can cast all their votes as invalid.

We use Theorem 1 and Theorem 2 to embedd votes into elemtents of 𝑅𝑡 = Z𝑡 [𝑥]/(𝑥𝑁 +1).

encodeVote : Z𝜔𝑡 → 𝑅𝑡

decodeVote : 𝑅𝑡 → Z𝜔𝑡
The encoding and decoding can be prepared by calculating 𝑒, factors and 𝜔 using the

pseudocode for prepareEncode below. Note that this works by first factoring 𝑥𝑁 + 1 into

its 𝜔 factors (see Theorem 1) and then iterativly building a canonical basis 𝑒 = (𝑒1, ..., 𝑒𝜔 ).
This basis has the property that

∀𝑖 ∈ 1...𝜔 : 𝑒𝑖 ≡ 1 mod factor𝑖 ∧ ∀𝑖′ ≠ 𝑖 : 𝑒𝑖 ≡ 0 mod factor𝑖′

The calculation of the canonical basis 𝑒 and the factors of 𝑥𝑁 + 1 can be done before an

election by the election authority and be published along the other details of the election

since it is unique for a given set of election parameters 𝑁, 𝑡 . Voters or auditors can easily

check the correctness by verifying that

∏𝜔
𝑖=1 factor𝑖

?

= 𝑥𝑁 + 1 and that 𝑒 fulfils its property

as mentioned above (i.e. each basis polynomial is one modulo one of the factors and zero

modulo all other factors).

Using the pseudocode for encodeVote and decodeVote votes can then be transformed

isomorphically between 𝑍𝜔
𝑡 and 𝑅𝑡 . See Appendix A.1 for an example implementation in

SageMath.
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3. Building Blocks

prepareEncode(𝑁, 𝑡)
1 : 𝑅𝑡 = Z𝑡/(𝑥𝑁 + 1)
2 : factors = factor (𝑥𝑁 + 1) under Z𝑡

3 : 𝜔 = len(factors)
4 : 𝑒 = [1 for 𝑖 in 1...𝜔]
5 : for 𝑖 in 1...𝜔 :

6 : 𝐴 = list(factors)
7 : 𝐴.remove(factors[𝑖])
8 : 𝐵 = list(factors[𝑖])
9 : while len(𝐴) ≥ 1 :

10 : 𝑐 = 𝐴.pop()
11 : 𝑒 [𝑖] = 𝑒 [𝑖] − 𝑒 [𝑖] ∗ inversemod(

∏
𝑏∈𝐵

𝑏, 𝑐) ∗
∏
𝑏∈𝐵

𝑏

12 : 𝐵.append(𝑐)
13 : return 𝑒, factors, 𝜔

encodeVote(𝑣 ∈ Z𝜔𝑡 ; 𝑒, 𝜔) ∈ 𝑅𝑡

1 : return
𝜔∑︁
𝑖=1

𝑣 [𝑖] · 𝑒 [𝑖]

decodeVote(𝑝 ∈ 𝑅𝑡 ; factors, 𝜔) ∈ Z𝜔𝑡
1 : return [𝑝 mod factors[𝑖] for 𝑖 in 1...𝜔]

3.2. BDLOP Commitments

We use the commitment scheme by Baum, Damgård, Lyubashevsky, Oechsner and Peikert,

called in short BDLOP. [7] We use the BDLOP commitments in a ring 𝑅𝑡 = Z𝑡 [𝑥]/(𝑥𝑁 + 1)
with 𝑡 prime, 𝑡 = 2𝜔 +1 mod 4𝜔 and 𝑁 a power of two.

3.2.1. Commitment Scheme

The commitment scheme has three algorithms:

BDLOP.KeyGen(params) → (𝐴1, 𝐴2) is used to create public parameters that can be used

to commit to messages𝑚 ∈ 𝑅𝑙𝑡 . It creates the public parameters 𝐴1 ∈ 𝑅𝑛×𝑘𝑡 and 𝐴2 ∈ 𝑅𝑙×𝑘𝑡

as follows:

𝐴1 =
[
𝐼𝑛 𝐴′

1

]
where 𝐴′

1

$←− 𝑅
𝑛×(𝑘−𝑛)
𝑡

𝐴2 =
[
0
𝑙×𝑛 𝐼𝑙 𝐴′

2

]
where 𝐴′

2

$←− 𝑅
𝑙×(𝑘−𝑛−𝑙)
𝑡

BDLOP.Commit(𝑚, params; 𝑟 ) → com This is used to commit to a message 𝑚 ∈ 𝑅𝑙𝑡 by

choosing a random polynomial vector 𝑟
$←− 𝑆𝑘

𝑅𝑡 ,𝛽
and calculating the commitment:

com B

[
com1

com2

]
=

[
𝐴1

𝐴2

]
· 𝑟 +

[
0
𝑛

𝑚

]
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3.2. BDLOP Commitments

BDLOP.Open(com,𝑚, 𝑟, 𝑓 , params) → {0, 1} This is used to check whether an opening

for a commitment is valid. The opening consists of a 3-tuple of𝑚 ∈ 𝑅𝑙𝑡 , 𝑟 =

𝑟1
. . .

𝑟𝑘

 ∈ 𝑅𝑘𝑡 , and

𝑓 ∈ C𝑅𝑡 ,𝜅 . This can be verified by checking

𝑓 ·
[
com1

com2

]
=

[
𝐴1

𝐴2

]
· 𝑟 + 𝑓 ·

[
0
𝑛

𝑚

]
and that ∀𝑖 ∈ (1, . . . , 𝑘) : | |𝑟𝑖 | |2 ≤ 4𝜎𝐶

√
𝑁 .

For a proof of correctness of the commitment see [7].

3.2.2. Security of BDLOP

The BDLOP encryption scheme as described above is hiding if the DKS
∞
𝑁,𝑡,𝛽

problem is

hard according to Lemma 4 and binding if the SKS
2

𝑁,𝑡,16𝜎𝐶
√
𝜅𝑁

is hard [22] according to

Lemma 3. Additionally, one can set the parameters in between both of these cases to

gaining computational hardness for both the binding and hiding property. For a proof of

security refer to [7].

3.2.3. Zero Knowledge Proofs

3.2.3.1. Proof of Linear Relation

One of the zero knowledge proofs we use in our work is the proof of linear relation of

commitment values by Aranha, Baum, Gjøsteen, Silde and Tunge [4]. Let [[𝑥]], [[𝑥′]] be

BDLOP commitments as described above to the values 𝑥 and 𝑥′ such that 𝑥′ = 𝛼𝑥 + 𝛽 for

some 𝛼, 𝛽 ∈ 𝑅𝑡 . Define

[[𝑥]] = Com(𝑥, 𝑟𝑥 ) =
[
com1

com2

]
, [[𝑥′]] = Com(𝑥′, 𝑟𝑥 ′) =

[
com

′
1

com
′
2

]
and use the proof ΠLin as shown in Figure 3.1 to show the relation:

RLin =

{
(𝑢,𝑤) 𝑢 = (𝛼, 𝛽, [[𝑥]], [[𝑥′]]),𝑤 = (𝑥, 𝑟𝑥 , 𝑟𝑥 ′, 𝑓 , 𝑓 ′) :

Open( [[𝑥]], 𝑥, 𝑟𝑥 , 𝑓 ) = Open( [[𝑥′]], 𝛼 · 𝑥 + 𝛽, 𝑟𝑥 ′, 𝑓 ′) = 1

}
The proof is based on rejection sampling and using Lemma 2 to mask the values of 𝑟𝑥

and 𝑟 ′𝑥 into a normal distribution. Then the verification equations (1) - (4) ensure that the

commitment randomness is sufficiently small, that the commitments have been calculated

honestly and lastly that the linear relation between 𝑥 and 𝑥′ holds. Refer to [4] for a proof

of the zero knowledge properties.
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3. Building Blocks

Prover P VerifierV
𝑦,𝑦′ ← N𝑘

𝜎𝐶

𝑡 B 𝐴1𝑦, 𝑡
′ B 𝐴1𝑦

′

𝑢 B 𝛼 ⟨𝐴2, 𝑦⟩ − ⟨𝐴2, 𝑦
′⟩ 𝑡, 𝑡 ′, 𝑢

𝑑 𝑑
$←− C𝑅𝑡 ,𝜅

𝑧 B 𝑦 + 𝑑𝑟𝑥
𝑧′ = 𝑦′ + 𝑑𝑟 ′𝑥
Continue with probability:

M B {(𝑟𝑥 , 𝑧), (𝑟 ′𝑥 , 𝑧′)}∏
(𝑎,𝑏 ) ∈M

min

(
1,

N𝑘
𝜎𝐶
(𝑏)

𝑀 · N𝑘
𝑑a,𝜎𝐶
(𝑏)

)
𝑧, 𝑧′

Accept iff

(1): ∀𝑖 ∈ [𝑘] : | |𝑧 [𝑖] | |, | |𝑧′ [𝑖] | | ≤ 2𝜎𝐶
√
𝑁

(2): 𝐴1𝑧
?

= 𝑡 + 𝑑 com1

(3): 𝐴1𝑧
′ ?

= 𝑡 ′ + 𝑑 com′
1

(4):

𝛼 ⟨𝐴2, 𝑧⟩ − ⟨𝐴2, 𝑧
′⟩ ?

=

(𝛼 com2 +𝛽 − com′
2
)𝑑 + 𝑢

Figure 3.1.: Protocol for proof ΠLin

The proof ΠLin shows the linear relation 𝑥 ′ = 𝛼𝑥 + 𝛽 for commitments [[𝑥]], [[𝑥 ′]] to 𝑥, 𝑥 ′

respectively.
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3.2. BDLOP Commitments

3.2.3.2. Proof of Sum

In a similar fashion to the proof of linear relation, we also use a proof of sum by Baum,

Damgård, Lyubashevsky, Oechsner and Peikert [7]. Given the prover has published three

commitments

𝑐 = BDLOP.Commit(𝑥, 𝑟 )
𝑐′ = BDLOP.Commit(𝑥′, 𝑟 ′)
𝑐′′ = BDLOP.Commit(𝑥′′, 𝑟 ′′)

it shows that 𝑥′′ = 𝛼1 · 𝑥 + 𝛼2 · 𝑥′ with 𝛼1, 𝛼2 ∈ 𝑅𝑡 being public constants.

Use the proof ΠSum as shown in Figure 3.2 to show the following relation RSum. This

proof is very similiar to the proof of linear relation ΠLin as seen in section 3.2.3.1. For a

detailed proof of correctness, soundness and the zero knowledge property of ΠSum refer to

[7, Section 4.4]

RSum =

 (𝑢,𝑤)
𝑢 = (𝛼1, 𝛼2, 𝑐, 𝑐′, 𝑐′′),𝑤 = (𝑟, 𝑟 ′, 𝑟 ′′, 𝑥, 𝑥′, 𝑓 , 𝑓 ′, 𝑓 ′′) :
Open(𝑐, 𝑥, 𝑟, 𝑓 ) = Open(𝑐′, 𝑥′, 𝑟 ′, 𝑓 ′)
= Open(𝑐′′, 𝛼1 · 𝑥 + 𝛼2 · 𝑥′, 𝑟 ′′, 𝑓 ′′) = 1


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3. Building Blocks

Prover P VerifierV
𝑦,𝑦′, 𝑦′′ ← N𝑘

𝜎𝐶

𝑡 B 𝐴1𝑦, 𝑡
′ B 𝐴1𝑦

′

𝑡 ′′ B 𝐴1𝑦
′′

𝑢 B 𝛼1 · 𝐴2 · 𝑦 + 𝛼2 · 𝐴2 · 𝑦′ −𝐴2 · 𝑦′′ 𝑡, 𝑡 ′, 𝑡 ′′, 𝑢

𝑑 𝑑
$←− C𝑅𝑡 ,𝜅

𝑧 B 𝑦 + 𝑑𝑟
𝑧′ B 𝑦′ + 𝑑𝑟 ′

𝑧′′ B 𝑦′′ + 𝑑𝑟 ′′

Continue with probability:

M B {(𝑟, 𝑧), (𝑟 ′, 𝑧′), (𝑟 ′′, 𝑧′′)}∏
(𝑎,𝑏 ) ∈M

min

(
1,

N𝑘
𝜎𝐶
(𝑏)

𝑀 · N𝑘
𝑑a,𝜎𝐶
(𝑏)

)
𝑧, 𝑧′, 𝑧′′

Accept iff

(1): ∀𝑖 ∈ [𝑘] : | |𝑧 [𝑖] | | ≤ 2𝜎𝐶
√
𝑁

∧ ∀𝑖 ∈ [𝑘] : | |𝑧′ [𝑖] | | ≤ 2𝜎𝐶
√
𝑁

∧ ∀𝑖 ∈ [𝑘] : | |𝑧′′ [𝑖] | | ≤ 2𝜎𝐶
√
𝑁

(2): 𝐴1𝑧
?

= 𝑡 + 𝑑𝑐1
(3): 𝐴1𝑧

′ ?

= 𝑡 ′ + 𝑑𝑐′
1

(4): 𝐴1𝑧
′′ ?

= 𝑡 ′′ + 𝑑𝑐′′
1

(5):

𝛼1 · 𝐴2 · 𝑧 + 𝛼2 · 𝐴2 · 𝑧′ −𝐴2 · 𝑧′′
?

= (𝛼1 · 𝑐2 + 𝛼2 · 𝑐′
2
− 𝑐′′

2
) · 𝑑 + 𝑢

Figure 3.2.: Protocol for proof ΠSum

The proof ΠSum shows the relation 𝑥 ′′ = 𝛼1 · 𝑥 + 𝛼2 · 𝑥 ′ for commitments 𝑐, 𝑐′, 𝑐′′ to 𝑥, 𝑥 ′, 𝑥 ′′

respectively.
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3.2. BDLOP Commitments

3.2.3.3. Proof of Message Bound

We use a proof of bound for the message of a commitment adapted from the proof of

knowledge of preimages by Baum et. al. [8, Figure 1] which is similar to the proof

of opening of a BDLOP commitment [7, Figure 4]. We use this proof in the verifiable

decryption to ensure that the accumulated noise stays within bounds.

Given a message𝑚, calculate BDLOP.Commit(𝑚; 𝑟 ) := com =

[
com1

com2

]
and set

𝐴 B

[
𝐴1 ∈ 𝑅𝑛×𝑘𝑡 0

𝑛

𝐴2 ∈ 𝑅1×𝑘
𝑡 1

]
∈ 𝑅𝑛+1×𝑘+1𝑡

𝑠 B


𝑟1
...

𝑟𝑘
𝑚


∈ 𝑅𝑘+1𝑡 , 𝑡 B

[
com1

com2

]
∈ 𝑅𝑛+1𝑡

and prove the relation

RBound =

 (𝑢,𝑤) 𝑢 =

(
𝐴, 𝑡 =

[
com1

com2

] )
,𝑤 =

(
𝑠 =

[
𝑟

𝑚

] )
:

𝐴𝑠 = 𝑡 ∧ Open(𝑡,𝑚, 𝑟, 𝑓 ) = 1 ∧ ||𝑚 | |2 < 2 · 𝐵𝑒


using the protocol for ΠBound given in Figure 3.3 for some bound 𝐵𝑒 B

√
2𝑁𝜎𝑒 . Note

that the value 𝜎𝑒 and subsequently depends on the range of 𝑚, i.e. we have to choose how

“thight” of a bound we want to prove. We use this proof in Section 3.3.2 for the verifiable

decryption of BGV ciphertexts and further explain the choice of 𝜎𝑒 there.

The properties of the protocol follow directly from the properties of the proof of opening

ΠOpen of BDLOP commitments [7, Lemma 7], making this proof fulfil completeness, special
soundness and honest-verifier zero knowledge. Note that value 𝑚 in 𝑠 is hidden from the

verifier because the commitment is hiding. An extractor however can extract it in the

same fashion an extractor for ΠOpen extracts its message.
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3. Building Blocks

Prover P VerifierV
𝑦′ ← N𝑘

𝜎𝐶
, 𝑦′′ ← N𝜎𝑒

𝑦 :=

[
𝑦′

𝑦′′

]
∈ 𝑅𝑘+1𝑡

𝑤 := 𝐴 · 𝑦 𝑦

𝑑 𝑑
$←− C𝑅𝑡 ,𝜅

𝑧 B 𝑦 + 𝑑𝑠
Continue with probability:

min

(
1,

N𝑘
𝜎𝐶
(𝑧 [1..𝑘])

𝑀 · N𝑘
𝑑𝑟,𝜎𝐶
(𝑧 [1..𝑘])

)
Continue with probability:

min

(
1,

N𝜎𝑒 (𝑧 [𝑘 + 1])
𝑀 · N𝑑𝑚,𝜎𝑒 (𝑧 [𝑘 + 1])

)
𝑧 ∈ 𝑅𝑘+1𝑡

Accept iff

(1): ∀𝑖 ∈ 1..𝑘 : | |𝑧 [𝑖] | |2 ≤ 2𝜎𝐶
√
𝑁

(2): | |𝑧 [𝑘 + 1] | |2 ≤ 2𝜎𝑒
√
𝑁

(3): 𝐴𝑧
?

= 𝑡𝑑 +𝑤

Figure 3.3.: Protocol for proof ΠBound

The proof ΠBound shows that the message contained in a given commitment is bound in the

𝓁2-norm by some value 2𝐵𝜎𝑒 and that the commitment is well-formed.
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3.3. BGV Encryption

3.3. BGV Encryption

We use the fully homomorphic encryption scheme by Brakerski, Gentry and Vaikun-

tanathan, called in short BGV. [12] The following definition and explanation of BGV is

based on [16]. The BGV scheme is a levelled scheme, i.e. homomorphic multiplications

decrease a level and once a certain bound has been reached one needs to perform a boot-

strapping operation to decrease the accumulated noise, which grows quadratically with

each multiplication. Since we however don’t make use of homomorphic multiplications in

our use-case of BGV, we omit die ciphertext levels for simplicity and do not provide the

homomorphic multiplication operation. For a full, detailed explanation of BGV refer to

[12, 16].

3.3.1. Encryption Scheme

We present the the encryption scheme by detailing the plaintext and ciphertext spaces

used, descryping the operations used and definining the security.

3.3.1.1. Plaintext and Ciphertext Spaces

Let the plaintext space of BGV be P = 𝑅𝑡 = Z𝑡 [𝑥]/(𝑥𝑁 + 1). This denotes the set of

polynomials with degree smaller than 𝑁 and all coefficients from Z𝑡 . Note that this ring

corresponds to the one we use for the BDLOP commitments. Call 𝑡 the plaintext modulus;
while 𝑁 denotes the ring dimension. Define the ciphertext space as C = 𝑅𝑞 × 𝑅𝑞 with

𝑅𝑞 = Z𝑞 [𝑥]/(𝑥𝑁 + 1) and call 𝑞 ∈ Z the ciphertext modulus.

3.3.1.2. Encryption Scheme Operations

We use a discrete noise distribution 𝜒 B N𝜎𝜒 with a standard deviation of 𝜎𝜒 . Note that

the distribution outputs values from Z[𝑥]/(𝑥𝑁 + 1) with coefficients bound as described

by the tail-bound from Lemma 1. See Section 4.2.1 for how to set the value of 𝜎𝑒 . We set

params B (𝑅𝑞, 𝜒, 𝑡, 𝑁 ) as the public parameters.

The BGV encryption scheme consists of the following operations:

BGV.KeyGen(params) → (sk, pk) is used to generate a key pair. First, draw a small

polynomial as the secret key 𝑠
$←− 𝑆𝑅𝑞,1 and set sk B 𝑠 . Then generate the public key

by drawing a random element 𝑎
$←− 𝑅𝑞 and noise 𝑒 ← 𝜒 . Then set pk B (pk1, pk2) =

(𝑎 · 𝑠 + 𝑡𝑒,−𝑎).

BGV.Encrypt(𝑚, pk; params) → c = (c1, c2) is used to encrypt a message 𝑚 ∈ P. First,

draw noise 𝑒1, 𝑒2 ← 𝜒 and a “small” polynomial 𝑢
$←− 𝑆𝑅𝑞,1. Then compute[

c1

c2

]
=

[
pk1

pk2

]
· 𝑢 + 𝑡

[
𝑒1
𝑒2

]
+

[
𝑚

0

]
and return c = (c1, c2).
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3. Building Blocks

BGV.Decrypt(𝑐, sk; params) →𝑚 is used to decrypt a ciphertext 𝑐 ∈ C back to a message

𝑚 ∈ P. This is done by calculating

𝑚 = c1 + c2 · sk mod 𝑞 mod 𝑡

and then returning𝑚.

We use the following homomorphic operation:

BGV.Add(𝑐, 𝑐; params) → 𝑐 is used to form the sum of two ciphertexts which is a ho-

momorphic operation for forming the sum of the contained messages. It can simply be

calculated for 𝑐 =

[
𝑐1
𝑐2

]
, 𝑐 =

[
𝑐1
𝑐2

]
as 𝑐 =

[
𝑐1
𝑐2

]
B

[
𝑐1
𝑐2

]
+

[
𝑐1
𝑐2

]
which results in the noise 𝑒1, 𝑒2 and 𝑢 growing linearly with the number of chiphertext

additions. Refer to Section 3.3.2 for a calculation of the accumulated noise generated.

The BGV scheme is correct if | | c1 + sk c2 | |∞ < 𝑞/2.

3.3.1.3. Security of BGV

The BGV encryption scheme as described above is CPA-secure if the DKS
∞
𝑁,𝑞,𝛽

problem is

hard for some 𝛽 = 𝛽 (𝑁,𝑞, 𝑝, 𝛽∞) [22]. For a proof of security refer to [12].

3.3.2. Verifiable Decryption

We use a proof of decryption to show that the final tally of the election has been decrypted

correctly. We obtain the ciphertext 𝑐 = (𝑐1, 𝑐2) as the homomorphic sum of all cast votes

and then want to proof that BGV.Decrypt(𝑐, sk, params) = 𝑣 , where 𝑣 is the tally. Our

proof of decryption for a single ciphertext is very similar to the proof by Silde [22], which

can be used to verifiably open multiple ciphertexts at once.

For the proof we need a public commitment to the secret key of the ciphertext, i.e.

[[sk]] B BDLOP.Commit(sk; 𝑟sk). This can be calculated as part of the key generation and

published on the bulletin board alongside a proof of correctness.

To prove the correctness of the decryption, the prover first decrypts the ciphertext

BGV.Decrypt(𝑐, sk, params) B 𝑣 and then calculats the accumulated noise 𝑒 B 𝑒 ·𝑢 + 𝑒1 +
sk ·𝑒2 and commits to it: BDLOP.Commit(𝑒) = com𝑒 .

Then we prove the relation

RVerDec =

{
(𝑢,𝑤) 𝑢 = (pk = (pk1, pk2), [[sk]], c = (c1, c2), 𝑣),𝑤 = (sk, 𝑒) :

𝑡 · 𝑒 = c1 −𝑣 + c2 · sk∧||𝑒 | |∞ < 𝑞/2𝑡

}
using the proof ΠVerDec as given in Figure 3.4.

The proof of verifiable decryption has two parts. First, it shows that the accumulated

noise 𝑒 is actually the noise contained in the ciphertext to guarantee that it has been

calculated correctly. This is accomplished by using ΠLin to show the according linear

equation. Then, we use the proof ΠBound to show that the noise 𝑒 is within certain bounds

that guarantee that the ciphertext is still correct and did not “overflow”.
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3.3. BGV Encryption

Prover P VerifierV
BGV.Decrypt((c1, c2), sk) B 𝑣

𝑒 B (c1 −𝑣 + c2 · sk)/𝑡 mod 𝑞

com𝑒 = BDLOP.Commit(𝑒; 𝑟𝑒) 𝑐1, 𝑐2, 𝑣, com𝑒

Instantiate ΠLin with Instantiate ΠLin with

[[𝑥]] B [[𝑠𝑘]], [[𝑥 ′]] B com𝑒 , [[𝑥]] B [[𝑠𝑘]], [[𝑥 ′]] B com𝑒 ,

𝛼 B c2 ·𝑡−1, 𝛽 B (c1 −𝑣) · 𝑡−1 𝛼 B c2 ·𝑡−1, 𝛽 B (c1 −𝑣) · 𝑡−1

𝑤 B (𝑥 B 𝑒, 𝑟𝑥 B 𝑟𝑒 , 𝑟𝑥 ′ B 𝑟sk)

. . . ΠLin

. . .

. . .

Instantiate ΠBound with Instantiate ΠBound with

𝑡 B com𝑒 𝑡 B com𝑒

𝑤 B (𝑠 B
[
𝑟𝑒
𝑣

]
)

. . . ΠBound

. . .

. . .

Accept iff
(1): (1) - (4) from ΠLin

(2): (1) - (3) from ΠBound

Figure 3.4.: Protocol for proof ΠVerDec

The proof ΠVerDec shows that a ciphertext (c1, c2) has been honestly decrypted to the value 𝑣 by

calculating the accumulated noise 𝑒 and first proving a linear relation to show that 𝑒 has been

calculated correctly and then proving a bound on 𝑒 that ensures that the ciphertext is valid.
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3. Building Blocks

The verifiable decryption protocol ΠVerDec is complete and fulfils soundness and honest-
verifier zero knowledge for the relation RVerDec if 𝐵𝑒 < 𝑞/(4𝑡). We prove these three

properties in the following. Note that this proof is very similar to the proof by Silde [22].

Completeness The proof ΠVerDec is complete, if the BGV encryption scheme is correct,

i.e. if | | c1 + sk · c2 | | < 𝑞/2 and if additionally the two proofs ΠLin and ΠBound are complete,

which is the case. During parameter selection we therefore need to ensure | | c1 + sk · c2 | | <
𝑞/2. Then, the proof ΠBound gives us a bound on the accumulated noise | |𝑒 | |2 ≤ 2𝐵𝑒 .

Subsequently, if 𝐵𝑒 < 𝑞/(4𝑡) we get | |𝑒 | |∞ < 𝑞/(2𝑡) and the decryption is correct. Hence,

we also need to ensure that | |𝑒 | |∞ < 𝑞/(2𝑡) during parameter selection to make our

protocol fulfil completeness.

We now first calculate a bound for | | c1 + sk · c2 | |∞ and then a bound for | |𝑒 | |∞, which

we both use for parameter selection.

To begin, note that for a honestly, freshly generated ciphertext the following bound

holds:

| |𝑐1 + sk ·𝑐2 | |∞ = | | pk1 ·𝑢 + 𝑡𝑒1 +𝑚 + 𝑠 · (pk2 ·𝑢 + 𝑡𝑒2) | |∞
= | |𝑡 · (𝑒 · 𝑢 + 𝑒1 + 𝑠 · 𝑒2) +𝑚 | |∞
≤ 𝑡 ·

(
2 · 2𝜎𝑒𝑁 + 2𝜎𝑒

√
𝑁

)
with | |𝑒 | |2, | |𝑒1 | |2, | |𝑒2 | |2 ≤ 2𝜎𝑒

√
𝑁 as dictated by the tail-bound from Lemma 1 and

| |𝑠 | |∞, | |𝑢 | |∞ = 1 which have been sampled from 𝑆𝑅𝑞,1.

Since the ciphertext we want to verifiability decrypt is the result of the homomorphic

sum of𝜓 many ciphertexts, we need to provide a similar bound there. For 𝑖 ∈ [1..𝜓 ]:

c𝑖 B

[
c1,𝑖

c2,𝑖

]
=

[
pk1

pk2

]
· 𝑢𝑖 + 𝑡 ·

[
𝑒1,𝑖
𝑒2,𝑖

]
+

[
𝑚𝑖

0

]
the sum is

∑︁
𝑖

c𝑖 =

[
ĉ1,𝑖

ĉ2,𝑖

]
B

[∑
𝑖 c1,𝑖∑
𝑖 c2,𝑖

]
=

[
pk1

pk2

]
·
(∑︁

𝑖

𝑢𝑖

)
+ 𝑡 ·

[∑
𝑖 𝑒1,𝑖∑
𝑖 𝑒2,𝑖

]
+

[∑
𝑖𝑚𝑖

0

]
with the following bound

| |ĉ1,𝑖 + sk ·ĉ2,𝑖 | |∞ =

�����
�����𝑡 ·

(
𝑒 ·

(∑︁
𝑖

𝑢𝑖

)
+

(∑︁
𝑖

𝑒1,𝑖

)
+ 𝑠 ·

(∑︁
𝑖

𝑒2,𝑖

))
+

(∑︁
𝑖

𝑚𝑖

)�����
�����
∞

≤ 𝑡 · (2 · 2𝜎𝑒𝑁𝜓 + 2𝜓𝜎𝑒
√
𝑁 )

= 2𝜓𝜎𝑒 (2𝑁 +
√
𝑁 )

which results from
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3.3. BGV Encryption

| |𝑒 | |2 ≤ 2𝜎𝑒
√
𝑁

| |𝑠 | |∞ = 1�����
�����∑︁

𝑖

𝑢𝑖

�����
�����
∞
≤ 𝜓�����

�����∑︁
𝑖

𝑒1,𝑖

�����
�����
2

≤ 2𝜓𝜎𝑒
√
𝑁�����

�����∑︁
𝑖

𝑒2,𝑖

�����
�����
2

≤ 2𝜓𝜎𝑒
√
𝑁

We now write (𝑐1, 𝑐2) for the ciphertext that is the result of homomorphic addition

for simplicity. Using the result from above we can calculate a bound for | |𝑒 | |∞ using

the relation that 𝐵𝑒 =
√
2𝑁𝜎𝑒 (from the tail-bound in Lemma 1) and that we can choose

𝜎𝑒 = 0.675| |𝑠′𝑑′| |2 where 𝑑′ is the challenge from the protocol ΠBound and 𝑠′ corresponds to

the last part of the witness used in the proof ΠLin, i.e. the accumulated noise and its bound

is | |𝑐1 + sk 𝑐2 | |∞ ≤ 2𝜓𝜎𝑒 (2𝑁 +
√
𝑁 ). This last value results from the rejection sampling

lemma (see Lemma 2) and is comparable to the argumentation in [22].

| |𝑒 | |∞ ≤ 2𝐵𝑒

=
√
8𝑁𝜎𝑒

≤
√
8𝑁 · 0.675| |𝑠′ · 𝑑′| |2

≤ 2

√
𝑁 | |𝑠′| |1 | |𝑑′| |∞

≤ 2

√
𝑁 · (2𝜓𝜎𝑒 (2𝑁 +

√
𝑁 ) · 𝑁 )

= 4𝜓𝜎𝑒𝑁
2(2
√
𝑁 + 1)

With these two results we can set our parameters such that | |ĉ1,𝑖+sk ·ĉ2,𝑖 | |∞ ≤ 2𝜓𝜎𝑒 (2𝑁 +√
𝑁 ) ≤ 𝑞/2 and | |𝑒 | |∞ ≤ 2𝐵𝑒 ≤ 4𝜓𝜎𝑒𝑁

2(2
√
𝑁 + 1) < (𝑞/2𝑡) with 𝐵𝑒 =

√
2𝑁𝜎𝑒 to gain

completeness.

Soundness The soundness property follows directly from the soundness of ΠLin and

ΠBound. Using rewinding, we can extract the secret key sk or the noise 𝑒 (which subse-

quently reveals the secret key since we can then calculate the linear equation we prove with

ΠLin). Alternatively, we gain some short vectors breaking the underlying SKS
2

problem

for the given parameters. Again, this argumentation is equal to the one in [22].

Honest-Verifier Zero Knowledge As before, this property follows from the protocols ΠLin

and ΠBound, which are both honest-verifier zero knowledge. Given a message 𝑣 we can

simulate ΠVerDec by sampling a uniformly random value 𝑒 , committing to it as com𝑒 and

then simulating the proofs ΠLin and ΠBound. Since we can simulate a transcript for ΠVerDec,

it is honest-verifier zero knowledge [22].
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3.4. Zero Knowledge Proofs

3.4. Zero Knowledge Proofs

3.4.1. Commitment Ciphertext Equality

One of the further building blocks required is a proof to show that a BGV ciphertext

and a BDLOP commitment contain the same message. This will be used to show that a

commitment contains the same vote as a corresponding ciphertext to allow use of both in

further steps of the voting procedure.

Prepare (sk, pk) ← BGV.KeyGen(params) and (𝐴1, 𝐴2) ← BDLOP.KeyGen(). Then,

for a message𝑚 ∈ 𝑅𝑡 calculate (c1 ∈ 𝑅𝑞, c2 ∈ 𝑅𝑞) ← BGV.Encrypt(𝑚, pk, params; 𝑒1, 𝑒2, 𝑢)
with noise 𝑒1, 𝑒2 and encryption randomness 𝑢 and calculate the commitment com =[
com1 ∈ 𝑅𝑡
com2 ∈ 𝑅𝑡

]
= BDLOP.Commit(𝑚,𝐴1, 𝐴2; 𝑟 ) with randomness 𝑟 .

It is important to note here that the commitments are calculated in the ring 𝑅𝑡 , while

the ciphertext resides in 𝑅𝑞 , with 𝑞 ≫ 𝑡 . We will make note of this throughout our

argumentation to show that our proof is still correct.

We want to show the relation

RComEqCiph =

 (𝑢,𝑤)
𝑢 = (c1, c2, com = (com1, com2), 𝐴1, 𝐴2, pk),
𝑤 = (𝑟,𝑚,𝑢, 𝑒1, 𝑒2, 𝑓 ) :
BDLOP.Commit(com,𝑚, 𝑓 ; 𝑟 ) = 1

∧(c1, c2) = BGV.Encrypt(𝑚, pk, params; 𝑒1, 𝑒2, 𝑢)


to show that the commitment and ciphertext have been calculated correctly and, more

important, that the commitment and the ciphertext contain the same message𝑚.

Notation: All components and calculations are assumed to be over the ring 𝑅𝑞 unless

explicitly marked otherwise. We use a gray colorbox to show calculations in 𝑅𝑡 : For

example, 𝐴1 shows that 𝐴1 is defined over the ring 𝑅𝑡 .

Writing the commitment and encryption calculation encryptions in matrix form yields

the following notation. The notation in matrix form can now be used to formulate the

proof ΠComEqCiph as seen in Figure 3.5.

©­­­«
𝐴1

𝐴2 1

1 pk
1

𝑡

pk
2

𝑡

ª®®®¬ ·
©­­­­­«
𝑟

𝑚

𝑢

𝑒1
𝑒2

ª®®®®®¬
=

©­­­«
com1

com2

c1

c2

ª®®®¬ (3.1)

We use this unconventional notation with mixed polynomial rings since we have to

show the correctness of the commitment in 𝑅𝑡 and of the ciphertext in 𝑅𝑞 . The basic

idea is that we can calculate with variables 𝑥 ∈ 𝑅𝑡 in 𝑅𝑞 since 𝑞 ≫ 𝑡 and consequently

the conversion to 𝑅𝑞 is possible without information loss by simply interpreting 𝑥 as a

polynomial in 𝑅𝑞 . Additionally, if we show that | |𝑥 | |∞ ≤ 𝑞/2 is valid at all times we can
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guarantee that the modulus 𝑞 did not affect 𝑥 and hence we can revert back to 𝑅𝑡 by

switching all coefficients to modulus 𝑡 and then receive a correct result for calculations

over 𝑅𝑡 .

We call the big matrixM:

M B
©­­­«
𝐴1

𝐴2 1

1 pk
1

𝑡

pk
2

𝑡

ª®®®¬
At the end of the protocol, the verifier needs to check multiple equations (conditions)

before accepting. The first condition is derived from the matrix notation above and is used

to verify that a) both the commitment and the ciphertext contain the same message 𝑚

and b) the prover knows the randomness used to calculate both. The second and third

condition is used to ensure that a valid value has been chosen for 𝑟,𝑚,𝑢, 𝑒1, 𝑒2 during

committing to the message and encrypting it.
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Prover P VerifierV
𝑟 ← N𝑘

𝜎𝐶
, 𝑢 ← N𝜎𝐶

𝑒1, 𝑒2 ← N𝜎𝑒 , 𝑚̂ ← N𝜎𝑚

©­­­«
𝑧1

𝑧2
𝑧3
𝑧4

ª®®®¬ =M ·
©­­­­­«
𝑟

𝑚̂

𝑢

𝑒1
𝑒2

ª®®®®®¬
𝑧1 , 𝑧2, 𝑧3, 𝑧4

d 𝑑
$←− C𝑅𝑞,𝜅

𝑟 B 𝑟 + 𝑑𝑟
𝑚̃ B 𝑚̂ + 𝑑𝑚
𝑢̃ B 𝑢 + 𝑑𝑢
𝑒1 B 𝑒1 + 𝑑𝑒1
𝑒2 B 𝑒2 + 𝑑𝑒2
Continue with probability:

min

(
1,

N𝑘
𝜎𝐶
(𝑟 )

𝑀 · N𝑘
𝑑𝑟,𝜎𝐶
(𝑟 )

)
Continue with probability:

min

(
1,

N𝜎𝑚 (𝑚̃)
𝑀 · N𝑑𝑟,𝜎𝑚 (𝑚̃)

)
Continue with probability:

min

(
1,

N𝜎𝐶 (𝑢̃)
𝑀 · N𝑑𝑢,𝜎𝐶 (𝑢̃)

)
Continue with probability:

M B {(𝑒1, 𝑒1), (𝑒2, 𝑒2)}∏
(𝑎,𝑏 ) ∈M

min

(
1,

N𝜎𝑒 (𝑏)
𝑀 · N𝑑a,𝜎𝑒 (𝑏)

)
𝑟 , 𝑚̃, 𝑢̃, 𝑒1, 𝑒2 Accept iff

(1): condition

M ·
©­­­­­«
𝑟

𝑚̃

𝑢̃

𝑒1
𝑒2

ª®®®®®¬
?

=

©­­­«
𝑧1

𝑧2

𝑧3
𝑧4

ª®®®¬ + 𝑑 ·
©­­­«
com1

com2

c1

c2

ª®®®¬
(2): ∀𝑖 ∈ [𝑘] : | |𝑟 [𝑖] | |2 ≤ 2𝜎𝐶

√
𝑁

(3): | |𝑢̃ | |2 ≤ 2𝜎𝐶
√
𝑁, | |𝑒1 | |2, | |𝑒2 | |2 ≤ 2𝜎𝑒

√
𝑁

∧ ||𝑚̃ | |2 ≤ 2𝜎𝑚
√
𝑁

Figure 3.5.: Protocol for proof ΠComEqCiph

The proof ΠComEqCiph shows that a commitment and a ciphertext contain the same message.25
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Completeness A prover with witness (𝑟,𝑚,𝑢, 𝑒1, 𝑒2) can convince the verifier by running

the proof as specified. Then, the verification conditions will be fulfilled as shown in the

following:©­­­«
𝑧1
𝑧2
𝑧3
𝑧4

ª®®®¬ in verification equation (1) has been calculated by the prover in the beginning of

the protocol. Substituting these values yields

M ·
©­­­­­«
𝑟

𝑚̃

𝑢̃

𝑒1
𝑒2

ª®®®®®¬
?

=M ·
©­­­­­«
𝑟

𝑚̂

𝑢

𝑒1
𝑒2

ª®®®®®¬
+ 𝑑 ·

©­­­«
com1

com2

c1

c2

ª®®®¬
where we can then use

©­­­­­«
𝑟

𝑚̃

𝑢̃

𝑒1
𝑒2

ª®®®®®¬
=

©­­­­­«
𝑟 + 𝑑𝑟
𝑚̂ + 𝑑𝑚
𝑢 + 𝑑𝑢
𝑒1 + 𝑑𝑒1
𝑒2 + 𝑑𝑒2

ª®®®®®¬
from the calculations of the prover.

Its important to closely observe 𝑚̃ = 𝑚̂ + 𝑑𝑚. We argue that we can switch to 𝑅𝑡
here. This is only possible if the 𝓁∞-norm of all components of this equation is smaller

than 𝑞/2 to ensure that there was no reduction modulo 𝑞. Note that | |𝑚 | |∞ ≤ 𝑡 since

𝑚 is the result of encodeVote(𝑣) ∈ 𝑅𝑡 . We get | |𝑚̂ | |2 ≤ 2𝜎𝑚
√
𝑁 from the tail-bound of

Lemma 1 and hence | |𝑚̂ | |∞ ≤ 2𝜎𝑚
√
𝑁 . Lastly, | |𝑚̃ | |∞ = | |𝑚̂ + 𝑑𝑚 | |∞ = | |𝑚̂ | |∞ + ||𝑑𝑚 | |∞ =

| |𝑚̂ | |∞ + ||𝑑 | |1 · | |𝑚 | |∞ = 2𝜎𝑚
√
𝑁 + 𝜅𝑡 ≪ 𝑞/2 with | |𝑑 | |1 = 𝜅 since d has been generated

accordingly as a challenge. The standard deviation 𝜎𝑚 is set in way to hide 𝑚 and is

sufficient to fulfil 2𝜎𝑚
√
𝑁 + 𝜅𝑡 ≪ 𝑞/2. We describe the selection of 𝜎𝑚 in Section 4.2.1. As

a result, we may interpret the given equation in 𝑅𝑡 and write 𝑚̃ = 𝑚̂ + 𝑑𝑚 . We also start

interpreting com2 as a polynomial over 𝑅𝑡 from here on, which is possible since it has

been calculated over 𝑅𝑡 . With this result we get

M ·
©­­­­­«
𝑟 + 𝑑𝑟
𝑚̂ + 𝑑𝑚
𝑢 + 𝑑𝑢
𝑒1 + 𝑑𝑒1
𝑒2 + 𝑑𝑒2

ª®®®®®¬
?

=M ·
©­­­­­«
𝑟

𝑚̂

𝑢

𝑒1
𝑒2

ª®®®®®¬
+ 𝑑 ·

©­­­«
com1

com2

c1

c2

ª®®®¬
which by matrix operations simplifies to

M ·
©­­­­­«
𝑟

𝑚̂

𝑢

𝑒1
𝑒2

ª®®®®®¬
+ 𝑑 · M ·

©­­­­­«
𝑟

𝑚

𝑢

𝑒1
𝑒2

ª®®®®®¬
?

=M ·
©­­­­­«
𝑟

𝑚̂

𝑢

𝑒1
𝑒2

ª®®®®®¬
+ 𝑑 ·

©­­­«
com1

com2

c1

c2

ª®®®¬
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3.4. Zero Knowledge Proofs

This can be written as

𝑑 · M ·
©­­­­­«
𝑟

𝑚

𝑢

𝑒1
𝑒2

ª®®®®®¬
?

= 𝑑 ·
©­­­«
com1

com2

c1

c2

ª®®®¬
Now we substituteM

𝑑 ·
©­­­«
𝐴1

𝐴2 1

1 pk
1

𝑡

pk
2

𝑡

ª®®®¬ ·
©­­­­­«
𝑟

𝑚

𝑢

𝑒1
𝑒2

ª®®®®®¬
?

= 𝑑 ·
©­­­«
com1

com2

c1

c2

ª®®®¬
Note that we can readily switch 1 and 𝑑 from 𝑅𝑞 to 𝑅𝑡 since both are sufficiently small,

i.e. | |1| |∞ = 1 ≤ 𝑞/2 and | |𝑑 | |∞ = 1 ≤ 𝑞/2. Hence, 𝑑 · 𝐴1𝑟 = 𝑑 com1 follows directly from

equation (3.1). The same is true for the second line, i.e. 𝑑 · (𝐴2 · 𝑟 + 1 ·𝑚) = 𝑑 · com2 . The

third and fourth line also follow from equation (3.1) over 𝑅𝑞 . Conditions(1) is therefore

fulfilled.

Conditions (2) and (3) are fulfilled as well since by Lemma 2 it is statistically indis-

tinguishable whether all polynomials in 𝑟 and the polynomials 𝑚̃, 𝑢̃, 𝑒1, 𝑒2 stem from a

normal distribution around another center than 0 or from a normal distribution with center

0. Additionally, the probability that the prover can output these polynomials is at least(
1−2−100

𝑀

)
5

. Finally, the bound given by Lemma 1 for the 𝓁2-norm of these polynomials

ensures that they are smaller or equal to 2𝜎𝑖
√
𝑁 except with negligible probability for their

respective standard deviation 𝜎𝑖 , therefore fulfilling conditions (2) and (3).

In total, a prover with access to the witness can answer correctly for any challenge 𝑑 ,

making the protocol complete. □

Soundness Given a commitment com =

(
com1

com2

)
, a ciphertext c =

(
c1

c2

)
and a pair of tran-

scripts forΠComEqCiph (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑑, 𝑟, 𝑚̃, 𝑢̃, 𝑒1, 𝑒2) and (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑑′, 𝑟 ′, 𝑚̃′, 𝑢̃′, 𝑒1′, 𝑒2′)with

𝑑 ≠ 𝑑′ we can extract the witness (𝑟,𝑚,𝑢, 𝑒1, 𝑒2) with a relaxation factor 𝑓 = 𝑑 −𝑑′ ∈ C𝑅𝑞,𝜅 .

Note that 𝑓 can be interpreted over 𝑅𝑡 since | |𝑓 | |∞ ≤ 2 ≪ 𝑞/2 and additionally is invertible

over 𝑅𝑡 . It holds that

©­­­«
𝐴1

𝐴2 1

1 pk
1

𝑡

pk
2

𝑡

ª®®®¬ ·
©­­­­­«
𝑟 − 𝑟 ′
𝑚̃ − 𝑚̃′
𝑢̃ − 𝑢̃′
𝑒1 − 𝑒1′
𝑒2 − 𝑒2′

ª®®®®®¬
= 𝑓 ·

©­­­«
com1

com2

c1

c2

ª®®®¬
We can calculate 𝑟 = 𝑟 − 𝑟 ′ (𝑟 ∈ 𝑅𝑘𝑞 ) and since 𝑓 is invertible over 𝑅𝑡 we can extract the

message𝑚 from the commitment by calculating 𝑚 B com2 −𝑓 −1 · 𝐴2𝑟 over 𝑅𝑡 . This is a
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3. Building Blocks

valid opening (𝑚, 𝑟, 𝑓 ) to the commitment since ∀𝑖 ∈ [𝑘] : | |𝑟𝑖 | |2 ≤ ||𝑟𝑖 | |2+ ||𝑟 ′𝑖 | |2 ≤ 4𝜎𝐶
√
𝑁

and

[
𝐴1

𝐴2

]
· 𝑟 + 𝑓 ·

[
0
𝑛

𝑚

]
= 𝑓 ·

[
com1

com2

]
.

We extract the encryption randomness in a similar fashion and gain

©­­­­­«
𝑟

𝑚

𝑢

𝑒1
𝑒2

ª®®®®®¬
B

©­­­­­­«

𝑟 − 𝑟 ′

com2 −𝑓 −1 · 𝐴2𝑟

𝑢̃ − 𝑢̃′
𝑒1 − 𝑒1′
𝑒2 − 𝑒2′

ª®®®®®®¬
This is a valid encryption since

𝑓 ·
[
c1

c2

]
=

[
pk1

pk2

]
· 𝑓 · 𝑢 + 𝑡

[
𝑓 · 𝑒1
𝑓 · 𝑒2

]
+

[
𝑓 ·𝑚
0

]
and | |𝑓 | |∞ ≤ 2, | |𝑢 | |1 ≤ 4𝜎𝐶𝑁 , | |𝑒1 | |1 ≤ 4𝜎𝑒𝑁 , | |𝑒2 | |1 ≤ 4𝜎𝑒𝑁 which gives a bound

on the noise of | |𝑓 · 𝑢 | |∞ ≤ 8𝜎𝐶𝑁 , | |𝑓 · 𝑒1 | |∞ ≤ 8𝜎𝑒𝑁 , | |𝑓 · 𝑒2 | |∞ ≤ 8𝜎𝑒𝑁 . The paper on

BGV gives an upper bound on the noise for ciphertexts to still be decryptable, namely
𝑞

2

(see [12], Lemma 6). Due to this it follows that the encryption is still valid here for the

message 𝑓 ·𝑚 if 8𝜎𝐶𝑁 ≤ 𝑞

2
and 8𝜎𝑒𝑁 ≤ 𝑞

2
. By choosing fitting parameters (especially

𝜎𝐶 · 𝑁 ≪ 𝑞, 𝜎𝑒 · 𝑁 ≪ 𝑞) we can ensure that this inequality holds and the encryption is

valid given the encryption equation above.

Given two transcripts, we can extract the witness from the prover up to a relaxation

factor 𝑓 , making the protocol fulfil special soundness. □

Statistically Honest Verifier Zero Knowledge To simulate an accepting transcript, draw

𝑑
$←− C𝑅𝑞,𝜅 𝑟 ← N𝑘

𝜎𝐶
, 𝑚̃ ← N𝜎𝑚 , 𝑢̃ ← N𝜎𝐶 and 𝑒1, 𝑒2 ← N𝜎𝑒 . Then, calculate

©­­­«
𝑧1

𝑧2
𝑧3
𝑧4

ª®®®¬ B
©­­­«
𝐴1

𝐴2 1

1 pk
1

𝑡

pk
2

𝑡

ª®®®¬ ·
©­­­­­«
𝑟

𝑚̃

𝑢̃

𝑒1
𝑒2

ª®®®®®¬
− 𝑑 ·

©­­­«
com1

com2

c1

c2

ª®®®¬
The distribution of the simulated values are statistically indistinguishable from a real,

non-aborting transcript since the simulator acts similar to S from Lemma 2. Therefore

the protocol is statistically honest verifier zero knowledge. □
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3.4. Zero Knowledge Proofs

3.4.2. Binary Proof

One of the properties we need to show for votes to be correct is that they are binary, i.e.

all entries of the vote are either zero or one. Formally, for a vote v ∈ Z𝜔𝑡 we need to show

that ∀𝑖 ∈ [1, . . . , 𝜔] : v𝑖 ∈ {0, 1}. Note that this hold iff

©­­­«
v1
v2
. . .

v𝜔

ª®®®¬ ·
©­­­«
v1 − 1
v2 − 1
. . .

v𝜔 − 1

ª®®®¬ =

©­­­«
0

0

. . .

0

ª®®®¬
Since we embed votes into polynomials from 𝑅𝑡 using Theorem 2 and the functions

encodeVote and decodeVote from section 3.1 we set 𝑣 B encodeVote(v) ∈ 𝑅𝑡 and with

1𝑝 = encodeVote

(
(1, . . . , 1)⊺ ∈ Z𝜔𝑡

)
the above equation corresponds to

𝑣 ·
(
𝑣 − 1𝑝

)
= 0𝑝

We use a proof of product by Attema, Lyubashevsky and Seiler [5] to show the binary

property. See Figure 3.6 for the protocol.

We instantiate the product proof with 𝐵0 B 𝐴1, 𝑏1, . . . , 𝑏4 B 𝐴2 and the messages as

𝑚1 B 𝑣,𝑚2 B 𝑣 − 1𝑝,𝑚3 B 0𝑝 to prove that 𝑚1 ·𝑚2 = 𝑚3 which then corresponds to

𝑣 ·
(
𝑣 − 1𝑝

)
= 0𝑝 . We call the resulting proof ΠBinary. Since the protocol of the product

proof uses a little different notation, note that 𝜒 B 𝑆𝑅𝑡 ,𝛽, 𝔰 B 𝜎𝐶 and 𝐷𝔰 B N𝜎𝐶 in our

notation.

The product proof fulfils the properties completeness, soundness and honest-verifier zero
knowledge [5]. Since our binary proof is an instatiation of the product proof, it also fulfils

these properties.
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3. Building Blocks

Figure 3.6.: Protocol for proof ΠProduct, used for proof ΠBinary

The proof ΠProduct [5] shows that𝑚1 ·𝑚2 =𝑚3 on respective BDLOP commitments which we use

to construct the proof ΠBinary that proves that 𝑣 · (𝑣 − 1𝑝) = 0𝑝 to show that the vote 𝑣 only

contains the values 0 and 1 in each of its slots. Note that we use our commitments in a ring 𝑅𝑡
instead of 𝑅𝑞 like shown in the protocol.
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3.4. Zero Knowledge Proofs

3.4.3. Vote Sum

In addition to the property that votes are binary, i.e. all candidates either get zero or

one votes, we also need to show that the total number of votes cast does not exceed an

election specific limit 𝜏 . For example, in an election with 𝜏 = 3, a voter can cast votes for

three candidates (or less), but not for all seven candidates. In case a voter wants to cast

less votes than 𝜏 , they encode all votes they don’t want to cast in the placeholder votes

as described in section 3.1. Since votes are encoded as vectors with 𝜔 entries of values

from Z𝑡 which are either zero or one we can simply show that the total number of votes

including placeholder votes is equal to 𝜏 by summing up all entries of the vote. We call

this the vote sum. For ®𝑣 ∈ Z𝜔𝑡 we define the vote sum as

voteSum(®𝑣) ∈ Z𝑡 [𝑥]≤𝑁 /𝜔 B
𝜔∑︁
𝑖=1

®𝑣𝑖

Given the isomorphism of𝑅𝑡 andZ𝜔𝑡 as described by Theroem 2 we can calculate voteSum

for votes represented as polynomials 𝑣 ∈ 𝑅𝑡 by simply calculating voteSum(decodeVote(𝑣))
with decodeVote as described in Section 3.1:

voteSum(𝑣 ∈ 𝑅𝑡 ) B voteSum(decodeVote(𝑣) ∈ Z𝜔𝑡 ))

For a vote 𝑣 ∈ 𝑅𝑡 , the corresponding commitment 𝑐𝑣 =

[
com1

com2

]
B BDLOP.Commit(𝑣 ; 𝑟𝑣 )

and a vote limit 𝜏 we prove the relation

RvoteSum =

{
(𝑢,𝑤) 𝑢 = (𝑐𝑣 , 𝐴1, 𝐴2, 𝜏),𝑤 = (𝑣, 𝑟𝑣 , 𝑓 ) :

voteSum(𝑣) = 𝜏 ∧ BDLOP.Open(𝑐𝑣 , 𝑣, 𝑟𝑣 , 𝑓 ) = 1

}
by using the proof ΠvoteSum as shown in Figure 3.7.

Depending on the election system one wants to achieve, a rangeproof for the interval

[0, . . . , 𝜏] can be used here instead. This would allow voters to cast less votes than the

maximum possible and would remove the need for placeholder options that are used with

the current construction. We leave a rangeproof of this sort to future work.

Completeness A prover with witness 𝑤 = (𝑣, 𝑟𝑣 , 𝑓 ) can convince the verifier by running

the proof as specified. Then, the verification conditions will be fulfilled as shown in the

following.

Conditions (1) - (5) ensure that the masked commitment 𝑐𝑧 has been calculated correctly.

Note that the commitment 𝑐𝑣 can be calculated by the verifier themselves since 𝑐𝑣 B 𝑐𝑣−
[
0

𝜏

]
and the commitments 𝑐𝑠 and 𝑐𝑧 are sent as part of the protocol. Using ΠSum the verifier can

now check that the messages in these three commitments fulfil the relation 𝑧 = 1 · 𝑠 + ˆ𝑑 · 𝑣 .

The completeness of the conditions (1) - (5) therefore follows from the completeness of

ΠSum and that ΠSum accepts.

Condition (6) is also fulfilled since 𝑐𝑧 has been calculated honestly by the prover. The

opening 𝑜 = (𝑧, 𝑟𝑧, 1) is valid since it contains the correct commitment randomness 𝑟𝑧 and

message 𝑧.
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3. Building Blocks

Prover P VerifierV
𝜏 B encodeVote((𝜏, 0, . . . , 0)⊺ ∈ Z𝜔𝑡 )

𝑣 B 𝑣 − 𝜏 ∈ 𝑅𝑡 , 𝑐𝑣 B 𝑐𝑣 −
[
0

𝜏

]
𝑥

$←− 𝑅𝑡

𝑥 B encodeVote((voteSum(𝑥), 0, . . . , 0)⊺)
𝑠 B 𝑥 − 𝑥

𝑟𝑠
$←− 𝑆𝑘

𝑅𝑡 ,𝛽

𝑐𝑠 B BDLOP.Commit(𝑠, 𝐴1, 𝐴2; 𝑟𝑠) 𝑐𝑠

ˆ𝑑 ˆ𝑑
$←− Z𝑡

𝑧 B 𝑠 + ˆ𝑑𝑣

𝑟𝑧
$←− 𝑆𝑘

𝑅𝑡 ,𝛽

𝑐𝑧 B BDLOP.Commit(𝑧,𝐴1, 𝐴2; 𝑟𝑧)

𝑜 B (𝑧, 𝑟𝑧, 𝑓 B 1) 𝑐𝑧, 𝑜 = (𝑧, 𝑟𝑧, 𝑓 )

Instantiate ΠSum with Instantiate ΠSum with

𝛼1 B 1, 𝛼2 B ˆ𝑑, 𝑐 B 𝑐𝑠 , 𝑐
′ B 𝑐𝑣, 𝑐

′′ B 𝑐𝑧 𝛼1 B 1, 𝛼2 B ˆ𝑑, 𝑐 B 𝑐𝑠 ,

𝑤 = (𝑟 B 𝑟𝑠 , 𝑟
′ B 𝑟𝑣, 𝑟

′′ B 𝑟𝑧, 𝑥 B 𝑠, 𝑐′ B 𝑐𝑣, 𝑐
′′ B 𝑐𝑧

𝑥 ′ B 𝑣, 𝑓 B 1, 𝑓 ′ B 1, 𝑓 ′′ B 1)

. . . ΠSum

. . .

. . .

Accept iff
(1) - (5) from ΠSum

(6): BDLOP.Open(𝑐𝑧, 𝑜)
?

= 1

(7): voteSum(𝑧) ?

= 0

Figure 3.7.: Protocol for proof ΠvoteSum

The proof ΠvoteSum shows that voteSum(𝑣) = 𝜏 for a given vote limit 𝜏 . The general idea is to mask

the commitment to 𝑣 into another commitment 𝑧, which can then be opened. The linear relation

between 𝑧 and 𝑣 is shown by setting 𝜏 = encodeVote((𝜏, 0, . . . , 0)⊺ ∈ Z𝜔𝑡 ), 𝑣 B 𝑣 − 𝜏 and using the

proof ΠSum to show that the commitments 𝑐𝑧, 𝑐𝑠 , 𝑐𝑣 fulfil the relation 𝑧 = 1 · 𝑠 + ˆ𝑑 · 𝑣
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3.4. Zero Knowledge Proofs

Lastly, note that iff voteSum(𝑣) = 𝜏 it holds that for 𝑣 = 𝑣 − 𝜏 , voteSum(𝑣) = 0.

Additionally, 𝑠 has been chosen with voteSum(𝑠) = 0. It results that voteSum(𝑧) =

voteSum(𝑠+ ˆ𝑑𝑣) = voteSum(𝑠)+voteSum( ˆ𝑑 ·𝑣) = voteSum(𝑠)+ ˆ𝑑 ·voteSum(𝑣) = 0+ ˆ𝑑 ·0 = 0.

Therefore conditions (7) is fulfilled.

Since a prover with witness 𝑤 = (𝑣, 𝑟𝑣 , 𝑓 ) can convince the verifier by fulfilling all

conditions, the protocol is complete. □

Soundness We can give a direct argument for the soundness of the protocol. The prover

has to commit to a value 𝑠 in a commitment 𝑐𝑠 before receiving the challenge
ˆ𝑑 . Since the

BDLOP commitment is binding, given the commitments 𝑐𝑣 and 𝑐𝑠 we can assume that the

values 𝑣 and 𝑠 are fixed. Then it holds that if voteSum(𝑣) ≠ 0 or voteSum(𝑠) ≠ 0 there

exists only one
ˆ𝑑 such that voteSum(𝑧) = 0. When the soundness of ΠSum is not broken,

then 𝑧 = 𝑠 + ˆ𝑑𝑣 . In this case, an attack can only convince the verifier with probability 1/𝑡 .

Honest Verifier Zero Knowledge To simulate an accepting transcript for a given com-

mitment 𝑐 , draw
ˆ𝑑

$←− Z𝑡 , 𝑟𝑧
$←− 𝑆𝑘

𝑅𝑡 ,𝛽
and ®𝑧 $←−

{
𝑥 ∈ Z𝜔𝑡 | voteSum(𝑥) = 0

}
and set

𝑧 B encodeVote(®𝑧) Then calculate 𝑐𝑧 = BDLOP.Commit(𝑧,𝐴1, 𝐴2; 𝑟𝑧) and set 𝑜 = (𝑧, 𝑟𝑧, 1).
Note that these values fulfil conditions (6),(7). Additionally, draw 𝑠

$←− 𝑅𝑡 , 𝑟𝑠
$←− 𝑆𝑘

𝑅𝑡 ,𝛽
and

calculate 𝑐𝑠 = BDLOP.Commit(𝑠, 𝐴1, 𝐴2; 𝑟𝑠).
Next, simulateΠSum such that conditions (1)-(5) are fulfilled for the commitments 𝑐𝑧, 𝑐𝑠, 𝑐𝑣

with 𝑐𝑣 B 𝑐 −
[
0

𝜏

]
and 𝛼1 = 1, 𝛼2 = ˆ𝑑 . For the simulability of ΠSum see [7, Section 4.4]

Since its possible to simulate a transcript for ΠCoSum, the proof is honest verifier zero
knowledge. □
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4. Construction

Using the proofs in the preceding chapters, we can construct a post-quantum secure

variant of ElectionGuard. We first go over how to construct a voting system from the

aforementioned building blocks and then describe the parameter selection for exemplary

instantiations. Finally, we give a summary of the security of the resulting election scheme.

4.1. Post-Quantum Secure ElectionGuard

To prepare an election with our version of ElectionGuard, the election authority together

with the trustees generates the public parameters as well as the secret key for the BGV

encryption scheme. This can either be done in a key generation ceremony or, potentially,

in a distributed manner with appropriate protocols, which we however leave for future

work.

After an election has been set up, voters can cast their votes. This is where we focused

our work since this is the centerpiece of the election. See Figure 4.1 for a visualisation of

the basic principle our construction implements.

To cast a vote 𝑣 , voters generate a pair of a ciphertext c and a commitment com. These

messages need to fulfil three requirements:

1. the ciphertext and the commitment need to contain the same vote

2. the commitment needs to contain a vote that only consists of the values 0 or 1

3. the commitment needs to contain a vote that cast votes for a maximum of 𝜏 candidates

The first requirement is proven by using ΠComEqCiph showing that the ciphertext and

the commitment contain the same vote and are well-formed. The second requirement is

ensured by including a proof ΠBinary to show that all candidates receive a maximum of

1 and a minimum of 0 votes. Lastly, the third requirement is proven by using ΠvoteSum,

showing that the total number of votes including dummy votes is 𝜏 .

Both ΠBinary and ΠvoteSum show their respective property for the message contained in

the commitment, together ensuring that the vote contained is well-formed. Then the proof

ΠComEqCiph ensures that the vote contained in the ciphertext is well-formed, which will

later be used for calculation of the election tally. Therefore, these three proofs together are

sufficient to guarantee that the vote is well-formed. All three proofs are transformed into

non-interactive zero knowledge proofs using the Fiat-Shamir heuristic for the quantum

random oracle model (See Section 2.1). This corresponds to the current, non-quantum

version of ElectionGuard where the voter proofs that their vote is well-formed in a similar

fashion with proofs for the exponential ElGamal encryption [10, 3.3. Ballot Encryption].
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Voter iVoter 1 Voter 𝜓

Server

Collects all votes
Verifies Proofs

Server

Decrypts tally ⇒ v
Proof of Verifiable Decryption

ci
comi

ΠComEqCiph,i
ΠBinary,i
ΠVoteSum,i

ොc ≔෍

i

ci

Homomorphic Aggregation

Publish:
ොc
v
ΠVerDec

…

Publish all:
ci
comi

ΠComEqCiph,i
ΠBinary,i
ΠVoteSum,i

Figure 4.1.: Construction Overview

The basic principle of our construction, which is equal to the principle of ElectionGuard.

All the ciphertexts and commitments along their proofs of correctness are then published

for later verification. Additionally, the aspects of ElectionGuard relating to end-to-end

verifiability can be add here, i.e. confirmation codes as well as ballot casting or spoiling

[10].

After the voters have cast their votes, the election authority can add all votes together

using the additive homomorphic property of BGV. This does not require another zero

knowledge proof since this calculation can be performed by anyone with access to the

ciphertexts of all votes. The result of the election is now encrypted in the sum of all

ciphertexts. This is again very similar to ElectionGuard in its current, non-quantum

version [10, 3.4 Ballot Aggregation].

Finally, the result of the election can be determined by decrypting the sum calculated in

the step before. This is done using verifiable decryption with proof ΠVerDec showing that

the decryption is in fact correct. This operation can again be done in a form of decryption

party in the presence of the trustees, or with a distributed proof of verifiable decryption

that could be the result of further work. The proof is run in a non-interactive fashion

as before and published so that anyone can verify it. Again ElectionGuard works in a

comparable fashion in this step in its current, non-quantum specification [10, 3.4 Verifiable

Decryption]

Optionally before decryption, the ciphertext that is the result of the homomorphic sum

of all votes could be multiplied by a constant that is one in all candidate slots and zero in all

placeholder slots. This would hide how many votes where cast into the placeholder slots

and only reveal the votes cast for actual candidates. This approach would therefore prevent

some leakage. However, we omit this step here to keep a tight bound on the 𝓁∞-norm
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of the ciphertext and to keep the BGV scheme simple by not using any multiplication

operations. Future work could however implement this feature.

To conclude the election, the tally alongside all votes and all proofs can be published,

constituting the full election record of our post-quantum secure ElectionGuard variant.

4.2. Parameter Selection

We give two sets of parameters that are selected to work for two exemplary, real elections.

Additionally, we state important constraints that the parameters have to follow and that

are used to derive the choice of parameters. The exemplary elections have been picked to

represent different, potential use-cases for the results of our work.

The first exemplary election is the German Sozialwahl 2023
1

where a total of 52 million

voters could cast their vote for one of 13 electoral lists. Every voter could only cast a single

vote.

The second exemplary elections are the “Elections of the Student Body 2023”
2

for the

student parliament at Karlsruhe Institute of Technology (KIT) where about 21 thousand

students were called to cast five votes each between a total of 54 candidates. Additionally,

a second vote had to be cast for one out of eight electoral lists, which we will however

omit for simplicity in our further inspection of this election.

4.2.1. Parameter constraints

One of the most important constraints in our construction is ensuring that 𝑥𝑁 + 1 splits

into 𝜔 factors (i.e. candidate slots) as described in Theorem 1 and 2. This requires that

1√
𝜔
· 𝑡1/𝜔 > 2 and that 𝑡 = 2𝜔 + 1 mod 4𝜔 with 𝑁 ≥ 𝜔 > 1 being powers of 2. We use this

for embedding votes into the ring 𝑅𝑡 in the commitments.

Since 𝑞 ≫ 𝑡 this also means that
1√
𝜔
· 𝑡1/𝜔 > 2⇒ 1√

𝜔
· 𝑞1/𝜔 > 2 and subsequently the

challenges 𝑑 are invertible in 𝑅𝑡 and 𝑅𝑞 . We set 𝑞 and 𝑡 to be co-prime to each other, i.e.

gcd(𝑞, 𝑡) = 1.

When choosing 𝜅 i.e. the 𝓁1-norm of elements in the challenge space C𝑅𝑡 ,𝜅 we aim

to have a challenge space of sufficient size to get appropriate proof soundness. We can

achieve this by ensuring

(𝑁
𝜅

)
· 2𝜅 > 2

𝜆
for security parameter 𝜆 as described in section 2.2.

For the different normal distributions we need to choose a total of four standard devia-

tions: 𝜎𝜒 for the error distribution of BGV, 𝜎𝐶 for masking the commitment randomness

of the BDLOP commitments, 𝜎𝑒 for masking the BGV errors and finally 𝜎𝑒 for masking the

aggregated noise of BGV ciphertexts.

We set 𝜎𝜒 according to the homomorphic encryption standard [2, Section 2.1.5] to the

value 𝜎𝜒 = 8√
2𝜋
≈ 3.2. Accordingly, we set 𝜎𝐶 like suggested in the paper on BDLOP

commitments [7, Table 1] to 𝜎𝐶 = 11 · 𝜅 · 𝛽 ·
√
𝑘𝑁 .

To find a value for 𝜎𝑒 , we need to give a bound on the 𝓁2-norm of errors sampled

from 𝜒 , which is ∀𝑒 ← 𝜒 : | |𝑒 | |2 ≤ 2𝜎𝜒

√
𝑁 according to the tail-bound from Lemma 1.

1
See https://www.sozialwahl.de/english, Date accessed: 28.11.2023

2
See https://wahl.asta.kit.edu/en.html, Date accessed: 28.11.2023
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4. Construction

To use the indistinguishably between normal distributions from Lemma 2 we need the

standard deviation of the normal distribution we want to hide our value in to be 𝜎𝑒 ∈
𝜔 (𝑇

√︁
log(𝑁 )). We achieve this by setting 𝑇 = 2𝜎𝜒

√
𝑁 such that | |𝑒 | |2 ≤ 𝑇 and it follows

that 𝜎𝑒 ∈ 𝜔 (2𝜎𝜒

√︁
𝑁 log(𝑁 )). With 𝑀 ≈ 3, 𝑀 = exp (12/𝛼 + 1/(2𝛼)) and 𝜎𝑒 = 𝛼𝑇 we get

𝛼 ≈ 11 from Lemma 2 and can subsequently set 𝜎𝑒 B 11 · 2𝜎𝜒

√
𝑁 .

A similar approach can be taken to set a value for 𝜎𝑚 . By Lemma 2 we need to set the

standard deviation 𝜎𝑚 ∈ 𝜔

(√
𝑁𝑡

√︁
log(𝑁 )

)
for | |𝑚 | |2 ≤

√
𝑁𝑡 B 𝑇 . We achieve this by

setting 𝜎𝑚 = 𝛼𝑇 and with a value of 11 for 𝛼 we get 𝜎𝑚 B 11 ·
√
𝑁𝑡

To guarantee the completeness of the proof ΠVerDec, we need to set our parameters

such that 2𝜓𝜎𝑒 (2𝑁 +
√
𝑁 ) ≤ 𝑞/2 and 2𝐵𝑒 ≤ 4𝜓𝜎𝑒𝑁

2(2
√
𝑁 + 1) < (𝑞/2𝑡) with 𝐵𝑒 =

√
2𝑁𝜎𝑒

(see Section 3.3.2), where 𝜓 is the number of ciphertexts that have been summed up

homomorphically, meaning we can set𝜓 B #Voters to the total number of eligible voters.

We check that the SKS
2

𝑛,𝑘,𝛽
-problem is hard using Lemma 3 with 𝛽 < 𝑡1/𝜔 , and 𝛽 <√︃

𝑁
2𝜋𝑒
·𝑡𝑛/𝑘 ·2−128/(𝑘 ·𝑁 )−

√
𝑁 /2, which makes the BDLOP commitments statistically binding

and computationally hiding in our case. Alternatively, one could set the parameters to

achieve a “optimal” setting as suggested in the paper on BDLOP [7, 4.3 Instantiations] and

aim for an equal level of computational hardness for the hiding and binding property.

4.2.2. Parameter Selection

We provide an exemplary parameter selection in Table 4.1 for the German Sozialwahl 2023

and the Elections of the Student Body 2023 at KIT. The parameters have been calculated

to respect the constrains described in Section 4.2.1.

Note that especially the Student Body election has lots of candidates (54) and hence

needs a lot of candidate slots (64). This results in a big plaintext modulus 𝑡 and even bigger

ciphertext modulus 𝑞, however these values are still feasible since the resource heavy

calculation of each voters ballot and the accommodating proofs of correctness is distributed

to each voters device, while the vote server only needs to form the homomorphic sum and

the proof of verifiable decryption. Thus, even parameters that might be unusual in other

settings can be realistic to use in our setting.

We claim more than 128 bits security against a quantum adversary for the parameters

given using the homomorphic encryption standard [2, Table 2] and its results using the

LWE estimator by Albrecht et al [3] with the BKZ.qsieve cost model.
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Param

eter
Selection

Parameter explanation Sozialwahl Student Body Election
#Voters Upper limit on number of voters ∼ 52 Mil. ∼ 21k

𝜓 Limit of number of voters we used to calculate bound for accumulated noise 𝑒 ∼ 52 Mil. ∼ 21k

#Cand. Number of candidates 13 54

𝜏 Number of votes a single voter can cast 1 5

𝜔 Number of factors of 𝑥𝑁 + 1, i.e. number of candidate slots 16 64

𝑁 Ring dimension of 𝑅𝑞 and 𝑅𝑡 8192 16384

𝑡 Plaintext modulus defining 𝑅𝑡 with 𝑡 = 2𝜔 +1 mod 4𝜔 ≈ 2
48 ≈ 2

256

𝑞 Ciphertext modulus defining 𝑅𝑞 with 𝑞 = 2𝜔 +1 mod 4𝜔 ≈ 2
123 ≈ 2

323

𝜅 𝓁1-norm of elements in the challenge space C𝑅𝑡 ,𝜅 24 22

𝛽 𝓁∞-norm of “small” elements in 𝑆𝑅𝑡 ,𝛽, 𝑆𝑅𝑞,𝛽 1 1

𝑘 Width (over 𝑅𝑡 ) of the commitment matrices 3 3

𝑛 Height (over 𝑅𝑡 ) of the commitment matrix 𝐴1 1 1

𝑙 Dimension of messages embedded into BDLOP commitments 1 1

𝜎𝜒 Standard deviation used to generate noise during BGV encryption
8√
2𝜋
≈ 3.2 8√

2𝜋
≈ 3.2

𝜎𝐶 Standard deviation used to mask commitment randomness ≈ 41400 ≈ 53700

𝜎𝑚 Standard deviation used to mask messages ≈ 2
58 ≈ 2

266.5

𝜎𝑒 Standard deviation used to mask noise ≈ 6360 ≈ 9000

𝜎𝑒 Standard deviation used to mask accumulated noise 𝑒 ≈ 2
66 ≈ 2

57.5

𝐵𝑒 Verification bound on accumulated noise 𝑒 ≈ 2
73 ≈ 2

65

Table 4.1.: Parameter settings for two exemplary elections

The exemplary elections are chosen to represent different use-cases of ElectionGuard and use the amount of voters and candidates from the

respective election 2023. The values of all parameters have been calculated in accordance to the constrains described in section 4.2.1.

3
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4. Construction

4.3. Compatibility with ElectionGuard

Our construction has been built in a way to offer the largest possible compatibility with

ElectionGuard. In this work we have described the centerpiece of election guard, i.e. the

ballot creation and aggregation, the homomorphic tally and the verifiable decryption. In

its current form we rely on a key generation ceremony for setting up an election.

To create a full, post-quantum version of ElectionGuard some further work is necessary.

First, the key generation could be implemented in a distributed manner using a threshold

scheme. Additionally, the verifiable decryption algorithm could be transformed into a

distributed variant where all guardians (trustees) calculate their partial decryption and

proof and then combine their results. Refer to the work by Bernabé Rodríguez as well as

Ghanem and Moursy [11, 14] for pointers how this could be implemented.

Furthermore, the end-to-end verifiability components of ElectionGuard need to be added

back to the construction. This especially concerns the generation of confirmation codes,

which we have omitted here for simplicity. Additionally, a voting system implementing

post-quantum ElectionGuard needs to implement ballot casting or spoiling.

4.4. Security Properties

E-Voting schemes can be described with a number of properties to evaluate their function-

ality and security. We now want to mention some relevant aspects and analyse whether

they apply to our construction and to what degree. The definitions of the functional

and security requirements written in italics are taken word for word from the review of

Cryptographic Electronic Voting by Kho, Heng and Chin [17]. Since ElectionGuard is

not a full e-voting scheme on its own but instead aims to be a toolkit to enhance other

election schemes with, some of the properties depend heavily on the concrete context they

are used in. We want to give an impression which properties can be achieved in which

settings and therefore describe some of the important properties.

Robustness “Any dishonest party cannot disrupt elections.”
The degree to which this property is fulfilled depends on how the system is implemented.

For example, attacks on availability like DDOS-attacks could disrupt elections. The zero

knowledge proofs we use at least guarantee that votes cast are valid and therefore prevent

manipulation of the tally.

Fairness “No partial tally is revealed.”
This property is fulfilled by our scheme since only the final tally is decrypted and

revealed.

Verifiability “The election results cannot be falsified. There are two types of verifiability: 1)
Individual verifiability: The voter can verify whether their vote is included in the final tally.
2) Universal verifiability: All valid votes are included in the final tally and this is publicly
verifiable.”

The verifiability of our scheme depends on the additional implementation of confirma-

tion codes and the ballot casting or spoiling principle. Using these two additions however,

our scheme fulfils both types of verifiability.
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4.4. Security Properties

Transparency “Maximise transparency in the vote casting, vote storing and vote counting
process while preserving the secrecy of the ballots.”

We achieve transparency by publishing all votes alongside their proofs of correctness

and a proof of verifiable decryption after homomorphic aggregation of all cast votes. This

way anyone can reproduce the verification of the election result.

Practicality “The implementation of requirements and assumptions should be able to adapt
to large-scale elections.”

As the two exemplary sets of parameters have shown we have provided a practical

voting scheme that can even be used for large-scale elections like the German Sozialwahl.

Privacy and vote secrecy “The cast votes are anonymous to any party.”
This property is fulfilled by our scheme since the votes are stored in ciphertexts and

hiding commitments and only the final tally is decrypted, hence the individual votes are

anonymous. This property especially benefits from the addition of post-quantum cryptog-

raphy to even keep the voters choices secret when the traditional hardness assumption

like DLog or prime factorisation do not hold anymore.

Coercion-resistance “Coercers cannot insist that voters vote in a certain way and the voter
cannot prove his vote to the information buyer.”

This is an important property, however the degree to which this is fulfilled depends

on the concrete instantiation of our scheme. To make the scheme coercion-resistant, one

could for example include the concept of revoting into post-quantum ElectionGuard.

Authentication “Only eligible voters were allowed to vote.”
The question on how to ensure that only eligible voters are allowed to cast votes

and unqualified voters are not is not at the core of our work and we therefore leave it

unanswered here. This is something a concrete implementation ouf our work needs to

concern itself with.
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5. Conclusion

This research aimed to create a post-quantum counterpart to the logic behind Elec-

tionGuard, a toolkit for end-to-end verifiable voting systems. We have identified this

as an issue since the current version of ElectionGuard relies on exponential ElGamal and

its underlying security assumption of the discrete logarithm problem being hard does not

hold with sufficient developments in quantum computers. This is a severe problem since

even elections held today could be influenced by the threat of later vote decryption. Hence,

our goal was to transfer the main parts of ElectionGuard, i.e. the vote encryption, proofs

of correctness, vote aggregation and verifiable decryption, to a post-quantum setting.

We have first detailed our mathematical setting and described the BGV encryption

scheme and the BDLOP commitment scheme. To construct a post-quantum version of

ElectionGuard, we follow a dual approach using both a ciphertext and a commitment

simultaneously, first showing the equality of their content using our proof ΠComEqCiph.

Then we apply the proofs ΠBinary and ΠVoteSum to show that cast votes in the commitments

are well-formed, i.e. only consists of zeros and ones and are not exceeding the election

limit. Then we perform the vote aggregation using the homomorphic property of the

ciphertexts. Finally, we run a verifiable decryption using the proof ΠVerDec and publish the

tally, concluding the election.

With our work, we have laid the foundation to create a post-quantum version of Elec-

tionGuard. We have presented the key components to run elections. Further work needs

to additionally investigate and include the end-to-end verifiability components as well as

a distributed key generation and multi-party variant of our verifiable decryption using a

threshold approach. Our work shows that a post-quantum approach to ElectionGuard is

feasible and worth pursuing further.
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A. Appendix

A.1. SageMath Code for Vote Encoding

F = GF ( 9 7 )

P = Po lynomia lR ing ( F , ’ x ’ ) ;

x = P . gen ( )

mod = x ^1024 + 1

f a c t o r s = mod . f a c t o r ( ) [ : ]

f a c t o r s = l i s t ( zip ( ∗ f a c t o r s ) ) [ 0 ]

k = len ( f a c t o r s )

print ( s t r ( mod ) + " ␣ f a c t o r s ␣ i n t o ␣ " + s t r ( k ) + " ␣ f a c t o r s " )

print ( " F a c t o r s : ␣ " + s t r ( l i s t ( f a c t o r s ) ) )

# c a l c u l a t e ba s e e
e = [ 1 for i in range ( k ) ]

for i in range ( k ) :

A = l i s t ( f a c t o r s )

B = l i s t ( )

A . remove ( f a c t o r s [ i ] )

B . append ( f a c t o r s [ i ] )

while len (A) >= 1 :

c = A . pop ( )

e [ i ] = e [ i ] − e [ i ] ∗ inverse_mod ( prod ( B ) , c ) ∗ prod ( B )

B . append ( c )

print ( " Base : ␣ " + s t r ( e ) )

# example v a l u e s c a l c u l a t i o n
a = [ 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 ]

b = [ 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 ]

# en c od e
a = sum ( [ a ∗ b for a , b in zip ( a , e ) ] )

b = sum ( [ a ∗ b for a , b in zip ( b , e ) ] )

# example c a l c u l a t i o n
c = a ∗ b % mod

# d e c o d e
r e s = [ c % f a c t o r s [ i ] for i in range ( k ) ]

print ( r e s )
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