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Abstract

An edge‐coloring of a complete graph with a set of

colors C is called completely balanced if any vertex is

incident to the same number of edges of each color from

C. Erdős and Tuza asked in 1993 whether for any graph

F on ℓ edges and any completely balanced coloring of

any sufficiently large complete graph using ℓ colors

contains a rainbow copy of F . This question was

restated by Erdős in his list of “Some of my favourite

problems on cycles and colourings.” We answer this

question in the negative for most cliques F K= q by

giving explicit constructions of respective completely

balanced colorings. Further, we answer a related

question concerning completely balanced colorings of

complete graphs with more colors than the number of

edges in the graph F .
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1 | INTRODUCTION

Let F and G be graphs. We say that an edge‐coloring of G contains a rainbow F if G contains a
subgraph isomorphic to F such that all edges are assigned distinct colors. The existence of a
rainbow F in a ground graphG could be forced by simply using a lot of colors, by requiring that

J Graph Theory. 2023;1–10. wileyonlinelibrary.com/journal/jgt | 1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

© 2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.

http://orcid.org/0000-0002-8843-9557
mailto:felix.clemen@kit.edu
https://wileyonlinelibrary.com/journal/jgt
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjgt.23063&domain=pdf&date_stamp=2023-12-12


each vertex ofG is incident to sufficiently many colors, or by making sure that each vertex ofG
is not incident to too many edges of the same color. These coloring conditions are referred to as
anti‐Ramsey or locally anti‐Ramsey and it is assumed that the number of colors used on the
edges ofG is larger that the number of edges in F . The following list gives just a small sample of
references for these and related problems: [2–4, 13, 15, 17, 18]. Erdős and Tuza [9] studied the
existence of a rainbow subgraph F in edge‐colored complete graphs when the total number of
colors is equal to the number of edges of F . Here, we focus on this problem.

Denote by Kn the complete graph on n vertices. An d(ℓ, )‐coloring of Kn is an assignment of
colors to edges such that in total ℓ colors are used and for every vertex there are at least d edges
incident to it, in every color. Let F be a graph with ℓ edges. Define d n F( , ) = ∞ if Kn has an

 n(ℓ, ( − 1) ℓ )∕ edge‐coloring without a rainbow F ; otherwise d n F( , ) is defined to be the
smallest integer d such that every d(ℓ, )‐coloring of Kn contains a rainbow copy of F .

Erdős and Tuza [9] determined d n K( , )3 precisely and found an infinite class of graphs F on
ℓ edges, for which d n F( , ) = ∞ for every positive n 0 mod ℓ≡ . They stated the following
question on edge‐colorings of the complete graph (problem 1 in [9]), also restated by Erdős in
his list of “Some of my favourite problems on cycles and colourings” in [8].

Question 1.1 (Erdős and Tuza [9]). Is d n F( , ) finite for every graph F on ℓ edges and
every sufficiently large n 1 mod ℓ≡ ?

If n − 1 is divisible by ℓ, we call an n(ℓ, ( − 1) ℓ)∕ ‐coloring of Kn completely balanced. Note
that for a graph F on ℓ edges and n − 1 divisible by d n Fℓ, ( , ) = ∞ if and only if there is a
completely balanced coloring of Kn using ℓ colors and containing no rainbow F . We prove that
“most” cliques provide a negative answer to Question 1.1.

Let S be the set of all natural q's such that q4 ≤ and for any n0, there is n n n, 1 mod ℓ0≥ ≡

and a completely balanced coloring of Kn in ( )q2 colors with no rainbow copy of Kq. Question 1.1 in

case when F is a clique asks whether S = ∅. We show that actually not only that it S is empty, but
also that S N[ ]∩ is close to having size N for large integers N , where N N[ ] = {1, …, }.

Theorem 1.2.  N S N o− [ ] (1 + (1))
N

Nlog
∩ ≤ .

For the proof of Theorem 1.2 we establish a connection between Question 1.1 for cliques
and the Prime Power Conjecture on perfect difference sets (Conjecture 4.2). We conjecture that
in fact when F is any clique of size at least four, the answer to Question 1.1 is negative:

Conjecture 1.3. S n n= { : 4}∈ ≥ .

In further partial support of Conjecture 1.3, we show it for all cliques of size q 8≥ with odd
number of edges.

Theorem 1.4. Let q 8≥ be an integer satisfying q 2≡ or 3 mod 4, and let ( )ℓ =
q

2
. For

every k 1≥ and n = (ℓ + 1)k there exists a completely balanced edge‐coloring of Kn with ℓ
colors without a rainbow Kq, that is, d n K( , ) =q ∞.

We remark that Theorem 1.4 can be extended to hold for any clique on q 4≥ vertices and
odd number of edges, that is, for q = 6, 7, however, this requires a more careful analysis of our
construction which we omit.
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Erdős and Tuza [9] also asked the following question in the setting where those
edge‐colorings of Kn use more colors than the number of edges in F .

Question 1.5 (Erdős and Tuza [9]). For a fixed positive integer ℓ and any sufficiently
large integer n, does every  n(ℓ + 1, ( − 1) (ℓ + 1) )∕ edge‐coloring of Kn contain every
graph F on ℓ edges as a rainbow subgraph?

Tuza repeated both questions in [20] and remarked that he expects the answer to
Question 1.5 to be affirmative. We answer it in the negative.

Theorem 1.6. Let q 8≥ be an integer satisfying q 0≡ or 1 mod 4, and let ( )ℓ =
q

2
. For

every k 1≥ there exists completely balanced edge‐coloring of Kn with ℓ + 1 colors, for
n = (ℓ + 2)k, without a rainbow Kq.

Our paper is organized as follows. In Section 2 we introduce the so‐called lexicographical
product of colorings which we will use for all our constructions. In Section 3 we prove
Theorems 1.4 and 1.6, and finally in Section 4 we prove Theorem 1.2.

2 | ITERATED LEXICOGRAPHICAL PRODUCT
COLORINGS

For a natural number n, let n n[ ] = {1, …, }. For sets of colors C1 and C2, and edge‐colorings
c E K C: ( )n1 1→ and c E K C: ( )m2 2→ , we define the lexicographical product coloring
c c E K C C× : ( )nm1 2 1 2→ ∪ in the following way. Let the vertex set of Knm be the set of pairs
i j( , ) with i m[ ]∈ and j n[ ]∈ and define





c c i j i j
c j j i i j j

c i i i i
( × )(( , ), ( , )) =

( , ), if = , ,

( , ), if ,
1 2 1 1 2 2

2 1 2 1 2 1 2

1 1 2 1 2

≠

≠

for i i m, [ ]1 2 ∈ and j j n, [ ]1 2 ∈ satisfying i j i j( , ) ( , )1 1 2 2≠ . Lexicographic products have been used
in Ramsey theory, see for example [1]. For all our applications the sets of colors C C,1 2 will
coincide. The following lemma shows that taking lexicographic products maintains the
properties of not containing rainbow cliques and being completely balanced.

Lemma 2.1. Let n m q, , 3≥ be positive integers and C be a set of colors. Further, let c1
and c2 be completely balanced colorings of Kn and Km respectively without a rainbow Kq

and using the same set of colors C. Then c c×1 2 also is a completely balanced coloring of
Knm without a rainbow Kq.

Proof. Clearly, c c×1 2 is a completely balanced coloring: If in c1 every vertex is incident
k1 edges of every color and in c2 every vertex is incident to k2 edges of every color, then in
c c×1 2 every vertex is incident k k m+2 1 edges of every color.

Let S V K( )mn⊆ be a set of q vertices. If all q vertices have the same first coordinate,
then G S[ ] is colored according to the coloring c2, and thus, S is not rainbow. If all q
vertices have different values for their first coordinate, then G S[ ] is colored according to
the coloring c1, and thus, S is not rainbow. Otherwise, there are three vertices
x x x y y y z z z S= ( , ), = ( , ), = ( , )1 2 1 2 1 2 ∈ such that x y z=1 1 1≠ . Then c c x z( × )( , ) =1 2
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c x z c y z c c y z( , ) = ( , ) = ( × )( , )1 1 1 1 1 1 1 2 and therefore S is not rainbow. We conclude that
the coloring c c×1 2 does not contain a rainbow Kq, completing the proof. □

Iteratively applying Lemma 2.1 to the same coloring, we obtain the following.

Lemma 2.2. If there exists a completely balanced edge‐coloring of Kn with ℓ colors and
no rainbow Kq, then for every k 1≥ there exists a completely balanced edge‐coloring of Knk

with ℓ colors and no rainbow Kq. In particular, if d n K( , ) =q ∞ for integers n and q, then
d n K( , ) =k

q ∞ for all k 1≥ .

Lemma 2.2 says that, to show that a clique Kq is a negative example to Questions 1.1 or 1.5,
it is sufficient to find the desired coloring for a single value of n.

3 | THE PROOF OF THEOREMS 1.4 AND 1.6

First, we consider a construction, that we shall use for both theorems, and show some of its
properties.

3.1 | The construction

For a fixed odd integer ℓ 3≥ , we define an edge‐coloring c of Kℓ+1 with vertex set {0, 1, …, ℓ} as
follows:




c i j
i i j

i j
( , ) =

+ mod ℓ, if = ℓ,

+ mod ℓ, otherwise ,
(1)

for i j0 < ℓ≤ ≤ .
We remark that this coloring was known already over a 100 years ago, see for example [14]

and is a standard example of a so‐called 1‐factorization of the complete graph, that is, a
decomposition of the complete graph into perfect matchings. Informally, the coloring (1)
corresponds to arranging vertices from {0, 1, …, ℓ − 1} as the corners of a regular ℓ‐gon in the
plane and placing the vertex ℓ in the center of the ℓ‐gon. Every color class consists of an edge
from the center vertex ℓ to a vertex together with all possible perpendicular edges. See Figure 1
for an illustration of this coloring when ℓ = 15. Note that every color class in the coloring (1) is
a perfect matching. The coloring can be used as a schedule of competitions with an even
number of competitors, in which each contestant plays a game every round and additionally
meets every other competitor exactly one time.

3.2 | Properties of the construction

We use theory about Sidon sets in abelian groups to prove that there is no rainbow clique of size
roughly ℓ in the edge‐coloring c, defined in (1). Given an abelian group G and A G⊆ , define

 r x a a a a A a a x( ) {( , ) : , , + = }A 1 2 1 2 1 2≔ ∈

4 | AXENOVICH and CLEMEN
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and

 r x a a a a A a a a a x′ ( ) = {( , ) : , , , + = } .A 1 2 1 2 1 2 1 2∈ ≠

A set A G⊆ is called a 2‐Sidon‐set if r x( ) 2A ≤ for all x G∈ , and it is called a weak 2‐Sidon
set if r x′ ( ) 2A ≤ for all x G∈ . Cilleruelo, Ruzsa and Vinuesa [Corollary 2.3. in [7]] proved that a
weak 2‐Sidon set A ℓ⊂ , where ℓ is odd, satisfies

 A ℓ +
5

2
.≤ (2)

Bajnok [proposition C.7 in [5]] proved that for a 2‐Sidon set A ℓ⊂ ,

 A 4ℓ − 3 + 1

2
.≤ (3)

The following lemma establishes a connection between rainbow cliques in the coloring
c and Sidon sets in ℓ. A set S V G( )⊆ is called rainbow if all edges in G S[ ] is rainbow.

Lemma 3.1. Let ℓ be an odd integer, ℓ 3≥ , and S V K( )ℓ+1⊆ be rainbow in the coloring
c E K: ( ) {0, 1, …, ℓ − 1}ℓ+1 → as defined in (1). If Sℓ ∈ , then S {ℓ}⧹ is a 2‐Sidon set in ℓ,
otherwise S is a weak 2‐Sidon set in ℓ.

FIGURE 1 The edge‐coloring c E K: ( ) [14] {0}16 → ∪ as defined in (1) when ℓ = 15. [Color figure can be
viewed at wileyonlinelibrary.com]
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Proof. In this proof addition will be in ℓ.
First, let Sℓ ∈ and define S S′ = {ℓ}⧹ . Assume, towards a contradiction, that there

exists x ℓ∈ such that r x( ) 3S′ ≥ , i.e. x a b a b a b= + = + = +1 1 2 2 3 3, for three distinct
pairs a b a b S( , ), , ′i i i i ∈ and i = 1, 2, 3. Assume first that a b=i i, for some i, say for i = 1.
Since ℓ is odd, a a a a+ +i i1 1 ≠ for a ai 1≠ , so we have without loss of generality that
b a2 1≠ . Then since a a a b+ = +1 1 2 2, we have c a b a b a a c a( , ) = + = + = ( , ℓ)2 2 2 2 1 1 1 ,
contradicting that S is rainbow. We conclude that for each i a b= 1, 2, 3, i i≠ . Since
a b( , )i i are distinct pairs i = 1, 2, 3, without loss of generality a b a b{ , } { , }1 1 2 2≠ . By the
definition of the coloring (1), c a b c a b( , ) = ( , )1 1 2 2 , contradicting that S is rainbow. We
conclude that S S′ = {ℓ}⧹ is a 2‐Sidon set.

Now, let Sℓ ∉ . Assume, towards a contradiction, that there exists x ℓ∈ such that
r x′ ( ) 3S ≥ , that is, for three distinct pairs a b i( , ), = 1, 2, 3i i satisfying a b S a b, ,i i i i∈ ≠ ,
we have a b x+ =i i . By the same argument as before, this contradicts that S is rainbow.
We conclude that S is a weak 2‐Sidon set. □

Lemma 3.2. Let ℓ be an odd integer. The coloring c E K: ( ) {0, 1, …, ℓ − 1}ℓ+1 → as
defined in (1) is a completely balanced coloring that does not contain a rainbow Km, where






m = ℓ +

7

2
.

Proof. Since every vertex is incident to exactly one edge in every color, the coloring c is
completely balanced.

Assume that there exists a rainbow Km on some vertex set T V K( )ℓ+1⊆ in the edge‐
coloring c of E K( )ℓ+1 . If Sℓ ∈ , then S {ℓ}⧹ is a 2‐Sidon set by Lemma 3.1. Therefore, by
(3), we get







  















m Sℓ +

5

2
= − 1 = {ℓ}

4ℓ − 3 + 1

2
ℓ +

1

2
.⧹ ≤ ≤

Thus






m < ℓ +

7

2
. We can assume that Sℓ ∉ . The set S ℓ⊂ is a weak 2‐Sidon set

by Lemma 3.1. Therefore, by (2), we get







  







m Sℓ +

7

2
= = ℓ +

5

2
.≤

Thus






m < ℓ +

7

2
. We conclude that there is no rainbow Km in the edge‐coloring

c of Kℓ+1, for






m = ℓ +

7

2
. □

3.3 | Deducing Theorems 1.4 and 1.6

We prove the following Theorem which implies both Theorems 1.4 and 1.6 quickly, and in fact
provides many examples of graphs, for example graphs containing large cliques, answering
Question 1.1 and 1.5 in the negative.

Theorem 3.3. Let ℓ 3≥ be an odd integer. For every integer k 1≥ and n = (ℓ + 1)k there is

a completely balanced coloring of Kn with ℓ colors without a rainbow Km,where






m = ℓ +

7

2
.
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Proof of Theorem 3.3. By Lemma 2.2 it is sufficient to find such a coloring for k = 1. By
Lemma 3.2 the coloring defined in (1) has the desired properties. □

See Figure 2 for an illustration of the coloring used for proving Theorem 3.3 when k = 2

and ℓ = 15.

Proof of Theorem 1.4. Theorem 1.4 simply follows from Theorem 3.3 by observing that

( )ℓ =
q

2
is odd for q 2≡ or 3 mod 4, and







( )q m = +

q

2

7

2
≥ for q 10≥ . By

Theorem 3.3 there exists a completely balanced coloring of Kn with ℓ colors without a
rainbow Km. Since q m≥ this coloring does not contain a rainbow Kq. □

FIGURE 2 The edge‐coloring of K162. [Color figure can be viewed at wileyonlinelibrary.com]
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Proof of Theorem 1.6. Theorem 1.6 simply follows from Theorem 3.3 by observing that

ℓ + 1 is odd for q 0≡ or 1 mod 4 and that






( )q + 1 +

q

2

7

2
≥ for q 8≥ . □

4 | PROOF OF THEOREM 1.2

To prove Theorem 1.2 we establish a connection between rainbow subsets in a certain coloring
and perfect difference sets.

A subset A n⊆ is a perfect difference set if every non‐zero element a {0}n∈ ⧹ can be
written uniquely as the difference of two elements from A. For example, {2, 3, 5} is a perfect
difference set in 7. If A is a perfect difference set of size q, then n q q= − + 12 . The following
lemma establishes a connection between perfect difference sets and the quantity d K n( , )q .

Lemma 4.1. Let q 2≥ . If there is no perfect difference set of size q in q q− +12 , then
d K n( , ) =q ∞ for infinitely many values of n of the form ( )n 1 mod

q

2
≡ .

Proof. Let q be an integer such that there is no perfect difference set of size q in n, where

( )n q q= 2 + 1 = − + 1
q

2
2 . Label the vertices of Kn with the elements from n. Now, we

color the edges of Kn with colors from {0}n⧹ and identify the colors a and a− with each
other. An edge ab is simply colored by a b− (which is the same color as b a− ). This coloring

is an ( )( ), 2q

2
edge‐coloring of Kn. See Figure 3 for an illustration of this coloring when q = 4

and n = 13. Assume that A n⊆ is the vertex set of a rainbow Kq in this coloring. Then
A n⊆ is a perfect difference set of size q, a contradiction. Thus, there is no rainbow copy of
Kq. We conclude d n K( , ) =q ∞, and therefore, applying Lemma 2.2 completes the proof. □

We remark that the coloring used for Lemma 4.1, which also is displayed in Figure 3, is the
standard example of a 2‐factorization of a complete graph with the number of vertices being
odd, that is an edge‐coloring of the complete graph such that every color class is a spanning
2‐regular subgraph.

Singer [19] constructed perfect difference sets of sizes p + 1k , where p is prime and k 1≥ .
The non‐existence of perfect difference sets for sizes not of this form is an old question in
number theory which has attracted many researchers [6, 10–12, 16, 19, 21].

Conjecture 4.2 (Prime Power Conjecture). A perfect difference set of size q exists if and
only if q − 1 is a prime power.

The Prime Power conjecture was computationally verified for q 2 × 109≤ by Baumert and
Gordon [6, 11]. Various conditions for nonexistence of perfect difference sets have been proven. For
example, Corollary 1 in [11] provides divisibility conditions leading to the following result.

Corollary 4.3. Let q be an integer such that q − 1 is not divisible by
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62 or 65. Then, d K n( , ) =q ∞

for infinitely many values of n of the form ( )n 1 mod
q

2
≡ .

8 | AXENOVICH and CLEMEN
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Proof of Theorem 1.2. Recently, Peluse [16] proved that the number of positive integers
q N≤ such that q q− +12 contains a perfect difference set of size q is o N N(1 + (1)) log∕ ,
which is the same order as the number of prime powers of size at most N . Peluse's result
together with Lemma 4.1 completes the proof of Theorem 1.2. □
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