KIT | KIT-Bibliothek | Impressum | Datenschutz

Prediction of hydrogen storage in metal-organic frameworks: A neural network based approach

Shekhar, Shivanshu; Chowdhury, Chandra 1
1 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)

Abstract:

Gas capture, sensing, and storage systems are all within the capabilities of metal–organic frameworks (MOFs). It
is common practise to choose the MOF with the best adsorption property from a large database before running
an adsorption calculation. High-throughput computational research is sometimes hampered by the expense of
computing thermodynamic values, slowing the progress of MOFs for separations and storage applications. When
trying to predict material properties, machine learning has recently emerged as a possible alternative to more
conventional methods like experiments and simulations. The H2 capacities of 918,734 MOFs drawn from 19
databases were recently predicted using ML by Ahmed and Siegel (2021). Several ML methods were utilized,
and the extremely randomised tree (ERT) model emerged as the most accurate predictor of hydrogen delivery
capacity in terms of both gravimetric and volumetric quantities. Interestingly we have used deep learning
model (Feed-forward neural network) as well as ERT model for the prediction of H2 deliverable capacities of
a huge number of MOFs developed from the previous studies and got till date best results for predictions. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000165990
Veröffentlicht am 15.01.2024
Originalveröffentlichung
DOI: 10.1016/j.rsurfi.2023.100166
Scopus
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -technologie (IKFT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2024
Sprache Englisch
Identifikator ISSN: 2666-8459
KITopen-ID: 1000165990
HGF-Programm 38.05.01 (POF IV, LK 01) Anthropogenic Carbon Cycle
Erschienen in Results in Surfaces and Interfaces
Verlag Elsevier
Band 14
Seiten Art.-Nr.: 100166
Vorab online veröffentlicht am 30.11.2023
Nachgewiesen in Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page