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Abstract
In this paper an inverse obstacle scattering problem for the Helmholtz equation
with nonlinear impedance boundary condition is considered. For a certain class
of nonlinearities, well-posedness of the direct scattering problem is proven.
Furthermore, differentiability of solutions with respect to the boundary is
shown by the variational method. A characterization of the derivative allows
for iterative regularization schemes in solving the inverse problem, which
consists in reconstructing the scattering obstacle from the far field pattern of a
scatteredwave. An all-at-onceNewton-type regularizationmethod is developed
to illustrate the use of the domain derivative by some numerical examples.

Keywords: inverse obstacle problem,
nonlinear impedance boundary condition, domain derivative,
iterative regularization method

1. Introduction

Nonlinear phenomena in acoustic and electromagnetic obstacle scattering have gained import-
ance in the last decade, for example in the case of thinly coated perfectly conducting objects
filled with a nonlinear medium [28, 30]. Through an asymptotic analysis, nonlinear material
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properties in thin layers lead to approximate nonlinear boundary conditions [26]. Effective
boundary conditions for thin films filled with linear media have been derived and investigated
in [2, 5, 7, 9]. Scattering problems with such nonlinear boundary conditions have been stud-
ied in [25] for electromagnetic waves and in [3, 4] for the acoustic wave equation, based on a
boundary element method in space and convolution quadrature in time.

In this work we focus on the reconstruction of an obstacle with material properties near
the boundary approximated by an impedance boundary condition with an additional nonlinear
term. Generally, in inverse obstacle scattering, we are interested in determining the shape of an
obstacle by illuminating the object with plane incident time-harmonic waves and considering
measurements of the far-field pattern of corresponding scattered waves. In case of linear scat-
tering models such inverse problems are extensively studied (see [6]) but much less is known
in case of nonlinear media. First approaches in recovering the support of nonlinear media can
be found in [8, 23] based on the factorization method and the monotonicity method. These
require, at least theoretically, measurements of the far field pattern for all incident directions.
But, for the following investigations we assume access to the far field pattern for a single or
just a few incident fields.

We consider time-harmonic scattering modeled by the Helmholtz equation in the exterior of
an object with a nonlinear impedance boundary condition. Thus, the model may cover acoustic
scattering (inR3) as well as a specific polarization in electromagnetic scattering (inR2). For the
scattering problem with classical Robin boundary condition, i.e. without a nonlinear term, it
is observed that iterative regularization schemes based on the domain derivative of the scatter-
ing problem lead to feasible reconstruction algorithms (see [22] and references cited therein).
Therefore, in extending this approach to nonlinear impedance boundary conditions our task is
twofold. First, we have to establish a shape derivative of the scattered field with respect to the
scattering obstacle, and second, we are going to develop an iterative regularization scheme in
solving the severely ill-posed reconstruction problem.

In view of the variational method for showing existence of the domain derivative we begin
with a weak scattering theory for the nonlinear boundary condition. Thus, in the second section
we present quite general assumptions on the nonlinear term which ensure a well-posed direct
problem. It is shown that Kacurovskii’s extension of the Fredholm Theory to nonlinear com-
pact operators can be applied to the scattering problem. Furthermore, we will prove uniqueness
and stability of the nonlinear scattering problem by using Rellich’s lemma.

With a well-posed scattering problem the existence of the so called material derivative is
proven in the following section. The presented approach is closely related to the ideas estab-
lished in [13] for semilinear boundary value problems. Similar to the case of linear boundary
value problems such a derivative can be represented by its domain derivative (see [11, 14, 18]),
which is shown to satisfy a corresponding linearized impedance boundary value problem for
the Helmholtz equation assuming suitable regularity of the boundary.

The subsequent sections are devoted to the inverse problem. With the domain derivative
at hand it becomes natural to consider iterative regularization schemes in solving the inverse
problem. Since any iteration step requires solving a nonlinear boundary value problem we
suggest an all-at-once method based on linearizing the scattering problem and applying a reg-
ularized Newton step for the reconstruction. In general, it is shown by Kaltenbacher [15] that
such an approach leads to regularization schemes by assuming certain mapping properties of
the nonlinear operator.

Although, a complete convergence proof is not known even for the inverse object recon-
struction for linear scattering problems, we elaborate such an all-at-once approach in the fourth
section. We introduce an integral equation method solving for the linearized scattering prob-
lems, and develop a Newton type regularization scheme for the reconstruction of a scattering
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object from a far field pattern. Some examples in the last section illustrate the performance of
the scheme. It turns out that the suggested method leads to reconstructions in case of nonlinear
boundary conditions comparable to the known results with Robin boundary conditions.

2. The direct problem

Let D be a bounded domain in RN (N= 2,3) with a Lipschitz continuous boundary ∂D. An
incident plane wave ui(x) = eikd·x with propagation direction d ∈ SN−1 and real positive wave
number k is scattered by the object D, generating a scattered wave us. The scattering problem
is to find the total wave u= ui + us which satisfies the Helmholtz equation

∆u+ k2u= 0 in RN\D (1)

together with a nonlinear impedance boundary condition

∂u
∂ν

+ ikλu= g(·,u) on ∂D, (2)

where ν denotes the unit normal vector to ∂D oriented towards RN\D, λ ∈ L∞(∂D) is a
complex-valued impedance function, and g : ∂D×C→ C gives an additional nonlinear term
with respect to u. Furthermore, the scattered field us is assumed to satisfy the Sommerfeld
radiation condition

lim
r→∞

r
N−1
2

(
∂us (x)
∂r

− ikus (x)

)
= 0, r= |x|, (3)

uniformly with respect to x̂= x
|x| .

In the given scattering problem the propagation region of the wave is unbounded. For a weak
formulation we consider an equivalent representation of the problem on a bounded subdo-
main Ω := BR\D, where the radius R> 0 of the ball BR ⊆ RN is chosen large enough such that
D⊆ BR. We consider weak solutions in the Sobolev space H1(Ω). To include the Sommerfeld
radiation condition, we specify a nonlocal boundary condition on the boundary ∂BR. Therefore,
we introduce the Dirichlet-to-Neumann map

Λ : H
1
2 (∂BR)→ H− 1

2 (∂BR) , Λf =
∂w
∂ν

,

where w is the radiating solution of the Helmholtz equation in RN\BR with Dirichlet trace
w= f on ∂BR (see [6]). Since the scattered wave us is a solution of the Helmholtz equation
satisfying the Sommerfeld radiation condition we obtain the boundary condition

∂us

∂ν
= Λus on ∂BR.

Thus, a weak formulation of the scattering problem is given by

R(u,v) = ( f,v)H1 for all v ∈ H1 (Ω) (4)

with

R(u,v) =
ˆ
Ω

∇u ·∇v− k2uvdx− ik
ˆ
∂D
λuvds+

ˆ
∂D
g(·,u)vds

−
ˆ
∂BR

Λuvds,

3
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and f ∈ H1(Ω) is defined from the representation theorem by

( f,v)H1 =

ˆ
∂BR

(
∂ui

∂ν
−Λui

)
vds.

We assume throughout this work the function g(x,z) to be measurable in x, continuous in z,
and satisfying a Caratheodory condition

|g(x,z) |⩽ |ψ (x) |+ c|z|p, a.e. x ∈ ∂D, z ∈ C (5)

with c> 0, ψ ∈ L2(∂D) and 1⩽ p<∞ in case of N= 2, and 1⩽ p⩽ 2 in case of N= 3.
Then, with u ∈ H1(Ω)we have for the Nemytskii operator defined byG(u)(x) = g(x,u(x)) that
G(u) ∈ L2(∂D) with ∥G(u)∥L2(∂D) ⩽ c(∥ψ∥L2(∂D+ ∥u∥pH1(Ω)

) for some constant c> 0, see [1,
theorem 5.36] and [29, theorem 3.2]. Further conditions on g will be specified below.

It is well known for the linear scattering problem, i.e. g= 0, that there exists a unique solu-
tion u ∈ H1(Ω) of (4) for any f ∈ H1(Ω), if the impedance function satisfies Re(λ)⩾ 0 (see
[11, 19]). Thus, throughout we assume Re(λ)⩾ 0 on ∂D.

To ensure also a well-posed direct boundary value problem in case of the nonlinear imped-
ance condition, the function g : ∂D×C→ C has to fulfil some additional assumptions. The
following theorem, based on an extension of the Fredholm theory, gives a sufficient condition
for existence of weak solutions of the scattering problem.

Theorem 2.1. Let the nonlinearity g be sublinear in z at infinity, i.e.

|g(x,z) |= o(|z|) as |z| →∞ for a.e. x ∈ ∂D. (6)

Then, for any f ∈ H1(Ω) there exists a weak solution u ∈ H1(Ω) of the boundary value
problem (4).

Proof. The variational formulation is equivalent to the operator equation

Rlu+Rn (u) = f in H1 (Ω) ,

where the operators Rl,Rn : H1(Ω)→ H1(Ω) are defined by

(Rlu,v)H1 =

ˆ
Ω

∇u ·∇v− k2uvdx− ik
ˆ
∂D
λuvds−

ˆ
∂BR

Λuvds,

(Rn (u) ,v)H1 =

ˆ
∂D
g(·,u)vds.

The linear scattering problem is given by the operator Rl. Thus, as mentioned above, it is
an injective Fredholm operator with index zero and has a bounded inverse. From

∥(Rn(w)−Rn(u)∥H1(Ω) ⩽ ∥G(w)−G(u)∥L2(∂D)

we see, the operator Rn is continuous, since by the sublinear assumption the Nemytskii oper-
atorG is continuous as a mapping from L2(∂D) into L2(∂D) (see [29]). Furthermore, the trace
operator from H1(Ω) into L2(∂D) is compact and we observe Rn : H1(Ω)→ H1(Ω) to be con-
tinuous and compact.
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Using the assumption on g we obtain

|(Rn (u) ,v) |=
∣∣∣∣ˆ

∂D
g(·,u) v ds

∣∣∣∣
⩽ ∥g(·,u(·))∥L2(∂D)∥v∥L2(∂D) = o

(
∥u∥L2(∂D)

)
∥v∥L2(∂D).

Thus, Rn is sublinear, i.e. ∥Rn(u)∥/∥u∥→ 0, if ∥u∥→∞. Therefore, the theorem of
Kacurovskii, an extension of the Fredholm alternative, see [32, theorem 29.A], can be applied
and shows existence of a solution to (4) for any f ∈ H1(Ω).

Let g be differentiable in its second argument, in the sense of existence of gz(.,z;w) ∈
L∞(∂D) such that

g(x,z+w)− g(x,z) = gz (x,z;w)+ o(|w|)

for all z,w ∈ C, a.e. x ∈ ∂D and gz to be R-linear w.r.t. w, then a lower bound on Re(λ) leads
to a well-posed direct scattering problem.

Corollary 2.2. Let g : ∂D×C→ C be a sublinear function as in theorem 2.1, differentiable
in its second argument as described above, and let

kRe(λ)⩾ sup
z,w∈C

Im(gz (x,z;w)w)
|w|2

for any z,w ∈ Cand a.e. x ∈ ∂D.

Then, the problem (4) has a unique solution u ∈ H1(Ω) and it exists a constant c> 0 with

∥u∥H1(Ω) ⩽ c∥f∥H1(Ω) for any f ∈ H1 (Ω) . (7)

Proof. Rellich’s lemma ensures that a radiating solution of the Helmholtz equation vanishes
if ˆ

∂D
Im

(
u
∂u
∂ν

)
ds⩽ 0,

see [6]. Let u1 and u2 be two solutions of (4). We obtain the inequality for the scattered solution
u= u1 − u2 of the Helmholtz equation,

ˆ
∂D

Im

(
u
∂u
∂ν

)
ds=−k

ˆ
∂D

Re(λ)|u|2 ds+ Im
ˆ
∂D

(g(·,u1)− g(·,u2))u) ds⩽ 0

from

Im((g(x,z+w)− g(x,z))w) = Im
ˆ 1

0
gz (x,z+ tw;w)w dt⩽ kRe(λ) |w|2 .

This implies uniqueness of the solution u ∈ H1(Ω) of problem (4). The uniform bound by
a constant c> 0 follows analogously as it is known from the Riesz–Fredholm theory for an
injective linear Fredholm operator.

Remark. (a) As an example we may consider

g(·,z) = z
1+ |z|2

in case of kRe(λ)> 1
2 on ∂D. Obviously, the function is sublinear in z, and with
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Im(gz (·,z;w)w) =−2Re(zw) Im(zw)

(1+ |z|2)2

and |z|
1+|z|2 ⩽

1
2 for all z ∈ C we observe the assumption of corollary 2.2.

(b) Note, the restriction of a sublinear function g is quite natural, since in the general well-
posed case g can be replaced by a sublinear one without changing the solution. This is seen
as follows: let us assume that the boundary value problem (4) is well-posed, f is defined
from an incident field ui as above, and u= us+ ui denotes the solution of the scattering
problem. From Green’s representation theorem in Rn\D for us and in D for ui, and the
boundary condition we obtain

1
2

(
us− ui

)
=

ˆ
∂D
u
∂Φ

∂ν
+(i kλu− g(.,u))Φ ds

=Du+S (iku− g(.,u))

on ∂D, whereΦ is the fundamental solution of the Helmholtz equation andD,S denote the
boundary integral operators corresponding to the double and the single layer potential of
the Helmholtz equation, see [20]. Let D⊆ R2 with ∂D ∈ C2,α, α ∈ (0,1) we have D,S :
L2(∂D)→ H1(∂D)⊆ C(∂D), see [17]. Thus, the above representation holds pointwise and
the Caratheodory condition implies

∥u∥C(∂D) ⩽ C
(
∥ui∥C(∂D) + ∥u∥H1(Ω) + ∥ψ∥L2(∂D) + ∥u∥pH1(Ω)

)
⩽ c

(
∥ui∥C(∂D) + ∥f∥H1(Ω) + ∥ψ∥L2(∂D) + ∥f∥pH1(Ω)

)
⩽ b0

for some b0 ∈ R . Analogously, this is true in case of D⊆ R3, if ∂D ∈ C3,α and g(.,u) ∈
H1(∂D) for u ∈ H1(∂D), since first we conclude u ∈ H1(∂D) and then we can apply the
Sobolev embedding H2(∂D)⊆ C(∂D) from D,S : H1(∂D)→ H2(∂D).
Now consider gb defined by gb(x,z) = φb(|z|)g(x,z) with φb ∈ C∞(R) given by φb(r) ∈
[0,1] for r ∈ R and

φb (r) =

{
1 , for |z|⩽ b
0 , for |z|> b+ 1 .

We observe gb to be sublinear in its second argument and u solves the problem (4) for
all b> b0, if g is replaced by gb. Thus, if gb satisfies the conditions of corollary 2.2
and ub denotes the corresponding unique solution, we conclude u= ub for all b> b0 by
uniqueness.

3. The domain derivative

In view of iterative regularization schemes for the inverse obstacle scattering problem, it is
necessary to study differentiability of the domain to far field operator. Therefore, we investigate
the derivative of a solution of the scattering problem with respect to the domain D. In this
chapter we assume that D is of class C1. A variation of a domain D⊆ BR = {x ∈ R3 : |x|< R}
is described by a sufficiently small vector field h ∈ C1

c(BR). We denote a perturbed domain by

Dh = {x+ h(x) ∈ Rn : x ∈ D}

6
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and Ωh = BR\Dh. The corresponding scattering problem is given by

Rh (uh,vh) = ( f,vh)H1 (8)

for all vh ∈ H1(Ωh) with

Rh (uh,vh) =
ˆ
Ωh

∇uh ·∇vh− k2uhvh dx− ik
ˆ
∂Dh

λuhvh ds

+

ˆ
∂Dh

g(·,uh)vh ds−
ˆ
∂BR

Λuhvh ds,

( f,vh)H1 =

ˆ
∂BR

(
∂ui

∂ν
−Λui

)
vh ds.

Throughout, we consider λ and g on ∂D and on perturbed boundaries ∂Dh to be traces of func-
tions λ : RN → C and g : RN×C→ C and assume u ∈ H1(Ω), uh ∈ H1(Ωh) to be the unique
solutions of (4) and (8), respectively. For instance, corollary 2.2 gives sufficient conditions on
the scattering problems to be well-posed.

A transformation of variables with φ(x) = x+ h(x) leads to

R̃h (ũh,v) =
ˆ
Ω

[
∇ũh · J−1

φ J−⊤
φ ∇v− k2ũhv

]
det(Jφ)dx

− ik
ˆ
∂D
λ̃ũhv Det(φ)ds−

ˆ
∂BR

Λũhvds

+

ˆ
∂D
g(φ(·) , ũh)v Det(φ)ds

=

ˆ
∂BR

(
∂ui

∂ν
−Λui

)
vds= ( f,v)H1 (9)

for all v ∈ H1(Ω). Here, we denote by Jφ the Jacobian matrix of the transformation φ and
ũh(x) = (uh ◦φ)(x). Furthermore, the Jacobian with respect to the surface ∂D is given by

Det(φ) =

√
det

(
J⊤
ϕ̂
Jϕ̂

)/√
det

(
J⊤ϕ Jϕ

)
,

for local parametrizations ϕ and ϕ̂= ϕ + h ◦ϕ of ∂D and ∂Dh, respectively. Additionally, note
that for any perturbation h we have the same f in (9) as in (4) given by the incident field on
∂BR.

For the tangential and the normal component of a vector on the boundary ∂D we introduce
the notations

hτ = ν× (h× ν) and hν = h · ν

and thus h= hτ + hνν holds on ∂D. Furthermore, we introduce the tangential gradient, given
by∇τv=∇v− ∂v

∂ν ν, and the tangential divergence, DivV= divV− ν⊤JVν, for smooth func-
tions v or V in a neighborhood of ∂D, which both can be extended to linear bounded operators

∇τ ,Div : H
1
2 (∂D)→ H− 1

2 (∂D) .

Elementary calculations show the following linearizations of the Jacobians.

7
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Lemma 3.1. Let D⊆ RN (N= 2,3) be a bounded domain, λ ∈ C1(RN,C) and κ be the mean
curvature of ∂D. Then

∥det(Jφ)− 1− div(h)∥∞ = o(∥h∥C1) ,

∥J−1
φ J−⊤

φ det(Jφ)− I+ Jh+ J⊤h − div(h) I∥∞ = o(∥h∥C1) ,

∥λ̃Det(φ)−λ(1+Div(hτ )+ 2κhν)−∇λ⊤h∥∞ = o(∥h∥C1) .

Proof. See [12].

Therefore, from now on we assume λ ∈ C1(RN,C). As in [13], we also have to specify
assumptions on the nonlinear function g which ensure existence of the domain derivative. We
collect sufficient conditions which will be applied in the following considerations.

Assumption (A). A continuous function g : RN×C→ C satisfies assumption (A), if

(i) g is continuously differentiable in x ∈ RN, where g satisfies the Caratheodory condition (5)
on ∂D and on perturbed boundaries ∂Dh as well, and similarly its partial derivatives gx
satisfy such a growth condition, i.e.

|gx (x,z) |⩽ |ψ1 (x) |+ c1|z|p1 (10)

for a.e. x ∈ ∂D and all z ∈ C.
(ii) the derivatives gz,gxz exist in the sense as above, i.e. , gz(.,z;w),gxz(.,z;w) ∈ L∞(∂Dh) for

any admissible variation h, are R-linear functions with respect to w ∈ C with

g(x,z+w)− g(x,z) = gz (x,z;w)+ o(|w|) ,
gx (x,z+w)− gx (x,z) = gxz (x,z;w)+ o(|w|) (11)

for all z,w ∈ C and a.e. x ∈ ∂Dh. Additionally, these derivatives also satisfy growth con-
ditions

|gz (x,z;w) |, |gxz (x,z;w) |⩽ (ψ (x)+ c|z|p) |w|

with corresponding functions ψ ∈ L2(∂D), c> 0 and 1⩽ p<∞ in case of N= 2, and
1⩽ p⩽ 2 in case of N= 3.

With lemma 3.1 and assumption (A), we conclude continuous dependence on variations of
the domain D.

Theorem 3.1. Let g satisfies (A), and let u ∈ H1(Ω) and uh ∈ H1(Ωh) be the weak solutions of
well-posed scattering problems (4) and (8), respectively. Furthermore, let |gz(x,z;w)|⩽ η|w|
with a sufficiently small constant η > 0 locally for a.e. x ∈ U and for all z ∈ V in open sets
∂D⊆ U⊆ R3 and {u(x) : x ∈ ∂D} ⊆ V⊆ C. Then, the solution of the boundary value problem
depends continuously on the domain D, i.e.

lim
∥h∥C1→0

∥ũh− u∥H1 = 0 , (12)

where the notation ũh = uh ◦φ with φ = I+ h is used.

8
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Proof. According to well-posed scattering problems, the operators

T : H1 (Ω)→ H1 (Ω) , (T(w) ,v)H1(Ω) =R(w,v)

Th : H
1 (Ω)→ H1 (Ω) , (Th (w) ,v)H1(Ω) = R̃h (w,v)

exist. If we consider the difference between these two operators, we obtain

∥T(w)−Th (w)∥2H1 = |R(w,T(w)−Th (w))−R̃h (w,T(w)−Th (w)) |

=

∣∣∣∣∣
ˆ
Ω

(
∇w ·

[
I− J−1

φ J−⊤
φ det(Jφ)

]
∇(T(w)−Th (w))

−k2 (1− det(Jφ))w(T(w)−Th (w))
)
dx

− ik
ˆ
∂D

(
λ− λ̃Det(φ)

)
w(T(w)−Th (w))ds

+

ˆ
∂D

(g(·,w)− g(φ(·),w)Det(φ))(T(w)−Th(w))ds

∣∣∣∣∣ .
With the growth conditions (5) and (10), respectively, the expression in the last integral can be
estimated by

∥g(φ(·),w)Det(φ)− g(·,w)∥L2
⩽ ∥g(φ(·),w)− g(·,w)∥L2 + ∥g(φ(·),w)(Div(hτ )+ 2κhν)∥L2 +O(∥h∥C1)

⩽ c∥gx(·,w)∥L2∥h∥C1 + ∥g(φ(·),w)(Div(hτ )+ 2κhν∥L2 +O(∥h∥C1)

⩽ c
(
∥ψ1∥L2 + ∥ψ∥L2 + ∥w∥pH1 + ∥w∥p1H1

)
O(∥h∥C1)

for a constant c> 0. Thus, for w ∈ H1(Ω) according to lemma 3.1 we get for some constant
C> 0

∥T(w)−Th (w)∥H1 ⩽ C
(
∥w∥H1 + ∥w∥pH1 + ∥w∥p1H1 + ∥ψ1∥L2 + ∥ψ∥L2

)
∥h∥C1 .

Furthermore, for solutions of T(u) = f and Th(ũh) = f we obtain the identity

Th (ũh)−Th (u) = T(u)−Th (u)

⇔ Th,l (ũh− u)+ (Th,n (ũh)−Th,n (u)) = T(u)−Th (u)

⇔ ũh− u+T−1
h,l (Th,n (ũh)−Th,n (u)) = T−1

h,l (T(u)−Th (u))

where

(Tl (w) ,v) =
ˆ
Ω

∇w ·∇v− k2wvdx− ik
ˆ
∂D
λwvds−

ˆ
∂BR

Λwvds

denotes the linear part and

(Tn (w) ,v) =
ˆ
∂D
g(·,w)vds

the nonlinear part of the operator T. Analogous operator splitting holds for Th.

9
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As mentioned in section 2 we know that the operator Tl has a bounded inverse T−1
l . If

∥h∥C1 is sufficiently small, then ∥T−1
l (Th,l−Tl)∥⩽ 1

2 . Using Neumann’s series, we obtain the
existence of the inverse operator T−1

h,l and the inequality

∥T−1
h,l ∥⩽

∥T−1
l ∥

1−∥T−1
l (Th,l−Tl)∥

⩽ 2C̃

for a constant C̃> 0, see [21, theorem 10.1]. With these considerations, the error estimates

∥ũh− u+T−1
h,l (Th,n (ũh)−Th,n (u))∥H1

= ∥T−1
h,l (T(u)−Th (u))∥H1 ⩽ ∥T−1

h,l ∥∥T(u)−Th (u)∥H1

⩽ 2C̃C
(
∥u∥H1 + ∥u∥pH1 + ∥u∥p1H1 + ∥ψ1∥L2 + ∥ψ∥L2

)
∥h∥

⩽ 2C̃C
(
∥f∥H1 + ∥f∥pH1 + ∥f∥p1H1 + ∥ψ1∥L2 + ∥ψ∥L2

)
∥h∥

and

∥ũh− u+T−1
h,l (Th,n (ũh)−Th,n (u))∥H1

⩾ ∥ũh− u∥H1 −∥T−1
h,l (Th,n (ũh)−Th,n (u))∥H1

⩾ ∥ũh− u∥H1 − 2C̃∥(g(φ(·) , ũh)− g(φ(·) ,u))Det(φ)∥L2

⩾ ∥ũh− u∥H1 − 2C̃∥g(φ(·) , ũh)− g(φ(·) ,u)∥L2

− 2C̃∥g(φ(·) , ũh)− g(φ(·) ,u)∥L2O (∥h∥)

are valid. Furthermore,

∥g(φ(x) , ũh (x))− g(φ(x) ,u(x))∥2L2

=

ˆ
∂D

∣∣∣∣∣
ˆ 1

0
gz (φ(x) ,u(x)+ t(ũh (x)− u(x)) ; ũh (x)− u(x))dt

∣∣∣∣∣
2

ds

⩽
ˆ 1

0

ˆ
∂D

|gz (φ(x) ,u(x)+ t(ũh (x)− u(x)) ; ũh (x)− u(x))|2 dsdt .

Overall, with the assumption on gz we obtain(
1− 2ηC̃

)
∥ũh− u∥H1 =O (∥h∥) .

Thus, the solution of the boundary value problem depends continuously on the domain D if
2ηC̃< 1 is satisfied.

Note from the presented proof that assumptions on the second derivatives of g are not
required for the above continuity result.

In the following we also have to consider the R-linear boundary value problem with g
replaced by gz. Thus, we introduce the problem

R̂(u,v) = ( f,v)H1 for all v ∈ H1 (Ω) (13)

10
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with

R̂(q,v) =
ˆ
Ω

∇q ·∇v− k2qvdx− ik
ˆ
∂D
λqvds+

ˆ
∂D
gz (·,u;q)vds−

ˆ
∂BR

Λqvds. (14)

With the above considerations we now can formulate the main result on existence of a
derivative of the solution of the scattering problem with respect to the shape of D.

Theorem 3.3. We assume the boundary value problems (4) and (13) are well-posed and the
solution u of (4) is continuous with respect to the domain D in the sense of (12). With g satis-
fying assumption (A) the solution u is differentiable with respect to variations h ∈ C1

c(BR) of
the domain, i.e. it exists w ∈ H1(Ω), linearly depending on h with

lim
∥h∥C1→0

1
∥h∥C1

∥ũh− u−w∥H1 = 0.

The material derivative w is given by the unique weak solution of theR−linear boundary value
problem

R̂(w,v) =
ˆ
Ω

[
∇u ·

(
Jh+ J⊤h − div(h) I

)
∇v+ k2div(h)uv

]
dx

+ ik
ˆ
∂D

[
λ(Div(hτ )+ 2κhν)+∇λ⊤h

]
uvds

−
ˆ
∂D

(Divx (g(·,u)hτ )+ 2κhνg(·,u))vds (15)

for all v ∈ H1(Ω).

Proof. Since the problem (13) is well posed, w ∈ H1(Ω) exists and according to a support
of h close to the boundary ∂D the function w can be extended to a radiating solution of the
Helmholtz equation in the exterior of BR.

Inserting the difference ũh− u−w and the identity (9) in (14) yields

R̂(ũh− u−w,v) =
ˆ
Ω

∇(ũh− u−w) ·∇v− k2 (ũh− u−w)vdx− ik
ˆ
∂D
λ(ũh− u−w)vds

+

ˆ
∂D
gz (·,u; ũh− u−w)vds−

ˆ
∂BR

Λ(ũh− u−w)vds

=

ˆ
Ω

∇ũh ·
(
I− J−1

φ J−⊤
φ det(Jφ)

)
∇v− k2 (1− det(Jφ)) ũhvdx

−
ˆ
Ω

∇w ·∇v− k2wvdx− ik
ˆ
∂D

(
λ− λ̃Det(φ)

)
ũhvds+ ik

ˆ
∂D
λwvds

+

ˆ
∂D

[g(·,u)− g(φ(·) , ũh)Det(φ)+ gz (·,u; ũh− u)] vds

−
ˆ
∂D
gz (·,u;w)vds+

ˆ
∂BR

Λwvds.

We insert equation (15) and obtain

11
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R̂(ũh− u−w,v) =
ˆ
Ω

(∇ũh−∇u) ·
(
I− J−1

φ J−⊤
φ det(Jφ)

)
∇v− k2 (1− det(Jφ))(ũh− u)vdx

+

ˆ
Ω

[
∇u ·

(
I− J−1

φ J−⊤
φ det(Jφ)− Jh− J⊤h + div(h) I

)
∇v

−k2 (1− det(Jφ)+ div(h))uv
]
dx

− ik
ˆ
∂D

(
λ− λ̃Det(φ)

)
(ũh− u)vds

− ik
ˆ
∂D

(
λ(1+Div(hτ )+ 2κhν)+∇λ⊤h− λ̃Det(φ)

)
uvds

+

ˆ
∂D

[g(·,u)− g(φ(·) , ũh)Det(φ)+ gz(·,u; ũh− u)+Divx(g(·,u)hτ )

+2κhνg(·,u)] vds.

Here and in the following considerations, terms on the boundary ∂D have to be read in the
duality sense of H− 1

2 and H
1
2 . By lemma 3.1 and the continuity (12) all integrals except the

last are of order o(∥h∥C1). To verify an estimate for the last integrand, we sort it to

|g(φ(.) , ũh)Det(φ)− g(.,u)− gz (x,u; ũh− u)−Divx (g(.,u)hτ )− 2κhνg(.,u) |
=
∣∣g(φ(.) , ũh)Det(φ)− g(.,u)− gz (.,u; ũh− u)−Divx (g(.,u)hτ )− 2κhνg(.,u)

− (g(φ(.) , ũh)− g(φ(.) , ũh))(1+Div(hτ )+ 2κhν)
∣∣

⩽
∣∣g(φ(.) , ũh)∣∣ ∣∣Det(φ)− 1−Div(hτ )− 2κhν

∣∣
+
∣∣g(φ(.), ũh)− g(.,u)− gz(.,u; ũh− u)+ g(φ(.), ũh)Div(hτ )

−Divx(g(.,u)hτ )+ 2κhνg(φ(.), ũh)− 2κhνg(.,u)
∣∣.

In the first line we can apply (5) and lemma 3.1. By adding and subtracting further terms it
follows

|g(φ(.), ũh)Det(φ)− g(.,u)− gz(.,u; ũh− u)−Divx(g(.,u)hτ )− 2κhνg(.,u)|
⩽ (|ψ0(φ(.))|+ c0|ũ|p)o(∥h∥C1)

+
∣∣g(φ(.), ũh)− g(.,u)− gz(.,u; ũh− u)+ g(φ(.), ũh)Div(hτ )

−Divx(g(.,u)hτ )+ 2κhνg(φ(.), ũh)− 2κhνg(.,u)

−
(
g(., ũh)− g(., ũh)

)
(1+Div(hτ )+ 2κhν)−

(
gx(., ũh)− gx(., ũ)

)
hτ
∣∣

⩽ (|ψ0(φ(.))|+ c0|ũh|p)o(∥h∥C1)+ |g(φ(.), ũh)− g(., ũh)− gx(., ũh)hτ |
+ |g(., ũh)− g(.,u)− gz(.,u; ũh− u)|+ |(g(φ(.), ũh)− g(., ũh))Div(hτ )|
+ |(g(., ũh)− g(.,u))Div(hτ )|+ |(gx(., ũh)− gx(.,u)))hτ |
+ |(g(φ(.), ũh)− g(., ũh))2κhν |+ |(g(., ũh)− g(.,u))2κhν |.

Using the growth conditions from (A), continuity of the Nemytskii operator, and the continuity
of solutions w.r.t. h we obtain

12
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∥g(φ(·) , ũh)Det(φ)− g(·,u)− gz (·,u; ũh− u)−Divx (g(·,u)hτ )− 2κhνg(·,u)∥L2
⩽ (∥ψ∥L2 + c∥f∥L2)o(∥h∥C1) .

Finally, the Riesz representation theorem implies that ũh− u−w ∈ H1(Ω) is the unique
solution of

R̂(ũh− u−w,v) = ( fh,v)H1

for all v ∈ H1(Ω) with a functional given by fh ∈ H1(Ω) satisfying ∥fh∥H1 = o(∥h∥C1). By the
assumed well-posedness of (13) we conclude

1
∥h∥C1

∥ũh− u−w∥H1 ⩽ c∥fh∥H1

∥h∥C1
→ 0 for ∥h∥C1 → 0.

As known from shape derivatives for linear boundary value problems thematerial derivative
can be read in the sense of the chain rule, which leads to the notation of the so called domain
derivative of u.

Theorem 3.4. The material derivative of the previous theorem is of the form w= u ′ +∇u · h,
where u denotes the solution of (4) and the domain derivative u ′ ∈ H1(Ω) is the unique weak
solution of the R-linear boundary value problem

∆u ′ + k2u ′ = 0 in Ω (16)

with

∂u ′

∂ν
+ ikλu ′ + gz (·,u;u ′) = Div(hν∇τu)+ k2uhν − ikλ

(
2κuhν +

∂u
∂ν

hν

)
− ik

∂λ

∂ν
uhν + gz

(
·,u; ∂u

∂ν
hν

)
+ 2κg(·,u)hν on ∂D (17)

and

Λu ′ =∇u ′ · ν on ∂BR . (18)

Here, the last boundary condition means that u′ can be uniquely extended to a weak radiating
solution of the Helmholtz equation in RN\D.

Proof. From Green’s representation theorem and the radiation condition we obtain

us = DLu+SL(ikλu− g(.,u)) in Ω.

Thus, the mapping properties of the potentials DL : H
1
2 (∂D)→ H2(Ω) and SL : H− 1

2 (∂D)→
H2(Ω) if ∂D is C2, see [24, p 210 ff.], leads to u ∈ H2(Ω). Therefore, the traces of h ·∇u can
be read in H

1
2 (∂D) and H− 1

2 (∂D), respectively.
We insert h ·∇u−w in (14), where ⟨Λ(h ·∇u),v⟩∂BR = 0 vanishes since h has compact

support in BR. The product rule leads to the relation

∇u ·
(
Jh+ J⊤h − div(h) I

)
∇v= div((h ·∇u)∇v+(h ·∇v)∇u− (∇u ·∇v)h)

− (h ·∇u)div(∇v)− (h ·∇v)div(∇u) ,

13
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and we get

ˆ
Ω

∇(h ·∇u) ·∇vdx=
ˆ
Ω

[
∇u ·

(
Jh+ J⊤h − div(h) I

)
∇v+(h ·∇v)div(∇u)

−div((h ·∇v)∇u− (∇u ·∇v)h)]dx.

For the material derivative w we use equation (15) and thus it holds

R̂(h ·∇u−w,v) =−
ˆ
Ω

k2div(h)uv+ k2 (h ·∇u)v− (h ·∇v)div(∇u)dx

−
ˆ
Ω

div((h ·∇v)∇u− (∇u ·∇v)h)dx+ I1 + I2

=−
ˆ
Ω

div
(
(h ·∇v)∇u− (∇u ·∇v)h+ k2uvh

)
dx+ I1 + I2

with

I1 =−ik
ˆ
∂D
λ(h ·∇u)vds− ik

ˆ
∂D

(
λ(Div(hτ )+ 2κhν)+∇λ⊤h

)
uvds,

I2 =
ˆ
∂D
gz (·,u;h ·∇u)vds+

ˆ
∂D

(Divx (g(·,u)hτ )+ 2κhνg(·,u))vds.

Using Gauss’ divergence theorem and the compactness of the support of h in BR we obtain

R̂(h ·∇u−w,v) =−
ˆ
∂Ω

ν ·
(
(h ·∇v)∇u− (∇u ·∇v)h+ k2uvh

)
ds+ I1 + I2

=

ˆ
∂D
ν ·

(
(h ·∇v)∇u− (∇u ·∇v)h+ k2uvh

)
ds+ I1 + I2

=

ˆ
∂D

[
(h ·∇v)(∇u · ν)− (∇u ·∇v)hν + k2uvhν

]
ds+ I1 + I2.

Applying the product rule to the surface divergence operator leads to

Div(λuvhτ ) = λDiv(hτ )uv+∇τ (λuv) · hτ = λDiv(hτ )uv+∇(λuv) · h−∇(λuv)ν hν

= λDiv(hτ )uv+∇λ⊤huv+λ(h ·∇u)v+λu(h ·∇v)

− ∂λ

∂ν
uvhν −λ

∂u
∂ν

vhν −λu(∇v · ν)hν ,

and

Div(g(·,u)hτv) = Divx (g(·,u)hτ )v+ gz (·,u;hτ ·∇u)v+ g(·,u)(hτ ·∇τv)

= Divx (g(·,u)hτ )v+ gz (·,u;hτ ·∇u)v+ g(·,u)(h ·∇v)− g(·,u)(∇v · ν)hν .

14
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Now we can insert these identities in R̂(h ·∇u−w,v) and get

R̂(h ·∇u−w,v) =
ˆ
∂D

[
(h ·∇v)(∇u · ν)− (∇u ·∇v)hν + k2uhνv

]
ds

− ik
ˆ
∂D

[
2λκhνuv+

∂λ

∂ν
hνuv+λ

∂u

∂ν
hνv−λu(h ·∇v)+λu(∇v · ν)hν

]
ds

+

ˆ
∂D

[
gz

(
·,u;

∂u

∂ν
hν

)
v+ 2κg(·,u)hνv− g(·,u)(h ·∇v)+ g(·,u)(∇v · ν)hν

]
ds

for all v ∈ H1(Ω). Using the boundary condition on ∂D finally leads to

−R̂(u ′,v) = R̂(h ·∇u−w,v)

=

ˆ
∂D

[(∇u · ν)(∇v · ν)− (∇u ·∇v)]hν + k2uvhν ds

− ik
ˆ
∂D

2λκhνuv+
∂λ

∂ν
uvhν +λ

∂u
∂ν

vhν ds

−
ˆ
∂D
gz

(
·,u; ∂u

∂ν
hν

)
v+ 2κg(·,u)hνvds

=−
ˆ
∂D
hν∇τu ·∇τv− k2uvhνds

− ik
ˆ
∂D

2λκhνuv+
∂λ

∂ν
uvhν +λ

∂u
∂ν

vhν ds

+

ˆ
∂D
gz

(
·,u; ∂u

∂ν
hν

)
v+ 2κg(·,u)hνvds .

Thus u′ can be extended in RN\D to the weak scattered solution of (16) and (17).

4. Shape reconstruction

The Sommerfeld radiation condition guarantees the asymptotic behavior of the scattered field

us (x) =
eik|x|

|x| N−1
2

(
u∞ (x̂)+O

(
1
|x|

))
for |x| →∞

uniformly in all directions, where the function u∞ defined on the unit sphere SN−1 is called the
far field pattern of us. Thus, the inverse problem under consideration consists in determining
the shape of D from measurements of the far field pattern u∞. We consider a fixed incident
field ui and define the domain-to-far-field operator F, which maps an admissible boundary onto
the far field pattern of the scattered wave. Then, the inverse problem can be read as solving the
nonlinear equation

F(∂D) = u∞. (19)

Since the far field pattern is analytic we expect this nonlinear operator equation to be severely
ill-posed.

Throughout the last two chapters, we consider the scattering problem only inR2 and specify
the set of admissible domains to be starlike with respect to the origin. A parametrization of the
boundary is given by

∂D=
{
z(t) = r(t)(cos(t) ,sin(t))⊤ ∈ R2 : t ∈ [0,2π]

}
15
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with positive, 2π-periodic radial function r ∈ C2(0,2π). For the sake of simplicity, we write
F(r) instead of F(∂D) without changing notation. From section 3, we know that F is dif-
ferentiable, with the derivative given by the far field pattern of the domain derivative, i.e.
F ′[∂D]h= u ′

∞.
We suggest an all-at-once Newton-type method based on linearization of the forward prob-

lem and of the domain-to-far-field operator in the sense of [15]. A linearization of the nonlinear
operator equation (19) leads to

F(r)+F ′ [r]h≈ uδ∞ (20)

with noise level δ, i.e. ∥u∞ − uδ∞∥L2 ⩽ δ. Since the evaluation of the operators F(r) and F ′[r]
require the far field u∞ and the Cauchy-data u|∂D, ∂u∂ν |∂D of the solution u of the nonlinear
scattering problem for the domain represented by r, we replace in any iteration step u by un =
ui+ usn and r by rn = rn−1 + hn−1. Choosing an initial guess ∂D0, we iteratively compute the
solution un of the scattering problem

∆un+ k2un = 0 in Ωn (21)

with boundary condition

∂un
∂ν

+ ikλun− gz (·,un−1;un) = g(·,un−1)− gz (·,un−1;un−1) (22)

on ∂Dn and usn = un− ui satisfying the radiation condition. Note that the boundary condition
is obtained by linearizing the nonlinear term g(·,un) in the sense of (11), i.e.

g(·,un)− g(·,un−1)≈ gz (·,un−1;un− un−1) .

The domain-to-far-field operator is then defined by Fn(rn) = un,∞ and the derivative of Fn is
given by F ′

n[rn]hn = u ′
n,∞, where u is replaced by un on the right hand side of the boundary

condition (17).
Since the ill-posed linear operator equation (20) requires a regularization, we apply as for

the regularized Levenberg–Marquardt method a Tikhonov regularization in any iteration step,
which finally leads to the update hn given as the solution of(

(F ′
n [rn])

∗
F ′
n [rn] +αI

)
hn = (F ′

n [rn])
∗ (
Fn (rn)− uδ∞

)
, (23)

where α> 0 denotes a positive regularization parameter, see [10].
For such an iterative regularization method a stopping rule is required because the approx-

imations will deteriorate for noisy data after a certain number of iterations. The most com-
monly used stopping rule is the discrepancy principle, where the iterations are terminated at
an index n for which

∥Fn (rn)− uδ∞∥⩽ τδ, τ > 1 (24)

is valid for the first time. If the operator F satisfies the tangent cone condition

∥F(r)−F(r̂)−F ′ [̂r] (r− r̂)∥⩽ c∥r− r̂∥∥F(r)−F(r̂)∥

locally in a neighborhood of the exact solution in suitable Hilbert spaces, then the
approach (23) with stopping condition (24) yields a regularization method (see [16]). So far it
has not been confirmed that the cone condition is fulfilled in case of inverse obstacle scattering
problems.

16
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It is known that boundary integral equations solved by Nyström’s method are suitable for
solving the scattering problem (21) and (22). Therefore we consider a single layer potential
ansatz for the scattered wave

usn (x) = SLφn (x) =
ˆ
∂D

Φ(x,y)φn (y)dsy for x ∈ Ω, (25)

with a density φn ∈ C(∂D) and the fundamental solution of the Helmholtz equation

Φ(x,y) =
i
4
H(1)

0 (k|x− y|) , x ̸= y,

in R2. Using the jump relations for the single-layer potential [6], the scattered wave
usn = un− ui defined by (25) is a radiating solution of the Helmholtz equation satisfying the
impedance boundary condition (22) on ∂Dn if and only if the density φn satisfies the integral
equation

−1
2
φn+K ′φn+ ikλSφn− gz (·,un−1;Sφn) = f (26)

with

f =−∂u
i

∂ν
− ikλui + g(·,un−1)+ gz

(
·,un−1;u

i
)
− gz (·,un−1;un−1) .

Here, S and K ′ denote the boundary integral operators corresponding to the single and the
adjoint double layer potential of the Helmholtz equation given by

Sφ(x) =
ˆ
∂D

Φ(x,y)φ(y)dsy, x ∈ ∂D,

K ′φ(x) =
ˆ
∂D

∂Φ(x,y)
∂νx

φ(y)dsy, x ∈ ∂D.

For ∂D ∈ C2 the operators S,K ′ : C(∂D)→ C(∂D) are compact, see [6]. For the implement-
ation of the linearized operator equation (23), we need the evaluation of F and F′ as well as its
adjoint operator F ′∗. To avoid computing the adjoint of the derivative, we have considered the
adjoint of the discretized operator F′ in our implementation. Overall, the shape reconstruction
algorithm for the scattering problem (21) and (22) is given as follows.

(i) First, an initial guess is made for the shape ∂D0 of the scattering obstacle. In order to solve
the direct problem we start with the incident wave u0 = ui.

(ii) By solving the integral equation (26) using the initial guess u0, the Cauchy data
un|∂Dn ,

∂un
∂ν

∣∣
∂Dn

for the approximate boundary curve ∂Dn can be determined. The far field
pattern Fn(rn) = un,∞ is computed from the density φn by

un,∞ (x̂) =
ei

π
4

√
8π k

ˆ
∂Dn

e−i kx̂·yφn (y)dsy, x̂ ∈ S1. (27)

(iii) The radial component of the starlike boundary and the variations are approximated by
trigonometric polynomials

r(t) =
m∑
j=0

rcj cos( jt)+ rsj sin( jt) , rcj ,r
s
j ∈ R,

h(t) =
m∑
j=0

hcj cos( jt)+ hsj sin( jt) , hcj ,h
s
j ∈ R.
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For each basis function h(t) = cos( jt) and h(t) = sin( jt) the domain derivative from the-
orem 3.4 is determined by solving the same integral equation (26) with

f =
d
ds

(
hν

d
ds
un

)
+ k2unhν − ikλ

(
2κunhν +

∂un
∂ν

hν

)
− ik

∂λ

∂ν
unhν + gz

(
·,un;

∂un
∂ν

hν

)
+ 2κg(·,un)hν .

(iv) Again with (27) the far field pattern of the domain derivatives F ′[rn]h= u ′
n,∞ is calculated

for all basic functions related to the current boundary curve. The collection of these far
field patterns leads to a Jacobian matrix J at the points chosen for the discretization. The
application of Tikhonov regularization yields

(J∗J+αI)h= J∗
(
Fn (rn)− uδ∞

)
where h denotes the vector of 2m+ 1 Fourier coefficients of h.

(v) The iteration is stopped at index n for which

∥Fn (rn)− uδ∞∥⩽ τδ, τ ∈ (1,2) ,

is valid for the first time.

To avoid an inverse crime, we compute synthetic data by a different integral equation
approach than in (25). We consider the direct approach based on the Green’s representation
theorem, which is given by

us (x) = DLu(x)−SL
∂u(x)
∂ν

=

ˆ
∂D

∂Φ(x,y)
∂νy

u(y)−Φ(x,y)
∂u(y)
∂νy

dsy for x ∈ Ω.

The jump relations of the single layer and double layer potential at the boundary ∂D and the
linearized boundary condition (22) lead to the integral equation

1
2
un−Kun−S (ikλun)+Sgz (·,un−1;un) = ui +S (gz (·,un−1;un−1)− g(·,un−1)) (28)

where

Kφ(x) =
ˆ
∂D

∂Φ(x,y)
∂νy

φ(y)dsy, x ∈ ∂D,

denotes the boundary integral operator corresponding to the double layer potential. Note that
for the direct approach, the far field pattern is given by

Fn (rn) = un,∞ (x̂) =− ei
π
4

√
8π k

ˆ
∂Dn

(
ik(νy · x̂)φn (y)+

∂φn (y)
∂ν

)
e−ikx̂·y dsy,

with x̂ ∈ S1.

5. Numerical results

For numerical examples, we choose an apple-shaped and a peanut-shaped obstacle as in [22].
The parameterizations are given by

z(t) =
0.5+ 0.4cos(t)+ 0.1sin(2t)

1+ 0.7cos(t)
(cos(t) ,sin(t)) , 0⩽ t⩽ 2π,

18
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Figure 1. First and 10th iteration in the case of noise-free data as well as the relative
discrete L2 errors.

and

z(t) =
√
cos2 (t)+ 0.25sin2 (t)(cos(t) ,sin(t)) , 0⩽ t⩽ 2π,

respectively. The impedance function λ is defined by

λ(z(t)) =
1

1− 0.2sin(2t)
for 0⩽ t⩽ 2π.

Numerically, we solve the integral equations (26) and (28) both by Nyström’s method, see
[6, chapter 3.5]. For the computation of the synthetic data we use 128 discretization points on
the boundary curve, while for the inverse scheme we evaluate 64 discretization points on the
boundary with equidistant angles. We consider the wave number k= 2 and choose trigonomet-
ric polynomials of degree m= 4 for the approximation of the boundary curve. Furthermore,
we use the plane wave ui(x) = eikx·d with direction d=

(
cos(π6 ),sin(

π
6 )
)
as an incident field.

First we consider the reconstruction from the synthetic data without noise using the regu-
larized Newton scheme, see figure 1. The angle of the incident plane wave is indicated by
an arrow, the original boundary curve by a dotted line and the initial guess, a circle with
radius r= 0.3, by the dashed line. One can observe that choosing the radius of the circle
between 0.1 and 1.1 gives similarly results, possibly with slightly more iteration steps. On
the right hand side of the figure the relative discrete L2 errors are plotted. The residual error
∥Fn(rn)− u∞∥/∥u∞∥ by the full line and the reconstruction error ∥rn− rexact∥/∥rexact∥ by the
dashed line. For this example we have chosen

g(x,u) = u+ sin(u)

as nonlinear function on the boundary. A nonlinearity of this form was already examined for
the Laplace problem in [27] by Wendland and Ruotsalainen. This function does not satisfy
condition (6), but g is Lipschitz continuous and the assumptions in (A) are guaranteed. In the
case of noise-free synthetic data, we observe a stable performance for the apple-shaped object,
as well as for other test objects. We have set the regularization parameter here to α= 0.05,
whereas a wide range of regularization parameters leads to comparable results. For a different
incident direction d of ui we obtain similar results, while adding more incident fields gives us
a small improvement in our reconstructions, as known from linear scattering problems.

Now we consider reconstructions of the peanut-shape obstacle from running 100 exper-
iments with 5% random noise added. The best and the worst result are shown in figure 2.
Comparable results are obtained using the apple-shaped object. In the case of noisy data the
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Figure 2. The best and the worst result after 12 iteration and 5% equally distributed
random noise.

Figure 3. The best and the worst result after 12 iteration and 5% equally distributed
random noise.

regularization parameter has to be increased. In the example considered, we fixed the regular-
ization parameter with α= 2, which turned out to be sufficient in all tests. The discrepancy
principle (24) with τ = 1.3 was used as stopping condition.

Very similar results are achieved when considering the Kerr-type nonlinearity
g(x,u) = |u|2u for a garlic-shaped obstacle in performing 100 experiments with 5% noise
added, see figure 3.

The parameterization of the boundary curve z(t) = 1− sin(t)cos2(t)(cos(t),sin(t)) for 0⩽
t⩽ 2π and the impedance function λ(z(t)) = 1.8+ cos3(t)+ sin3(t) refers here to the work
[31] by Yang andWang. As in the first example, the radius of the initial guess is r= 0.6 and we
set the regularization parameter toα= 1.8. Again as stopping condition we use the discrepancy
principle with τ = 1.3.

If we choose the nonlinearity g(x,u) = u/(1+ |u|2) from section 2, which satisfies the
necessary assumptions to ensure a well-posed direct problem, we obtain reconstructions indis-
tinguishable from figure 3 using the same parameterization of the boundary curve and the same
impedance function as for the Kerr nonlinearity.

Considering the linearized problems for g(x,u) = |u|2u and g(x,u) = u/(1+ |u|2), we must
note that the linearization gz is only real linear. To overcome this difficulty, we modified the
integral equations (26) and (28) by splitting it into its real and imaginary parts.

In conclusion, we can state that the performance of the presented all-at-once regularized
Newton method for acoustic scattering problems with nonlinear impedance boundary condi-
tion is satisfactory in all tested examples and comparable to the well-known linear cases.
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