PAPER • OPEN ACCESS

The domain derivative in inverse obstacle scattering with nonlinear impedance boundary condition

To cite this article: Leonie Fink and Frank Hettlich 2024 Inverse Problems 40015001

You may also like
Inverse obstacle scattering for Maxwell's equations in an unbounded structure Peijun Li, Jue Wang and Lei Zhang

Solving inverse electromagnetic scattering problems via domain derivatives Felix Hagemann, Tilo Arens, Timo Betcke et al.

Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition Fioralba Cakoni and Rainer Kress

View the article online for updates and enhancements.

The domain derivative in inverse obstacle scattering with nonlinear impedance boundary condition

Leonie Fink* ${ }^{\text {(}) ~ a n d ~ F r a n k ~ H e t t l i c h * ~}$
Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, Englerstr. 2, 76131 Karlsruhe, Germany
E-mail: leonie.fink@kit.edu and frank.hettlich@kit.edu

Received 19 June 2023; revised 23 October 2023
Accepted for publication 14 November 2023
Published 27 November 2023

Abstract

In this paper an inverse obstacle scattering problem for the Helmholtz equation with nonlinear impedance boundary condition is considered. For a certain class of nonlinearities, well-posedness of the direct scattering problem is proven. Furthermore, differentiability of solutions with respect to the boundary is shown by the variational method. A characterization of the derivative allows for iterative regularization schemes in solving the inverse problem, which consists in reconstructing the scattering obstacle from the far field pattern of a scattered wave. An all-at-once Newton-type regularization method is developed to illustrate the use of the domain derivative by some numerical examples.

Keywords: inverse obstacle problem, nonlinear impedance boundary condition, domain derivative, iterative regularization method

1. Introduction

Nonlinear phenomena in acoustic and electromagnetic obstacle scattering have gained importance in the last decade, for example in the case of thinly coated perfectly conducting objects filled with a nonlinear medium [28, 30]. Through an asymptotic analysis, nonlinear material

[^0]

Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
properties in thin layers lead to approximate nonlinear boundary conditions [26]. Effective boundary conditions for thin films filled with linear media have been derived and investigated in $[2,5,7,9]$. Scattering problems with such nonlinear boundary conditions have been studied in [25] for electromagnetic waves and in [3, 4] for the acoustic wave equation, based on a boundary element method in space and convolution quadrature in time.

In this work we focus on the reconstruction of an obstacle with material properties near the boundary approximated by an impedance boundary condition with an additional nonlinear term. Generally, in inverse obstacle scattering, we are interested in determining the shape of an obstacle by illuminating the object with plane incident time-harmonic waves and considering measurements of the far-field pattern of corresponding scattered waves. In case of linear scattering models such inverse problems are extensively studied (see [6]) but much less is known in case of nonlinear media. First approaches in recovering the support of nonlinear media can be found in [8,23] based on the factorization method and the monotonicity method. These require, at least theoretically, measurements of the far field pattern for all incident directions. But, for the following investigations we assume access to the far field pattern for a single or just a few incident fields.

We consider time-harmonic scattering modeled by the Helmholtz equation in the exterior of an object with a nonlinear impedance boundary condition. Thus, the model may cover acoustic scattering (in \mathbb{R}^{3}) as well as a specific polarization in electromagnetic scattering (in \mathbb{R}^{2}). For the scattering problem with classical Robin boundary condition, i.e. without a nonlinear term, it is observed that iterative regularization schemes based on the domain derivative of the scattering problem lead to feasible reconstruction algorithms (see [22] and references cited therein). Therefore, in extending this approach to nonlinear impedance boundary conditions our task is twofold. First, we have to establish a shape derivative of the scattered field with respect to the scattering obstacle, and second, we are going to develop an iterative regularization scheme in solving the severely ill-posed reconstruction problem.

In view of the variational method for showing existence of the domain derivative we begin with a weak scattering theory for the nonlinear boundary condition. Thus, in the second section we present quite general assumptions on the nonlinear term which ensure a well-posed direct problem. It is shown that Kacurovskii's extension of the Fredholm Theory to nonlinear compact operators can be applied to the scattering problem. Furthermore, we will prove uniqueness and stability of the nonlinear scattering problem by using Rellich's lemma.

With a well-posed scattering problem the existence of the so called material derivative is proven in the following section. The presented approach is closely related to the ideas established in [13] for semilinear boundary value problems. Similar to the case of linear boundary value problems such a derivative can be represented by its domain derivative (see [11, 14, 18]), which is shown to satisfy a corresponding linearized impedance boundary value problem for the Helmholtz equation assuming suitable regularity of the boundary.

The subsequent sections are devoted to the inverse problem. With the domain derivative at hand it becomes natural to consider iterative regularization schemes in solving the inverse problem. Since any iteration step requires solving a nonlinear boundary value problem we suggest an all-at-once method based on linearizing the scattering problem and applying a regularized Newton step for the reconstruction. In general, it is shown by Kaltenbacher [15] that such an approach leads to regularization schemes by assuming certain mapping properties of the nonlinear operator.

Although, a complete convergence proof is not known even for the inverse object reconstruction for linear scattering problems, we elaborate such an all-at-once approach in the fourth section. We introduce an integral equation method solving for the linearized scattering problems, and develop a Newton type regularization scheme for the reconstruction of a scattering
object from a far field pattern. Some examples in the last section illustrate the performance of the scheme. It turns out that the suggested method leads to reconstructions in case of nonlinear boundary conditions comparable to the known results with Robin boundary conditions.

2. The direct problem

Let D be a bounded domain in $\mathbb{R}^{N}(N=2,3)$ with a Lipschitz continuous boundary ∂D. An incident plane wave $u^{i}(x)=e^{i k d \cdot x}$ with propagation direction $d \in S^{N-1}$ and real positive wave number k is scattered by the object D, generating a scattered wave u^{s}. The scattering problem is to find the total wave $u=u^{i}+u^{s}$ which satisfies the Helmholtz equation

$$
\begin{equation*}
\Delta u+k^{2} u=0 \text { in } \mathbb{R}^{N} \backslash \bar{D} \tag{1}
\end{equation*}
$$

together with a nonlinear impedance boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}+i k \lambda u=g(\cdot, u) \text { on } \partial D \tag{2}
\end{equation*}
$$

where ν denotes the unit normal vector to ∂D oriented towards $\mathbb{R}^{N} \backslash \bar{D}, \lambda \in L^{\infty}(\partial D)$ is a complex-valued impedance function, and $g: \partial D \times \mathbb{C} \rightarrow \mathbb{C}$ gives an additional nonlinear term with respect to u. Furthermore, the scattered field u^{s} is assumed to satisfy the Sommerfeld radiation condition

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{\frac{N-1}{2}}\left(\frac{\partial u^{s}(x)}{\partial r}-i k u^{s}(x)\right)=0, \quad r=|x| \tag{3}
\end{equation*}
$$

uniformly with respect to $\hat{x}=\frac{x}{|x|}$.
In the given scattering problem the propagation region of the wave is unbounded. For a weak formulation we consider an equivalent representation of the problem on a bounded subdomain $\Omega:=B_{R} \backslash \bar{D}$, where the radius $R>0$ of the ball $B_{R} \subseteq \mathbb{R}^{N}$ is chosen large enough such that $\bar{D} \subseteq B_{R}$. We consider weak solutions in the Sobolev space $H^{1}(\Omega)$. To include the Sommerfeld radiation condition, we specify a nonlocal boundary condition on the boundary ∂B_{R}. Therefore, we introduce the Dirichlet-to-Neumann map

$$
\Lambda: H^{\frac{1}{2}}\left(\partial B_{R}\right) \rightarrow H^{-\frac{1}{2}}\left(\partial B_{R}\right), \quad \Lambda f=\frac{\partial w}{\partial \nu}
$$

where w is the radiating solution of the Helmholtz equation in $\mathbb{R}^{N} \backslash \overline{B_{R}}$ with Dirichlet trace $w=f$ on ∂B_{R} (see [6]). Since the scattered wave u^{s} is a solution of the Helmholtz equation satisfying the Sommerfeld radiation condition we obtain the boundary condition

$$
\frac{\partial u^{s}}{\partial \nu}=\Lambda u^{s} \quad \text { on } \partial B_{R}
$$

Thus, a weak formulation of the scattering problem is given by

$$
\begin{equation*}
\mathcal{R}(u, v)=(f, v)_{H^{1}} \text { for all } v \in H^{1}(\Omega) \tag{4}
\end{equation*}
$$

with

$$
\begin{aligned}
\mathcal{R}(u, v)= & \int_{\Omega} \nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v} \mathrm{~d} x-i k \int_{\partial D} \lambda u \bar{v} \mathrm{~d} s+\int_{\partial D} g(\cdot, u) \bar{v} \mathrm{~d} s \\
& -\int_{\partial B_{R}} \Lambda u \bar{v} \mathrm{~d} s
\end{aligned}
$$

and $f \in H^{1}(\Omega)$ is defined from the representation theorem by

$$
(f, v)_{H^{1}}=\int_{\partial B_{R}}\left(\frac{\partial u^{i}}{\partial \nu}-\Lambda u^{i}\right) \bar{v} \mathrm{~d} s .
$$

We assume throughout this work the function $g(x, z)$ to be measurable in x, continuous in z, and satisfying a Caratheodory condition

$$
\begin{equation*}
|g(x, z)| \leqslant|\psi(x)|+c|z|^{p}, \quad \text { a.e. } x \in \partial D, z \in \mathbb{C} \tag{5}
\end{equation*}
$$

with $c>0, \psi \in L^{2}(\partial D)$ and $1 \leqslant p<\infty$ in case of $N=2$, and $1 \leqslant p \leqslant 2$ in case of $N=3$. Then, with $u \in H^{1}(\Omega)$ we have for the Nemytskii operator defined by $G(u)(x)=g(x, u(x))$ that $G(u) \in L^{2}(\partial D)$ with $\|G(u)\|_{L^{2}(\partial D)} \leqslant c\left(\|\psi\|_{L^{2}(\partial D}+\|u\|_{H^{1}(\Omega)}^{p}\right)$ for some constant $c>0$, see [1, theorem 5.36] and [29, theorem 3.2]. Further conditions on g will be specified below.

It is well known for the linear scattering problem, i.e. $g=0$, that there exists a unique solution $u \in H^{1}(\Omega)$ of (4) for any $f \in H^{1}(\Omega)$, if the impedance function satisfies $\operatorname{Re}(\lambda) \geqslant 0$ (see $[11,19])$. Thus, throughout we assume $\operatorname{Re}(\lambda) \geqslant 0$ on ∂D.

To ensure also a well-posed direct boundary value problem in case of the nonlinear impedance condition, the function $g: \partial D \times \mathbb{C} \rightarrow \mathbb{C}$ has to fulfil some additional assumptions. The following theorem, based on an extension of the Fredholm theory, gives a sufficient condition for existence of weak solutions of the scattering problem.

Theorem 2.1. Let the nonlinearity g be sublinear in z at infinity, i.e.

$$
\begin{equation*}
|g(x, z)|=o(|z|) \text { as }|z| \rightarrow \infty \text { for a.e. } x \in \partial D . \tag{6}
\end{equation*}
$$

Then, for any $f \in H^{1}(\Omega)$ there exists a weak solution $u \in H^{1}(\Omega)$ of the boundary value problem (4).

Proof. The variational formulation is equivalent to the operator equation

$$
R_{l} u+R_{n}(u)=f \text { in } H^{1}(\Omega),
$$

where the operators $R_{l}, R_{n}: H^{1}(\Omega) \rightarrow H^{1}(\Omega)$ are defined by

$$
\begin{aligned}
\left(R_{l} u, v\right)_{H^{1}} & =\int_{\Omega} \nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v} \mathrm{~d} x-i k \int_{\partial D} \lambda u \bar{v} \mathrm{~d} s-\int_{\partial B_{R}} \Lambda u \bar{v} \mathrm{~d} s, \\
\left(R_{n}(u), v\right)_{H^{1}} & =\int_{\partial D} g(\cdot, u) \bar{v} \mathrm{~d} s .
\end{aligned}
$$

The linear scattering problem is given by the operator R_{l}. Thus, as mentioned above, it is an injective Fredholm operator with index zero and has a bounded inverse. From

$$
\|\left(R_{n}(w)-R_{n}(u)\left\|_{H^{1}(\Omega)} \leqslant\right\| G(w)-G(u) \|_{L^{2}(\partial D)}\right.
$$

we see, the operator R_{n} is continuous, since by the sublinear assumption the Nemytskii operator G is continuous as a mapping from $L^{2}(\partial D)$ into $L^{2}(\partial D)$ (see [29]). Furthermore, the trace operator from $H^{1}(\Omega)$ into $L^{2}(\partial D)$ is compact and we observe $R_{n}: H^{1}(\Omega) \rightarrow H^{1}(\Omega)$ to be continuous and compact.

Using the assumption on g we obtain

$$
\begin{aligned}
\left|\left(R_{n}(u), v\right)\right| & =\left|\int_{\partial D} g(\cdot, u) \bar{v} \mathrm{~d} s\right| \\
& \leqslant\|g(\cdot, u(\cdot))\|_{L^{2}(\partial D)}\|v\|_{L^{2}(\partial D)}=o\left(\|u\|_{L^{2}(\partial D)}\right)\|v\|_{L^{2}(\partial D)}
\end{aligned}
$$

Thus, R_{n} is sublinear, i.e. $\left\|R_{n}(u)\right\| /\|u\| \rightarrow 0$, if $\|u\| \rightarrow \infty$. Therefore, the theorem of Kacurovskii, an extension of the Fredholm alternative, see [32, theorem 29.A], can be applied and shows existence of a solution to (4) for any $f \in H^{1}(\Omega)$.

Let g be differentiable in its second argument, in the sense of existence of $g_{z}(., z ; w) \in$ $L^{\infty}(\partial D)$ such that

$$
g(x, z+w)-g(x, z)=g_{z}(x, z ; w)+o(|w|)
$$

for all $z, w \in \mathbb{C}$, a.e. $x \in \partial D$ and g_{z} to be \mathbb{R}-linear w.r.t. w, then a lower bound on $\operatorname{Re}(\lambda)$ leads to a well-posed direct scattering problem.

Corollary 2.2. Let $g: \partial D \times \mathbb{C} \rightarrow \mathbb{C}$ be a sublinear function as in theorem 2.1 , differentiable in its second argument as described above, and let

$$
k \operatorname{Re}(\lambda) \geqslant \sup _{z, w \in \mathbb{C}} \frac{\operatorname{Im}\left(g_{z}(x, z ; w) \bar{w}\right)}{|w|^{2}} \text { for any } z, w \in \mathbb{C} \text { and a.e. } x \in \partial D .
$$

Then, the problem (4) has a unique solution $u \in H^{1}(\Omega)$ and it exists a constant $c>0$ with

$$
\begin{equation*}
\|u\|_{H^{1}(\Omega)} \leqslant c\|f\|_{H^{1}(\Omega)} \text { for any } f \in H^{1}(\Omega) \tag{7}
\end{equation*}
$$

Proof. Rellich's lemma ensures that a radiating solution of the Helmholtz equation vanishes if

$$
\int_{\partial D} \operatorname{Im}\left(\bar{u} \frac{\partial u}{\partial \nu}\right) \mathrm{d} s \leqslant 0
$$

see [6]. Let u_{1} and u_{2} be two solutions of (4). We obtain the inequality for the scattered solution $u=u_{1}-u_{2}$ of the Helmholtz equation,

$$
\left.\int_{\partial D} \operatorname{Im}\left(\bar{u} \frac{\partial u}{\partial \nu}\right) \mathrm{d} s=-k \int_{\partial D} \operatorname{Re}(\lambda)|u|^{2} \mathrm{~d} s+\operatorname{Im} \int_{\partial D}\left(g\left(\cdot, u_{1}\right)-g\left(\cdot, u_{2}\right)\right) \bar{u}\right) \mathrm{d} s \leqslant 0
$$

from

$$
\operatorname{Im}((g(x, z+w)-g(x, z)) \bar{w})=\operatorname{Im} \int_{0}^{1} g_{z}(x, z+t w ; w) \bar{w} \mathrm{~d} t \leqslant k \operatorname{Re}(\lambda)|w|^{2}
$$

This implies uniqueness of the solution $u \in H^{1}(\Omega)$ of problem (4). The uniform bound by a constant $c>0$ follows analogously as it is known from the Riesz-Fredholm theory for an injective linear Fredholm operator.

Remark. (a) As an example we may consider

$$
g(\cdot, z)=\frac{z}{1+|z|^{2}}
$$

in case of $k \operatorname{Re}(\lambda)>\frac{1}{2}$ on ∂D. Obviously, the function is sublinear in z, and with

$$
\operatorname{Im}\left(g_{z}(\cdot, z ; w) \bar{w}\right)=-\frac{2 \operatorname{Re}(z \bar{w}) \operatorname{Im}(z \bar{w})}{\left(1+|z|^{2}\right)^{2}}
$$

and $\frac{|z|}{1+|z|^{2}} \leqslant \frac{1}{2}$ for all $z \in \mathbb{C}$ we observe the assumption of corollary 2.2.
(b) Note, the restriction of a sublinear function g is quite natural, since in the general wellposed case g can be replaced by a sublinear one without changing the solution. This is seen as follows: let us assume that the boundary value problem (4) is well-posed, f is defined from an incident field u^{i} as above, and $u=u^{s}+u^{i}$ denotes the solution of the scattering problem. From Green's representation theorem in $\mathbb{R}^{n} \backslash \bar{D}$ for u^{s} and in D for u^{i}, and the boundary condition we obtain

$$
\begin{aligned}
\frac{1}{2}\left(u^{s}-u^{i}\right) & =\int_{\partial D} u \frac{\partial \Phi}{\partial \nu}+(i k \lambda u-g(., u)) \Phi \mathrm{d} s \\
& =\mathcal{D} u+\mathcal{S}(i k u-g(., u))
\end{aligned}
$$

on ∂D, where Φ is the fundamental solution of the Helmholtz equation and \mathcal{D}, \mathcal{S} denote the boundary integral operators corresponding to the double and the single layer potential of the Helmholtz equation, see [20]. Let $D \subseteq \mathbb{R}^{2}$ with $\partial D \in C^{2, \alpha}, \alpha \in(0,1)$ we have \mathcal{D}, \mathcal{S} : $L^{2}(\partial D) \rightarrow H^{1}(\partial D) \subseteq C(\partial D)$, see [17]. Thus, the above representation holds pointwise and the Caratheodory condition implies

$$
\begin{aligned}
\|u\|_{C(\partial D)} & \leqslant C\left(\left\|u^{i}\right\|_{C(\partial D)}+\|u\|_{H^{1}(\Omega)}+\|\psi\|_{L^{2}(\partial D)}+\|u\|_{H^{1}(\Omega)}^{p}\right) \\
& \leqslant c\left(\left\|u^{i}\right\|_{C(\partial D)}+\|f\|_{H^{1}(\Omega)}+\|\psi\|_{L^{2}(\partial D)}+\|f\|_{H^{1}(\Omega)}^{p}\right) \\
& \leqslant b_{0}
\end{aligned}
$$

for some $b_{0} \in \mathbb{R}$. Analogously, this is true in case of $D \subseteq \mathbb{R}^{3}$, if $\partial D \in C^{3, \alpha}$ and $g(., u) \in$ $H^{1}(\partial D)$ for $u \in H^{1}(\partial D)$, since first we conclude $u \in H^{1}(\partial D)$ and then we can apply the Sobolev embedding $H^{2}(\partial D) \subseteq C(\partial D)$ from $\mathcal{D}, \mathcal{S}: H^{1}(\partial D) \rightarrow H^{2}(\partial D)$.
Now consider g_{b} defined by $g_{b}(x, z)=\varphi_{b}(|z|) g(x, z)$ with $\varphi_{b} \in C^{\infty}(\mathbb{R})$ given by $\varphi_{b}(r) \in$ $[0,1]$ for $r \in \mathbb{R}$ and

$$
\varphi_{b}(r)= \begin{cases}1, & \text { for }|z| \leqslant b \\ 0, & \text { for }|z|>b+1\end{cases}
$$

We observe g_{b} to be sublinear in its second argument and u solves the problem (4) for all $b>b_{0}$, if g is replaced by g_{b}. Thus, if g_{b} satisfies the conditions of corollary 2.2 and u_{b} denotes the corresponding unique solution, we conclude $u=u_{b}$ for all $b>b_{0}$ by uniqueness.

3. The domain derivative

In view of iterative regularization schemes for the inverse obstacle scattering problem, it is necessary to study differentiability of the domain to far field operator. Therefore, we investigate the derivative of a solution of the scattering problem with respect to the domain D. In this chapter we assume that D is of class C^{1}. A variation of a domain $D \subseteq B_{R}=\left\{x \in \mathbb{R}^{3}:|x|<R\right\}$ is described by a sufficiently small vector field $h \in C_{c}^{1}\left(B_{R}\right)$. We denote a perturbed domain by

$$
D_{h}=\left\{x+h(x) \in \mathbb{R}^{n}: x \in D\right\}
$$

and $\Omega_{h}=B_{R} \backslash \overline{D_{h}}$. The corresponding scattering problem is given by

$$
\begin{equation*}
\mathcal{R}_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{H^{1}} \tag{8}
\end{equation*}
$$

for all $v_{h} \in H^{1}\left(\Omega_{h}\right)$ with

$$
\begin{aligned}
\mathcal{R}_{h}\left(u_{h}, v_{h}\right)= & \int_{\Omega_{h}} \nabla u_{h} \cdot \nabla \overline{v_{h}}-k^{2} u_{h} \overline{v_{h}} \mathrm{~d} x-i k \int_{\partial D_{h}} \lambda u_{h} \overline{v_{h}} \mathrm{~d} s \\
& +\int_{\partial D_{h}} g\left(\cdot, u_{h}\right) \overline{v_{h}} \mathrm{~d} s-\int_{\partial B_{R}} \Lambda u_{h} \overline{v_{h}} \mathrm{~d} s, \\
\left(f, v_{h}\right)_{H^{1}}= & \int_{\partial B_{R}}\left(\frac{\partial u^{i}}{\partial \nu}-\Lambda u^{i}\right) \overline{v_{h}} \mathrm{~d} s .
\end{aligned}
$$

Throughout, we consider λ and g on ∂D and on perturbed boundaries ∂D_{h} to be traces of functions $\lambda: \mathbb{R}^{N} \rightarrow \mathbb{C}$ and $g: \mathbb{R}^{N} \times \mathbb{C} \rightarrow \mathbb{C}$ and assume $u \in H^{1}(\Omega), u_{h} \in H^{1}\left(\Omega_{h}\right)$ to be the unique solutions of (4) and (8), respectively. For instance, corollary 2.2 gives sufficient conditions on the scattering problems to be well-posed.

A transformation of variables with $\varphi(x)=x+h(x)$ leads to

$$
\begin{align*}
\widetilde{\mathcal{R}}_{h}\left(\widetilde{u}_{h}, v\right)= & \int_{\Omega}\left[\nabla \widetilde{u}_{h} \cdot J_{\varphi}^{-1} J_{\varphi}^{-\top} \nabla \bar{v}-k^{2} \widetilde{u}_{h} \bar{v}\right] \operatorname{det}\left(J_{\varphi}\right) \mathrm{d} x \\
& -i k \int_{\partial D} \widetilde{\lambda}_{\vec{u}} \widetilde{v} \overline{\operatorname{Det}}(\varphi) \mathrm{d} s-\int_{\partial B_{R}} \Lambda \widetilde{u}_{h} \bar{v} \mathrm{~d} s \\
& +\int_{\partial D} g\left(\varphi(\cdot), \widetilde{u}_{h}\right) \bar{v} \operatorname{Det}(\varphi) \mathrm{d} s \\
= & \int_{\partial B_{R}}\left(\frac{\partial u^{i}}{\partial \nu}-\Lambda u^{i}\right) \bar{v} \mathrm{~d} s=(f, v)_{H^{1}} \tag{9}
\end{align*}
$$

for all $v \in H^{1}(\Omega)$. Here, we denote by J_{φ} the Jacobian matrix of the transformation φ and $\widetilde{u}_{h}(x)=\left(u_{h} \circ \varphi\right)(x)$. Furthermore, the Jacobian with respect to the surface ∂D is given by

$$
\operatorname{Det}(\varphi)=\sqrt{\operatorname{det}\left(J_{\widehat{\phi}}^{\top} J_{\widehat{\phi}}\right)} / \sqrt{\operatorname{det}\left(J_{\phi}^{\top} J_{\phi}\right)},
$$

for local parametrizations ϕ and $\widehat{\phi}=\phi+h \circ \phi$ of ∂D and ∂D_{h}, respectively. Additionally, note that for any perturbation h we have the same f in (9) as in (4) given by the incident field on ∂B_{R}.

For the tangential and the normal component of a vector on the boundary ∂D we introduce the notations

$$
h_{\tau}=\nu \times(h \times \nu) \quad \text { and } \quad h_{\nu}=h \cdot \nu
$$

and thus $h=h_{\tau}+h_{\nu} \nu$ holds on ∂D. Furthermore, we introduce the tangential gradient, given by $\nabla_{\tau} v=\nabla v-\frac{\partial v}{\partial \nu} \nu$, and the tangential divergence, $\operatorname{Div} V=\operatorname{div} V-\nu^{\top} J_{V} \nu$, for smooth functions v or V in a neighborhood of ∂D, which both can be extended to linear bounded operators

$$
\nabla_{\tau}, \text { Div }: H^{\frac{1}{2}}(\partial D) \rightarrow H^{-\frac{1}{2}}(\partial D)
$$

Elementary calculations show the following linearizations of the Jacobians.

Lemma 3.1. Let $D \subseteq \mathbb{R}^{N}(N=2,3)$ be a bounded domain, $\lambda \in C^{1}\left(\mathbb{R}^{N}, \mathbb{C}\right)$ and κ be the mean curvature of ∂D. Then

$$
\begin{array}{ll}
\left\|\operatorname{det}\left(J_{\varphi}\right)-1-\operatorname{div}(h)\right\|_{\infty} & =o\left(\|h\|_{C^{1}}\right), \\
\left\|J_{\varphi}^{-1} J_{\varphi}^{-\top} \operatorname{det}\left(J_{\varphi}\right)-I+J_{h}+J_{h}^{\top}-\operatorname{div}(h) I\right\|_{\infty} & =o\left(\|h\|_{C^{1}}\right), \\
\left\|\tilde{\lambda} \operatorname{Det}(\varphi)-\lambda\left(1+\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu}\right)-\nabla \lambda^{\top} h\right\|_{\infty} & =o\left(\|h\|_{C^{1}}\right) .
\end{array}
$$

Proof. See [12].
Therefore, from now on we assume $\lambda \in C^{1}\left(\mathbb{R}^{N}, \mathbb{C}\right)$. As in [13], we also have to specify assumptions on the nonlinear function g which ensure existence of the domain derivative. We collect sufficient conditions which will be applied in the following considerations.

Assumption (A). A continuous function $g: \mathbb{R}^{N} \times \mathbb{C} \rightarrow \mathbb{C}$ satisfies assumption (A), if
(i) g is continuously differentiable in $x \in \mathbb{R}^{N}$, where g satisfies the Caratheodory condition (5) on ∂D and on perturbed boundaries ∂D_{h} as well, and similarly its partial derivatives g_{x} satisfy such a growth condition, i.e.

$$
\begin{equation*}
\left|g_{x}(x, z)\right| \leqslant\left|\psi_{1}(x)\right|+c_{1}|z|^{p_{1}} \tag{10}
\end{equation*}
$$

for a.e. $x \in \partial D$ and all $z \in \mathbb{C}$.
(ii) the derivatives $g_{z}, g_{x z}$ exist in the sense as above, i.e., $g_{z}(., z ; w), g_{x z}(., z ; w) \in L^{\infty}\left(\partial D_{h}\right)$ for any admissible variation h, are \mathbb{R}-linear functions with respect to $w \in \mathbb{C}$ with

$$
\begin{align*}
g(x, z+w)-g(x, z) & =g_{z}(x, z ; w)+o(|w|), \\
g_{x}(x, z+w)-g_{x}(x, z) & =g_{x z}(x, z ; w)+o(|w|) \tag{11}
\end{align*}
$$

for all $z, w \in \mathbb{C}$ and a.e. $x \in \partial D_{h}$. Additionally, these derivatives also satisfy growth conditions

$$
\left|g_{z}(x, z ; w)\right|,\left|g_{x z}(x, z ; w)\right| \leqslant\left(\psi(x)+c|z|^{p}\right)|w|
$$

with corresponding functions $\psi \in L^{2}(\partial D), c>0$ and $1 \leqslant p<\infty$ in case of $N=2$, and $1 \leqslant p \leqslant 2$ in case of $N=3$.

With lemma 3.1 and assumption (A), we conclude continuous dependence on variations of the domain D.

Theorem 3.1. Let g satisfies (A), and let $u \in H^{1}(\Omega)$ and $u_{h} \in H^{1}\left(\Omega_{h}\right)$ be the weak solutions of well-posed scattering problems (4) and (8), respectively. Furthermore, let $\left|g_{z}(x, z ; w)\right| \leqslant \eta|w|$ with a sufficiently small constant $\eta>0$ locally for a.e. $x \in U$ and for all $z \in V$ in open sets $\partial D \subseteq U \subseteq \mathbb{R}^{3}$ and $\{u(x): x \in \partial D\} \subseteq V \subseteq \mathbb{C}$. Then, the solution of the boundary value problem depends continuously on the domain D, i.e.

$$
\begin{equation*}
\lim _{\|h\|_{C^{1}} \rightarrow 0}\left\|\widetilde{u}_{h}-u\right\|_{H^{1}}=0 \tag{12}
\end{equation*}
$$

where the notation $\widetilde{u}_{h}=u_{h} \circ \varphi$ with $\varphi=I+h$ is used.

Proof. According to well-posed scattering problems, the operators

$$
\begin{aligned}
& T: H^{1}(\Omega) \rightarrow H^{1}(\Omega),(T(w), v)_{H^{1}(\Omega)}=\mathcal{R}(w, v) \\
& T_{h}: H^{1}(\Omega) \rightarrow H^{1}(\Omega),\left(T_{h}(w), v\right)_{H^{1}(\Omega)}=\widetilde{\mathcal{R}}_{h}(w, v)
\end{aligned}
$$

exist. If we consider the difference between these two operators, we obtain

$$
\begin{aligned}
\left\|T(w)-T_{h}(w)\right\|_{H^{1}}^{2}= & \left|\mathcal{R}\left(w, T(w)-T_{h}(w)\right)-\widetilde{\mathcal{R}}_{h}\left(w, T(w)-T_{h}(w)\right)\right| \\
= & \mid \int_{\Omega}\left(\nabla w \cdot\left[I-J_{\varphi}^{-1} J_{\varphi}^{-\top} \operatorname{det}\left(J_{\varphi}\right)\right] \nabla \overline{\left(T(w)-T_{h}(w)\right)}\right. \\
& \left.-k^{2}\left(1-\operatorname{det}\left(J_{\varphi}\right)\right) w \overline{\left(T(w)-T_{h}(w)\right)}\right) \mathrm{d} x \\
& -i k \int_{\partial D}(\lambda-\widetilde{\lambda} \operatorname{Det}(\varphi)) w \overline{\left(T(w)-T_{h}(w)\right)} \mathrm{d} s \\
& +\int_{\partial D}(g(\cdot, w)-g(\varphi(\cdot), w) \operatorname{Det}(\varphi)) \overline{\left(T(w)-T_{h}(w)\right)} \mathrm{d} s \mid
\end{aligned}
$$

With the growth conditions (5) and (10), respectively, the expression in the last integral can be estimated by

$$
\begin{aligned}
&\|g(\varphi(\cdot), w) \operatorname{Det}(\varphi)-g(\cdot, w)\|_{L^{2}} \\
& \leqslant\|g(\varphi(\cdot), w)-g(\cdot, w)\|_{L^{2}}+\left\|g(\varphi(\cdot), w)\left(\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu}\right)\right\|_{L^{2}}+\mathcal{O}\left(\|h\|_{C^{1}}\right) \\
& \quad \leqslant c\left\|g_{x}(\cdot, w)\right\|_{L^{2}}\|h\|_{C^{1}}+\| g(\varphi(\cdot), w)\left(\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu} \|_{L^{2}}+\mathcal{O}\left(\|h\|_{C^{1}}\right)\right. \\
& \quad \leqslant c\left(\left\|\psi_{1}\right\|_{L^{2}}+\|\psi\|_{L^{2}}+\|w\|_{H^{1}}^{p}+\|w\|_{H^{1}}^{p_{1}}\right) \mathcal{O}\left(\|h\|_{C^{1}}\right)
\end{aligned}
$$

for a constant $c>0$. Thus, for $w \in H^{1}(\Omega)$ according to lemma 3.1 we get for some constant $C>0$

$$
\left\|T(w)-T_{h}(w)\right\|_{H^{1}} \leqslant C\left(\|w\|_{H^{1}}+\|w\|_{H^{1}}^{p}+\|w\|_{H^{1}}^{p_{1}}+\left\|\psi_{1}\right\|_{L^{2}}+\|\psi\|_{L^{2}}\right)\|h\|_{C^{1}}
$$

Furthermore, for solutions of $T(u)=f$ and $T_{h}\left(\widetilde{u}_{h}\right)=f$ we obtain the identity

$$
\begin{array}{ll}
& T_{h}\left(\widetilde{u}_{h}\right)-T_{h}(u)=T(u)-T_{h}(u) \\
\Leftrightarrow & T_{h, l}\left(\widetilde{u}_{h}-u\right)+\left(T_{h, n}\left(\widetilde{u}_{h}\right)-T_{h, n}(u)\right)=T(u)-T_{h}(u) \\
\Leftrightarrow & \widetilde{u}_{h}-u+T_{h, l}^{-1}\left(T_{h, n}\left(\widetilde{u}_{h}\right)-T_{h, n}(u)\right)=T_{h, l}^{-1}\left(T(u)-T_{h}(u)\right)
\end{array}
$$

where

$$
\left(T_{l}(w), v\right)=\int_{\Omega} \nabla w \cdot \nabla \bar{v}-k^{2} w \bar{v} \mathrm{~d} x-i k \int_{\partial D} \lambda w \bar{v} \mathrm{~d} s-\int_{\partial B_{R}} \Lambda w \bar{v} \mathrm{~d} s
$$

denotes the linear part and

$$
\left(T_{n}(w), v\right)=\int_{\partial D} g(\cdot, w) \bar{v} \mathrm{~d} s
$$

the nonlinear part of the operator T. Analogous operator splitting holds for T_{h}.

As mentioned in section 2 we know that the operator T_{l} has a bounded inverse T_{l}^{-1}. If $\|h\|_{C^{1}}$ is sufficiently small, then $\left\|T_{l}^{-1}\left(T_{h, l}-T_{l}\right)\right\| \leqslant \frac{1}{2}$. Using Neumann's series, we obtain the existence of the inverse operator $T_{h, l}^{-1}$ and the inequality

$$
\left\|T_{h, l}^{-1}\right\| \leqslant \frac{\left\|T_{l}^{-1}\right\|}{1-\left\|T_{l}^{-1}\left(T_{h, l}-T_{l}\right)\right\|} \leqslant 2 \widetilde{C}
$$

for a constant $\widetilde{C}>0$, see [21, theorem 10.1]. With these considerations, the error estimates

$$
\begin{aligned}
\| \widetilde{u}_{h}- & u+T_{h, l}^{-1}\left(T_{h, n}\left(\widetilde{u}_{h}\right)-T_{h, n}(u)\right) \|_{H^{1}} \\
& =\left\|T_{h, l}^{-1}\left(T(u)-T_{h}(u)\right)\right\|_{H^{1}} \leqslant\left\|T_{h, l}^{-1}\right\|\left\|T(u)-T_{h}(u)\right\|_{H^{1}} \\
& \leqslant 2 \widetilde{C} C\left(\|u\|_{H^{1}}+\|u\|_{H^{1}}^{p}+\|u\|_{H^{1}}^{p_{1}}+\left\|\psi_{1}\right\|_{L^{2}}+\|\psi\|_{L^{2}}\right)\|h\| \\
& \leqslant 2 \widetilde{C} C\left(\|f\|_{H^{1}}+\|f\|_{H^{1}}^{p}+\|f\|_{H^{1}}^{p_{1}}+\left\|\psi_{1}\right\|_{L^{2}}+\|\psi\|_{L^{2}}\right)\|h\|
\end{aligned}
$$

and

$$
\begin{aligned}
\| \widetilde{u}_{h}- & u+T_{h, l}^{-1}\left(T_{h, n}\left(\widetilde{u}_{h}\right)-T_{h, n}(u)\right) \|_{H^{1}} \\
\geqslant & \left\|\widetilde{u}_{h}-u\right\|_{H^{1}}-\left\|T_{h, l}^{-1}\left(T_{h, n}\left(\widetilde{u}_{h}\right)-T_{h, n}(u)\right)\right\|_{H^{1}} \\
\geqslant & \left\|\widetilde{u}_{h}-u\right\|_{H^{1}}-2 \widetilde{C}\left\|\left(g\left(\varphi(\cdot), \widetilde{u}_{h}\right)-g(\varphi(\cdot), u)\right) \operatorname{Det}(\varphi)\right\|_{L^{2}} \\
\geqslant & \left\|\widetilde{u}_{h}-u\right\|_{H^{1}}-2 \widetilde{C}\left\|g\left(\varphi(\cdot), \widetilde{u}_{h}\right)-g(\varphi(\cdot), u)\right\|_{L^{2}} \\
& \quad-2 \widetilde{C}\left\|g\left(\varphi(\cdot), \widetilde{u}_{h}\right)-g(\varphi(\cdot), u)\right\|_{L^{2}} \mathcal{O}(\|h\|)
\end{aligned}
$$

are valid. Furthermore,

$$
\begin{aligned}
& \left\|g\left(\varphi(x), \widetilde{u}_{h}(x)\right)-g(\varphi(x), u(x))\right\|_{L^{2}}^{2} \\
& \quad=\int_{\partial D}\left|\int_{0}^{1} g_{z}\left(\varphi(x), u(x)+t\left(\widetilde{u}_{h}(x)-u(x)\right) ; \widetilde{u}_{h}(x)-u(x)\right) \mathrm{d} t\right|^{2} \mathrm{~d} s \\
& \quad \leqslant \int_{0}^{1} \int_{\partial D}\left|g_{z}\left(\varphi(x), u(x)+t\left(\widetilde{u}_{h}(x)-u(x)\right) ; \widetilde{u}_{h}(x)-u(x)\right)\right|^{2} \mathrm{~d} s \mathrm{~d} t .
\end{aligned}
$$

Overall, with the assumption on g_{z} we obtain

$$
(1-2 \eta \widetilde{C})\left\|\widetilde{u}_{h}-u\right\|_{H^{1}}=\mathcal{O}(\|h\|) .
$$

Thus, the solution of the boundary value problem depends continuously on the domain D if $2 \eta \widetilde{C}<1$ is satisfied.

Note from the presented proof that assumptions on the second derivatives of g are not required for the above continuity result.

In the following we also have to consider the \mathbb{R}-linear boundary value problem with g replaced by g_{z}. Thus, we introduce the problem

$$
\begin{equation*}
\widehat{R}(u, v)=(f, v)_{H^{1}} \quad \text { for all } v \in H^{1}(\Omega) \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
\widehat{R}(q, v)=\int_{\Omega} \nabla q \cdot \nabla \bar{v}-k^{2} q \bar{v} \mathrm{~d} x-i k \int_{\partial D} \lambda q \bar{v} \mathrm{~d} s+\int_{\partial D} g_{z}(\cdot, u ; q) \bar{v} \mathrm{~d} s-\int_{\partial B_{R}} \Lambda q \bar{v} \mathrm{~d} s . \tag{14}
\end{equation*}
$$

With the above considerations we now can formulate the main result on existence of a derivative of the solution of the scattering problem with respect to the shape of D.

Theorem 3.3. We assume the boundary value problems (4) and (13) are well-posed and the solution u of (4) is continuous with respect to the domain D in the sense of (12). With g satisfying assumption (A) the solution u is differentiable with respect to variations $h \in C_{c}^{1}\left(B_{R}\right)$ of the domain, i.e. it exists $w \in H^{1}(\Omega)$, linearly depending on h with

$$
\lim _{\|h\|_{C^{1} \rightarrow 0}} \frac{1}{\|h\|_{C^{1}}}\left\|\widetilde{u}_{h}-u-w\right\|_{H^{1}}=0 .
$$

The material derivative w is given by the unique weak solution of the \mathbb{R}-linear boundary value problem

$$
\begin{align*}
\widehat{R}(w, v)= & \int_{\Omega}\left[\nabla u \cdot\left(J_{h}+J_{h}^{\top}-\operatorname{div}(h) I\right) \nabla \bar{v}+k^{2} \operatorname{div}(h) u \bar{v}\right] \mathrm{d} x \\
& +i k \int_{\partial D}\left[\lambda\left(\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu}\right)+\nabla \lambda^{\top} h\right] u \bar{v} \mathrm{~d} s \\
& -\int_{\partial D}\left(\operatorname{Div}_{x}\left(g(\cdot, u) h_{\tau}\right)+2 \kappa h_{\nu} g(\cdot, u)\right) \bar{v} \mathrm{~d} s \tag{15}
\end{align*}
$$

for all $v \in H^{1}(\Omega)$.
Proof. Since the problem (13) is well posed, $w \in H^{1}(\Omega)$ exists and according to a support of h close to the boundary ∂D the function w can be extended to a radiating solution of the Helmholtz equation in the exterior of B_{R}.

Inserting the difference $\widetilde{u}_{h}-u-w$ and the identity (9) in (14) yields

$$
\begin{aligned}
\widehat{R}\left(\widetilde{u}_{h}-u-w, v\right)= & \int_{\Omega} \nabla\left(\widetilde{u}_{h}-u-w\right) \cdot \nabla \bar{v}-k^{2}\left(\widetilde{u}_{h}-u-w\right) \bar{v} \mathrm{~d} x-i k \int_{\partial D} \lambda\left(\widetilde{u}_{h}-u-w\right) \bar{v} \mathrm{~d} s \\
& +\int_{\partial D} g_{z}\left(\cdot, u ; \widetilde{u}_{h}-u-w\right) \bar{v} \mathrm{~d} s-\int_{\partial B_{R}} \Lambda\left(\widetilde{u}_{h}-u-w\right) \bar{v} \mathrm{~d} s \\
= & \int_{\Omega} \nabla \widetilde{u}_{h} \cdot\left(I-J_{\varphi}^{-1} J_{\varphi}^{-\top} \operatorname{det}\left(J_{\varphi}\right)\right) \nabla \bar{v}-k^{2}\left(1-\operatorname{det}\left(J_{\varphi}\right)\right) \widetilde{u}_{h} \bar{v} \mathrm{~d} x \\
& -\int_{\Omega} \nabla w \cdot \nabla \bar{v}-k^{2} w \bar{v} \mathrm{~d} x-i k \int_{\partial D}(\lambda-\widetilde{\lambda} \operatorname{Det}(\varphi)) \widetilde{u}_{h} \bar{v} \mathrm{~d} s+i k \int_{\partial D} \lambda w \bar{v} \mathrm{~d} s \\
& +\int_{\partial D}\left[g(\cdot, u)-g\left(\varphi(\cdot), \widetilde{u}_{h}\right) \operatorname{Det}(\varphi)+g_{z}\left(\cdot, u ; \widetilde{u}_{h}-u\right)\right] \bar{v} \mathrm{~d} s \\
& -\int_{\partial D} g_{z}(\cdot, u ; w) \bar{v} \mathrm{~d} s+\int_{\partial B_{R}} \Lambda w \bar{v} \mathrm{~d} s .
\end{aligned}
$$

We insert equation (15) and obtain

$$
\begin{aligned}
\widehat{R}\left(\widetilde{u}_{h}-u-w, v\right)= & \int_{\Omega}\left(\nabla \widetilde{u}_{h}-\nabla u\right) \cdot\left(I-J_{\varphi}^{-1} J_{\varphi}^{-\top} \operatorname{det}\left(J_{\varphi}\right)\right) \nabla \bar{v}-k^{2}\left(1-\operatorname{det}\left(J_{\varphi}\right)\right)\left(\widetilde{u}_{h}-u\right) \bar{v} \mathrm{~d} x \\
& +\int_{\Omega}\left[\nabla u \cdot\left(I-J_{\varphi}^{-1} J_{\varphi}^{-\top} \operatorname{det}\left(J_{\varphi}\right)-J_{h}-J_{h}^{\top}+\operatorname{div}(h) I\right) \nabla \bar{v}\right. \\
& \left.-k^{2}\left(1-\operatorname{det}\left(J_{\varphi}\right)+\operatorname{div}(h)\right) u \bar{v}\right] \mathrm{d} x \\
& -i k \int_{\partial D}(\lambda-\widetilde{\lambda} \operatorname{Det}(\varphi))\left(\widetilde{u}_{h}-u\right) \bar{v} \mathrm{~d} s \\
& -i k \int_{\partial D}\left(\lambda\left(1+\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu}\right)+\nabla \lambda^{\top} h-\widetilde{\lambda} \operatorname{Det}(\varphi)\right) u \bar{v} \mathrm{~d} s \\
& +\int_{\partial D}\left[g(\cdot, u)-g\left(\varphi(\cdot), \widetilde{u}_{h}\right) \operatorname{Det}(\varphi)+g_{z}\left(\cdot, u ; \widetilde{u}_{h}-u\right)+\operatorname{Div}_{x}\left(g(\cdot, u) h_{\tau}\right)\right. \\
& \left.+2 \kappa h_{\nu} g(\cdot, u)\right] \bar{v} \mathrm{~d} s .
\end{aligned}
$$

Here and in the following considerations, terms on the boundary ∂D have to be read in the duality sense of $H^{-\frac{1}{2}}$ and $H^{\frac{1}{2}}$. By lemma 3.1 and the continuity (12) all integrals except the last are of order $o\left(\|h\|_{C^{1}}\right)$. To verify an estimate for the last integrand, we sort it to

$$
\begin{aligned}
\mid g(\varphi(.) & \left., \widetilde{u}_{h}\right) \operatorname{Det}(\varphi)-g(., u)-g_{z}\left(x, u ; \widetilde{u}_{h}-u\right)-\operatorname{Div}_{x}\left(g(., u) h_{\tau}\right)-2 \kappa h_{\nu} g(., u) \mid \\
= & \mid g\left(\varphi(.), \widetilde{u}_{h}\right) \operatorname{Det}(\varphi)-g(., u)-g_{z}\left(., u ; \widetilde{u}_{h}-u\right)-\operatorname{Div}_{x}\left(g(., u) h_{\tau}\right)-2 \kappa h_{\nu} g(., u) \\
& -\left(g\left(\varphi(.), \widetilde{u}_{h}\right)-g\left(\varphi(.), \widetilde{u}_{h}\right)\right)\left(1+\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu}\right) \mid \\
\leqslant & \left|g\left(\varphi(.), \widetilde{u}_{h}\right)\right|\left|\operatorname{Det}(\varphi)-1-\operatorname{Div}\left(h_{\tau}\right)-2 \kappa h_{\nu}\right| \\
& +\mid g\left(\varphi(.), \widetilde{u}_{h}\right)-g(., u)-g_{z}\left(., u ; \widetilde{u}_{h}-u\right)+g\left(\varphi(.), \widetilde{u}_{h}\right) \operatorname{Div}\left(h_{\tau}\right) \\
& -\operatorname{Div}_{x}\left(g(., u) h_{\tau}\right)+2 \kappa h_{\nu} g\left(\varphi(.), \widetilde{u}_{h}\right)-2 \kappa h_{\nu} g(., u) \mid .
\end{aligned}
$$

In the first line we can apply (5) and lemma 3.1. By adding and subtracting further terms it follows

$$
\begin{aligned}
\mid g(\varphi(.), & \left.\widetilde{u}_{h}\right) \operatorname{Det}(\varphi)-g(., u)-g_{z}\left(., u ; \widetilde{u}_{h}-u\right)-\operatorname{Div}_{x}\left(g(., u) h_{\tau}\right)-2 \kappa h_{\nu} g(., u) \mid \\
\leqslant & \left(\left|\psi_{0}(\varphi(.))\right|+c_{0}|\widetilde{u}|^{p}\right) o\left(\|h\|_{C^{1}}\right) \\
& +\mid g\left(\varphi(.), \widetilde{u}_{h}\right)-g(., u)-g_{z}\left(., u ; \widetilde{u}_{h}-u\right)+g\left(\varphi(.), \widetilde{u}_{h}\right) \operatorname{Div}\left(h_{\tau}\right) \\
& -\operatorname{Div}_{x}\left(g(., u) h_{\tau}\right)+2 \kappa h_{\nu} g\left(\varphi(.), \widetilde{u}_{h}\right)-2 \kappa h_{\nu} g(., u) \\
& -\left(g\left(., \widetilde{u}_{h}\right)-g\left(., \widetilde{u}_{h}\right)\right)\left(1+\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu}\right)-\left(g_{x}\left(., \widetilde{u}_{h}\right)-g_{x}(., \widetilde{u})\right) h_{\tau} \mid \\
\leqslant & \left(\left|\psi_{0}(\varphi(.))\right|+c_{0}\left|\widetilde{u}_{h}\right|^{p}\right) o\left(\|h\|_{C^{1}}\right)+\left|g\left(\varphi(.), \widetilde{u}_{h}\right)-g\left(., \widetilde{u}_{h}\right)-g_{x}\left(., \widetilde{u}_{h}\right) h_{\tau}\right| \\
& +\left|g\left(., \widetilde{u}_{h}\right)-g(., u)-g_{z}\left(., u ; \widetilde{u}_{h}-u\right)\right|+\left|\left(g\left(\varphi(.), \widetilde{u}_{h}\right)-g\left(., \widetilde{u}_{h}\right)\right) \operatorname{Div}\left(h_{\tau}\right)\right| \\
& \left.+\left|\left(g\left(., \widetilde{u}_{h}\right)-g(., u)\right) \operatorname{Div}\left(h_{\tau}\right)\right|+\mid\left(g_{x}\left(., \widetilde{u}_{h}\right)-g_{x}(., u)\right)\right) h_{\tau} \mid \\
& +\left|\left(g\left(\varphi(.), \widetilde{u}_{h}\right)-g\left(., \widetilde{u}_{h}\right)\right) 2 \kappa h_{\nu}\right|+\left|\left(g\left(., \widetilde{u}_{h}\right)-g(., u)\right) 2 \kappa h_{\nu}\right| .
\end{aligned}
$$

Using the growth conditions from (A), continuity of the Nemytskii operator, and the continuity of solutions w.r.t. h we obtain

$$
\begin{aligned}
& \left\|g\left(\varphi(\cdot), \widetilde{u}_{h}\right) \operatorname{Det}(\varphi)-g(\cdot, u)-g_{z}\left(\cdot, u ; \widetilde{u}_{h}-u\right)-\operatorname{Div}_{x}\left(g(\cdot, u) h_{\tau}\right)-2 \kappa h_{\nu} g(\cdot, u)\right\|_{L^{2}} \\
& \quad \leqslant\left(\|\psi\|_{L^{2}}+c\|f\|_{L^{2}}\right) o\left(\|h\|_{C^{1}}\right) .
\end{aligned}
$$

Finally, the Riesz representation theorem implies that $\widetilde{u}_{h}-u-w \in H^{1}(\Omega)$ is the unique solution of

$$
\widehat{\mathcal{R}}\left(\widetilde{u}_{h}-u-w, v\right)=\left(f_{h}, v\right)_{H^{1}}
$$

for all $v \in H^{1}(\Omega)$ with a functional given by $f_{h} \in H^{1}(\Omega)$ satisfying $\left\|f_{h}\right\|_{H^{1}}=o\left(\|h\|_{C^{1}}\right)$. By the assumed well-posedness of (13) we conclude

$$
\frac{1}{\|h\|_{C^{1}}}\left\|\widetilde{u}_{h}-u-w\right\|_{H^{1}} \leqslant \frac{c\left\|f_{h}\right\|_{H^{1}}}{\|h\|_{C^{1}}} \rightarrow 0 \text { for }\|h\|_{C^{1}} \rightarrow 0 .
$$

As known from shape derivatives for linear boundary value problems the material derivative can be read in the sense of the chain rule, which leads to the notation of the so called domain derivative of u.

Theorem 3.4. The material derivative of the previous theorem is of the form $w=u^{\prime}+\nabla u \cdot h$, where u denotes the solution of (4) and the domain derivative $u^{\prime} \in H^{1}(\Omega)$ is the unique weak solution of the \mathbb{R}-linear boundary value problem

$$
\begin{equation*}
\Delta u^{\prime}+k^{2} u^{\prime}=0 \text { in } \Omega \tag{16}
\end{equation*}
$$

with

$$
\begin{align*}
\frac{\partial u^{\prime}}{\partial \nu}+i k \lambda u^{\prime}+g_{z}\left(\cdot, u ; u^{\prime}\right)= & \operatorname{Div}\left(h_{\nu} \nabla_{\tau} u\right)+k^{2} u h_{\nu}-i k \lambda\left(2 \kappa u h_{\nu}+\frac{\partial u}{\partial \nu} h_{\nu}\right) \\
& -i k \frac{\partial \lambda}{\partial \nu} u h_{\nu}+g_{z}\left(\cdot, u ; \frac{\partial u}{\partial \nu} h_{\nu}\right)+2 \kappa g(\cdot, u) h_{\nu} \quad \text { on } \partial D \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\Lambda u^{\prime}=\nabla u^{\prime} \cdot \nu \quad \text { on } \partial B_{R} . \tag{18}
\end{equation*}
$$

Here, the last boundary condition means that u^{\prime} can be uniquely extended to a weak radiating solution of the Helmholtz equation in $\mathbb{R}^{N} \backslash \bar{D}$.

Proof. From Green's representation theorem and the radiation condition we obtain

$$
u^{s}=\mathrm{DL} u+\operatorname{SL}(i k \lambda u-g(., u)) \quad \text { in } \Omega .
$$

Thus, the mapping properties of the potentials DL: $H^{\frac{1}{2}}(\partial D) \rightarrow H^{2}(\Omega)$ and SL: $H^{-\frac{1}{2}}(\partial D) \rightarrow$ $H^{2}(\Omega)$ if ∂D is C^{2}, see [24, p 210 ff .], leads to $u \in H^{2}(\Omega)$. Therefore, the traces of $h \cdot \nabla u$ can be read in $H^{\frac{1}{2}}(\partial D)$ and $H^{-\frac{1}{2}}(\partial D)$, respectively.

We insert $h \cdot \nabla u-w$ in (14), where $\langle\Lambda(h \cdot \nabla u), v\rangle_{\partial B_{R}}=0$ vanishes since h has compact support in B_{R}. The product rule leads to the relation

$$
\begin{aligned}
\nabla u \cdot\left(J_{h}+J_{h}^{\top}-\operatorname{div}(h) I\right) \nabla v= & \operatorname{div}((h \cdot \nabla u) \nabla v+(h \cdot \nabla v) \nabla u-(\nabla u \cdot \nabla v) h) \\
& -(h \cdot \nabla u) \operatorname{div}(\nabla v)-(h \cdot \nabla v) \operatorname{div}(\nabla u),
\end{aligned}
$$

and we get

$$
\begin{aligned}
\int_{\Omega} \nabla(h \cdot \nabla u) \cdot \nabla \bar{v} \mathrm{~d} x= & \int_{\Omega}\left[\nabla u \cdot\left(J_{h}+J_{h}^{\top}-\operatorname{div}(h) I\right) \nabla \bar{v}+(h \cdot \nabla \bar{v}) \operatorname{div}(\nabla u)\right. \\
& -\operatorname{div}((h \cdot \nabla \bar{v}) \nabla u-(\nabla u \cdot \nabla \bar{v}) h)] \mathrm{d} x .
\end{aligned}
$$

For the material derivative w we use equation (15) and thus it holds

$$
\begin{aligned}
\widehat{\mathcal{R}}(h \cdot \nabla u-w, v)= & -\int_{\Omega} k^{2} \operatorname{div}(h) u \bar{v}+k^{2}(h \cdot \nabla u) \bar{v}-(h \cdot \nabla \bar{v}) \operatorname{div}(\nabla u) \mathrm{d} x \\
& -\int_{\Omega} \operatorname{div}((h \cdot \nabla \bar{v}) \nabla u-(\nabla u \cdot \nabla \bar{v}) h) \mathrm{d} x+\mathcal{I}_{1}+\mathcal{I}_{2} \\
= & -\int_{\Omega} \operatorname{div}\left((h \cdot \nabla \bar{v}) \nabla u-(\nabla u \cdot \nabla \bar{v}) h+k^{2} u \bar{v} h\right) \mathrm{d} x+\mathcal{I}_{1}+\mathcal{I}_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathcal{I}_{1}=-i k \int_{\partial D} \lambda(h \cdot \nabla u) \bar{v} \mathrm{~d} s-i k \int_{\partial D}\left(\lambda\left(\operatorname{Div}\left(h_{\tau}\right)+2 \kappa h_{\nu}\right)+\nabla \lambda^{\top} h\right) u \bar{v} \mathrm{~d} s, \\
& \mathcal{I}_{2}=\int_{\partial D} g_{z}(\cdot, u ; h \cdot \nabla u) \bar{v} \mathrm{~d} s+\int_{\partial D}\left(\operatorname{Div}_{x}\left(g(\cdot, u) h_{\tau}\right)+2 \kappa h_{\nu} g(\cdot, u)\right) \bar{v} \mathrm{~d} s .
\end{aligned}
$$

Using Gauss' divergence theorem and the compactness of the support of h in B_{R} we obtain

$$
\begin{aligned}
\widehat{\mathcal{R}}(h \cdot \nabla u-w, v) & =-\int_{\partial \Omega} \nu \cdot\left((h \cdot \nabla \bar{v}) \nabla u-(\nabla u \cdot \nabla \bar{v}) h+k^{2} u \bar{v} h\right) \mathrm{d} s+\mathcal{I}_{1}+\mathcal{I}_{2} \\
& =\int_{\partial D} \nu \cdot\left((h \cdot \nabla \bar{v}) \nabla u-(\nabla u \cdot \nabla \bar{v}) h+k^{2} u \bar{v} h\right) \mathrm{d} s+\mathcal{I}_{1}+\mathcal{I}_{2} \\
& =\int_{\partial D}\left[(h \cdot \nabla \bar{v})(\nabla u \cdot \nu)-(\nabla u \cdot \nabla \bar{v}) h_{\nu}+k^{2} u \bar{v} h_{\nu}\right] \mathrm{d} s+\mathcal{I}_{1}+\mathcal{I}_{2} .
\end{aligned}
$$

Applying the product rule to the surface divergence operator leads to

$$
\begin{aligned}
\operatorname{Div}\left(\lambda u v h_{\tau}\right)= & \lambda \operatorname{Div}\left(h_{\tau}\right) u v+\nabla_{\tau}(\lambda u v) \cdot h_{\tau}=\lambda \operatorname{Div}\left(h_{\tau}\right) u v+\nabla(\lambda u v) \cdot h-\nabla(\lambda u v)_{\nu} h_{\nu} \\
= & \lambda \operatorname{Div}\left(h_{\tau}\right) u v+\nabla \lambda^{\top} h u v+\lambda(h \cdot \nabla u) v+\lambda u(h \cdot \nabla v) \\
& \quad-\frac{\partial \lambda}{\partial \nu} u v h_{\nu}-\lambda \frac{\partial u}{\partial \nu} v h_{\nu}-\lambda u(\nabla v \cdot \nu) h_{\nu},
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Div}\left(g(\cdot, u) h_{\tau} v\right) & =\operatorname{Div}_{x}\left(g(\cdot, u) h_{\tau}\right) v+g_{z}\left(\cdot, u ; h_{\tau} \cdot \nabla u\right) v+g(\cdot, u)\left(h_{\tau} \cdot \nabla_{\tau} v\right) \\
& =\operatorname{Div}_{x}\left(g(\cdot, u) h_{\tau}\right) v+g_{z}\left(\cdot, u ; h_{\tau} \cdot \nabla u\right) v+g(\cdot, u)(h \cdot \nabla v)-g(\cdot, u)(\nabla v \cdot \nu) h_{\nu}
\end{aligned}
$$

Now we can insert these identities in $\widehat{\mathcal{R}}(h \cdot \nabla u-w, v)$ and get

$$
\begin{aligned}
\widehat{\mathcal{R}}(h \cdot \nabla u-w, v)= & \int_{\partial D}\left[(h \cdot \nabla \bar{v})(\nabla u \cdot \nu)-(\nabla u \cdot \nabla \bar{v}) h_{\nu}+k^{2} u h_{\nu} \bar{v}\right] \mathrm{d} s \\
& -i k \int_{\partial D}\left[2 \lambda \kappa h_{\nu} u \bar{v}+\frac{\partial \lambda}{\partial \nu} h_{\nu} u \bar{v}+\lambda \frac{\partial u}{\partial \nu} h_{\nu} \bar{v}-\lambda u(h \cdot \nabla \bar{v})+\lambda u(\nabla \bar{v} \cdot \nu) h_{\nu}\right] \mathrm{d} s \\
& +\int_{\partial D}\left[g_{z}\left(\cdot, u ; \frac{\partial u}{\partial \nu} h_{\nu}\right) \bar{v}+2 \kappa g(\cdot, u) h_{\nu} \bar{v}-g(\cdot, u)(h \cdot \nabla \bar{v})+g(\cdot, u)(\nabla \bar{v} \cdot \nu) h_{\nu}\right] \mathrm{d} s
\end{aligned}
$$

for all $v \in H^{1}(\Omega)$. Using the boundary condition on ∂D finally leads to

$$
\begin{aligned}
-\widehat{\mathcal{R}}\left(u^{\prime}, v\right)= & \widehat{\mathcal{R}}(h \cdot \nabla u-w, v) \\
= & \int_{\partial D}[(\nabla u \cdot \nu)(\nabla \bar{v} \cdot \nu)-(\nabla u \cdot \nabla \bar{v})] h_{\nu}+k^{2} u \bar{v} h_{\nu} \mathrm{d} s \\
& -i k \int_{\partial D} 2 \lambda \kappa h_{\nu} u \bar{v}+\frac{\partial \lambda}{\partial \nu} u \bar{v} h_{\nu}+\lambda \frac{\partial u}{\partial \nu} \bar{v} h_{\nu} \mathrm{d} s \\
& -\int_{\partial D} g_{z}\left(\cdot, u ; \frac{\partial u}{\partial \nu} h_{\nu}\right) \bar{v}+2 \kappa g(\cdot, u) h_{\nu} \bar{v} \mathrm{~d} s \\
= & -\int_{\partial D} h_{\nu} \nabla_{\tau} u \cdot \nabla_{\tau} \bar{v}-k^{2} u \bar{v} h_{\nu} d s \\
& -i k \int_{\partial D} 2 \lambda \kappa h_{\nu} u \bar{v}+\frac{\partial \lambda}{\partial \nu} u \bar{v} h_{\nu}+\lambda \frac{\partial u}{\partial \nu} \bar{v} h_{\nu} \mathrm{d} s \\
& +\int_{\partial D} g_{z}\left(\cdot, u ; \frac{\partial u}{\partial \nu} h_{\nu}\right) \bar{v}+2 \kappa g(\cdot, u) h_{\nu} \bar{v} \mathrm{~d} s .
\end{aligned}
$$

Thus u^{\prime} can be extended in $\mathbb{R}^{N} \backslash \bar{D}$ to the weak scattered solution of (16) and (17).

4. Shape reconstruction

The Sommerfeld radiation condition guarantees the asymptotic behavior of the scattered field

$$
u^{s}(x)=\frac{e^{i k|x|}}{|x|^{\frac{N-1}{2}}}\left(u_{\infty}(\hat{x})+\mathcal{O}\left(\frac{1}{|x|}\right)\right) \text { for }|x| \rightarrow \infty
$$

uniformly in all directions, where the function u_{∞} defined on the unit sphere S^{N-1} is called the far field pattern of u^{s}. Thus, the inverse problem under consideration consists in determining the shape of D from measurements of the far field pattern u_{∞}. We consider a fixed incident field u^{i} and define the domain-to-far-field operator F, which maps an admissible boundary onto the far field pattern of the scattered wave. Then, the inverse problem can be read as solving the nonlinear equation

$$
\begin{equation*}
F(\partial D)=u_{\infty} \tag{19}
\end{equation*}
$$

Since the far field pattern is analytic we expect this nonlinear operator equation to be severely ill-posed.

Throughout the last two chapters, we consider the scattering problem only in \mathbb{R}^{2} and specify the set of admissible domains to be starlike with respect to the origin. A parametrization of the boundary is given by

$$
\partial D=\left\{z(t)=r(t)(\cos (t), \sin (t))^{\top} \in \mathbb{R}^{2}: t \in[0,2 \pi]\right\}
$$

with positive, 2π-periodic radial function $r \in C^{2}(0,2 \pi)$. For the sake of simplicity, we write $F(r)$ instead of $F(\partial D)$ without changing notation. From section 3, we know that F is differentiable, with the derivative given by the far field pattern of the domain derivative, i.e. $F^{\prime}[\partial D] h=u_{\infty}^{\prime}$.

We suggest an all-at-once Newton-type method based on linearization of the forward problem and of the domain-to-far-field operator in the sense of [15]. A linearization of the nonlinear operator equation (19) leads to

$$
\begin{equation*}
F(r)+F^{\prime}[r] h \approx u_{\infty}^{\delta} \tag{20}
\end{equation*}
$$

with noise level δ, i.e. $\left\|u_{\infty}-u_{\infty}^{\delta}\right\|_{L^{2}} \leqslant \delta$. Since the evaluation of the operators $F(r)$ and $F^{\prime}[r]$ require the far field u_{∞} and the Cauchy-data $\left.u\right|_{\partial D},\left.\frac{\partial u}{\partial \nu}\right|_{\partial D}$ of the solution u of the nonlinear scattering problem for the domain represented by r, we replace in any iteration step u by $u_{n}=$ $u^{i}+u_{n}^{s}$ and r by $r_{n}=r_{n-1}+h_{n-1}$. Choosing an initial guess ∂D_{0}, we iteratively compute the solution u_{n} of the scattering problem

$$
\begin{equation*}
\Delta u_{n}+k^{2} u_{n}=0 \quad \text { in } \Omega_{n} \tag{21}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\frac{\partial u_{n}}{\partial \nu}+i k \lambda u_{n}-g_{z}\left(\cdot, u_{n-1} ; u_{n}\right)=g\left(\cdot, u_{n-1}\right)-g_{z}\left(\cdot, u_{n-1} ; u_{n-1}\right) \tag{22}
\end{equation*}
$$

on ∂D_{n} and $u_{n}^{s}=u_{n}-u^{i}$ satisfying the radiation condition. Note that the boundary condition is obtained by linearizing the nonlinear term $g\left(\cdot, u_{n}\right)$ in the sense of (11), i.e.

$$
g\left(\cdot, u_{n}\right)-g\left(\cdot, u_{n-1}\right) \approx g_{z}\left(\cdot, u_{n-1} ; u_{n}-u_{n-1}\right)
$$

The domain-to-far-field operator is then defined by $F_{n}\left(r_{n}\right)=u_{n, \infty}$ and the derivative of F_{n} is given by $F_{n}^{\prime}\left[r_{n}\right] h_{n}=u_{n, \infty}^{\prime}$, where u is replaced by u_{n} on the right hand side of the boundary condition (17).

Since the ill-posed linear operator equation (20) requires a regularization, we apply as for the regularized Levenberg-Marquardt method a Tikhonov regularization in any iteration step, which finally leads to the update h_{n} given as the solution of

$$
\begin{equation*}
\left(\left(F_{n}^{\prime}\left[r_{n}\right]\right)^{*} F_{n}^{\prime}\left[r_{n}\right]+\alpha I\right) h_{n}=\left(F_{n}^{\prime}\left[r_{n}\right]\right)^{*}\left(F_{n}\left(r_{n}\right)-u_{\infty}^{\delta}\right), \tag{23}
\end{equation*}
$$

where $\alpha>0$ denotes a positive regularization parameter, see [10].
For such an iterative regularization method a stopping rule is required because the approximations will deteriorate for noisy data after a certain number of iterations. The most commonly used stopping rule is the discrepancy principle, where the iterations are terminated at an index n for which

$$
\begin{equation*}
\left\|F_{n}\left(r_{n}\right)-u_{\infty}^{\delta}\right\| \leqslant \tau \delta, \tau>1 \tag{24}
\end{equation*}
$$

is valid for the first time. If the operator F satisfies the tangent cone condition

$$
\left\|F(r)-F(\hat{r})-F^{\prime}[\hat{r}](r-\hat{r})\right\| \leqslant c\|r-\hat{r}\|\|F(r)-F(\hat{r})\|
$$

locally in a neighborhood of the exact solution in suitable Hilbert spaces, then the approach (23) with stopping condition (24) yields a regularization method (see [16]). So far it has not been confirmed that the cone condition is fulfilled in case of inverse obstacle scattering problems.

It is known that boundary integral equations solved by Nyström's method are suitable for solving the scattering problem (21) and (22). Therefore we consider a single layer potential ansatz for the scattered wave

$$
\begin{equation*}
u_{n}^{s}(x)=\operatorname{SL} \varphi_{n}(x)=\int_{\partial D} \Phi(x, y) \varphi_{n}(y) \mathrm{d} s_{y} \text { for } x \in \Omega \tag{25}
\end{equation*}
$$

with a density $\varphi_{n} \in C(\partial D)$ and the fundamental solution of the Helmholtz equation

$$
\Phi(x, y)=\frac{i}{4} H_{0}^{(1)}(k|x-y|), \quad x \neq y
$$

in \mathbb{R}^{2}. Using the jump relations for the single-layer potential [6], the scattered wave $u_{n}^{s}=u_{n}-u^{i}$ defined by (25) is a radiating solution of the Helmholtz equation satisfying the impedance boundary condition (22) on ∂D_{n} if and only if the density φ_{n} satisfies the integral equation

$$
\begin{equation*}
-\frac{1}{2} \varphi_{n}+\mathcal{K}^{\prime} \varphi_{n}+i k \lambda \mathcal{S} \varphi_{n}-g_{z}\left(\cdot, u_{n-1} ; \mathcal{S} \varphi_{n}\right)=f \tag{26}
\end{equation*}
$$

with

$$
f=-\frac{\partial u^{i}}{\partial \nu}-i k \lambda u^{i}+g\left(\cdot, u_{n-1}\right)+g_{z}\left(\cdot, u_{n-1} ; u^{i}\right)-g_{z}\left(\cdot, u_{n-1} ; u_{n-1}\right) .
$$

Here, \mathcal{S} and \mathcal{K}^{\prime} denote the boundary integral operators corresponding to the single and the adjoint double layer potential of the Helmholtz equation given by

$$
\begin{aligned}
\mathcal{S} \varphi(x) & =\int_{\partial D} \Phi(x, y) \varphi(y) \mathrm{d} s_{y}, \\
\mathcal{K}^{\prime} \varphi(x) & =\int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu_{x}} \varphi(y) \mathrm{d} s_{y},
\end{aligned} \quad x \in \partial D .
$$

For $\partial D \in C^{2}$ the operators $\mathcal{S}, \mathcal{K}^{\prime}: C(\partial D) \rightarrow C(\partial D)$ are compact, see [6]. For the implementation of the linearized operator equation (23), we need the evaluation of F and F^{\prime} as well as its adjoint operator $F^{* *}$. To avoid computing the adjoint of the derivative, we have considered the adjoint of the discretized operator F^{\prime} in our implementation. Overall, the shape reconstruction algorithm for the scattering problem (21) and (22) is given as follows.
(i) First, an initial guess is made for the shape ∂D_{0} of the scattering obstacle. In order to solve the direct problem we start with the incident wave $u_{0}=u^{i}$.
(ii) By solving the integral equation (26) using the initial guess u_{0}, the Cauchy data $\left.u_{n}\right|_{\partial D_{n}},\left.\frac{\partial u_{n}}{\partial \nu}\right|_{\partial D_{n}}$ for the approximate boundary curve ∂D_{n} can be determined. The far field pattern $F_{n}\left(r_{n}\right)=u_{n, \infty}$ is computed from the density φ_{n} by

$$
\begin{equation*}
u_{n, \infty}(\hat{x})=\frac{e^{i \frac{\pi}{4}}}{\sqrt{8 \pi k}} \int_{\partial D_{n}} e^{-i k \hat{x} \cdot y} \varphi_{n}(y) \mathrm{d} s_{y}, \quad \hat{x} \in \mathbb{S}^{1} . \tag{27}
\end{equation*}
$$

(iii) The radial component of the starlike boundary and the variations are approximated by trigonometric polynomials

$$
\begin{array}{ll}
r(t)=\sum_{j=0}^{m} r_{j}^{c} \cos (j t)+r_{j}^{s} \sin (j t), & r_{j}^{c}, r_{j}^{s} \in \mathbb{R}, \\
h(t)=\sum_{j=0}^{m} h_{j}^{c} \cos (j t)+h_{j}^{s} \sin (j t), \quad h_{j}^{c}, h_{j}^{s} \in \mathbb{R} .
\end{array}
$$

For each basis function $h(t)=\cos (j t)$ and $h(t)=\sin (j t)$ the domain derivative from theorem 3.4 is determined by solving the same integral equation (26) with

$$
\begin{aligned}
f= & \frac{\mathrm{d}}{\mathrm{~d} s}\left(h_{\nu} \frac{\mathrm{d}}{\mathrm{~d} s} u_{n}\right)+k^{2} u_{n} h_{\nu}-i k \lambda\left(2 \kappa u_{n} h_{\nu}+\frac{\partial u_{n}}{\partial \nu} h_{\nu}\right) \\
& -i k \frac{\partial \lambda}{\partial \nu} u_{n} h_{\nu}+g_{z}\left(\cdot, u_{n} ; \frac{\partial u_{n}}{\partial \nu} h_{\nu}\right)+2 \kappa g\left(\cdot, u_{n}\right) h_{\nu} .
\end{aligned}
$$

(iv) Again with (27) the far field pattern of the domain derivatives $F^{\prime}\left[r_{n}\right] h=u_{n, \infty}^{\prime}$ is calculated for all basic functions related to the current boundary curve. The collection of these far field patterns leads to a Jacobian matrix J at the points chosen for the discretization. The application of Tikhonov regularization yields

$$
\left(J^{*} J+\alpha I\right) h=J^{*}\left(F_{n}\left(r_{n}\right)-u_{\infty}^{\delta}\right)
$$

where h denotes the vector of $2 m+1$ Fourier coefficients of h.
(v) The iteration is stopped at index n for which

$$
\left\|F_{n}\left(r_{n}\right)-u_{\infty}^{\delta}\right\| \leqslant \tau \delta, \quad \tau \in(1,2),
$$

is valid for the first time.
To avoid an inverse crime, we compute synthetic data by a different integral equation approach than in (25). We consider the direct approach based on the Green's representation theorem, which is given by

$$
u^{s}(x)=\operatorname{DL} u(x)-\operatorname{SL} \frac{\partial u(x)}{\partial \nu}=\int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu_{y}} u(y)-\Phi(x, y) \frac{\partial u(y)}{\partial \nu_{y}} \mathrm{~d} s_{y} \text { for } x \in \Omega .
$$

The jump relations of the single layer and double layer potential at the boundary ∂D and the linearized boundary condition (22) lead to the integral equation
$\frac{1}{2} u_{n}-\mathcal{K} u_{n}-\mathcal{S}\left(i k \lambda u_{n}\right)+\mathcal{S} g_{z}\left(\cdot, u_{n-1} ; u_{n}\right)=u^{i}+\mathcal{S}\left(g_{z}\left(\cdot, u_{n-1} ; u_{n-1}\right)-g\left(\cdot, u_{n-1}\right)\right)$
where

$$
\mathcal{K} \varphi(x)=\int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu_{y}} \varphi(y) \mathrm{d} s_{y}, \quad x \in \partial D
$$

denotes the boundary integral operator corresponding to the double layer potential. Note that for the direct approach, the far field pattern is given by

$$
F_{n}\left(r_{n}\right)=u_{n, \infty}(\hat{x})=-\frac{e^{i \frac{\pi}{4}}}{\sqrt{8 \pi k}} \int_{\partial D_{n}}\left(i k\left(\nu_{y} \cdot \hat{x}\right) \varphi_{n}(y)+\frac{\partial \varphi_{n}(y)}{\partial \nu}\right) e^{-i \hat{x} \cdot y} \mathrm{~d} s_{y}
$$

with $\hat{x} \in \mathbb{S}^{1}$.

5. Numerical results

For numerical examples, we choose an apple-shaped and a peanut-shaped obstacle as in [22]. The parameterizations are given by

$$
z(t)=\frac{0.5+0.4 \cos (t)+0.1 \sin (2 t)}{1+0.7 \cos (t)}(\cos (t), \sin (t)), \quad 0 \leqslant t \leqslant 2 \pi
$$

Figure 1. First and 10th iteration in the case of noise-free data as well as the relative discrete L^{2} errors.
and

$$
z(t)=\sqrt{\cos ^{2}(t)+0.25 \sin ^{2}(t)}(\cos (t), \sin (t)), \quad 0 \leqslant t \leqslant 2 \pi
$$

respectively. The impedance function λ is defined by

$$
\lambda(z(t))=\frac{1}{1-0.2 \sin (2 t)} \text { for } 0 \leqslant t \leqslant 2 \pi
$$

Numerically, we solve the integral equations (26) and (28) both by Nyström's method, see [6, chapter 3.5]. For the computation of the synthetic data we use 128 discretization points on the boundary curve, while for the inverse scheme we evaluate 64 discretization points on the boundary with equidistant angles. We consider the wave number $k=2$ and choose trigonometric polynomials of degree $m=4$ for the approximation of the boundary curve. Furthermore, we use the plane wave $u^{i}(x)=e^{i k x \cdot d}$ with direction $d=\left(\cos \left(\frac{\pi}{6}\right), \sin \left(\frac{\pi}{6}\right)\right)$ as an incident field.

First we consider the reconstruction from the synthetic data without noise using the regularized Newton scheme, see figure 1 . The angle of the incident plane wave is indicated by an arrow, the original boundary curve by a dotted line and the initial guess, a circle with radius $r=0.3$, by the dashed line. One can observe that choosing the radius of the circle between 0.1 and 1.1 gives similarly results, possibly with slightly more iteration steps. On the right hand side of the figure the relative discrete L^{2} errors are plotted. The residual error $\left\|F_{n}\left(r_{n}\right)-u_{\infty}\right\| /\left\|u_{\infty}\right\|$ by the full line and the reconstruction error $\left\|r_{n}-r_{\text {exact }}\right\| /\left\|r_{\text {exact }}\right\|$ by the dashed line. For this example we have chosen

$$
g(x, u)=u+\sin (u)
$$

as nonlinear function on the boundary. A nonlinearity of this form was already examined for the Laplace problem in [27] by Wendland and Ruotsalainen. This function does not satisfy condition (6), but g is Lipschitz continuous and the assumptions in (A) are guaranteed. In the case of noise-free synthetic data, we observe a stable performance for the apple-shaped object, as well as for other test objects. We have set the regularization parameter here to $\alpha=0.05$, whereas a wide range of regularization parameters leads to comparable results. For a different incident direction d of u^{i} we obtain similar results, while adding more incident fields gives us a small improvement in our reconstructions, as known from linear scattering problems.

Now we consider reconstructions of the peanut-shape obstacle from running 100 experiments with 5% random noise added. The best and the worst result are shown in figure 2 . Comparable results are obtained using the apple-shaped object. In the case of noisy data the

Figure 2. The best and the worst result after 12 iteration and 5% equally distributed random noise.

Figure 3. The best and the worst result after 12 iteration and 5% equally distributed random noise.
regularization parameter has to be increased. In the example considered, we fixed the regularization parameter with $\alpha=2$, which turned out to be sufficient in all tests. The discrepancy principle (24) with $\tau=1.3$ was used as stopping condition.

Very similar results are achieved when considering the Kerr-type nonlinearity $g(x, u)=|u|^{2} u$ for a garlic-shaped obstacle in performing 100 experiments with 5% noise added, see figure 3 .

The parameterization of the boundary curve $z(t)=1-\sin (t) \cos ^{2}(t)(\cos (t), \sin (t))$ for $0 \leqslant$ $t \leqslant 2 \pi$ and the impedance function $\lambda(z(t))=1.8+\cos ^{3}(t)+\sin ^{3}(t)$ refers here to the work [31] by Yang and Wang. As in the first example, the radius of the initial guess is $r=0.6$ and we set the regularization parameter to $\alpha=1.8$. Again as stopping condition we use the discrepancy principle with $\tau=1.3$.

If we choose the nonlinearity $g(x, u)=u /\left(1+|u|^{2}\right)$ from section 2, which satisfies the necessary assumptions to ensure a well-posed direct problem, we obtain reconstructions indistinguishable from figure 3 using the same parameterization of the boundary curve and the same impedance function as for the Kerr nonlinearity.

Considering the linearized problems for $g(x, u)=|u|^{2} u$ and $g(x, u)=u /\left(1+|u|^{2}\right)$, we must note that the linearization g_{z} is only real linear. To overcome this difficulty, we modified the integral equations (26) and (28) by splitting it into its real and imaginary parts.

In conclusion, we can state that the performance of the presented all-at-once regularized Newton method for acoustic scattering problems with nonlinear impedance boundary condition is satisfactory in all tested examples and comparable to the well-known linear cases.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://gitlab.kit.edu/kit/ianm/ag-ip/software/2023-lf-fh-nonlinear-impedance-boundary-conditions.

Acknowledgment

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 258734477—SFB 1173.

ORCID iD

Leonie Fink (1) https://orcid.org/0009-0003-9767-7260

References

[1] Adams R A and Fournier J F 2003 Sobolev Spaces 2nd edn (Academic)
[2] Ammari H and He S 1998 Effective impedance boundary conditions for an inhomogeneous thin layer on a curved metallic surface IEEE Trans. Antennas Propag. 46 710-5
[3] Banjai L and Lubich C 2019 Runge-Kutta convolution coercivity and its use for time-dependent boundary integral equations IMA J. Numer. Anal. 37 1134-57
[4] Banjai L and Rieder A 2016 Convolution quadrature for the wave equation with a nonlinear impedance boundary condition Math. Comput. 87 1783-819
[5] Bendali A and Lemrabet K 1996 The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation SIAM J. Appl. Math. 56 1664-93
[6] Colton D and Kress R 1998 Inverse Acoustic and Electromagnetic Scattering Theory 2nd edn (Springer)
[7] Duruflé M, Haddar H and Joly P 2006 Higher order generalized impedance boundary conditions in electromagnetic scattering problems C. R. Physique 7 533-42
[8] Griesmaier R, Knöller M and Mandel R 2022 Inverse medium scattering for a nonlinear Helmholtz equation J. Math. Anal. Appl. 515 126-356
[9] Haddar H and Joly P 2002 Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings J. Comput. Appl. Math. 143 201-36
[10] Hanke M 1997 A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems Inverse Problems 1379
[11] Hettlich F 1995 Fréchet derivatives in inverse obstacle scattering Inverse Problems 11 371-82 Hettlich F 1998 Inverse Problems 14 209-10 (erratum)
[12] Hettlich F 1999 The domain derivative in inverse obstacle problems Habilitation Thesis University of Erlangen
[13] Hettlich F 2022 The domain derivative for semilinear elliptic inverse obstacle problems Inverse Problems Imaging 16 691-702
[14] Hiptmaier R and Li J 2018 Shape derivatives for scattering problems Inverse Problems 34105001
[15] Kaltenbacher B 2016 Regularization based on all-at-once formulations for inverse problems SIAM J. Numer. Anal. 54 2594-618
[16] Kaltenbacher B, Neubauer A and Scherzer O 2008 Iterative Regularization Methods for Nonlinear Ill-Posed Problems (De Gruyter)
[17] Kirsch A and Hsiao G C 1989 Surface gradients and continuity properties for some integral operators in classical scattering theory Math. Methods Appl. Sci. 11 789-804
[18] Kirsch A 1993 The domain derivative and two applications in inverse scattering theory Inverse Problems 9 81-96
[19] Kirsch A and Grinberg N 2008 The Factorization Method for Inverse Problems (Oxford University Press)
[20] Kirsch A and Hettlich F 2015 The Mathematical Theory of Time Harmonic Maxwell Equations (Springer)
[21] Kress R 2014 Linear Integral Equations 3rd edn (Springer)
[22] Kress R and Rundell W 2018 Inverse scattering for shape and impedance revisited J. Integral Equ. Appl. 30 293-311
[23] Lechleiter A 2011 Explicit characterization of the support of non-linear inclusions Inverse Problems Imaging 5 675-94
[24] McLean W 2000 Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press)
[25] Nick J 2022 Numerical analysis for electromagnetic scattering from nonlinear boundary conditions CRC 1173 (Karlsruhe Institute of Technology) p 37
[26] Norgren M and He S 1999 Effective boundary conditions for a 2D inhomogeneous nonlinear thin layer coated on a metallic surface Prog. Electromagn. Res. 23 301-14
[27] Ruotsalainen K and Wendland W 1988 On the boundary element method for some nonlinear boundary value problems Numer. Math. 53 299-314
[28] Shestopalov Y and Yatsyk V 2010 Diffraction of electromagnetic waves by a layer filled with a Kerr-type nonlinear medium J. Nonlinear Math. Phys. 17 311-35
[29] Showalter R E 1997 Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations (American Mathematical Society)
[30] Smirnov Y, Schürmann H W and Shestopalov Y 2004 Integral equation approach for the propagation of TE-waves in a nonlinear dielectric cylindrical waveguide J. Nonlinear Math. Phys 11 256-68
[31] Yang A and Wang L 2008 A method for solving the inverse scattering problem for shape and impedance J. Comput. Math. 26 624-32
[32] Zeidler E and Boron L 1990 Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators (Springer)

[^0]: * Authors to whom any correspondence should be addressed.

