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Abstract Holden described, without mathematical analysis, a kinematical method for constructing from pla-
tonic solids polylinks with flat or solid polygonal links. No statement was made about the number of polylinks.
Geometric parameters of examples shown were found by trial and error. In the present paper, it is shown that
each platonic solid defines a one-parametric manifold of polylinks. The geometry of flat links and of links with
circular cross section is expressed in terms of the free parameter. The solution is based on a theorem which
generalizes known solutions of special cases.

1 Introduction

Polylinks in the sense of Holden [4–6] are kinematically constructed from platonic solids as follows. The
polygonal faces of a platonic solid are interpreted as flat frames with an outer and a similar inner polygon
defining the frame border width b. Each frame is individually subjected to a screw displacement consisting of
a rotation ϕ about and a translation −λ along the outward face normal through the center of the solid. Under
certain conditions on frame border width b, rotation ϕ and translation −λ, this procedure results in a polylink
having the property that each inner corner of each frame coincides, in like manner, with a point on the outer
edge of an adjacent frame. The location of this contact point on the edge is another important parameter of the
polylink.

The construction implies that each polylink comes in two enantiomorphic forms differing in the sign of
ϕ. Angles made by the planes of any two frames are uneffected by the screw displacements. Following the
displacements, the planes of the frames enclose a platonic solid the insphere radius of which is by λ smaller
than before the displacements. Hence, polylinks have the tetrahedral, octohedral or icosahedral rotation group
of the platonic solid they are derived from. As illustrative example, see the polylink shown in Figs. 15 and
16 which is derived from a cube. There are three pairs of opposite square frames in parallel planes. The two
frames of each pair are rotated relative to each other through 2ϕ. By the six planes, a cube is enclosed the side
length of which is by 2λ smaller than before the displacements.

Instead of with flat frames polylinks can be constructed with solid frames having borders of circular, square
or other cross sections. The requirement that each inner corner of each flat frame coincides with a point on the
outer edge of an adjacent flat frame is then replaced by the requirement that at each corner of each frame two
cylinders are in tangential contact with one cylinder of an adjacent frame.

Holden showed pictures of polylinks with flat frames and with solid frames. No statement was made about
the number of polylinks that can be constructed from individual platonic solids. No method was specified
for calculating geometric parameters (location of points of contact, components ϕ, λ of screw displacements,
border width b of flat frames, diameter of cylindrical borders or other). For the polylinks shown, only some
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parameters, and these only approximately, were given. Hart [2] developed a software tool for calculating better
approximations and new polylinks not known to Holden. Lang [7] claims that the total number of polylinks is
fifty-four.

In the present paper, a theorem is proved which specifies for each platonic solid a one-parametric manifold
of polylinks with flat or solid frame borders. In Sect. 2, geometric parameters of polylinks with flat frame
borders and in Sect. 3 with frame borders of circular cross section are expressed as functions of the free
parameter.

2 Flat frames

Edge-connected faces of a platonic solid are referred to as adjacent faces. Faces sharing a vertex, but not
an edge, are referred to as point-connected. Only the octohedron and the icosahedron have point-connected
faces. Following the screw displacements, each pair of edge-connected or point-connected faces intersects
in a straight line. In polylinks constructed from the octohedron and the icosahedron, lines of intersection of
point-connected faces have the effect that frame borders intersect each other in finite line segments, so that
making a model by simple assembly is impossible.

The only polylinks for which an analysis is given in the literature (Ref. [1]) are the ones derived from the
tetrahedron and from the octohedron in the special case when the midpoints of outer edges are the points of
contact with inner corners of adjacent frames. In this case, the inner corners of a frame are located on the
incircle of the outer triangle, i.e., on the circle passing through the contact points. The main contribution of
the present paper is the generalization of this result.

Theorem 1 Every polylink derived from any of the five platonic solids has the property that the inner corners
of a frame are located on the circle passing through the contact points on the outer edge of the frame.

In what follows, not only a proof is given. In addition, the frame border width b, the rotation ϕ and the
translation λ are expressed as functions of the parameter specifying the location of the contact points. Solid
lines in Figs. 1, 2 and 3 show a single face V1, . . . , Vn of a platonic solid of edge length 1 (n = 3 : tetrahedron or
octohedron or icosahedron in Fig. 1, n = 4 : cube in Fig. 2, n = 5 : dodekahedron in Fig. 3). Let A1, . . . , An
be the contact points. Their location is specified by the parameter 0 ≤ a ≤ 1. The circle passing through
A1, . . . , An determines the inner corners B1, . . . , Bn of a frame (frame 0) on the face V1, . . . , Vn with inner
side length �(a) and border width b(a). The figures display ϕ(a) = � B3B2A2.

Clockwise rotation of frame 0 about the center M through the angle � B2MA1 results in the frame drawn
in dashed lines with vertices V ′

1, . . . , V
′
n . Let n frames j = 1, . . . n (3, 4, 5, respectively) be superimposed on

the rotated frame. Let, furthermore, frame j be connected to frame 0 only at the points A j and Bj . Let, finally,
the frames j = 1, . . . , n be rotated, relative to frame 0, about the respective lines A j − Bj into positions in
which they make with frame 0 the angle at the edge between adjacent faces of a platonic solid (tetrahedron,
octohedron or icosahedron in Fig. 1, cube in Fig. 2, dodekahedron in Fig. 3). The frames thus positioned satisfy
the two conditions which have to be satisfied by polylinks:

1. Frame j ( j = 1, . . . , n) is linked with frame 0: A j is inner corner of frame j and point on the outer edge
of frame 0. Reciprocally, Bj is inner corner of frame 0 and point on the outer edge of frame j . From the
regularity of platonic solids it follows that each frame is linked with its n adjacent frames in this pairwise
reciprocal manner.

2. By the planes of the linked frames a platonic solid of smaller size is enclosed. Its face is the polygon
P1, . . . , Pn . This concludes the proof.

The incircle radius of the face P1, . . . , Pn is denoted ri (a). Let κri (a) be the insphere radius of the
platonic solid. The ratio (radius of insphere)/(radius of incircle of face) is κ = √

2/2 (tetrahedron), κ = √
2

(octohedron), κ = (
√
5 + 3)/2 (icosahedron), κ = 1 (cube) and κ = (

√
5 + 1)/2 (dodekahedron).

The angular component of the screw displacements is the angle ϕ shown in the figures. The translatory
component is λ = κ[ri (0) − ri (a)]. The figures determine �, b, ϕ and ri as functions of a and of ψ =
1
2
� V1MV2 = π/n (n = 3, 4, 5, respectively):
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Fig. 1 Frame 0 and adjacent frames j = 1, 2, 3 rotated about the respective lines A j − Bj into the plane of frame 0. Parameter
a, inner side length �(a), border width b(a), rotation angle ϕ(a), incircle radius ri (a)

1

Fig. 2 Frame 0 and adjacent frames j = 1, 2, 3, 4

� =
√
1 − 4a(1 − a) sin2 ψ, b = 1

2
(1 − �) cotanψ,

tan ϕ = a sin 2ψ − b

a cos 2ψ + (1 + �)/2
, ri = �

2
(cosϕ cotanψ − sin ϕ),

λ = κ

2
[(1 − � cosϕ) cotanψ + � sin ϕ].

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

Elimination of � and b from the first three equations results in a quadratic equation for a as function of ϕ.
This equation has the irrelevant solution a = (1 − 2 cos 2ψ)−1 independent of ϕ and the relevant solution

a = (
1 − cos 2ψ + sin 2ψ cotan 2ϕ

)−1
. (2)
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1

Fig. 3 Frame 0 and adjacent frames j = 1, 2, 3, 4, 5

From this it follows that

tan 2ϕ = a sin 2ψ

1 − 2a sin2 ψ
. (3)

Consider Figs. 1, 2, 3 again. The circle passing through A1, . . . , An intersects the outer edge of frame 0 in
n more points. These are, with the same value of a, the contact points of the enantiomorphic polylink differing
in the sign of ϕ.

Polylinks constructed from the tetrahedron, the octohedron and the icosahedron are identical in �(a), b(a)
and ϕ(a) and different in λ(a) only.

The special case a = 1/2:ϕ = ψ/2; � has itsminimum cosψ and b its maximum 1
2 (1−cosψ)cotanψ . The

maximum bmax is
√
3/12 ≈ .1443 (triangle), (2−√

2)/4 ≈ .1464 (square) and (1/40)
√
10(5 − √

5) ≈ .1314
(pentagon).

A parameter a �= 1/2 and the parameter a′ = 1 − a determine two polylinks identical in b, but different
in ϕ and λ. This means: Given any polylink with parameter a �= 1/2, then the frames of this polylink form a
second polylink differing from the first one in ϕ and λ (see Examples 3 and 7).

Let �r j be the position vector of the vertex Vj measured from the center of a platonic solid prior to screw
displacements, and let �r i

j be the vector after the screw displacement about the unit vector �ni . Then, (see [8],
Eq. (1.38))

�r i
j (ϕ, λ) = �r j cosϕ + [

(1 − cosϕ)(�ni · �r j ) − λ
]�ni + �ni × �r j sin ϕ. (4)

With ϕ(a) and λ(a), this equation determines the positions of all vertices of polylinks with flat frames as
functions of a. The vertices are located on the sphere of radius

|�r i
j | =

√
(�r j )2 + λ2 − 2λ(�ni · �r j ). (5)

A vertex of a platonic solid is shared by three faces (tetrahedron, cube, dodekahedron), by four faces
(octohedron) or by five faces (icosahedron). By the screw displacements, each vertex is converted into three
or four or five vertices, respectively, forming a regular polygon briefly called �. The total number of vertices
of polylinks is twelve (tetrahedron), twenty-four (cube, octohedron) or sixty (dodekahedron, icosahedron).
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Fig. 4 Polylink constructed from tetrahedron with a = 1/3. View normal to a frame

Examples

1. The parameter a = 1/3 in Fig. 1 determines λ = (
√
6−√

3+ 1)/12 (tetrahedron), λ = (
√
6−√

3+ 1)/6
(octohedron), λ = [(√6−√

3+1)/12][(3+√
5)/

√
2] (icosahedron) and in all three cases b = (

√
3−1)/6

and ϕ = 15◦. Figure 4 shows a paper model of the polylink constructed from the tetrahedron viewed along
the screw axis �ni of a frame i = 0, 1, 2, 3 arbitrary. The screw axis is orthogonally intersected by four
planes, each plane spanned by an equilateral triangle of vertices centered on �ni .
On an octohedron, each face is point-connected to three faces, on an icosahedron to six faces. In as many
lines, each frame of the polylink is intersected by other frames. Figure5 shows a single frame with lines
of intersection in the case of the octohedron. In Figs. 6 and 7, a paper model of this polylink is shown. 	

2. Subject of ref. [1] which led to Theorem 1 are the polylinks constructed from the tetrahedron and from the
octohedron in the special case a = 1/2. Both polylinks are identical. In both of them b = √

3/12, ϕ = 30◦
and λ = radius of the insphere (

√
6/12 for the tetrahedron and

√
6/6 for the octohedron). In both of them,

the centers of all frames coincide. Opposite frames of the octohedron coincide. Intersections of frames do
not occur. In Figs. 8 and 9, a paper model is shown. 	

3. With a = 3/7, Fig. 2 determines b = 1/7, tan ϕ = 1/3, λ = (1 − √
10/7)/2 ≈ .2741 of a polylink

constructed from a cube. In Figs. 10 and 11, a paper model is shown.
a = 4/7 determines the polylink with the same border width b = 1/7 and with tan ϕ = 1/2, λ =
(1 − √

5/7)/2 ≈ .3403.
The polylink constructed from a cube with a = 1 has the parameters b = 0 (wire frames), ϕ = 45◦,
λ = 1/2 indicating that the centers of all frames coincide and that opposite frames coincide. 	

4. The parameter a = 1/3 in Fig. 3 determines b ≈ .1153, ϕ ≈ 11.193◦, λ ≈ .3350 of a polylink constructed
from a dodekahedron. In Figs. 12 and 13, a paper model is shown. 	

3 Frame borders with circular cross section

The outer edges of flat frames are now axes of circular cylinders. The diameter 2r of two contacting cylinders
with skew axes i = 1, 2 is the minimal distance between the axes. Let �	i be an arbitrary point on axis i and
let �ui be a vector in the direction of axis i (sense of direction and absolute value arbitrary). Then,

2r = |(�	1 − �	2) · (�u1 × �u2)|
|�u1 × �u2| . (6)
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Fig. 5 Frame with lines of intersection in polylink constructed from octohedron with a = 1/3

Fig. 6 Self-intersecting polylink constructed from octohedron with a = 1/3. View normal to a pair of opposite frames

In what follows, this equation is referred to as contact condition.
As was said in the Introduction, two cylinders forming a corner of one frame are in contact with one

cylinder of an adjacent frame. On each platonic solid contacting cylinders, vertices and unit normal vectors
are labeled as follows (Fig. 14 schematically). With V0 being an arbitrary vertex, V0 − V2 and V0 − V3 are the
axes of two cylinders 2 and 3 on a frame with unit normal vector �n1. V0 − V1 is the axis of the contacting
cylinder 1 on the adjacent frame with unit normal vector �n2. With this notation, the vectors in (6) are

�	1 − �	2 = �r 2
0 − �r 1

0 ,

�u1 = �r 2
0 − �r 2

1 (cylinder 1),

�u2 = �r 1
0 − �r 1

2 (cylinder 2),

�u2 = �r 1
0 − �r 1

3 (cylinder 3)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

and with (4)
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Fig. 7 Polylink of Fig. 6. View normal to a pair of opposite squares �

Fig. 8 Polylink constructed from tetrahedron and octohedron with a = 1/2. View normal to a frame

�	1 − �	2 = [(1 − cosϕ)(�n1 · �r0) − λ](�n1 − �n2) + (�n1 − �n2) × �r0 sin ϕ,

�u1 = (�r0 − �r1) cosϕ + �n2 × (�r0 − �r1) sin ϕ (cylinder 1),

�u2 = (�r0 − �r2) cosϕ + �n1 × (�r0 − �r2) sin ϕ (cylinder 2),

�u2 = (�r0 − �r3) cosϕ + �n1 × (�r0 − �r3) sin ϕ (cylinder 3).

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(8)

Contact conditions can be obtained from coordinates of �r0, �r1, �r2, �r3. For the tetrahedron and the cube, simpler
coordinate-free formulations are as follows. First, the tetrahedron. In Fig. 14, V0, V1, V2, V3 are the vertices of
the tetrahedron. In accordance with this figure, face i (i = 0, 1, 2, 3) with unit normal vector �ni is defined to
be the face opposite Vi . Then,
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Fig. 9 Polylink of Fig. 8 seen along a diagonal of the octohedron (cf. [1])

Fig. 10 Polylink constructed from cube with a = 3/7. View normal to a pair of opposite frames

�ri = −(
√
6/4)�ni (i = 0, 1, 2, 3), �n0 + �n1 + �n2 + �n3 = �0,

�ni · �n j = −1/3, �ni × �n j = −(
√
3/3)(�nk − �n�) (i �= j).

}
(9)

In the last formula k and � are functions of i and j according to Table 1. With these relationships, (8) and (6)
result in the contact conditions (14).

Next, the cube. With mutually orthogonal unit normal vectors �n1, �n2, �n3
�r0 = (�n1 + �n2 + �n3)/2, �r0 − �ri = �ni (i = 1, 2, 3). (10)

This results in the contact conditions (17).



Mathematical analysis of Holden’s polylinks

Fig. 11 Polylink of Fig. 10. View normal to a pair of opposite triangles �

Fig. 12 Polylink constructed from dodekahedron with a = 1/3. View normal to a pair of opposite frames

For the octohedron, the icosahedron and the dodekahedron lengthy coordinate equations are unavoidable.
Cartesian coordinates of �r0, �r1, �r2, �r3 are as follows.
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Fig. 13 Polylink of Fig. 12. View normal to a pair of opposite triangles �

Fig. 14 Axes V0 − Vi of cylinders i = 1, 2, 3 prior to screw displacements. Unit normal vectors �n1, �n2

Table 1 Indices k, � as functions of i, j in (9)

i j k �

0 1 2 3
0 2 3 1
0 3 1 2
1 2 0 3
2 3 0 1
3 1 0 2

Octohedron:

�r0 :
√
2

2

⎡
⎣
1
0
0

⎤
⎦ , �r1 :

√
2

2

⎡
⎣

0
−1
0

⎤
⎦ , �r2 :

√
2

2

⎡
⎣
0
1
0

⎤
⎦ , �r3 :

√
2

2

⎡
⎣
0
0
1

⎤
⎦ . (11)

Icosahedron: With c = (
√
5 + 1)/2

�r0 : 1
2

⎡
⎣

c
0

−1

⎤
⎦ , �r1 : 1

2

⎡
⎣

1
−c
0

⎤
⎦ , �r2 : 1

2

⎡
⎣
1
c
0

⎤
⎦ , �r3 : 1

2

⎡
⎣
c
0
1

⎤
⎦ . (12)
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Dodekahedron: With c = (
√
5 + 1)/2

�r0 : 1
2

⎡
⎣
c
c
c

⎤
⎦ , �r1 : 1

2

⎡
⎣
1 + c
1
0

⎤
⎦ , �r2 : 1

2

⎡
⎣

0
1 + c
1

⎤
⎦ , �r3 : 1

2

⎡
⎣

1
0

1 + c

⎤
⎦ . (13)

This leads to the contact conditions (15), (16) and (18). The complete collection of contact conditions is given
below. From two contact conditions, 2r and λ are calculated as functions of ϕ. The choice of signs is dictated
by the condition that λ must be positive.
Tetrahedron:

2r =
2

∣∣∣√6(sin ϕ + sin 2ϕ) − 12λ sin 2ϕ
∣∣∣

3
√
27 + 8(cos 2ϕ − cos 4ϕ)

,

2r =
2

∣∣∣√6(sin ϕ − √
3/2)[1 + 2 sin(ϕ − 30◦)] + 12λ cos(2ϕ − 30◦)

∣∣∣
3
√
27 − 4(1 + 2 cos 2ϕ)[1 − 2 cos(2ϕ − 60◦)] .

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(14)

Octohedron:

2r =
∣∣∣√6(sin ϕ + sin 2ϕ) − 6λ sin 2ϕ

∣∣∣
3
√
9 − 4 sin4 ϕ

,

2r =
√
2

∣∣∣√6[sin ϕ − sin(ϕ + 60◦) + sin(2ϕ + 60◦)] − 6λ sin(2ϕ + 60◦)
∣∣∣

3
√
15 + 4 sin(2ϕ − 30◦) + sin(4ϕ + 30◦)

.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15)

Icosahedron: With c = (
√
5 + 1)/2 = 2 cos 36◦

2r =
2

∣∣∣√3(sin ϕ + sin 2ϕ) − 6λ(2 − c) sin 2ϕ
∣∣∣

3
√
3(8 + c) + 4 cos 2ϕ − 2(5 − 3c) cos 4ϕ

,

2r =
2

∣∣∣√3[sin(ϕ − 60◦) + sin(2ϕ + 60◦)] − 6λ(2 − c) sin(2ϕ + 60◦)
∣∣∣

3
√
3(8 + c) − 4 cos(2ϕ + 60◦) + 2(5 − 3c) cos(4ϕ − 60◦)

.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(16)

Cube:

2r = |(1 − 2λ) sin ϕ|√
1 + sin2 ϕ

, 2r = | cosϕ − sin ϕ − (1 − 2λ) cos 2ϕ|√
4 − sin2 2ϕ

. (17)

Dodekahedron: With S = (
√
5 − 1)/4 = sin 18◦, C =

√
(5 + √

5)/8 = cos 18◦

2r =
2
∣∣∣C[sin ϕ − (1 + 2S) sin 2ϕ] + 2λ(1 − S) sin 2ϕ

∣∣∣

5

√
1 − 1

5

[
(1 + 2S)(1 − cos 2ϕ) + S2(3 + 2 cos 4ϕ)

] ,

2r =
∣∣∣(2 + 3S)(cosϕ − cos 2ϕ) − C[(3 + 4S) sin ϕ − sin 2ϕ] + 4λ(1 − S) cos(2ϕ + 18◦)

∣∣∣

5

√
1 − 1

10

[
S(1 + 6S) + 4S[sin(2ϕ + 18◦) + C sin 4ϕ] − sin(4ϕ + 18◦)

] .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Examples

5. With ϕ = 30◦ determined in Example 2, the contact conditions for the tetrahedron and for the octohedron
yield identical polylinks with 2r = 2/

√
210, λ = radius of insphere (

√
6/12 and

√
6/6, respectively).

For making a model, rods of length L = 1 + 2r
√
3 = 1 + 2/

√
70 must be cut. This yields L/(2r) =√

3(1 + √
70/2) ≈ 8.9777. Holden’s model in [6], Fig. 5.7, was built with L/(2r) = 9 found by trial and

error. 	
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Fig. 15 Polylink of Example 6. View normal to a pair of opposite frames

Fig. 16 Polylink of Example 6. View normal to a pair of opposite triangles �

6. With ϕ = arctan(1/3) determined in Example 3, Eq. (17) determine

2r = (
√
10/85)

(
4
√
11 − √

91
)

≈ .1387

λ = 1

2

[
1 − (

√
10/85)

(
44 − √

1001
)]

≈ .2701

⎫
⎪⎬
⎪⎭

(19)

λ is very close to λ ≈ .2741 found in Example 3 for the polylink with flat frames. In Figs. 15 and 16, a
model of this polylink is shown (compare with Figs. 10, 11). 	
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7. For the pair of polylinks derived from a tetrahedron with parameters a1 = 1/3 and a2 = 2/3, Eq. (1)
determine (see Example 1)

b1 = b2 = (
√
3 − 1)/6 , λ1,2 = (

√
6 ∓ √

3 ± 1)/12 , ϕ1 = 15◦, ϕ2 = 45◦. (20)

With ϕ1 and ϕ2, Eq. (14) determine

r1 = r2 = 1√
35 + 2

√
23 + 4

√
3
, λ1,2 = 1

12

⎡
⎣√

6 ∓ √
3 ± 3

1 + 2
√

(23 + 4
√
3)/35

⎤
⎦ . (21)

Congruent polylinks with parameters a1 �= 1/2 and a2 = 1 − a1 result in r1 = r2.

4 Conclusion

Each platonic solid defines a one-parametric manifold of polylinks with flat or solid frame borders. The free
parameter is the same for all five platonic solids. Geometric parameters of flat frame borders and of frame
borders with circular cross section are expressed as functions of the free parameter. Polylinks constructed from
the octohedron and the icosahedron frames intersect each other, so that simple assembly is impossible.
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