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ABSTRACT: This study explores the population exposure to an increasing number of hydroclimatic extreme events ow-
ing to the warming climate. It is well agreed that the extreme events are increasing in terms of frequency as well as intensity
due to climate change and that the exposure to compound extreme events (concurrent occurrence of two or more extreme
phenomena) affects population, ecosystems, and a variety of socioeconomic aspects more adversely. Specifically, the com-
pound precipitation–temperature extremes (hot-dry and hot-wet) are considered, and the entire Indian mainland is re-
garded as the study region that spans over a wide variety of climatic regimes and wide variation of population density. The
developed copula-based statistical method evaluates the change in population exposure to the compound extremes across
the past (1981–2020) and future (near future: 2021–60 and far future: 2061–2100) due to climate change. The results indi-
cate an increase of more than 10 million person-year exposure from the compound extremes across many regions of the
country, considering both near and far future periods. Densely populated regions have experienced more significant
changes in hot-wet extremes as compared with the hot-dry extremes in the past, and the same is projected to continue in
the future. The increase is as much as sixfold in many parts of the country, including the Indo-Gangetic Plain and southern-
most coastal regions, identified as the future hotspots with the maximum increase in exposure under all the projected
warming and population scenarios. The study helps to identify the regions that may need greater attention based on the
risks of population exposure to compound extremes in a warmer future.

SIGNIFICANCE STATEMENT: How is the growing population being affected now, and in the future, how will it be
affected due to climate change induced compound extreme events? This study explores this societal consequence in
terms of population exposure for the most populous country, India. An increase of more than 10 million person-year
exposure from the precipitation–temperature compound extremes across many regions is indicated. Densely populated
regions are expected to experience enhanced population exposure to hot-wet extremes as compared with the hot-dry
extremes. Furthermore, the maximum increase in population exposure to compound extremes is expected across the
Indo-Gangetic Plain and southern coastal regions of India. The outcome of the study will be helpful for adopting socio-
economic decisions toward the welfare of society.
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1. Introduction

Climate change, as defined by the Intergovernmental Panel
on Climate Change (IPCC), refers to the long-term alterations
in climate (Pielke 2005) caused by various factors that affect
the atmosphere’s radiative properties and global energy bal-
ance, such as greenhouse gas emission, solar radiation changes,
volcanic emission, and aerosols (Adedeji et al. 2014; Shen et al.
2020). Climate change has exacerbated extreme climate phe-
nomena. As a result, the recent decades have witnessed more
frequent and intensified wet and dry extremes (Breinl et al.
2020; Stevenson et al. 2022; Labonte and Merlis 2023). Both

wet and dry extremes pose huge pressure on natural and hu-
man systems in terms of water availability and management.
Furthermore, dry extremes are expected to become spatially
more extensive and prolonged in the future, while amplification
of extreme wet precipitation has also been projected (Myhre
et al. 2019; De Luca et al. 2020) on global scales. Alongside
this, increasing population exposure to extreme temperature
conditions is evidenced worldwide (Rogers et al. 2021). More
importantly, under the potential future warming, heat extremes
are anticipated to become severe, further increasing the heat
related morbidity and mortality rates, specifically in developing
low-latitude countries like India (Mazdiyasni et al. 2017;
Mukherjee and Mishra 2018; Li et al. 2021; Yaduvanshi et al.
2021; Yang et al. 2021).

Climate change risks related to hydroclimate extremes are
influenced by two factors: changing characteristics of the ex-
tremes and the extent of societal exposure to these extremes
(Jones et al. 2015). Exposure to such extremes affects the
population, ecosystems, and other socioeconomic aspects that
may face potential losses. India is a country with the largest
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population in the world (Sara et al. 2023). It is also the sixth
most vulnerable country to climate extremes (Mall et al.
2019). The livelihood of a major proportion of the working
population is primarily dependent on agriculture. As the ma-
jor proportion of the total agricultural land across the country
is rain-fed, prolonged dry spells substantially affect agricul-
tural activities (Bandyopadhyay et al. 2016; Mishra et al.
2020). Furthermore, agricultural products account for approx-
imately 70% of India’s exports, and dry extremes can have an
influence on the Indian economy as well as national and
global food security (Singh et al. 2014). Similarly, extremely
wet conditions within a short time span can have large hu-
manitarian impacts, such as loss of lives, water-related dis-
eases, and loss of property (Breinl et al. 2020; Kansal and
Singh 2022). Since the beginning of the twenty-first century,
India has witnessed more frequent dry and wet extremes due
to an erratic spatiotemporal precipitation pattern (Dash and
Maity 2019; Sarkar and Maity 2020). Some of the recent dev-
astating heavy precipitation events across different regions of
the country include Mumbai (2005), Uttarakhand (2013),
Chennai (2015), Gujarat (2017), Kerala (2018), Maharashtra
(2019), Assam (2020), and Bihar (2020) (Ray et al. 2019). Fur-
ther, floods translated through the intense precipitation
events during the past two decades have severely impacted
various aspects of the socioeconomic systems with about
30 000 lives lost (CRED 2023; Fig. S1a in the online
supplemental material). Likewise, the country has experi-
enced more frequent prolonged dry spells in the recent past
(Mishra and Liu 2014; Singh et al. 2014) and some of the
deadliest droughts affecting more than 500 million people
(Fig. S1c). Moreover, the changing characteristics of dry and
wet extremes can pose serious challenges toward the socio-
economic conditions, including future water availability and
food security of more than 1.4 billion people (Kumar et al.
2018; Varga 2021).

Apart from the changing nature of the precipitation ex-
tremes, India has been experiencing notably warmer climate
conditions since the 1980s, with each successive decade being
warmer as compared with the previous ones (WMO 2020).
The heat extremes can affect society and ecosystems in multi-
ple ways, e.g., decreased air quality, increased energy con-
sumption, higher evapotranspiration, reduced agricultural
yields, and the most concerning of all, direct effects on human
health (Gupta and Guleria 2017; Zhang et al. 2018). Heat stress
during high temperatures may cause cardiovascular and respi-
ratory diseases, resulting in life-threatening crises (Pradhan
et al. 2019). Intensified extreme temperature conditions in the
recent two decades (Pai et al. 2013; Singh et al. 2021) have re-
sulted in around 10000 human fatalities across India (Fig. S1b).
For instance, heatwaves in 1998, 2013, and 2015 resulted in the
loss of more than 2600, 1500, and 2500 people, respectively
(Mishra et al. 2022).

Managing the impacts of frequent climate extremes be-
comes more challenging owing to rapid urbanization in devel-
oping countries like India (Avashia et al. 2021; Ridha et al.
2022; Ganguli 2023). Considering the temperature extremes,
health-related heat impacts are more severe in urban areas.
The reasons include the explosive growth of urban population

and exposure to higher and nighttime sustained temperatures
due to the urban heat island (UHI) phenomena, characterized
by the rapid expansion of more heat absorbing artificial surfa-
ces (e.g., buildings and roads) (Gao et al. 2019; Tuholske et al.
2021). For instance, heatwaves in the city of Ahmedabad in
the year 2010 resulted in 1300 deaths (Knowlton et al. 2014).
Furthermore, considering rising water demand, urban India
is more likely to experience severe water scarcity in the fu-
ture due to the growing population, associated increase in so-
cioeconomic activities and climate change (Schewe et al.
2014). Likewise, urban regions in India are experiencing re-
current instances of short-duration wet extremes (Ali and
Mishra 2018). These occurrences can result in flash floods,
landslides, water-logging, and other socioeconomic conse-
quences (Lane et al. 2013; Roderick and Wasko 2020). For
instance, extreme precipitation in Mumbai in 2005 posed
considerable socioeconomic impacts, including 1095 deaths
(Mukherjee et al. 2018).

Consequently, the exposure from the concurrence of these
temperature and precipitation extremes can more adversely
affect society than their occurrence in isolation. Compound
extremes are defined as (i) the simultaneous or successive oc-
currence of multiple extreme events, (ii) the combination of
extreme events resulting in amplifying their individual im-
pacts, or (iii) the combination of nonextreme events resulting
in an extreme impact when combined (Seneviratne et al.
2012). Compound extremes in general refer to the combina-
tion of multiple extremes contributing to larger societal and
environmental risk (Zscheischler et al. 2018). The compound
extremes may be induced due to a common external forcing
or mutual reinforcement of two extremes or when one ex-
treme is dependent on the occurrence of another extreme.
Noting the exacerbating regional warming conditions across
India and the existing interdependence between precipitation
and temperature (Hao et al. 2019; Sharma and Mujumdar
2019; Dash and Maity 2023), assessment based on their uni-
variate extremes separately may undermine the risk of com-
pound extremes (Hu et al. 2023). For instance, droughts
induced through the combined effect of extreme dry spells
and extreme heat conditions are notably more severe and can
cause greater damage to human health, agricultural produc-
tivity, and water availability (Raza et al. 2019; Yin et al. 2022).
In India, most of the regions experience extreme temperature
conditions during summer (March–May). The extreme heat
conditions may last longer than usual over different regions
due to the delayed arrival of the southwest monsoon (June–
September), resulting in extended hot and dry spells (Sahana
et al. 2015; Rajeev et al. 2022). For instance, the compound
hot and dry extremes during post 1980s (in the years 1987,
2009, 2014, and 2015) resulted in a substantial reduction in the
staple crop yield across India (Mishra et al. 2020). Similarly,
simultaneous or sequential occurrences of heatwaves and
heavy precipitation events can pose augmented risks to soci-
ety in terms of human health, loss of life, and agricultural and
infrastructure damage. During recent decades, notable in-
creases in summer heat extremes and monsoonal wet ex-
tremes are evidenced over India. For instance, heatwaves in
summer and heavy precipitation during the monsoon season
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in 1995 and 1998 largely affected many parts of India (Mishra
et al. 2022). Similarly, a series of precipitation extremes and
heatwaves across India was noted in 2019 (Dhillon 2019;
Gupta 2019). Furthermore, warming-induced desiccation is
anticipated over most of the urbanized areas in India, indi-
cated through nearly sixfold amplification in compound warm
and dry extremes (Ganguli 2023). Despite the increasing risk
of compound extremes under the warming climate, consider-
ably less effort has been made to quantify the combined im-
pacts of precipitation and temperature extremes on the
societal systems across India (Mukherjee and Mishra 2018;
Guntu and Agarwal 2021).

Overall, due to the dense population, rapid urbanization,
and agriculture-based economy, the increasing exposure to
compound extremes can make India more vulnerable in deal-
ing with the induced impacts. There are three components
influencing vulnerability: (i) exposure to extremes, (ii) sensi-
tivity of society to the extremes, and (iii) its capacity to adapt
(Wiréhn et al. 2015; Fakhruddin et al. 2019). Vulnerability
can be defined as an outcome of these three components that
are expected to vary over time and space, thus changing the
overall risk from the compound extremes across different re-
gions and time periods. Therefore, it is essential to incorpo-
rate the projected spatiotemporal changes in the extreme
characteristics to evaluate future risks. In addition, spatiotem-
poral population dynamics (including population growth and
changes in regional population distribution) also plays a vital
role in quantifying future vulnerability. To formulate robust
mitigation and adaptation planning for India, it is essential to
anticipate future risks in terms of prominent climate extremes
and associated socioeconomic vulnerability.

To this end, this study focuses on the exposure component
of climate change vulnerability. The objective of this study is
to estimate the historical and future changes in population ex-
posure to hot-dry and hot-wet compound extremes across the
entire Indian mainland. In this regard, the climate observa-
tions and future projections from the CMIP6 archive under
four future Shared Socioeconomic Pathways (SSPs), i.e.,
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, are considered.
The current population estimates and the future period popu-
lation projections developed based on the SSPs are utilized.
Finally, hot spots are identified based on the extent of change
in population exposure to the compound extremes and their
spatiotemporal evolution under the influence of future
warming.

2. Data and method

a. Data

1) OBSERVED CLIMATE DATA

For the period 1951–2020, observed daily gridded maxi-
mum temperature data with a spatial resolution of 183 18 and
precipitation data with a spatial resolution of 0.258 3 0.258
across the entire Indian mainland are accessed from the India
Meteorological Department (IMD) (https://www.imdpune.
gov.in/lrfindex.php, accessed April 2023). The temperature
data with coarse resolution are regridded to a finer resolution

of 0.258 3 0.258 via inverse distance weighted (IDW) interpo-
lation to be comparable to the precipitation data.

The observed precipitation data developed by IMD better
represent the temporal and spatial variability of the Indian
monsoon as compared with the precipitation data from other
available sources, e.g., Climate Research Unit (CRU), Global
Precipitation Climatology Project (GPCP) version 2.2, and
Climate Prediction Center (CPC) Unified rain gauge data,
version 1.0 (Mishra et al. 2014; Prakash et al. 2015). To de-
velop the gridded precipitation dataset, daily precipitation in-
formation from 6955 rain gauge stations were used. These
6955 stations include 74 agrometeorological observatories,
494 hydrometeorological observatories, and 547 IMD obser-
vatories (Pai et al. 2015). The state governments maintain the
rest of the rain gauge stations. The density of the stations was
spatially nonuniform across the country. However, a reason-
able number of stations were considered to well represent the
rainfall characteristics over most areas of the country. On av-
erage, rainfall records from about 2600 stations per year were
available to prepare the daily gridded precipitation data.
However, the data density varied from year to year from
about 1450 in the beginning year 1901 to about 3950 during
the period 1991–94. The inverse distance weighted method
was used for interpolating the station measurements into
gridded estimates. This method is based on the assumption
that the stations closer to the grid location tend to have more
similar rainfall characteristics as compared with the distant
stations. The weight assigned to each station data decreases as
the interpolation point moves farther away from the station.
For faster computation, rainfall data from a selected number
of nearest neighboring stations (ranging from a minimum of
1 station to a maximum of 4 stations) located within a radial
distance of 1.58 around the grid point is considered.

The daily gridded maximum temperature dataset was de-
veloped by utilizing daytime maximum temperature record-
ings collected from 395 stations distributed across India
(Srivastava et al. 2009; Rohini et al. 2016). A modified version
of Shepard’s angular distance weighting algorithm was
employed to interpolate the station data into regular grids
(Shepard 1968). To mitigate biases in the gridding process,
anomaly of daily temperature was used instead of the abso-
lute values. To achieve this, the climatological normal of tem-
perature was estimated for each station based on the period
1971–2000. Before the interpolation, the station data under-
went preliminary quality controls, including the removal of
outliers and ensuring homogeneity. All stations possessed the
same data length to prevent errors in the gridded data arising
from inconsistencies in station density. Using the cross-validation
technique, RMSE was found to be less than 0.58C, over most of
the country. Relatively larger RMSE was noticed over the hilly
areas of Jammu, Kashmir, and Uttarakhand because of lower
station density.

2) CMIP6 GLOBAL CLIMATE MODEL SIMULATION DATA

Future projections of daily maximum temperature and precipi-
tation are retrieved from the repository of NASAEarth Exchange
Global Daily Downscaled Projections (NEX-GDDP-CMIP6)
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(Thrasher et al. 2022). The archive is composed of downscaled
values with a spatial resolution of 0.258 3 0.258 for the histori-
cal and future time period, developed utilizing the outputs ob-
tained from multiple general circulation models (GCMs),
taking part in phase 6 of the Coupled Model Intercomparison
Project (CMIP6). Downscaling was carried out using the bias-
correction spatial disaggregation (BCSD) method, which is a
statistical downscaling algorithm. Past studies reveal that the
NEX-GDDP-CMIP6 outputs are found to well depict the
long-term precipitation and temperature conditions and corre-
sponding changes over time considering different regions
across the globe (Park et al. 2022; Murali et al. 2023; Wang
et al. 2023; Zhang et al. 2023). As it is generally agreed that
projections of future climate change should not rely on a single
model (Jebeile and Crucifix 2020), a total of seven GCMs are
chosen and corresponding downscaled data for the aforemen-
tioned variables are used. These seven models are selected
based on their potential to capture the spatiotemporal variabil-
ity in precipitation and temperature (with reference to the ob-
served data) across the Indian mainland, as revealed by past
studies (Katzenberger et al. 2021; Mitra 2021; Jose et al. 2022;
Thakur and Manekar 2022). Furthermore, model simulations
from seven GCMs seem to be adequate to draw inferences re-
garding future changes in the precipitation- and temperature-
based climate regimes across India (Tegegne et al. 2019; Wang
et al. 2020). A few basic details regarding the chosen models
are provided in Table 1, including their modeling groups and
countries. Simulated data of precipitation and maximum tem-
perature are obtained for four SSPs based on different catego-
ries of future socioeconomic developments. The considered
SSPs are as follows: the first one is SSP1-2.6, which represents
the sustainability socioeconomic scenario incorporating lower
radiative forcing of 2.6 W m22; the second one is SSP2-4.5, in-
dicated as the middle of the road scenario with a moderate ra-
diative forcing of 4.5 W m22; the third one is SSP3-7.0, which
corresponds to the regional rivalry socioeconomic pathway
with medium to high radiative forcing level of 7.0 W m22; and
the fourth one is SSP5-8.5 that portrays the fossil-fuel-driven
future development scenario with higher end of the forcing
pathway with 8.5 W m22 radiative forcing (Cook et al. 2020).
The first realization (r1i1p1) corresponding to each model is
considered.

3) HISTORICAL POPULATION DATA

Historical population data for the entire Indian mainland
are collected from the NASA Socioeconomic Data and

Applications Center (SEDAC) (CIESIN 2018a). This GPWv4
(Gridded Population of the World, 4th version) dataset con-
sists of grid-wise human population counts created by extrapo-
lating the raw census estimates from the national population
registers for a series of target years: 2000, 2005, 2010, 2015,
and 2020. To develop these data, population statistics from
nearly 13.5 millions of administrative divisions of national and
subnational domains across the globe are utilized, and a uni-
form areal weighting technique was employed to assign popu-
lation counts to the 30 arc-s (0.008 3338) grids (CIESIN
2018b). The primary advantage of disaggregating the demo-
graphic variables like population by areal weighting is to main-
tain fidelity to the raw input data. For India, the input
population statistics are considered at administrative level 3
(Doxsey-Whitfield et al. 2015), which is the highest spatial dis-
aggregation of population data. Further, GPWv4 allocates the
population within each administrative division to keep the
population consistent, corresponding to the grids lying within
the said division (Chen et al. 2020). These datasets are accessi-
ble at a native resolution of 30 arc-s (0.0083338), as well as
four coarser resolutions: 2.5 arc-min (0.041 6678), 15 arc-min
(0.258), 30 arc-min (0.58), and 18. We extracted the data at a
2.5 arc-min (approximately 5 km) spatial resolution and re-
gridded to 0.258 3 0.258 resolution, to make it compatible with
other climate data. Regridding of the data is done through up-
scaling, i.e., summing up the population values of all the smaller
grids (2.5 arc-min) falling within a target grid (0.258 3 0.258)
(Iyakaremye et al. 2021).

4) FUTURE POPULATION PROJECTIONS

The future population projection datasets are also extracted
from the NASA SEDAC. These future datasets are available
at a spatial resolution of 0.1258 3 0.1258 for different SSPs, at
10-yr intervals for the time period 2010–2100 (Jones and
O’Neill 2016; Sun et al. 2021). As mentioned before, these
SSPs illustrate four distinct potential future states of the
society based on the trends in technological progress, demog-
raphy, economy, governance, lifestyle, and other societal as-
pects. The population projections based on the SSPs were
downscaled by utilizing a gravity-type spatial allocation model
calibrated with historical data (Jones 2014). The gravity-type
model is based on population potential (Stewart 1942) and
produces scenario-dependent projections. Population poten-
tial can be interpreted as a measure of the influence that the
population at one location exerts on another location, e.g.,
high potential is obtained at locations existing in closer

TABLE 1. Global climate models from CMIP6 archive along with corresponding institutions and country of origin.

Serial No. Model Modeling group (country)

1 BCC-CSM2-MR Beijing Climate Center (China)
2 EC-Earth3 EC-Earth-Consortium (Europe)
3 GFDL-ESM4 NOAA/GFDL (United States)
4 INM-CM4-8 Institute for Numerical Mathematics (Russia)
5 MPI-ESM1-2-HR Max-Planck-Institute for Meteorology (Germany)
6 MRI-ESM2-0 Meteorological Research Institute (Japan)
7 NorESM2-MM NorESM Climate modeling Consortium (Norway)
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proximity to densely populated areas. The population projec-
tions are qualitatively congruent with the underlying assump-
tions made regarding spatial development patterns in the
SSPs, and quantitatively consistent with the future estimates
of national population and urbanization. In this study, simu-
lated data for four different SSPs are considered. These are
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The projected fu-
ture population datasets are regridded to 0.258 3 0.258 spatial
resolution for spatial resolution uniformity with other data.

b. Method

1) JOINT HOT-DRY AND HOT-WET EXTREME INDICES

The methodological flowchart is presented in Fig. 1 that
starts with the development of the Joint Extreme Index (JEI).
Statistical approach to develop the JEI is utilized from a re-
cent work by the authors (Dash and Maity 2021). A summa-
rized version is as follows. We pick out three extreme indices:
warm-spell duration index (WSDI) reflects extreme hot
weather spells, consecutive dry days (CDD) reflects consecu-
tive low precipitation events that may lead to extreme dry
spells, and extreme wet days (EWD) index that reflects heavy
precipitation events. Out of the three indices, WSDI and
CDD are developed by the Climate Variability and Predict-
ability (CLIVAR) project of the World Climate Research
Programme jointly with the Expert Team on Climate Change
Detection and Indices (ETCCDI) (https://www.wcrp-climate.
org/data-etccdi, accessed in April 2023). EWD was newly in-
corporated and is based on a percentile-based local threshold
to capture the substantial spatiotemporal variability in the
precipitation climatology in a vast country like India (Dash
and Maity 2021). Details of these indices are provided in Ta-
ble 2. The extreme indices and their corresponding percentile
thresholds are computed utilizing the daily precipitation and
temperature data for the entire year. The primary focus of
this study is to identify the changes in compound precipita-
tion–temperature extremes on an annual basis. Thus, the in-
herent seasonality is not separated while computing the
thresholds. The compound extremes are defined as the occur-
rence of two simultaneous or successive extremes within a
10-day time interval, as elaborated further. Considering a spe-
cific year, first, the hot extremes (WSDI) are identified, which is
defined as six or more consecutive days (denoted as m days in
Fig. 1) exhibiting daily maximum temperature .95th percentile.
The wet extreme (EWD) corresponds to simultaneous and/or
successive occurrence of heavy precipitation events within
n days (here, n 5 10) preceding and succeeding the hot ex-
treme. Similarly, the dry extremes (CDD) refer to the dry
conditions persisting within the entire preceding and suc-
ceeding n days centered around the hot extreme duration.

Joint distributions between WSDI and CDD (hot-dry ex-
treme events) and WSDI and EWD (hot-wet extreme events)
are developed using copulas considering each of the constituting
index as a random variable (say X and Y). In probability theory,
a copula is a function that combines the one-dimensional mar-
ginal distribution functions of two or more random variables to
produce a joint distribution function of those variables (Maity
2022). Sklar’s theorem states that joint probability distribution

can be represented via a copula function and the corresponding
univariate marginal distribution functions (Serinaldi et al. 2009).
For example, given two random variables,X andYwith cumulative
distribution functions FX(x) 5 P(X # x) and FY(y) 5 P(Y # y),
the joint cumulative distribution ofX andY is as follows:

FX,Y(x, y) 5 P(X # x, Y # y) 5 C[FX(x), FY(y); u], (1)

where C is the copula function of the marginal distribution
functions, u 5 FX(x) and y 5 FY(y) for the random variables
X and Y, such that for all x, y in R 2 (2‘, ‘); u is the parame-
ter of the copula function.

Using the kernel density estimator, nonparametric esti-
mates of the marginal probability distributions are computed
(Maity and Kumar 2008). The association between the two
random variables is estimated in terms of Kendall’s tau t,
which is a scale-free measure of association.

We initially selected three Archimedean copulas, that is,
Clayton, Gumbel–Hougaard, and Frank, and the best-fit one
was chosen for deriving the joint distribution. Table 3 repre-
sents a few mathematical descriptions of the copulas. The
best-fit copula is chosen via goodness-of-fit test utilizing two
statistics, i.e., Kolmogorov–Smirnov Tn and Cramér–von
Mises Sn (Maity 2022). A better fit is indicated through lower
values of these statistics. After getting the best-fit copula, the
joint distribution is obtained by employing Eq. (1).

The JEI is derived following standardization of the joint
probability estimates through the inverse standard normal dis-
tribution. The JEI is therefore, mathematically represented as

JEI 5 F21[FX,Y(x, y)], (2)

where F21 is the inverse standard normal distribution
function.

2) COMPUTATION OF TRENDS

To identify the trends in the joint extreme indices, the
Mann–Kendall (MK) trend test is used at a statistical signifi-
cance level of 0.05. The MK test is a nonparametric approach
that takes into account the rank of the data rather than the ac-
tual values, making the computation less sensitive to the distri-
bution of data. In addition, it is less affected by inhomogeneity,
abrupt breaks, and nonlinear trends in the time series (Tabari
et al. 2011).

3) POPULATION EXPOSURE

Population exposure E to the compound extremes is com-
puted by multiplying the number of years with above-normal
values joint extreme index (i.e., JEI. 0) with the correspond-
ing mean population count P at each grid location over a
specified time period. It is expressed in person-years:

E 5 NJEI 3 P, (3)

where NJEI indicates the number of years with above-normal
joint extreme and P is the population.

Change in the population exposure to compound extremes
at a particular grid location can result from changes in the
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FIG. 1. Methodological outline showing joint index of compound extremes and population exposure.
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population count or change in the compound extreme occur-
rences or changes in both population and compound extreme
conditions. Hence, the change in population exposure is esti-
mated by considering three contributing factors, i.e., (i) popu-
lation change, (ii) climate change, and (iii) combined change,
across two comparable time periods. The climate influence is
estimated by multiplying the change in NJEI with the baseline
population. In other words, the impact of climate change on
the exposure is separated by keeping the population constant
at the reference time period and allowing the climate to
evolve according to the future projections. Similarly, the pop-
ulation influence is obtained by multiplying the population
change across the two time periods with the NJEI in the refer-
ence time period. The combined influence integrates concur-
rent change in both the factors. The total change in population
exposure to compound (DE) can be expressed as

DE 5 (DNJEI 3 Pref) 1 (NJEI; ref 3 DP) 1 (DNJEI 3 DP),
(4)

where (DNJEI 3 Pref), (NJEI;ref 3 DP), and (DNJEI 3 DP) are
the climate influence, population influence, and the combined
influence on the change in exposure, respectively; Pref is the
population in the reference period; DP is the change in the pop-
ulation; NJEI;ref is the number of years with above-normal JEI
values in the reference period; and DNJEI is change in the num-
ber of years with above normal JEI w.r.t. the reference period.

4) IDENTIFICATION OF HOTSPOTS

Hotspots are identified based on the extent of future
changes in population exposure to the joint compound ex-
tremes, i.e., hot-wet and hot-dry events. Toward this, a hot-
spot metric is utilized, denoted as HSPDE}the greater the
change in the exposure levels between two considered time
periods is, the greater the sensitivity will be. For a particular
grid location, HSPDE is computed based on the change in pop-
ulation exposure in that grid between the historical and future

time periods with respect to the 95th-percentile threshold
change considering all the grids over India:

HSPDE 5

��������������������������
(DE)2

[P95(|DE|)all grids]2
√√

, (5)

where DE denotes the change in population exposure be-
tween historical and future time periods; P95(|DE|)all grids

represents the 95th percentile threshold value of the abso-
lute difference in exposure change considering all the grid
locations.

3. Results and discussion

a. Spatiotemporal changes in the extreme hot, dry, and
wet events

First, the spatiotemporal changes in the individual hot, dry,
and wet extremes are evaluated across India. The annual hot,
dry, and wet extreme characteristics are expressed through
three extreme indices, WSDI, CDD, and EWD, respectively.
The entire historical time period (1951–2020) is divided into
three epochs, i.e., pre-1980 (1951–80, T1), post-1980 (1981–
2000, T2), and the recent two decades (2001–20, T3). As a cli-
mate regime shift occurred around 1980s across India (Sahana
et al. 2015; Cho et al. 2016; Pattanayak et al. 2017; Ross et al.
2018; Shrestha et al. 2019; Dash and Maity 2019), 1980 is con-
sidered as the partitioning year here. Centering around 1980,
two epochs, i.e., T1 and T2 are constructed. Further, the most
recent two decades, T3, is considered separately to identify
the relative extent of changes in the most recent times relative
to the immediate pre- and post-1980s. Figures 2 and 3 show
the mean and standard deviation of the extreme indices, re-
spectively, during the pre-1980s period (T1) and the conse-
quent changes (expressed in percentage) during the recent
time epochs, i.e., T2 and T3. As the hot, dry, and wet ex-
tremes portray the extreme frequency/duration characteris-
tics, the mean of the extreme conditions represents the annual
average number of days with respective extreme conditions
during the concerned time period. Similarly, through the stan-
dard deviation, the extent of dispersion or variability of the
respective extreme around the mean state is expressed. Fur-
thermore, the percentage difference in the mean and standard
deviation of the extremes during T2 and T3 are computed
with respect to that during T1. Percentage increase (decrease)
in the mean of extreme indices indicates increase (decrease)
in the frequency of extreme wet and the duration of dry or
hot conditions in the subsequent period. Similarly, percentage

TABLE 2. Details of precipitation and temperature extreme indices. Here, ID indicates identifier.

Index ID Index name Description

EWD Extreme wet days Days with precipitation . 95th percentile of the daily
precipitation amount during the base period, 1981–2010

CDD Consecutive dry days Max no. of consecutive days with precipitation of ,1 mm
WSDI Warm-spell duration index No. of days in a year with at least 6 consecutive days when

daily max temperature (TX) . 95th percentile
(corresponding to the TX during the base period 1981–2010)

TABLE 3. Details of three considered Archimedean copulas.
In the third column, \{0} indicates that 0 is excluded from the
indicated continuous range.

Copula Copula function, C(u, y)
Copula parameter

u 2
Frank 21

u
ln 11

(e2uu 2 1)(e2uy 2 1)
(e2u 2 1)

[ ]
(2‘, ‘)\{0}

Clayton [max(u2u 1 y2u 2 1,0)]21/u [21, ‘)\{0}

Gumbel exp{2[(2lnu)u 1 (2lny )u]1/u} [1, ‘)
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increase or decrease in standard deviation indicates the in-
crease or decrease in the interannual variations/fluctuations in
the extreme hot or wet or dry conditions. Statistical signifi-
cance of the percentage changes in mean and standard devia-
tion are evaluated using the t test and F test (Maity 2022),
respectively, at 5% significance level. Considering the
extreme hot spells, higher mean (.30 days) and variability
(.15 days) are noticed over northern and eastern regions dur-
ing the pre-1980s (T1). In contrast, a more prominent change
in hot spell (.50%) is witnessed across the southern and
northwestern regions in the next two epochs (T2 and T3).

Additionally, spatially more extensive and intense changes
are noticed during T3. Longer dry spells are noticed across
the western and northern regions during T1. In T2 and T3,
the dry extreme has increased (decreased) across southern re-
gions and western coastal regions (eastern regions). Higher
variability in the dry spell is noticed across the north Himala-
yan, western, and Indo-Gangetic regions in T1, whereas lower
variability is noted over the northeast and southernmost re-
gions. However, in the subsequent epochs, dry extremes have
become more variable across the southern regions. Consider-
ing the wet extremes, higher mean is noticed across northeast,

FIG. 2. Spatial variation of (a) average duration of hot spells (WSDI) during 1951–80 (T1), and (b) its change in
percentage during 1981–2000 (T2) and 2001–20 (T3). (c),(d) As in (a),(b), but corresponding to dry spells (CDD).
(e),(f) As in (a),(b), but corresponding to extreme wet days (EWD). White patches in (b), (d), and (f) indicate insig-
nificant changes at 5% significance level.
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eastern coastal, and a few patches over the northern regions
during T1. Increased variability of wet extremes is noticed
across the southern regions of India. During T3, extensive in-
crease in mean as well as variability of wet extremes is noted
as compared with T2. However, the increasing variability in
wet extremes is found to be more intense and spatially exten-
sive as compared with the increase in mean. Over the north-
east regions of India, the wet extremes exhibited increases in
both mean and variability during the most recent times (T3).
Apart from that, the coastal regions have experienced more
frequent wet extremes during T3.

Overall, precipitation and temperature extremes expressing
hot, dry, and wet conditions have increased in the recent time

periods, i.e., T2 and T3 with reference to T1, in many parts of
India, whereas the same has decreased in some regions, all
with respect to the local climatology. However, the most
prominent increase in the spatial extent with increasing ex-
treme conditions is found during T3.

b. Compound hot-dry and hot-wet extremes

Compound extreme refers to the combination of multiple
extremes contributing to larger societal and environmental
risks (Zscheischler et al. 2018). To characterize the compound
hot-dry and hot-wet extremes, two joint extreme indices
(JEIs) are developed using the joint probability distribution
between temperature (hot) and precipitation (wet/dry) based

FIG. 3. As in Fig. 2, but for standard deviation.
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extreme indices constructed through copulas (Salvadori and
De Michele 2004). For deriving the JEIs, 1951–80 is consid-
ered as the base period. Properties of the JEI in relation to its
constituting precipitation and temperature extreme indices
are illustrated through their respective time series in Fig. S2
in the online supplemental material for the entire time period,
1951–2020. The JEI for hot-wet extreme is presented along
with individual hot (WSDI) and wet (EWD) extreme indices
for one grid location. High (low) magnitude of JEI is noticed
when the constituting indices magnitudes are high (low). For
instance, the above-normal hot-wet extreme (JEI . 0) in the
year 2016 is obtained for the individual hot and wet extremes
with above-normal magnitudes. This portrays the underlying
characteristics of the JEI in combining both extreme tempera-
ture and precipitation conditions. However, the JEI magni-
tude may or may not be high when either of the constituting
indices is high, based on the combined status of temperature
and precipitation extremes. One such instance of this can be
noted for the year 1989, where the wet extreme of higher
magnitude and below-normal hot extreme resulted in the
above-normal magnitude of hot-wet extreme conditions. This
attribute of the JEI infers that the combined status may result
in amplified consequences, although the constituting variables
are not at their extreme extents.

Further, the spatial distribution pattern of the hot-dry and
hot-wet compound extremes alongside the constituent hot,
wet, and dry extremes are presented to evaluate the feasibility
of the developed JEI in capturing the combined extreme con-
ditions across different regions. In this regard, two years, i.e.,
2009 and 2019 (Fig. S3 in the online supplemental material)
are selected, as during these years, many regions of India ex-
perienced the hot-dry (in 2009) and hot-wet (in 2019) extreme
conditions, as reported by past literatures (Mishra et al. 2020;
Nayak et al. 2022). The compound extreme magnitude is
found to be severe over the regions possessing high precipita-
tion and temperature extreme occurrences during both the
years. For instance, in 2009, above-normal hot extreme spells
are noted over most of the country, wherein relatively higher
values were confined across the northern, western coastal,
and some eastern regions. Similarly, the northwest, Indo-
Gangetic Plain, and southern coastal parts exhibited higher dry
extremes. Considering both hot and dry conditions together,
the western coastal regions and scattered areas over northern
and eastern regions are noticed with above-normal hot-dry ex-
treme occurrences. A similar observation is noted considering
the hot-wet compound extreme, wherein mainly the northeast,
western, and eastern coastal regions are noticed with the
above-normal conditions. The above discussion suggests that
the JEI captures the compound extremes well across space and
time and can be useful in evaluating the hot-wet and hot-dry
compound extreme characteristics.

Next, the spatiotemporal changes in compound hot-dry and
hot-wet extremes are evaluated for entire India in terms of its
magnitude and frequency during the period 1951–2020. Fre-
quency of the compound extremes are presented in Figs. 4a
and 4b as the percentage years with above-normal occur-
rences of hot-dry and hot-wet extremes, respectively, during
T1 (1951–80), T2 (1981–2000), and T3 (2001–20). For both the

extremes, frequency has gradually increased over time with
the least percentage of years and spatial coverage during T1
to the maximum extent of occurrence with notably wider spa-
tial spread during T3. The frequency of hot-wet extreme has
increased more intensely across northeast, eastern coastal and
southern regions. More frequent and spatially extensive hot-
dry extremes are experienced over the southern and western
parts of the country. Consequently, the southern regions of
the country have experienced a simultaneous increase in hot-
dry and hot-wet compound extreme occurrences over time as
compared with the other parts of the country.

Significant trends in the magnitude of compound hot-wet
and hot-dry extremes are assessed by the Mann–Kendall trend
test (5% significance level) for two time epochs: 1951–80 and
1981–2020. Trends in compound extremes refer to gradual and
continuous change within a particular period. Figure S4 in the
online supplemental material shows the spatial pattern of
significantly decreasing and increasing trends in hot-dry and
hot-wet extremes across India. Like the frequency of the com-
pound extremes, the significant increase in the magnitude has
become spatially extensive during the recent epoch (1981–
2020) as compared with the later epoch, 1951–80. Significant
increases in the hot-dry extremes are noticed across the east-
ern and western regions of India. The hot-wet extremes are be-
coming more intense, mainly across the western and northeast
regions of the country, along with the eastern coastal regions.
Further, a more extensive spatial spread with increasing com-
pound extremes is noticed for the hot-wet extreme as com-
pared with the hot-dry extreme. Moreover, similar to the
individual hot, wet, and dry extremes, the compound hot-dry
and hot-wet extremes have increased to the maximum extent
with respect to frequency and magnitude during the recent
most times than ever before. In addition, out of the two com-
pound extremes, hot-wet extremes have become more fre-
quent and intense, along with increased spatial coverage across
the country.

c. Historical changes in population exposure to the
compound extremes

Next, changes in exposure from the compound extremes on
the human population are assessed across India during the
historical period, 1981–2020. Before moving to the population
exposure context, a brief idea regarding the population distri-
bution in India and the compound extremes across regions with
similar population density is discussed. The spatial pattern of
population distribution during the years 2000 and 2020 is shown
in Figs. 5a and 5b, along with the percentage changes in popula-
tion across the two decades (Fig. 5c). A higher population den-
sity of about .3 lakhs (1 lakh 5 100000) per (0.258 3 0.258)
size grid is noted over the entire Indo-Gangetic Plain, the south-
ernmost regions, and the eastern and western coastal parts. The
less populated regions are noted in the north Himalayan, north-
east, northwest, and some eastern regions; these include the
hilly, desert, and dense forest regions of the country. From 2000
to 2020, the population has expanded across many regions of
the country, more extensively across the northern regions
mainly. Most of the country has evidenced about 20% or more
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increase in the population, with very few scattered patches of
population shrinkage. Furthermore, the maximum extent, i.e.,
.50% of change is concentrated across Bihar, Jharkhand, Me-
ghalaya, and Rajasthan, with a few patches across some of the
remaining states.

Based on the grid-wise current (in 2020) population strength,
the country is classified into four categories populated regions
(Fig. S5a in the online supplemental material), that is, low (pop-
ulation , 1 lakhs), moderate (1–2 lakhs), high (2–3 lakhs), and
very high (.3 lakhs). Figures S5b and S5c illustrate the percent-
age of the area (spatial extent) with significantly increasing/
decreasing changes considering each of the four populated

regions during 1981–2020. A spatially more extensive increase
in hot-wet extreme is noticed over the low-populated regions.
Further, for the other three categories of populated regions
(moderate, high and very high), comparatively less area with
changes is found. For the hot-dry extreme, a more or less simi-
lar spatial extent with significant changes is noticed across the
four regions. However, relatively higher areal extent with in-
creasing hot-dry extreme is observed for the low and moder-
ately populated regions. Considering the regions with higher
population density, significant increase in the hot-wet extremes
is found to be spatially more extensive as compared with the
hot-dry extremes.

FIG. 5. Spatial distribution of population in (a) 2000 and (b) 2020 across India, along with the (c) percentage change between 2000 and 2020.

FIG. 4. Occurrences (percentage of years) of above-normal compound extreme events (base period: 1951–80) across India. Spatial varia-
tions are presented for (a) hot-dry extreme and (b) hot-wet extreme during three time periods: (left) 1951–80 (T1), (center) 1981–2000 (T2),
and (right) 2001–20 (T3).
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Figure 6 shows the spatial pattern of historical changes in
population exposure (in person-year) across India during
1981–2020. Toward this, the entire time period is divided into
two epochs of 20 years each, i.e., 1981–2000 and 2001–20. The
changes in population exposure between the two epochs are
estimated (as presented in section 2b) for the hot-dry (Fig. 6a)
and hot-wet (Fig. 6b) extremes. Increased exposure from the
two compound extremes is noticed across most of the country,
with a few regions noticed with decreased exposure. Southern,
western, and eastern parts of the country exhibited a higher in-
crease in population exposure from hot-wet extremes, whereas
the northern and central parts experienced reduced popula-
tion exposure. On the other side, higher growth in population
exposure from hot-dry extremes is noticed across the western,
eastern coastal, and southernmost regions mainly. Further-
more, across the coastal regions, increased exposure is evi-
denced for both extremes. The hilly regions, along with the
western most regions adjacent to Rajasthan and Gujrat are
found with the least change in population exposure to the
compound extremes. Spatial extent with maximum increase
(.5 lakhs person-year) in the exposure is found to be more
prominent in the case of hot-wet extreme as compared with
the hot-dry extreme.

d. Future changes in population exposure to the
compound extremes

Next, changes in the population exposure to the hot-dry
and hot-wet events are assessed for the future period, 2021–
2100 with reference to the historical period, 1981–2020. To-
ward this, the entire future period (2021–2100) is divided into
near-future (2021–60, F1) and far-future (2061–2100, F2) peri-
ods. The change in population exposure for the near-future
and far-future periods is evaluated considering the projected
climate and population estimates for four SSPs, i.e., SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 (hereinafter SSP1, SSP2,
SSP3, and SSP5, respectively).

Prior to estimating the future exposure, the resemblance
between the historical observations and future estimates in

capturing the compound hot-wet and hot-dry extreme charac-
teristics is evaluated. The compound extremes derived from
future projections are compared with that of the observations
for the 7-yr intersecting duration, 2015–21 (as the future pro-
jection is available from 2015). Based on the outcomes, differ-
ent sets of combinations (Table S1 in the online supplemental
material) of the seven GCMs are selected with respect to hot-
dry and hot-wet extremes for further analysis. Figures S6 and
S7 in the online supplemental material display frequency (in
percentage of years) of hot-dry and hot-wet extremes, respec-
tively, for historical and future projections under the four
SSPs. There are some minor deviations between the observed
and future projected compound extreme conditions. These
are expected primarily due to the assumption-based future
warming and socioeconomic development scenarios (reflected
through the four SSPs). Second, in general, the discrepancies
in observed and modeled extreme conditions can be attrib-
uted to the uncertainties in various aspects, including model
uncertainty (assumptions in different GCMs), bias correction
approach, downscaling method, and method for deriving the
compound extremes (Jha et al. 2023; Meng et al. 2022). Still, a
notable resemblance between the observations and model
projections is obtained for both hot-dry and hot-wet extremes
considering all four SSPs. Furthermore, a relatively higher re-
semblance is captured in the case of hot-dry extremes as com-
pared with that of the hot-wet extremes. Out of all the four
SSPs, the projected conditions under SSP3 have relatively
more resemblance with the observed spatial pattern for the
hot-wet extremes. On the other hand, for the hot-dry ex-
treme, a more/less similar degree of agreement is noted be-
tween the observed and future projected conditions under all
four SSPs. Regions experiencing more frequent occurrences
of compound extremes are captured well for both hot-wet
and hot-dry conditions, whereas regions experiencing less fre-
quent compound extremes are noticed with deviations in the
model projections. For both the extremes, overestimation is
noticed across the western Rajasthan regions. However,
across the northeast regions, frequency of the hot-wet extremes

FIG. 6. Historical changes in population exposure to the compound (a) hot-wet and (b) hot-dry extremes expressed in
person-years during 1981–2020, across India.
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is underestimated. Considering the spatial extent exhibiting
above-normal compound extremes, an overestimation in
the case of hot-wet extremes and an underestimation in
hot-dry extremes is noticed during 2015–21. Overall, some
regions are noted with highly resembling spatial patterns
of observed and projected compound extremes and some
regions are noted with small deviations from the observed
conditions.

Figures 7 and 8 represent changes in population exposure to
the hot-dry and hot-wet extremes, respectively, during the
near- and far-future (F1 and F2) periods under the four SSPs.
A significant increase in future exposure is noticed as compared
with the baseline period 1981–2020. More than 10 million
person-year increase in exposure is noticed across many regions
of the country considering both extremes. However, the maxi-
mum extent of spatial coverage with higher exposure is found
in the case of SSP3 and the least in the case of SSP1. The expo-
sure from hot-wet extreme is expected to increase more exten-
sively as compared with the hot-dry extreme under all the
SSPs. Further, relatively higher exposure change is captured
across the country during the far future period as compared
with that obtained during the near future period. The exception
is noted under SSP5 and SSP1 for the hot-dry conditions,
wherein reduced spatial extent with higher exposure increase is
noticed during F2 as compared with F1. Over the entire Indo-
Gangetic region, an increase in the future population exposure
is expected to be more than 10 million person-year during F2,
considering both hot-wet and hot-dry extremes, consistently
across all the four SSPs. Apart from this, prominent increases
in the population exposure from hot-wet (hot-dry) extremes
are mostly confined across the southern and northeast (south-
ern and western) regions. The southernmost parts of India are
expected to experience a more pronounced increase in the pop-
ulation exposure from the hot-wet extremes. However, the con-
trast is noticed considering the hot-dry conditions. Over the
central parts of India, the exposure is going to be more from
the hot-dry extremes as compared with the hot-wet extremes.

Next, hotspots are identified based on the extent of changes
in future exposure from the hot-dry and hot-wet extremes for
the four SSPs. Considering the exposure change DE in all grid
locations over the country, the 95th percentile value is identi-
fied. Following this, a hotspot metric, HSPDE (as discussed in
section 2b), is calculated for each grid relative to the threshold
(i.e., relative to the grid exhibiting the 95th percentile thresh-
old). It can be noted that the grids possessing an exposure in-
crease greater than the threshold value have HSPDE . 1.
Furthermore, four regions are defined with different relative
extents of increasing exposure based on the hotspot metric,
i.e., low (HSPDE # 0.2), moderate (0.2 , HSPDE # 0.6), high
(0.6 , HSPDE # 1), and very high (HSPDE . 1) population
exposure to compound extremes. Figure 9, along with Fig. S8
in the online supplemental material, show the spatial pattern
of the four regions for hot-dry and hot-wet extremes, respec-
tively, during F1 and F2. The spatial pattern of very high expo-
sure regions for the respective compound extreme is noticed
to be more or less similar under the four SSPs. Comparatively,
more areal extent with very high and low exposure level is
noted for the hot-wet extremes than that of the hot-dry

extremes. On the other hand, the moderate and high exposure
regions are spatially more extensive for hot-wet extremes. Fur-
ther, the hilly regions across the north Himalayan and north-
east regions and parts of Gujarat, Rajasthan, and Odisha are
expected to be the least affected from increasing population
exposure to compound extremes across all the SSPs and time
periods. Considering the two future periods, areal extent with
high and very high exposure to hot-wet and hot-dry extremes
tends to increase over time, that is, from F1 to F2 across the
Indo-Gangetic regions. On the contrary, the same is noted to
be decreasing with time across the southwestern regions. Fur-
thermore, areas in the Indo-Gangetic Plain are found to be the
future hotspots (very high population exposure) to both hot-
dry and hot-wet extremes, considering all the projected warm-
ing and population conditions. It can be noted that these are
the densely populated regions in the country based on current
population strength (Fig. S5a in the online supplemental
material). Apart from this, scattered locations across the
southernmost regions (entire Kerala, southern Karnataka, and
parts of Tamil Nadu) are noticed with very high population ex-
posure to the hot-wet extremes across all epochs and SSPs.
Similarly, some parts of the western coastal and central regions
are noted as the hotspots of population exposure considering
the hot-dry extremes.

Moreover, areas identified as hotspots owing to the rising
population exposure from the hot-dry and hot-wet events
may need more intervention in terms of climate change im-
pact assessment followed by effective adaptation and mitiga-
tion planning. For instance, the Indo-Gangetic Plain of India
is noted as a potential hotspot of population exposure to the
compound extremes. It is one of the largest plains in the
world, formed by multiple river systems, and it accommodates
extensive agricultural activities. The said region is densely
populated owing to favorable habitation conditions, including
adequate surface and groundwater, suitable climatic condi-
tions, and rich biodiversity. Nearly half of the total required
food grains for 40% of the population of India is produced
from this region solely (Pal et al. 2009). Furthermore, it plays
a prominent role toward the food production of the entire
South Asia region (Singh and Sontakke 2002). Therefore, fu-
ture increases in the compound extremes and the associated
rise in population exposure can substantially affect agricul-
tural production and other socioeconomic activities over the
Indo-Gangetic Plain (Jha et al. 2022). This, in consequence,
can affect other South Asia regions also in terms of future
food security.

To distinguish the relative contribution of climate and pop-
ulation toward the increasing future population exposure to
the compound extremes, the total change in exposure is pre-
sented in terms of its three components, namely, climate influ-
ence, population influence, and their combined influence (as
discussed in section 2b). Furthermore, climate extremes can
pose more adverse societal consequences over densely popu-
lated regions as compared with sparsely populated regions. In
this regard, four categories of populated regions (based on the
population strength in 2020), i.e., low, moderate, high, and very
high, are considered across India. Further, the three compo-
nents, climate influence, population influence, and combined
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FIG. 7. Future changes in population exposure to the compound hot-dry extremes, expressed in person-years,
for (left) near-future (2021–60) and (right) far-future (2061–2100) periods, considering four SSPs: (a) SSP1-2.6,
(b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5, across India.
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FIG. 8. As in Fig. 7, but for hot-wet compound extremes.
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FIG. 9. Future hotspots identified on the basis of the projected change in the population expo-
sure to hot-dry extremes considering the historical (1981–2020) and future periods [near future
(2021–60) and far future (2061–2100)], for four SSPs: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
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influence, are evaluated separately for the low, moderate, high,
and very high populated regions. Figure 10 (hot-wet extreme),
along with Fig. S9 in the online supplemental material (hot-dry
extreme), illustrate the decomposed contributions from the
three components along with the total change for the four re-
gions considering all the four SSPs during F1 and F2. The influ-
ence of the three contributing factors on increasing the
population exposure to compound extremes varies based on the
type of compound extreme, SSPs, future time epochs, and

regions. In general, the potential future population exposure to
hot-wet extremes is primarily influenced by the climate change
factor, while the population change largely drives the exposure
to hot-dry extremes. For instance, across the densely populated
areas, the dominant factor driving the rise in overall exposure to
the hot-wet extremes is the climate change influence, consistent
across all four SSPs. Additionally, when considering all four re-
gions, the same is noticed under SSP1 and SSP5 during both the
future periods. Considering both hot-wet and hot-dry extremes,

FIG. 10. Decomposition of the contribution from climate influence, population influence, and combined influence
toward the total projected change in population exposure to compound hot-wet extreme under four SSPs: SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5, over the four categories of populated regions based on the current (in the year 2020)
population strength, i.e., (a) low, (b) moderate, (c) high, and (d) very high. The first half of each bar plot in (a)–(d) up to
the vertical dashed dividing line shows results corresponding to near-future (F1: 2021–60), and the next half of the bar
plot shows results for far-future (F2: 2061–2100) time periods.
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the influence of climate is identified as the predominant factor
during the far future period, for majority of the regions and
SSPs, with the exception of SSP3. This emphasizes the crucial
role that future climate change plays in amplifying the popula-
tion exposure to compound extremes in a warmer future. On
the contrary, the predominant influence on increasing overall
population exposure to hot-dry extremes is attributed to future
changes in population under SSP3. Furthermore, the maximum
increase in the total population exposure to both hot-dry and
hot-wet extremes is noted during F2 under SSP3 across all four
regions, wherein the exposure to hot-wet extremes is dominated
by the combined influence from climate change and population
change. This indicates that the combined effects of population
increase and climate change can induce more risks of population
exposure. In general, a relatively greater increase in the expo-
sure is found in the SSP3 scenario for all the regions and time
periods, followed by SSP2, SSP5, and SSP1. As SSP3 is a high
population growth scenario (Jones and O’Neill 2016), the future
population influence is higher in SSP3 across all four regions,
which contributes toward a relatively higher increase in the com-
bined influence and the total exposure in consequence as com-
pared with the other SSPs. Further, SSP2 represents a moderate
population growth scenario; the worst climate change scenario,
SSP5, assumes low population growth; SSP1 is also driven by
slow population growth. Like SSP3, the relative increase in pop-
ulation under SSP2, SSP5, and SSP1 also follows the scenario
based assumptions across all four regions. Further, a consistent
increase in the total exposure is noticed from F1 to F2 in the
case of SSP2 and SSP3 for both hot-dry and hot-wet extremes.
However, a reduction in the total exposure is noted in F2 as of
that in F1 under the SSP1 and SSP5 scenarios. The reduction in
exposure mostly resulted from the projected decrease in popula-
tion and combined influence. However, climate change exerts a
greater effect on the exposure that offsets the negative contribu-
tion from population and results in increasing the total exposure.
Consistent positive climate influence for hot-wet and hot-dry
compound extremes indicates increase in the individual hot, dry,
and wet extremes in the future, irrespective of the four SSPs,
two epochs, and four regions. Previous studies reported higher
increase in the frequency of future hot extremes as compared
with the precipitation extremes across many regions of the
globe, including India (Li et al. 2021; Yaduvanshi et al. 2021).
Thus, the increase in both the hot-wet and hot-dry compound
extremes might be dominated by the projected hot extreme oc-
currences as compared with the wet/dry extremes. Unlike the
low, moderate, and highly populated regions, the declining pop-
ulation and combined influence components in SSP1 and SSP5
during F2 are not evidenced in the very highly populated re-
gions. It indicates that under all the socioeconomic development
pathways, the densely populated regions in India are going to be
more populated. Further, the projected increase in climate influ-
ence is also noted across all SSPs over the very highly populated
regions. Because of this, the said regions of the country are no-
ticed with considerably higher increase in population exposure
considering both hot-wet and hot-dry extremes. Consequently,
the densely populated regions at present are going to face en-
hanced societal vulnerability in future as compared with the rela-
tively less populated regions. Furthermore, future increase in the

exposure is expected to be more in the case of hot-wet extreme
relative to the hot-dry extremes during the far future period
across all SSPs and regions; however, during the near-future pe-
riod, it varies across the regions, and future warming and socio-
economic development scenarios. For instance, under the worst
climate change scenario SSP5, higher exposure level is noted
from the hot-wet extremes in the densely populated regions,
whereas, over the low and moderately populated regions, the
same is noted for the hot-dry extremes.

In brief, increased future population exposure from the
compound hot-dry and hot-wet extremes is associated with fu-
ture climate change to a great extent. Additionally, highly
populated regions in India are expected to experience more
adversity due to the hot-wet extremes in the future as compared
with the hot-dry extremes. More efforts to control future warm-
ing and increasing populations can lead to substantial societal
impacts being avoided in the future.

4. Conclusions

Compound precipitation–temperature extremes are expected
to be more frequent and intense in the future due to climate
change under continuing warming conditions. India being a
developing country with the largest population in the world,
growing exposure from the aforementioned compound ex-
tremes can pose huge societal impacts in multiple ways. In this
study, the temporal changes in the compound hot-dry and hot-
wet events and their influence on population exposure are
evaluated across India, considering both historical and future
time periods.

Recent decades (2001–20) have witnessed more frequent and
spatially extensive hot-dry and hot-wet extremes as compared
with the previous two time epochs (1951–80 and 1981–2000).
However, the historical increases in population exposure to the
hot-wet extreme have more prominence as compared with the
hot-dry events across the country. To estimate the expected fu-
ture changes in population exposure, the climate and population
projections are utilized under four Shared Socioeconomic Path-
ways (SSPs), i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
Our study indicates an increase of more than 10 million
person-year exposure (over 0.258 3 0.258 grid) from the com-
pound extremes across many regions of the country under the
worst climate change scenario, i.e., SSP5-8.5. Under a moder-
ate scenario, e.g., SSP3-7.0, the maximum extent of spatial cov-
erage is noticed with higher exposure and the least in the case
of SSP1-2.6. This can be attributed to the larger population
increase in SSP3-7.0, which represents the high population
growth scenario among the four SSPs. The Indo-Gangetic
Plain and southernmost coastal (western-coastal and central)
regions are found to be the future hotspots with the maximum
increase in exposure to hot-wet (hot-dry) extremes under all
the projected warming and population scenarios. Further, the
contribution from climate, population, and their combined in-
fluence toward the expected exposure increase are assessed
over the four categories of populated regions (i.e., low, moder-
ate, high, and very high populated regions) based on the cur-
rent population strength.
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Our study further indicates that climate change factor is go-
ing to contribute the most toward the exposure increase to
hot-wet extremes in comparison with the other two factors,
i.e., change in population and combined change in both popu-
lation and climate characteristics in the future. However, the
maximum increase in exposure for each of the four regions is
dominated by the combined influence of climate and popula-
tion. This indicates that the combined effects of population
increase concurrent with climate change can induce more soci-
etal adversities. Reduced exposure is noticed under SSP1-2.6
and SSP 5-8.5, which mostly resulted from the projected de-
crease in population and combined influence during the far fu-
ture period. The densely populated regions of the country at
present are going to exhibit a considerably higher increase in
future population exposure as compared with that of the low-
populated regions. Furthermore, the highly populated regions
will be more exposed to the hot-wet extremes in the future as
compared with the hot-dry extremes. Understanding from this
study can contribute to assessing climate change risks from the
compound hydroclimatic extremes across India. Estimated fu-
ture changes in population exposure across different regions
from the hot-dry and hot-wet extremes can assist in reducing
socioeconomic consequences in the future.

Last, the analysis and conclusions are based on the climate
simulations obtained in the latest GCMs (under CMIP6). Fur-
ther improvement in terms of quality and spatial resolution of
the outputs will help us to get a better assessment. Projected
population growth also holds uncertainty as it may differ from
the real future growth owing to the assumption-based future
socioeconomic developments, particularly in the indicated
hotspot regions. Nonetheless, the results will definitely be
helpful for adopting socioeconomic decisions toward the wel-
fare of society.
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