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Abstract

The availability of architecture-level models of software can aid the development of the

software by preventing architecture degradation and easing maintenance of the software.

Further, architecture-based performance prediction (AbPP) can be used to diagnose per-

formance issues during the implementation of software. Architecture-level performance

models, like the Palladio Component Model (PCM), can realise both these benefits. Pre-

viously, manual intervention was required to create and repeatedly update such models

during the development of software. This tedious process hinders the wider adoption

of such procedures in practice. Approaches that can automatically create, update and

calibrate instances of e.g. the PCM during the development of software are required to tap

these potential benefits of AbPP.

The Continuous Integration of PerformanceModels (CIPM) approach can be employed to

automatically make a calibrated architecture-level performance model, the PCM, available

during the development of software. The approach leverages the Vitruvius framework, the

Co-Evolution approach, and adaptive instrumentation to achieve the automatic updating of

the PCM. A prototypical implementation of the CIPM approach targets microservice-based

web applications implemented in the Java programming language. No implementations

for other programming languages exist and the process of adapting the CIPM approach to

support another programming language has previously not been explored.

In this thesis we present an approach to adapting the CIPM approach to support Lua-

based sensor applications. We contribute a code model for the Lua language based on an

Xtext grammar. The code model is integrated into the CIPM approach by implementing

Consistency Preservation Rules of the Vitruvius framework. We developed a partial

prototypical implementation of the adapted approach. The implementation of the adaptive

instrumentation which is required to complete the implementation of the approach was

omitted.

The prototypical implementation was evaluated using real-world Lua-based sensor

applications from the SICK AppSpace ecosystem. While the evaluation demonstrates the

feasibility of the adapted approach, it also reveals minor technical issues with the prototyp-

ical implementation. Future work is required to complete the prototypical implementation

and address the remaining technical issues and limitations.
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Zusammenfassung

Die Verfügbarkeit von Softwaremodellen auf Architekturebene kann die Entwicklung

von Software unterstützen, indem sie eine Verschlechterung der Architektur verhindert

und die Wartung der Software erleichtert. Außerdem kann die architekturbasierte Leis-

tungsvorhersage (engl. architecture-based performance prediction (AbPP)) verwendet

werden, um Leistungsprobleme während der Implementierung von Software zu diagnosti-

zieren. Leistungsmodelle auf Architekturebene, wie das Palladio Komponenten Modell

(engl. Palladio Component Model (PCM)), können diese beiden Vorteile realisieren. Bisher

war ein manueller Eingriff erforderlich um solche Modelle während der Softwareentwick-

lung zu erstellen und wiederholt zu aktualisieren. Dieser langwierige Prozess behindert

die breitere Anwendung solcher Verfahren in der Praxis. Ansätze die Instanzen solcher

Modelle während der Softwareentwicklung automatisch erstellen, aktualisieren und kali-

brieren können sind erforderlich, um die potenziellen Vorteile von architekturbasierter

Leistungsvorhersage zu realisieren.

Der Ansatz der kontinuierlichen Integration von Leistungsmodellen (engl. Continuous

Integration of Performance Models (CIPM)) kann eingesetzt werden, um ein kalibriertes

Leistungsmodell auf Architekturebene, das PCM, automatisch während der Softwareent-

wicklung zur Verfügung zu stellen. Der Ansatz nutzt das Vitruvius-Framework, den darauf

aufbauenden Co-Evolution-Ansatz und adaptiven Instrumentierung, um die automatische

Aktualisierung des PCM zu erreichen. Es existiert eine prototypische Implementierung

des CIPM-Ansatzes für auf Microservices basierten Webanwendungen, die in der Pro-

grammiersprache Java implementiert sind. Es gibt keine Implementierungen für andere

Programmiersprachen, und der Anpassungsprozess des CIPM-Ansatzes um eine andere

Programmiersprache zu unterstützen, wurde bisher nicht erforscht.

Wir präsentieren in dieser Arbeit einen Ansatz zur Anpassung des CIPM-Ansatzes zur

Unterstützung von Lua-basierten Sensoranwendungen. Wir entwickeln ein Codemodell

für die Lua-Programmiersprache, das auf einer Xtext-Grammatik basiert. Das Codemodell

wird in den CIPM-Ansatz integriert, indem so genannte Konsistenzerhaltungsregeln des

Vitruvius-Frameworks implementiert wurden. Wir haben eine partielle prototypische

Implementierung des angepassten Ansatzes erstellt. Aus Zeitgründen mussten wir die

Implementierung der adaptiven Instrumentierung weggelassen, welche für die vollstän-

dige Implementierung des Ansatzes erforderlich ist. Die prototypische Implementierung

wurde mit realen Lua-basierten Sensoranwendungen aus dem SICK-AppSpace-Ökosystem

evaluiert. Die Evaluation zeigt die machbarkeit des angepassten Ansatzes. Zudem deckte

die Evaluation kleinere technische Probleme mit der prototypischen Implementierung auf.

Weiterer Forschungsbedarf besteht, um die prototypische Implementierung zu vervoll-

ständigen, die verbleibenden technischen Probleme und Einschränkungen zu beheben.

iii





Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Agile Software Development . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Model-Driven Software Development . . . . . . . . . . . . . . . . . . . . 4

2.2.1. Model-Driven Architecture . . . . . . . . . . . . . . . . . . . . . 4

2.2.2. Eclipse Modeling Framework . . . . . . . . . . . . . . . . . . . . 4

2.2.3. Change Derivation of Models . . . . . . . . . . . . . . . . . . . . 5

2.3. Xtext Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4. Vitruvius: View-Centric Engineering using a Virtual Single Underlying

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5. Palladio Component Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1. Service Effect Specifications . . . . . . . . . . . . . . . . . . . . . 8

2.5.2. SEFF Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6. The Co-Evolution Approach . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7. Continuous Integration of Performance Models . . . . . . . . . . . . . . 10

2.7.1. Commit-Based Continuous Integration of Performance Models . 10

2.7.2. Model Update Process . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7.3. Instrumentation Meta-Model . . . . . . . . . . . . . . . . . . . . 11

2.7.4. Adaptive Instrumentation . . . . . . . . . . . . . . . . . . . . . . 11

2.7.5. Prototypical Implementation . . . . . . . . . . . . . . . . . . . . 12

2.8. The Lua Programming Language . . . . . . . . . . . . . . . . . . . . . . . 12

2.9. SICK AppSpace Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Approach Overview 17
3.1. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3. Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5. Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4. The CIPM Approach for Lua-Based Sensor Applications 21
4.1. Lua Code Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2. Consistency between the Lua Code Model and the PCM Repository Model 23

v



Contents

4.3. Fine-Grained Incremental SEFF Update . . . . . . . . . . . . . . . . . . . 24

4.4. Consistency between the Lua Code Model and the Instrumentation Model 27

4.5. Prototypical Implementation of the CIPM Approach for Lua-Based Sensor

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5.1. Prototypical Implementation of the Commit-Based CIPM Approach 28

4.5.2. Changes to the Previous Implementation . . . . . . . . . . . . . . 28

4.5.3. Lua Code Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.4. Detection of the SICK AppSpace Apps . . . . . . . . . . . . . . . 31

4.5.5. Hierarchical State-Based Change Resolution . . . . . . . . . . . . 31

4.5.6. CPRs from the Lua Code Model . . . . . . . . . . . . . . . . . . . 31

4.5.7. CPRs to the IMM . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. Evaluation 37
5.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1. Jaccard Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2. F-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.3. Total Instrumentation Point Activation . . . . . . . . . . . . . . . 39

5.2. GQM Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3. Case Study Requirements and Application Concepts . . . . . . . . . . . . 43

5.4. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1. Case Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.2. Case Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.1. E1: Propagation of Case Study 1 . . . . . . . . . . . . . . . . . . . 48

5.5.2. E2: Propagation of Case Study 2 . . . . . . . . . . . . . . . . . . . 58

5.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7. Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7.1. Internal Threats to Validity . . . . . . . . . . . . . . . . . . . . . 70

5.7.2. External Threats to Validity . . . . . . . . . . . . . . . . . . . . . 72

6. Related Work 73
6.1. Lua Analysis in Rascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2. SiDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3. Semantic Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4. A posteriori Operation Detection in Evolving Software Models . . . . . . 76

7. Conclusion and Future Work 79
7.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 81

A. Appendix 85
A.1. Reaction Coverage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



List of Figures

2.1. Overview of the Palladio approach[6]. . . . . . . . . . . . . . . . . . . . . 7

2.2. An overview of the PCM Repository meta model based on [6]. . . . . . . 14

2.3. A pair of source code and the corresponding Resource Demanding SEFF

(RDSEFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. An overview of the model update process of the CIPM approach [31] . . 15

2.5. The extended Instrumentation Meta-Model as presented by Monschein [33] 16

2.6. Two equivalent Lua statements . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1. A partial overview over the code meta-model. . . . . . . . . . . . . . . . 22

4.2. Illustration of the fusion of the InternalActions of two statements which

contain only internal calls. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3. An internal statement is inserted between statements corresponding to the

same fused InternalAction. It is therefore also fused to this InternalAction 26

4.4. Illustration of an action insertion that causes the splitting of an internal

action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5. An overview over the workflow of the approach annotated with informa-

tion regarding the state of the prototypical implementation regarding the

respective process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6. The adapted commit integration architecture of the prototypical imple-

mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1. The components of Case Study 1 and their interaction. . . . . . . . . . . 46

5.2. An exemplary overview over the contents of the repository after the

propagation of commit 5 of case study 1. . . . . . . . . . . . . . . . . . . 49

5.3. An exemplary SEFF of the previous repository after the propagation of

commit 5 of case study 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1. Coverage data for the reactions from the Lua code model during the exe-

cution of experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2. Coverage data for the reactions from the repository model of the PCM to

the instrumentation model during the execution of experiment 1. . . . . 87

A.3. Coverage data for the reactions from the Lua code model during the exe-

cution of experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4. Coverage data for the reactions from the repository model of the PCM to

the instrumentation model during the execution of experiment 2. . . . . 89

vii





List of Tables

4.1. Class mapping between the code meta-model and the Repository meta-

model of the Palladio Component Model (PCM). . . . . . . . . . . . . . . 23

4.2. Correspondences between the code model and the PCM repository model

as created by the CPRs of the prototypical implementation. . . . . . . . . 34

5.1. The classification of matching results regarding service instrumentation

for the calculation of an F-Score. . . . . . . . . . . . . . . . . . . . . . . . 42

5.2. The classification of matching results regarding action instrumentation

for the calculation of an F-Score. . . . . . . . . . . . . . . . . . . . . . . . 42

5.3. The classification of matching results regarding adaptive action instru-

mentation for the calculation of an F-Score. . . . . . . . . . . . . . . . . . 43

5.4. Requirement satisfaction of the case study application concepts. . . . . . 44

5.5. The commits of case study 1 . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6. Characterisation of the case study 1 application for the given commits . 47

5.7. The selected git commit history of case study 2. . . . . . . . . . . . . . . 48

5.8. The selected git commit history of case study 2. . . . . . . . . . . . . . . 48

5.9. Total source code size for the commits of case study 2. . . . . . . . . . . . 49

5.10. The results of experiment E1: Correctness of the code model. . . . . . . . 51

5.11. The results of experiment E1: Correctness of the code model update process. 51

5.12. Results of experiment E1: Correctness of the CPRs between the Lua code

model and the PCM repository model measured by comparison with man-

ually created reference models. . . . . . . . . . . . . . . . . . . . . . . . . 52

5.13. Results of experiment E1: Correctness of the CPRs between the Lua code

model and the PCM repository model measured by comparison with an

automatically created reference model. . . . . . . . . . . . . . . . . . . . 53

5.14. Results of experiment E1: Correctness of the CPRs between the PCM

repository model and the instrumentation model, with regard to the in-

strumentation of services. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.15. Results of experiment E1: Correctness of the CPRs between the PCM

repository model and the instrumentation model, with regard to the in-

strumentation of actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.16. Results of experiment E1: Correctness of the CPRs between the PCM

repository model and the instrumentation model, with regard to the in-

strumentation of actions since the last instrumentation. . . . . . . . . . . 55

5.17. The results of experiment E1: Existing Apps and created PCM Components. 56

5.18. Results of experiment E1: Potential reduction of monitoring overhead. . 57

5.19. Execution time and numbers of changes of the change propagation of the

commits of case study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



List of Tables

5.20. Results of experiment 2 regarding the code model correctness . . . . . . 59

5.21. code model update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.22. Results of experiment E2: Correctness of the CPRs between the Lua code

model and the PCM repository model measured by comparison with an

automatically created reference model. . . . . . . . . . . . . . . . . . . . 61

5.23. Results of experiment E2: Correctness of the CPRs between the PCM

repository model and the instrumentation model, with regard to the in-

strumentation of services. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.24. Results of experiment E2: Correctness of the CPRs between the PCM

repository model and the instrumentation model, with regard to the in-

strumentation of actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.25. Results of experiment E2: Correctness of the CPRs between the PCM

repository model and the instrumentation model, with regard to the in-

strumentation of actions since the last instrumentation. . . . . . . . . . . 63

5.26. Results of experiment E2: Potential reduction of monitoring overhead. . 65

5.27. Execution time and numbers of changes of the change propagation of the

commits of case study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1. Comparison of LuaAiR to the presented approach. . . . . . . . . . . . . . 74

x



1. Introduction

Managing the performance of software and especially the degradation of software perfor-

mance is a challenging endeavour. The development of software can benefit significantly

from systematic performance management approaches. Both a-priori (e.g. architecture-

based performance prediction (AbPP)) and a-posteriori (e.g. performance testing) ap-

proaches to performance management exist. AbPP usually has no need to implement

a performance prototype and is therefore usable for software that is developed accord-

ing to the procedures of agile software development, which has become popular in the

community [5].

Smart and programmable sensor hardware, the behaviour of which can be customized

using software, has become available. In contrast to commodity hardware there sensor

nodes have limited capabilities. Further, the deployed hardware of such sensors is more

heterogeneous. Regarding the development of sensor applications, AbPP can therefore aid

answering the following questions.

• How would the relocation of sensor data processing into the cloud affect the extra-

functional aspects of the application?

• Is it worthwhile to do pre-filtering of sensor output on a less capable sensor node?

• What performance is expected from using more affordable hardware for the compute

nodes of the network?

Architecture-level performance models, like the Palladio Component Model (PCM), can

be used for AbPP [6]. In addition the availability of architecture-level models of software

can aid the development of the software by preventing architecture degradation and easing

maintenance of the software. Previously, manual intervention was required to create

and repeatedly update models as the PCM during the development of software. This

lengthy and tedious process has prevented the adoption of such techniques. Approaches

that can automatically create, update and calibrate instances of e.g. the PCM during the

development of software are required to tap these potential benefits of AbPP.

The Continuous Integration of PerformanceModels (CIPM) approach can be employed to

automatically make a calibrated architecture-level performance model, the PCM, available

during the development of software [31, 6]. In addition to the PCM the CIPM approach uses

a model of the source code of the application and an instrumentation model. The approach

uses the Vitruvius framework to keep the the three models consistent with each other.

When the source code changes the code model of the Vitruvius framework is updated

and changes to it are propagated to the other models. To limit the monitoring overhead

adaptive instrumentation is used: Only changed parts of the software are instrumented

to calibrate the PCM after changes were made to the source code. This is achieved

1



1. Introduction

using the instrumentation model. The approach is implemented in the form of two

prototypical implementations: The first implementation contributed the monitoring of the

instrumentation points of the instrumentation model and the subsequent calibration of

the PCM [33]. The second prototypical implementation of the CIPM implements the rest

of the approach in form of a continuous integration pipeline: It targets microservice-based

web applications implemented in the Java programming language. No implementations

for other programming languages exist and the process of adapting the CIPM approach to

support another programming language has not been previously explored.

In this thesis we present an approach to extending the CIPM approach with support for

Lua-based sensor applications. We contribute a code model for the Lua language based

on an Xtext grammar [50]. For this code model a matching is implemented, so changes

to the code model can be derived by the approach. The code model is integrated into the

CIPM approach by implementing Consistency Preservation Rules (CPRs) of the Vitruvius

framework. We developed a prototypical implementation of the adapted approach. Because

of the time constraints of this thesis we could not implement the adaptive instrumentation

which is required to complete the implementation of the approach. For the evaluation

of the prototypical implementation the SICK AppSpace ecosystem of sensor applications

implemented using the Lua programming language is used. We evaluated the prototypical

implementation using both aminimal running application composed of sample applications

of the SICK AppSpace and a real-world sensor applications for the detection and sorting

of objects using their color. We demonstrate the feasibility of the adapted approach using

an evaluation based on a Goal Question Metric (GQM) plan. Still, minor technical issues

with the prototypical implementation remain and could be addressed by future work.

Further, future work is required to complete the prototypical implementation and to

address limitations of the approach, like the omission of modelling of types.

The structure of this thesis is as follows. The foundations are laid out in chapter 2.

An overview over the approach structured according to the PRICoBE principle can be

found in chapter 3 [35]. The CIPM approach for Lua-based sensor applications and its

prototypical implementation are presented in chapter 4. The evaluation of the prototypical

implementation which is based on a GQM plan is discussed in chapter 5. Related work is

presented in chapter 6. Finally, this thesis is concluded and possible future work is outlined

in chapter 7.

2



2. Foundations

This chapter outlines the foundations of the presented approach.

The popularity of agile software development is the foundational motivation behind

the presented approach. Agile software development is introduced in section 2.1. The

basic concepts of software modeling and Model-Driven Software Development (MDSD)

are introduced in section 2.2. The Eclipse Modeling framework, which serves as the

technological foundation for the modeling activities of the approach is presented in

subsection 2.2.2. Xtext, a project for textual modeling is introduced in section 2.3.

The Vitrivius approach to keeping software models consistent is presented in section 2.4.

The PCM, a meta-model for amongst other things the architecture and performance

software models is presented in section 2.5. Building further on Vitrivius, the Co-Evolution

approach is introduced in section 2.6. The Continuous Integration of Performance Models

approach, which the presented approach is based upon is presented it section 2.7. The

presented approach extends the CIPM approach with support for applications written

in the Lua programming language, which is outlined in section 2.8. The approach we

will present in this thesis is evaluated using Lua applications from the SICK AppSpace

ecosystem, which is introduced in section 2.9.

2.1. Agile Software Development

Agile software development was popularized in the 2001 Agile Manifesto [5]. The man-

ifestos principles aim for software development with shorter release cycles even down

to a couple of weeks [5]. The principles further include “[Welcoming] changing require-

ments”[5]. Changed requirements usually lead to changes of the software architecture.

Redesigning software architecture is a challenging endeavour, especially in a short time

frame. Applying agile software development in practice is aided by further practices,

which will be outlined below.

Continuous Integration (CI) is the practice of frequently integrating the developer

changes. The term was first used by Grady Booch in 1991 [7]. A typical frequency for

the integration is daily integration. The practice is used to keep the development team

in synchronisation, which is required when the software is incrementally developed like

with agile software development.

Continuous Delivery (CD) extends the Continuous Integration with delivering the

integrated software regularly. This is usually achieved through pipelines, which are often

called CI/CD pipelines. Changes by the developers are checked into a Version Control

System (VCS), like Git [14]. When the changes are pushed to the server the pipeline can

automatically build the software, run the test suite, deliver build artifacts or even deploy

3



2. Foundations

the software in a live server. The automation aids the developers with the frequent releases

of agile software development.

2.2. Model-Driven Software Development

This section will introduce basic concepts of software modelling. The Model-Driven

Architecture (MDA) is introduced in subsection 2.2.1. Methods for finding the differences

between models can be found in subsection 4.5.5.

Model-Driven Software Development is a term for techniques to develop software using

or driven-by models.

Models have three properties according to Stachowiaks general model theory [42]: They

are always models or representations of something, the mapping property. The reduction

property defines that models in general do not reproduce every aspect of the thing they

are representing. Finally, according to the pragmatic property models may be ambiguously

assigned to their originals and they fulfill their replacement function only for certain

subjects, time frames and mental or actual operations. In the case of models that describe

other models we speak of meta models, or models about models.

The goals of model driven software development are to decrease the development time of

software and to increase the quality of the software [43]. By separating different concerns

of software during its implementation, the maintainability and adaptability should be

eased. In addition code redundancy can be decreased and code reuse should be can be

increased.

2.2.1. Model-Driven Architecture

The Object Management Group (OMG) is a standards consortium in the field of the

computer industry [15]. MDA is a certain procedure for the model-driven software

developmentwhich is standardized by the OMG [8]. The goal ofMDA is the interoperability

and portability of models and tools. MDA bundles other OMG standards, such as the Meta-

Object Facility (MOF), a meta meta model [32] that defines how meta models within MDA

are structured. This assures that the models and meta models or modelling languages of
MDA are interoperable. Other standards of MDA include XMLMetadata Interchange (XMI),

an file format for the exchange and persistence of the models based on Extensible Markup

Language (XML). XML is a text file format also described as a metamarkup language [16],
which means that XML files do not contain a fixed set of tags but instead one can flexibly

define the available tags through extension.

2.2.2. Eclipse Modeling Framework

The Eclipse Integrated development environment (IDE) is an extensive software develop-

ment platform [11]. Eclipse is based on a plugin architecture, which makes a large amount

of eclipses functionality extensible and customizable. While eclipse is especially popular

with programming languages of the Java ecosystem, it supports a very large amount of

programming languages and many customized versions of the eclipse IDE for specific use
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cases are available. One of these are the Eclipse Modeling Tools, which is intended for use

with projects using practices like the previously introduced MDSD.

Themodeling tools are build on an extensive collection of software forMDSD, the Eclipse

Modeling Framework. Eclipse Modeling Framework (EMF) project provides facilities for

modeling various kinds of data and information [12]. Central to the EMF project is the Ecore
meta meta model, which is an implementation of OMGs Essential Meta-Object Facility

(EMOF), a subset of the previously introduced MOF. Viewers and editors are available

for the Ecore based models. E.g. ecore model can be edited in the eclipse IDE. Persistent

information is modelled using Ecore Resources. Ecore Resources can be serialized and

deserialized using the previously introduced XMI format. The EMF includes facilities for

Java code generation for its on meta models. This allows the programmatic traversal and

manipulation of the models in Java applications. Further, EMF has validation facilities that

can be used to automatically determine if a model is fitting its meta model.

The sub project EMF Compare can be used to find the differences of or merge two

versions of a models. EMF Compare allows both two-way and three way (two models with

a common ancestor) model merging. Methods for deriving changes in models using EMF

Compare are described in the next section.

2.2.3. Change Derivation of Models

An important aspect of model-based software engineering (MBSE) the evolution of the

software models. The differences or changes to a software models are often used in existing

approaches, like the Vitruvius approach, as a basis for further action [48].

Models may be changed incrementally by developers or architects, which of course is

trivial, as one can just record the atomic changes the operator makes. A more challenging

case are models that are generated automatically based on their original, an example being

a source code model that is generated by parsing a version of the source code. A changed

original may cause non atomic changes to the model. In this case state based change

resolution approaches can be used to find the difference between the old and the new

version of the model.

As previously introduced EMF Compare can be used for finding the differences between

two Ecore models [13]. In addition EMF compare can be used to merge two Ecore models

into a single model. The project provides default implementations for match engines, that

match individual elements of the models with each other. Depending on the used model it

may be necessary to implement a model specific match engine for EMF Compare to be

able to derive the differences between the models correctly.

To obtain a change sequence between an old and a new version of a model one first

determines the differences of the two model versions. These differences are then applied

to the old model version, while changes to the underlying are recorded by using EMF

adapters. The recorded changes to the old version are the change sequence from the old

model version to the new. This approach is used by the Vitruvius approach [21].
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2.3. Xtext Framework

Xtext is a framework for textual modeling [50]. As such it can be used to develop Domain-

Specific Languages (DSLs), Domain-Specific Modelling Languages (DSMLs) and even

general purpose programming languages [50]. Xtext uses Ecore-based models to integrate

the textual models with the wider EMF ecosystem. The project can operate in two modes:

If an Ecore model already exists and a textual model shall be defined, one must implement

an Xtext grammar, that is later used parse and create the textual models. If no Ecore model

exists, one defines the textual model by again implementing an Xtext grammar. Xtext can

then infer an Ecore model from the production rules of the grammar.

Xtext is integrated into the Eclipse IDE and a language or textual model implemented

with Xtext has automatic support in Eclipse. This includes syntax highlighting, validation

of code and automatic code generation. Xtext uses ANTLR 3 to generate a parser for the

implemented language [34, 1]. The parser can parse files of the language into an model and

persist them as Ecore resources [51]. To facilitate this Xtext generates an Ecore language

meta-model for the programming language from the Xtext grammar. Consequently the

models which are obtained by the parser can be used by any project using Ecore models

[12]. This allows the handling of the parsed code model by projects like Vitruvius, which

we will discuss later in this section.

2.4. Vitruvius: View-Centric Engineering using a Virtual Single
Underlying Model

Vitruvius is a framework for view based software development [21]. In the context of MBSE

software is usually described using multiple models, which describe a certain aspect of

the software. Keeping the various models consistent is a challenging endeavour. The data

of the underlying models is available through views which can aggregate the information

spread to multiple models.

Orthographic Software Modeling (OSM) is a view-based modeling approach that models

different aspects or dimensions of software using different views [3]. They employ a Single

Underlying Model (SUM) to contain all information about the modelled entities [4]. In

addition the derive separate view models for different perspectives on the overall model.

Vitruvius extends this notion to a Virtual Single Underlying Model (V-SUM) [28]. In order

for the larger V-SUM to keep its validity, the various models within the Vitruv V-SUM

must be kept consistent, in case on of its models is changed. The changes in one model

must be "semantically" also made in the other models. For this the Vitruvius approach

keeps using so-called CPRs, which we will discuss later in this section.

To aid the consistency preservation, Vitruvius uses a correspondence model to associate

model elements of different models with each other. For example a function element of a

code model may correspond to its representation in an architectural model.

So called CPRs are used to keep multiple models of a Vitruvius V-SUM consistent. The

rules are defined using two DSLs: the reactions language and formerly the mappings
language. For the purpose of this thesis we focus on the reactions language.
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Using the reaction language it is possible to define how changes in one single model

of the V-SUM can be "transferred" to other models of the V-SUM. An example would be

how changes in the code model of a software in development can be transferred to an

architectural model. The reactions language allows the use of two kinds of statements:

Reactions itself and routines. Reactions have a trigger, which specifies to what changes

in the first model changes need to be made in the second model. Examples for triggers,

are the creation or deletion of model elements, and attribute changes of model elements.

In addition reactions contain instructions that are executed when the reaction triggers.

These instructions are implemented using Xtend a language that transpiles to the Java

language. From these instructions routines can be called.

Routines are extended functions for the manipulation and traversal of the Virtual

Single Underlying Model (VSUM). They have a match block that can be used to retrieve

corresponding model elements of the function arguments. If a model element has no

correspondence the routine may not be executed. Further routines can be used to create

model elements in the second model. Again arbitrary Xtend code can be used to manipulate

the models so consistency is preserved.

2.5. Palladio Component Model

This section introduces the Palladio Component Model (PCM), which is employed in the

CIPM approach as meta-model as the architecural performance model. PCM is a meta-

model for the performance prediction of component based software architectures [6]. The

PCM was conceived as part of the Palladio approach [6].

Figure 2.1.: Overview of the Palladio approach[6].

An overview over the complete palladio process can be seen in Figure 2.1. The actors

of four different roles (component developer, system architect, system deployer and do-

main experts) can contribute to the development of a corresponding model instance. The

component specifications are modelled using Repository models. An overview over the
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Repository meta model is depicted in Figure 2.2. The central class of the meta model is

the Repository. It is composed of an arbitrary amount of Interfaces and BasicCompo-

nents. The functionality provided by components through its Application Programmable

Interface (API) are referred to as services. Interfaces in turn are composed of Signatures,

which describe the functions or services of an interface. They include the service name

and contain further model the parameters a function takes (omitted in the figure). The

BasicComponents are composed of Service Effect Specification, that model the behaviour

and resource demand of the services provided by the component. The structure of Service

Effect Specifications (SEFFs) is further discussed in subsection 2.5.1.

2.5.1. Service Effect Specifications

SEFFs or more precisely Resource Demanding SEFF (RDSEFF) model the behaviour of

component services of the PCM. An example pair of source code and the corresponding

RDSEFF can be seen in Figure 2.3.

SEFFs have an associated signature and contain multiple actions, their step behaviour.
The step behaviour starts with a StartAction and ends with a StopAction. The control flow

of the function between the StartAction and StopAction is modelled using ForkActions

and LoopActions and BranchActions. Other behaviour besides control flow is modelled

using the following Actions.

• ExternalCallActions are used to express invocations of services of other components.

They reference the signature of the called service.

• InternalCallActions model calls to functionality of a component that is not modelled

as a service. Because of this InternalCallActions contain additional step behaviour

for this functionality.

• InternalActions represent any remaining resource demanding behaviour.

The actions can have resource demanding (RD) behaviour, e.g., an action could take 1000

CPU cycles to process. The resource demanding behaviour can be modelled as constants,

probability distributions, and functions of random variables [6]. Using the resource

demands of the actions of a service the its actual resource demand can subsequently be

simulated. This enables the analysis of qualitative aspects of the software like performance

measures. A prominent performance measure in this context is response time.

2.5.2. SEFF Reconstruction

This subsection will introduce previous approaches to reverse engineer SEFFs.

2.5.2.1. Static SEFF Reconstruction

Krogmann presented an approach to static reverse engineering of RDSEFFs [25]. The

approach uses static control flow analysis to reconstruct a SEFF for a software method.

Initially all relevant calls by a given definition are identified and marked. Starting from

all the marked calls, all control flow statements, like loops and branches are transitively
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marked beginning with the marked call and terminating at the root of the reconstructed

method. Using all the marked calls and statements the abstract control flow of the method

can be reconstructed and a RDSEFF with this control flow can be created for the method.

2.5.2.2. Change-Driven SEFF Reconstruction

Langhammer extended the previously presented static SEFF reconstruction with an ap-

proach to a change-driven incremental SEFF reconstruction [28]. This approach is further

integrated with the Co-Evolution approach. Exported methods have a corresponding SEFF

through the Vitruv correspondence model. If changes are made to methods that have a

corresponding SEFF, a new SEFF is reconstructed for the method and replaces the old SEFF

in the correspondence.

Langhammer maps the marked calls to abstract actions of the PCM. External calls

are mapped to ExternalCallActions, library calls and internal calls are mapped to Inter-

nalActions. For this mapping specific external/library/etc. call finders are implemented

[28]. Every method gets StartAction and a StopAction, before and after the reconstructed

control flow. For external calls the called signatures and required role are determined by

mapping-specific finders.

A potential down side of the approach is that the old SEFF of a changed method is not

reused.

2.5.2.3. Fine-Grained Incremental SEFF Reconstruction

Dahmane proposed an approach for incremental fine-grained SEFF reconstruction [9].

The process is referred to as incremental as the old SEFF is reused.

If changes in a method corresponding to a SEFF are detected, a new SEFF for the method

is reconstructed using the previously described method. The new SEFF is matched with

the old SEFF. Elements of the seff are considered equal if they reference the same source

code elements. Unmatched elements of the old SEFF indicated deletions in the method,

which consequently are deleted from the SEFF. Unmatched elements of the new SEFF are

changes to the method. These will be included in the resulting SEFF.

The evaluation of the approach showed that loop actions could not be correctly matched

because comparing the statements of a loop action was not possible.

2.6. The Co-Evolution Approach

Langhammer presented the Co-Evolution approach, which can be employed to automati-

cally keep consistency between source code and a PCM instance [27]. The Co-Evolution

approach was prototypically implemented for Java and is embedded in the Vitruvius

approach. The Java Model Parser Printer (JaMoPP) is used to parse Java source code into

an Ecore-based Code Model (CM) [17]. In addition, JaMoPP can print a CM as source code.

Langhammer contributed multiple technology-specific CPRs. For example CPRs that can

keep the consistency between Java source code based on Enterprise Java Beans and a PCM

instance were contributed.
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2.7. Continuous Integration of Performance Models

The CIPM approach aims to make up-to-date architectural software models, like the PCM,

available during the complete development and operation of software [31]. The approach

presents a complete model-based DevOps pipeline, which makes the adoption of the

approach in the context of agile software development (see section 2.1) feasible.

Generating an architectural performance model from scratch and calibrating it with

performance model parameters (PMPs) can be prohibitively time consuming. The ap-

proach employs two mechanisms to achieve more efficient updating and calibration of the

architectural performance models:

• Incremental model updating inspired by and reusing parts of the Co-Evolution

approach as presented in section 2.6.

• Adaptive instrumentation (see subsection 2.7.4)

An example of the performance model update workflow is presented in subsection 2.7.2.

Details regarding the prototypical implementation of the CIPM approach can be found in

subsection 2.7.5.

2.7.1. Commit-Based Continuous Integration of Performance Models

Armbruster presented an approach to commit-based Continuous Integration of Perfor-

mance Models [2]. They addressed open issues with the approach and presented an

complete commit integration pipeline by extending the prototypical implementation of the

CIPM approach. This prototypical implementation is further discussed in subsection 2.7.5

as it is the basis for the prototypical implementation of the approach presented in this

thesis.

Armbruster further evaluated the CIPM approach using TeaStore, a microservice based

Java web application designed for benchmarking and testing [49]. They found that the

approach operated correctly, albeit with several limitations.

2.7.2. Model Update Process

The process of updating an architectural performance model is depicted in Figure 2.4. Ini-

tially a software developer makes changes to the software, commits them and pushes them

to a repository. The DevOps pipeline triggers the depicted update process. A parser parses

the source code into a CM. A change sequence is derived by comparing the new CM with

the code model that resides in the Vitruv VSUM. This change sequence is propagated into

the VSUM, which also triggers CPRs of the architectural model. The implemented CPRs

react to the changes and further propagate the changes to the architectural performance

model, e.g., an instance of the PCM. The CPRs further populate the Instrumentation Model

(IM) with information which parts of the code were changed and consequently need to be

instrumented now. Using the updated CM and IM, the source code is adaptively instru-

mented (see again subsection 2.7.4). The instrumented code is executed and monitored.

This yields PMPs which are fed back to the architectural performance model. Examples
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for such PMPs are branch probabilities, resource demands of actions and loop iteration

numbers [31]. The performance model is now calibrated and can be used for AbPP of the

software.

2.7.3. Instrumentation Meta-Model

The Ecore-based InstrumentationMeta-Model (IMM)was originally presented by Dahmane

[9]. An instrumentation model as defined by the IMM describes, which PCM services

of an application must be instrumented and monitored so all the needed PMPs for the

calibration of the respective PCM. As the original IMM operated an the service level,

changes within the behaviour of a service would cause the complete behaviour of the

service to get instrumented. This characteristic is sub-optimal in terms of monitoring

overhead.

To combat this, Monschein extended the IMM [33]. In addition to the modelled infor-

mation of the original IMM, the extended IMM also describes, which actions of a PCM

service were changed. This increase in granularity, permits a more precise instrumentation.

Changes within a service behaviour will only result in the instrumentation of the changed

parts of the service (based on the information of the extended IMM).

The extended IMM is depicted in Figure 2.5. The central element of the extended IMM is

the instrumentation model. The model has service instrumentation points, which in turn

have of action instrumentation points. Both instrumentation point types have references

to their corresponding service or action. In addition the activity state of an instrumentation

point is tracked using a active variable. Further, the action instrumentation points have

an instrumentation type, which indicates what type of PCM abstract is instrumented.

2.7.4. Adaptive Instrumentation

Source code is instrumented by inserting instrumentation statements into the original

source code. The instrumentation statements account for e.g. the timing of the execution.

They measure how much time the program did spent in a routine. Further statements can

account for branch probabilities or loop iteration counts.

The instrumentation statements introduce a significant overhead into the execution of

the program. Instrumenting the whole program is therefore undesirable.

Adaptive instrumentation can conserve execution overhead for software that is in

development and changes regularly. Instead of instrumenting the complete application

after each change, only the changed parts of the software are instrumented. This reduces

the instrumentation overhead significantly.

Initially all parts of the software which are relevant to the AbPP are instrumented to

obtain al needed Only changed parts of the software (which are relevant for the AbPP)

are instrumented, as up-to-date PMPs still exist for the unchanged parts of the software.

Instrumentation points can be deactivated once they were monitored for a sufficiently

long time period.
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2.7.5. Prototypical Implementation

The prototypical implementation is split into two separate parts: The monitoring and

calibration was contributed by David Monschein. Further, a prototypical implementation

of the commit-based CIPM approach exists for microservice-based software written in the

Java programming language [2]. The prototypical implementation leverages parts of the

implementation of the Co-Evolution approach which we previously introduced section 2.6.

It uses the PCM as and architectural and performance model, the extended IMM to achieve

adaptive instrumentation. Further, JaMoPP, the "Java Model Parser and Printer" is used to

create a code model of for the source code. This prototypical approach was was further

evaluated in the context of Java based microservices in [2].

2.8. The Lua Programming Language

The Lua programming language was first introduced in 1993. Lua is a dynamically typed

interpreted and imperative scripting language. The language is described as a "tiny and

simple language" [18]. The usage profile of Lua was previously described by the terms

"Extensibility", "Simplicity", "Efficiency" and "Portability" [18]. Lua is designed to easily

interface with other software written in e.g. C/C++. Lua provides a flexible table data type,

in addition to the usual elementary types like boolean, string and numbers. Functions are

first order types and can be assigned to variables and be contained by tables.

Lua has a standard library of functions that are always implicitly in the scope of a

program. Examples for such functions are print which prints a string of characters to the

command line and mathematical functions that do certain calculations.

Annotation based approaches exist for extending Lua with with named table types.

These approaches are based on a server implementing the Language Server Protocol (LSP)

[30, 29].

The Lua language uses so-called syntactic sugar, which are alternative ways to syntac-

tically formulate certain semantics. An example for such syntactic sugar can be seen in

Figure 2.6 Both statements declare an identical function foo that prints a variable.

2.9. SICK AppSpace Ecosystem

The SICK AppSpace is a commercial ecosystem of sensor applications [39]. SICK provides

a wide array of sensor nodes like RFID and LASER scanners. A selection of the sensors can

be programmed using Lua applications, see section 2.8. These applications are referred to

as SensorApps or just apps. Non-programmable sensors can be integrated into the system

sensors using Sensor Integration Machines (SIMs). SIMs can communicate with sensors

and other systems using a variety of network protocols.

The apps are executed by the AppEngine component, which runs on the programmable

sensors and SIMs [37, 41]. The AppEngine further provides infrastructure for the Senso-

rApps: low-level interfacing with sensor hardware, network communication with other

devices amongst others. SensorApps and AppEngine can provide a so-called common

reusable objects wired by names (CROWNs), which is essentially an API. CROWNs can
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be injected into other SensorApps via dependency injection, which is facilitated by the

corresponding AppEngine. Using the CROWNs more substantial applications can be

composed of multiple simple sensor apps. CROWNs are provided by SICK SensorApps

by serving them. A function of the AppEngine is used to register a function with the

AppEngine, so it is available to the other apps.

Complete SensorApps are available through the SICK AppPool [38]. Depending on the

requirements SensorApps are portable e.g. between different models of SIMs.

13



2. Foundations

describedService
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Figure 2.2.: An overview of the PCM Repository meta model based on [6].

SEFF = Service Effect Specification; RD = ResourceDemanding
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Figure 2.3.: A pair of source code and the corresponding RDSEFF

Figure 2.4.: An overview of the model update process of the CIPM approach [31]
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Figure 2.5.: The extended Instrumentation Meta-Model as presented by Monschein [33]

-- variable-based function instantiation

foo = function(bar) print(bar) end

-- this is equivalent to the previous statement

function foo(bar)

print(bar)

end

Figure 2.6.: Two equivalent Lua statements
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This chapter presents an overview over the motivation for our approach. It is structured

according to the PRICoBE principle (for Problems, Research Questions, Idea, Contributions,

Benefits and Evaluation) [35]. The initial problem statements can be found in section 3.1

and the research questions we try to answer in section 3.2. The idea which inspired our

approach is introduced in section 3.3. Furthermore, the contributions and benefits expected

from the presented approach are listed in section 3.4 and section 3.5. The the problems,

research questions and contributions correspond to other items of the same number. E.g.

P1.2 corresponds to RQ1.2.

3.1. Problems

The presented approach is embedded in the CIPM approach. The CIPM approach is

prototypically implemented for the Java programming language. It is designed for software

which adheres to a component based architecture. For example, previous works in the

context of CIPM used microservices as software components.

The generalisability of the CIPM approach is still under investigation.

P1 The CIPM approach is solely designed and evaluated for use with the Java programming

language.

P1.1 Both the source code parser and the CM are language specific and can therefore

only be used for the Java programming language.

P1.1.1 The method of change derivation used in the CIPM approach is code

model specific.

P1.2 The CPRs used in the CIPM approach are specific to the Java CM.

P1.2.1 The SEFF reconstruction method used in the CIPM approach is designed

for the Java CM.

P1.2.2 No approach for reusing SEFFs from the previous version exists.

P1.3 The method of source code instrumentation is specific to the Java programming

language.

P2 The concept of software component detection currently only supports microservices.

3.2. Research Questions

This section lists research questions which correspond to the problems of the previous

section 3.1.
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RQ1 What conceptual changes are needed so the CIPM approach supports a programming

language like the Lua programming language?

RQ1.1 How can a CM that is usable with the CIPM approach be obtained for Lua

applications?

RQ1.1.1 How can the change sequence between versions of a Lua CM be de-

rived?

RQ1.2 How can CPRs be adapted to support the different CM? Which CPRs from

the CIPM approach can be reused verbatim?

RQ1.2.1 How can SEFFs be constructed functions of a Lua application?

RQ1.2.2 How can SEFFs from the previous version be updated to match the

new code model?

RQ2 How can the software components of Lua applications be discovered for use in the

CIPM approach?

3.3. Idea

The idea of the presented approach is adapting the CIPM approach for use with Lua

applications. The SICK AppSpace ecosystem (see section 2.9) will serve as a case study to

evaluate and demonstrate the process of adapting the CIPM approach. The SICK AppSpace

ecosystem uses Lua applications to implement and customize the behaviour of sensor nodes,

SIMs and the cloud. In order to apply the CIPM approach to this different environment

a significant portion of the prototypical implementation of the CIPM approach need to

be adapted in an the adapted CIPM approach. Suitable parts of the existing approach

should be reused and missing components must be implemented from scratch. Especially

a code model for the Lua applications is created and integrated into the CIPM approach,

which extends the applicability of the approach. The the adapted CIPM approach will be

evaluated using real-world and close-to-real-world example applications from the SICK

AppSpace ecosystem.

3.4. Contributions

The following contributions are planned for the thesis. The contributions listed in this

section correspond to the problems from section 3.1.

C1 The prototypical implementation of the CIPM approach is adapted to support Lua

applications from the SICK AppSpace ecosystem. The adapted prototypical imple-

mentation is evaluated.

C1.1 A Lua CM for the integration with the CIPM approach can be automatically

created.

C1.1.1 The change sequence between two version of the Lua CM can be de-

rived. This change sequence can be used by the Vitrivius framework (see

section 2.4) to propagate the changes into its VSUM.
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C1.2 The CPRs used in the prototypical implementation are adapted to the new Lua

CM.

C1.2.1 A SEFF reconstruction method is implemented for the new Lua CM.

C1.2.2 SEFFs from previous propagations are reused to achieve SEFF updating

C2 The component discovery is extended to support Lua sensor applications from the

SICK AppSpace ecosystem.

3.5. Benefits

The following benefits are expected from the contributions listed in the previous section.

B1 The CIPM approach can now be applied to a wider range of use cases including Lua

applications.

B1.1 A code model for Lua applications can be generated. The code model is inte-

grated into the CIPM approach.

B1.1.1 Changes in the CM can be propagated into the VSUM of Vitruv, which

makes the code model usable with the Vitrivius approach.

B1.2 Changes to the Lua CM can be correctly propagated to a corresponding PCM

and instrumentation model instance.

B1.2.1 SEFF can be reconstructed for functions of Lua applications.

B1.2.2 Only the changed statements of Lua application have to be instrumented

and monitored again, because of fine-grained incremental SEFF updating,

B2 The CIPM approach is applicable to more software as more kinds of software compo-

nents can be discovered.
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4. The CIPM Approach for Lua-Based
Sensor Applications

This chapter will describe the CIPM approach for Lua-based sensor applications and its

prototypical implementation. We will refer to the presented approach as the adapted CIPM

approach.

The CIPM approach as presented in section 2.7 was adapted to extend the applicability of

the approach. The adapted approach extends the the CIPM approach approach to support

Lua applications of the SICK AppSpace ecosystem.

The approach relies on a code model for the Lua applications as described in section 4.1.

We define the consistency rules between instances of the Lua code model and the PCM in

section 4.2. Further consistency rules between the code model and the instrumentation

model are described in section 4.4. Finally, the prototypical implementation is presented

in section 4.5.

4.1. Lua Code Model

The CIPM approach was extended by integrating an Xtext-based code model for the Lua

programming language. As outlined in section 2.3 the Xtext can be used to generate a

meta-model given an Xtext grammar of a language. As a starting point we extended

an Xtext grammar from the Melange project [45]. Further details on how we obtain an

instance of the Lua code meta-model presented here can be found in subsection 4.5.3.

The Melange grammar can be used to parse a single source code file into an EMF

resource. The root element of this resource is a Chunk, the Lua representation of the

contents of a Lua file.

The propagation of models into the Vitruv VSUM uses single Resources. We therefore

combine all the individual file contentmodels into onemodel, which then can be propagated

into the VSUM. This enables the creation of a code model Resource that can be used with

the CIPM approach.

We therefore extended the Melange grammar with additional rules. These rules are not

used during the parsing of the individual source code files. Instead, Xtext generates classes

for them in the meta-model. These synthetic classes are then instantiated by a parsing

post process, that combines all the parsed chunks of the individual files. This results in

a single model for the complete Lua application that can be propagated into the Vitruv

VSUM.

An overview over the code meta-model can be seen in Figure 4.1. Classes contributed

by use are depicted in blue.
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4. The CIPM Approach for Lua-Based Sensor Applications

The new central entity of the code meta-model is the Application. It models the source

code of a complete Lua application. As such it may contain a number of Apps. Each App

represents a single SICK AppSpace App. Further, each App has a name, which corresponds

to name of the modelled app. The Chunk class from the original grammar did not represent

the information about which file was modelled. We therefore wrapped the Chunk class

into a SourceFile class. Each App may contain any number of SourceFiles.

Each Chunk contains one Block, which contains any number of Statements. The

Statement class has many subclasses, of which only three subclasses are depicted in

this overview. The StatementFunctionDeclaration represent the declaration of a Lua

function. It has contains a Function, which represents the actual body of the function.

StatementFor represents a for loop, while StatementIfElse represents conditional expres-

sions.

Further, the BlockWrapper class was introduced as a super class for all the meta-model

classes that contain a Block of statements. It is subclassed amongst others by the Function,

StatementFor and StatementIfElse classes, which each contain a Block containing further

Statements.

1

apps0..*

1

files0..*

chunk1

block

1

statements0..*

block

1

function1

Application

App

name:String

SourceFile

name:String

Chunk

Block

Statement

BlockWrapper

StatementFunctionDeclaration

StatementFor

StatementIfElse

Function

Figure 4.1.: A partial overview over the code meta-model. Classes depicted in blue were

introduced into the original meta-model.
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4.2. Consistency between the Lua Code Model and the PCM
Repository Model

This section defines the consistency the code model and the PCM repository model.

Code model and PCM repository model are consistent if the following rules hold:

• For each App a PCM BasicComponent with the same name exists.

• For each served function declaration and its contents the following constraints must

hold: If an object does fit a description on the left column of Table 4.1, it must have

a corresponding element with type as indicated by the right column in the PCM

repository model. If the object is in addition a named object, both corresponding

objects must have the same name.

Lua Code Meta-Model PCM Repository Meta-Model
StatementFunctionDeclaration OperationSignature

Root Block the function ResourceDemandingSEFF

Other Blocks ResourceDemandingBehaviour

StatementFor LoopAction

StatementWhile LoopAction

StatementIfThenElse BranchAction

Statement containing an internal function

call

InternalAction

Statement containing function call to the

standard library

InternalAction

Statement containing a function call to a

CROWN which is not provided by a com-

ponent

InternalAction

Statement containing an external function ExternalCallAction

Table 4.1.: Class mapping between the code meta-model and the Repository meta-model

of the PCM.

• Contiguous statements containing only internal function calls are represented by

a single InternalAction. Dahmane showed that the monitoring overhead can be

greater than the actually monitored resource demand [9]. This constraint reduces

the monitoring overhead of the approach.

Modelling of the SICK AppSpace Ecosystem In the PCM repository model components

may provide services to other components, and further has a interfaces containing

the signatures of the provided services. Apps of the SICK AppSpace ecosystem also

can provide functions to other apps. Each app has a manifest which describes the

functions provided by the app, and further includes information regarding e.g. the

parameters of a provided function.
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Because of these similarities we decided tomodel SICKAppSpace apps as components

in the PCM repository model. The functions served by an SICK AppSpace app are

regarded as the provided services of a PCM component. As such, they all are part of

the interface of the component.

Initially we considered also modelling further entities of the SICK AppSpace ecosys-

tem as PCM components:

The Lua standard library could potentially be modelled as a component. This would

require the the reconstruction of all the signatures of the standard library. In addition

the Lua standard library is partially implemented as C libraries, which prevents the

reconstruction of the internal functionality of the library functions. Because of this,

the benefit of modelling the Lua standard library is limited. We therefore decided

against modelling the Lua standard library as a component, because we felt that the

modelling effort would be justified by the slight increase in modelling granularity.

Further, the app engine of the SICK AppSpace ecosystem could be modelled as a

component. The app engine provides platform functionality to the apps which are

deployed on the app engine. This functionality is available via Lua function calls,

but is again not implemented in Lua. We therefore again decided against modelling

the app engine as a component.

Limitation: Modelling of Types Because of the dynamically typed nature of Lua is chal-

lenging to determine the types for e.g. parameters of a function. We therefore

do not consider the types of Lua variables, etc. in our approach. Instead we in-

troduce a Lua any type into the PCM repository model as a composite type. The

OperationSignatures reconstructed for the PCM repository model use this any type
to model the parameters and return types of the signature.

Future work is required to extend the presented approach with a more complete

support for reconstructing the types of parameters and return values. Three pos-

sibilities for determining the types of lua variables present themselves: By using a

language server protocol implementation like the Lua language server [29, 30], one

could query the language server to resolve the types of given language objects. This

approach relies on the availability of type annotations in the source code.

Another approach could be to parse these type annotations directly within the

approach. This could be achieved by extending the Lua code model of this approach

with support for the parsing of the type annotations.

In the case of the SICK AppSpace apps, another approach could be the parsing of the

app manifests [38]. The manifests contain information about the exported functions

of an app. In particular their parameter and return types.

4.3. Fine-Grained Incremental SEFF Update

The CIPM approach currently does not contain an approach to the incremental fine-

grained SEFF reconstruction. While an approach was proposed in previous work, it is
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not implemented and evaluated [2]. This approach is based on recreating the SEFF of a

changed function and merging the old and the new SEFFs to obtain an updated SEFF.

We propose a different approach to the incremental fine-grained update of SEFFs. Instead

of regenerating and merging SEFFs, we update existing SEFFs during the propagation of

changes to the code model.

The actions which make up the step behaviour of a SEFF are reconstructed per statement.

Statements are either added, removed or modified. Depending on the respective matching

used to derive the changes in the code model, it is possible that a statement is either

changed or removed and then added again in a modified form.

InternalAction Fusing Two actions are contiguous when their corresponding statements

are contiguous in the statements of their Block or if the statements are only separated

by statements without any actions. When two InternalActions would be contiguous

after the insertion of an action into the SEFF step behaviour, we fuse the two actions.

This means that one of the two actions is selected. All the statements corresponding

to the other action are put into correspondence with the selected action. Then the

other action is removed. The selected action now represents the resource demand of

both former actions.

Added Statements For an added statement, we reconstruct actions based on the function

call expressions the statement contains. Function calls to other apps are mapped to

ExternalCallActions. Other function calls, such as function calls to the same app,

calls to the Lua standard library and calls to CROWNs are mapped to InternalActions.

A correspondence from the statement to all the reconstructed actions is added. Then

all actions are inserted into the step behaviour of the parent SEFF one-by-one.

We calculate the insertion index for the action by finding the index of the statement

in the current block and comparing it to the indices of the statements corresponding

to the actions of the step behaviour.

Figure 4.2.: Illustration of the fusion of the InternalActions of two statements which contain

only internal calls.

If an InternalAction is inserted into the step behaviour and the preceding or succeed-

ing action in the step behaviour is also an InternalAction, and further the current

statement only has internal function calls, we add a correspondence from the current

statement to the preceding InternalAction and drop all the reconstructed InternalAc-

tions. This situation is illustrated in Figure 4.2. On the left the step behaviour of

the SEFF and the Block of a function are depicted. The block already contains a

statement with an internal call that corresponds to an InternalAction in the SEFF.
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A statement with an internal call is then inserted into the Block of the function.

Initially an InternalAction is reconstructed for the new internal call, but during the

insertion procedure it is fused with the already existing InternalAction. After the

insertion the statements with internal calls remain and both correspond to the single

InternalAction.

Figure 4.3.: An internal statement is inserted between statements corresponding to the

same fused InternalAction. It is therefore also fused to this InternalAction

If an InternalAction is inserted into the step behaviour and both a preceding and

a subsequent statement are corresponding to the same InternalAction (because of

action fusing) we add a correspondence between the current statement and the fused

action and drop the action that would have been inserted.

Figure 4.4.: Illustration of an action insertion that causes the splitting of an internal action.

If a statement containing an ExternalAction is inserted into the step behaviour

and both a preceding and a subsequent statement are corresponding to the same

InternalAction (because of action fusing) we delete the fused action insert the Exter-

nalAction into the step behaviour and reconstruct actions for all the statements of

the now deleted InternalAction

Removed Statements When a statement is removed we remove its correspondences to its

actions. If these actions have no further correspondences to other statements, they

are deleted.

If after the deletion of an actions two internal actions are contiguous in the step

behaviour of the SEFF, they are fused as previously described.
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Changed Statements When a statements is change, we determine all corresponding ac-

tions of the statement. Then all corresponding statements for all these actions are

determined. All the actions are removed from the step behaviour and then we re-

construct the actions of the statements and insert them as described under Added
Statements.

4.4. Consistency between the Lua Code Model and the
Instrumentation Model

The change propagation to the instrumentation model is adapted, because of our new

approach to the fine-grained incremental SEFF update. Service Instrumentation Points

(SIPs) corresponding to SEFFs and Action Instrumentation Points (AIPs) corresponding to

actions are created and removed as in the original CIPM approach.

When changes are made to a served function, its corresponding SEFF is updated, not

reconstructed. Therefore special attention has to be put on the fused internal actions

(see the previous section). If the correspondences of a fused action change because more

statements were "fused" into the action the resource demand that is represented by the

InternalAction changes. This requires that the AIP that corresponds to this InternalAction

is activated if it was previously deactivated. This causes the represented resource demand

of the action to be instrumented again, which is required to recalibrate the performance

model.

4.5. Prototypical Implementation of the CIPM Approach for
Lua-Based Sensor Applications

This section will present the prototypical implementation of the adapted CIPM Approach.

The previous prototypical implementation upon which the presented prototypical imple-

mentation is based is discussed in subsection 4.5.1. Changes to this previous prototypical

implementation are described in subsection 4.5.2. The process of obtaining a code model

for a SICK AppSpace application is discussed in subsection 4.5.3. Further, the implementa-

tion of the detection of apps of such an application is outlined in subsection 4.5.4. The

implementation of the change derivation is described in subsection 4.5.5. We implement

the previously presented consistency preservation rules using the reactions from Vitru-

vius. The implemented reactions are described in subsection 4.5.6 and subsection 4.5.7

respectively.

An overview over the state of the prototypical implementation is depicted in Figure 4.5.

We implemented a new code model for Lua. Lua source code can be parsed into code

model instances using a generated parser. Code model instances can be compared and

changes can be derived as described in subsection 4.5.5. The code model is integrated into

the Vitruvius VSUM. Changes to the code model can be propagated to the PCM and the

instrumentation model of the VSUM using newly contributed CPRs. The already existing

CPRs from the PCM to the instrumentation model were adapted slightly. Because of the

27



4. The CIPM Approach for Lua-Based Sensor Applications

Figure 4.5.: An overview over the workflow of the approach annotated with information

regarding the state of the prototypical implementation regarding the respective

process.

time constraints of this thesis we could not implement the adaptive instrumentation of

the Lua source code. The monitoring and calibration phase was implemented by previous

work [33].

4.5.1. Prototypical Implementation of the Commit-Based CIPM Approach

The CIPM approach was previously prototypically implemented for microservice-based

Java web applications [2]. The prototypical implementation of the original the CIPM

approach used JaMoPP as a code model [17]. It further leverage’s the Vitruvius framework

to keep the models of the software consistent, see section 2.4 [48]. In particular, the Vitruv

framework version 2 is used.

The used models are the JaMoPP as the source code model, the PCM as architecture and

performance model of the software (see section 2.5) and the extended instrumentation

(meta-)model (see subsection 2.7.3).

4.5.2. Changes to the Previous Implementation

As previously stated, the prototypical implementation of the adapted CIPM approach was

based on the prototypical implementation of the original CIPM approach.

The prototypical implementation is changed in order to match the different approaches

of the adapted CIPM approach. The adapted prototypical implementation now uses version
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3 of the Vitruvius framework, which requires the use of a view-based API to propagate

changes into the Vitruv VSUM. In addition the architecture of the implementation was

reworked, to separate concerns of the implementation, which we hope will ease mainte-

nance of the implementation. Further, steps were taken to make the architecture of the

implementation more generic. The goal is that other code models can be integrated into to

the implementation without the need to adapt the complete implementation. We therefore

extracted logic which is note specific to the code model into generic classes.

An overview over the adapted commit propagation architecture is depicted in Figure 4.6

The newly introduced generic class CommitIntegrationState is the central element of

the commit integration process. The class encapsulates all the models that are part

of the approach in the form of model facades. Facades exist for the PCM, the extend

instrumentation model and further a generic code model. The CommitIntegrationState

allows the creation and loading of copies of the current state. In addition to the individual

models, a facade to the Vitruvius VSUM is part of the commit integration state.

The commit integration state is in association with a CommitIntegration, which encap-

sulates all information necessary, to instantiate a CommitIntegrationState. This includes

the git repository that contains the propagated source code; the change propagation speci-

fications, which define how changes are propagated in the Vitruv VSUM; and component

detection strategies, that are used by the code model facade.

The actual commit propagation logic is implemented in a generic CommitIntegrationController.

The AppSpaceCommitIntegrationController extends the generic CommitIntegrationController,

implements the CommitIntegration interface. Further, the AppSpaceCommitIntegrationController

is not generic, but specific to the LuaCodeModelFacade. By implementing the CommitIntegration

interface, any test class has the possibility to modify way the commit integration state is

initialized.

4.5.3. Lua Code Model

The first step of the adapted CIPM approach is obtaining a code model for a given version

of a software. We use the Xtext project for the code meta-model and parser generation

[50]. As a starting point a Xtext grammar from the melange project was used [45].

The grammar, which was solely published as an example to demonstrate the melange

process, was insufficient for our intentions to integrating the code model into the CIPM

approach. This is due to the grammar focussing on the syntactical reproduction of the

source code. The grammar was configured to use backtracking as it used non left-factored

statements.

Further we intended to implement reference resolution at the Xtext grammar level,

which was also not implemented by the melange grammar. To fully benefit from the

reference resolution mechanism provided by Xtext, we implemented a scope provider for

the grammar, so references are resolved within the correct scope of the Lua program.

We disabled parser backtracking, as we found that the backtracking made debugging

the grammar more difficult and unpredictable. Consequently we left-factored all non-left

factored rules.

The SEFF reconstruction which is used in the CPRs is aided by the ability to resolve

function calls to their declarations.
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We introduced a Referenceable type into the code meta-model using multiple inheri-

tance. This type bundles all productions rules that produce elements that are referenceable

by name, which includes e.g. function declarations and variable assignments. Other

elements of the code model can reference elements of the Referenceable type. This is used

to implement e.g. variable name expressions. The dynamically typed nature of Lua did

not permit us to easily add type scoping to the reference resolution.

An instance of our new code meta-model is created by the following steps:

1. Parse all Lua files in all the apps that are part of the project. This yields an EMF

resource containing a Lua Chunk (which is part of the defined code meta-model) for

each parsed file.

2. Apps are detected as described in subsection 4.5.4. In addition a synthetic App is

created for mocked function declarations, that are created in the next step.

3. All proxies in the code model are eliminated by replacing them with references

to mock function declarations in the synthetic mock app. The calls which are

mocked include calls to the Lua standard library (which are implicitly in scope of

Lua applications), calls to CROWNs (see section 2.9) of other components and the

device itself.

4. Calls from one app to another have been mocked by the previous process. These

mocks are resolved by a post process, which replaces the reference to the mock with

a reference to the correct function declaration in the providing app.

5. For each Chunk a containing SourceFile object is created.

6. The SourceFiles are added to their respective App.

7. All Apps are copied into an Application object.

8. The resulting Application is saved in a single resource.

The resource which was created by this process can be propagated into Vitruv VSUM

and be used further for the CIPM approach. Because of the time constraints of this thesis,

the obtained code model has the following limitations:

Limitation: Incomplete Support for Lua Syntax Sugar As described in section 2.8, Lua is

scripting language with a very flexible syntax including a significant amount of

syntactic sugar. The same semantics can be expressed in multiple ways which makes

the implementation of a grammar that captures all these semantics complex and

time consuming. An example of such ambiguous syntax can be seen in Figure 2.6.

Both examples declare the same function. We implemented the first version of the

expression, as the latter would require the correct resolution of variables throughout

the code model. Because of the time constraints of this thesis a subset of these Lua

semantics was implemented. We are confident that a more complete grammar could

be implemented given more time.
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4.5.4. Detection of the SICK AppSpace Apps

Analogous to the approach to detect components of microservice based applications

presented by Armbruster, we detect SICK AppSpace apps by locating all the app manifests

contained in the target repository [2]. We use the app name as the component name for the

modelling. All source files within the scripts directory of an app, are parsed, wrapped into

a named chunk (see subsection 4.5.3) and included with the corresponding Application.

4.5.5. Hierarchical State-Based Change Resolution

As described in subsection 2.2.3 we need to derive changes in an automatically generated

model, the code model. For this we leverage EMF compare, which can compare and merge

Ecore based models [13]. EMF compare requires a match engine for its operation. The

DefaultMatchEngine provided by EMF compare was not sufficient for matching versions

of the code model.

Instead we reused the hierarchical match engine approach from SPLevo which was used

by Armbruster for the matching of a Java code model [22]. This hierarchical approach

compares elements of the models which are on the same level in the containment hierarchy.

E.g. first the root elements of both models are compared and subsequently the contents of

the root elements, provided there was a match between the root elements.

The hierarchical match engine relies on an equality checker for the individual elements.

We implement a custom equality check for a subset of the types of the code meta-model.

For all remaining types we fall back to an edition distance based equality checker, which is

provided as part of EMF compare. The edition distance based equality checker compares

elements by calculating an edition distance, from one element to the other based upon the

elements features and contents. If the edition distance is below a certain threshold, the

elements are considered equal.

Most of the custom equality checks similarly comparisons of the elements names

and contents. A notable exception is the comparison of two variable expressions. A

variable expression has a reference to an referenceable element, which corresponds to

the assignment of the variable. Comparing variable expressions based on the name of

the variable is not sufficient. If new assignments to the same variable within a more

local scope to the variable expression are introduced in the code model, the name based

comparison would determine the variable expression equal in both models. Instead the

variable expression must now reference the assignment of the more local scope now,

because of the shadowing semantics of the scoping. Therefore, in this case and similar

cases where references are involved, we also compare the location of the referenced

elements, to detect the replacement of the referenced object.

4.5.6. CPRs from the Lua Code Model

To keep the Lua codemodel consistent with the PCM repositorymodel, we use the reactions

DSL of Vitruv.

We gather information about the apps that are propagated during the change propaga-

tion, by scanning the code model.
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Essential for the approach is to determine which functions are exported to other apps or

served. Instead of additionally parsing the manifests of an app to determine if a function

is served and therefore available to other app, we instead scan the source code for the

function calls that serve the actual function declaration.

During the scanning of an Application we gather the following information:

• Which function declarations are served, including which function call is serving

them.

• Other apps called by an app, to determine the OperationRequiredRole for these

calls.

• For each served function declaration, we track which actions are calling the function

declaration.

• Within each served function we find Blocks containing architecturally relevant calls

These will be used to determine if actions must be reconstructed for a statement.

Vitruv as of version 3 differentiates between subtypes of correspondences. Correspon-

dences created in reactions are ReactionsCorrespondences, while others are ManualCorrespondences.

This change required modifications to the model initialization of the PCM repository model

and the instrumentation model. Previously the root elements of these models were in-

serted into the model during the initialization and then set into correspondence with

their corresponding Literal. This is required to locate the models root elements in the

reactions. Because of the aforementioned differentiation, correspondences created outside

of the reactions language are not visible inside of them. To work around this we created

initialization reactions, that create these correspondences when the corresponding root

element is inserted into the model.

Regarding the propagation of changes to the Lua code model the following reactions

were implemented:

Creation of Apps When an App is created a BasicComponent for it is created in the PCM

repository model. In addition, an empty OperationInterface and an OperationProvid-

ingRole are created.

Creation of StatementFunctionDeclarations For created StatementFunctionDeclarations

we determine if the declaration is server. If it is an OperationSignature is created for

the declaration and further inserted into the OperationInterface of the containing

App.

Creation of Blocks For created Blocks we determine if the block is marked for action recon-

struction in the previously gather information. If it is and it further is the root block

of its containing StatementFunctionDeclaration a ResourceDemandingSEFF is cre-

ated for the block. If the block is not the root block a ResourceDemandingBehaviour

is created instead.

Creation of Statements To determine if actions must be reconstructed for an added State-

ment, we check if its containing Block is marked for action reconstruction. If the
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statement is a control flow statement and a BlockWrapper as previously introduced,

we further check if the block contained by the Statement requires action reconstruc-

tion.

If the statement is no control flow statement, we find all function call expressions

in the statement and classify them: Function calls to other Apps are classified as

external calls and an ExternalCallAction for the function call is created. All other

function calls are currently classified as internal calls and hence an InternalAction is

created for these calls.

After all actions for the added statement have been reconstructed, they are inserted

into the step behaviour of the ResourceDemandingBehaviour or ResourceDemand-

ingSEFF corresponding to the block that contains the added statement.

Changing of Statements It is not possible to formulate a trigger for an reaction that triggers

if any content of an object is changed. Instead the reaction language provides an

anychange trigger, that is triggered for all changes. We use this trigger and filter the

changes in order to obtain changes to the contents of statements.

If changes inside of a statements are detected, we remove all corresponding actions

of the statement from the PCM repository model. We reuse routines for the creation

of actions for a statement to create the new actions for the changed statement.

Creation of serve calls Creation of function call expressions which serve a function decla-

ration.

As previously described OperationSignatures, ResourceDemandingSEFF, etc. are

created when served Blocks are added. This approach does not work if an already

function existing that was previously not served becomes now served. For an added

serve call, we locate its served function declaration and then follow the same steps

as if it had just been created as described above.

It is noteworthy that it is possible that for a commit that adds a new function

declaration and corresponding serve call, that the change containing the creation

of the serve call is processed first. This creates the complete seff immediately. All

subsequent reactions to e.g. the added StatementFunctionDeclaration will not create

a duplicate OperationSignature but instead, do nothing because every routines checks

if the correspondences that are created by it are already existing.

Removal of objects When objects are removed from the Lua code model, the implemented

reactions remove the corresponding objects from the PCM repository model. Actions

are removed from the step behaviour of a SEFF, by removing them and further fixing

the predecessor and successor fields of the adjacent actions.

An overview over the correspondences created by the reactions can be seen in Table 4.2. Ob-

jects of the Lua code meta-model are listed on the left and their corresponding counterpart

of the PCM repository model on the right.

Additional correspondences within the Lua Meta-Model:
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Lua Code Meta-Model PCM Repository Meta-Model
App BasicComponent

App OperationInterface

App OperationProvidedRole

Block ResourceDemandingSEFF

Block ResourceDemandingBehaviour

StatementFunctionDeclaration OperationSignature

Control Flow Statements (StatementFor,

StatementWhile, StatementIfThenElse)

which contain no architecturally relevant

function calls

InternalAction

StatementFor LoopAction

StatementWhile LoopAction

StatementIfThenElse BranchAction

Statement containing a function call

within the same component

InternalAction

Statement containing a function call to the

standard library

InternalAction

Statement containing a function call to a

CROWN which is not provided by a com-

ponent

InternalAction

Statement containing a function call to an-

other component

ExternalCallAction

Other Statements -

Table 4.2.: Correspondences between the code model and the PCM repository model as

created by the CPRs of the prototypical implementation.

• A function call that serves a function declaration corresponds to this served function

declaration.

• The Repository literal of the PCM corresponds to the Repository object of the PCM

repository model.

• The Repository literal of the PCM further corresponds to the used LuaAnyType

• ExternalCallAction additionally correspond to the OperationRequiredRole which

were created for the call actions.

4.5.7. CPRs to the IMM

This section describes how the consistency rules as defined in section 4.4 are preserved

during the commit integration.
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Armbruster implemented CPRs from the PCM to the instrumentation model using the

reaction language of Vitruv [2, 21]. We were able to reuse nearly all of these reactions

without modification.

The reactions from the Lua code model to the code model were extended to activate

AIPs for which the represented resource demand was changed by a seff update

The reactions language allows the specification of multiple source and target models.

Reactions are triggered when changes are made in the source models and then propagated

to the target models. The reactions for the Lua code model therefore now target the PCM

and the instrumentation model.
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5. Evaluation

This chapter discusses the evaluation of the prototypical implementation presented in the

previous chapter. The evaluation follows the GQM paradigm [47]: The goals of the thesis

are defined in a conceptual manner. For each goal, one or more questions are posed. These

questions must be answered to determine if the corresponding goal is met. Metrics are

selected for each of these questions. By measuring these metrics, the questions may be

answered. Answering the questions will aid in coming to a conclusion regarding the goals

of the thesis.

The detailed GQMplan is listed in section 5.2. The requirements and application concepts

for the case studies are discussed in section 5.3. The actual case study applications are

presented in section 5.4. The metrics for the GQM are acquired using two experiments.

The results of these experiments are presented and discussed in section 5.5. An overall

discussion of the evaluation and the approach can be found in section 5.6. Finally, the

threats to the validity of this evaluation are discussed in section 5.7.

5.1. Metrics

This section defines metrics which are used in the evaluation of the the adapted CIPM

approach.

5.1.1. Jaccard Coefficient

Originally defined by Jaccard as the "coefficient of community" [19], the Jaccard Coefficient

or Jaccard Similarity Coefficient of two sets is defined as their intersection over their union

of the sets, see Equation 5.1.

𝐽𝐶 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | (5.1)

The coefficient measures the similarity of two sets, with two identical sets resulting

in a Jaccard Coefficient of 1 and two sets without any intersection resulting in a Jaccard

Coefficient of 0.

Analogous to Monschein, we use the Jaccard Coefficient to measure the similarity of

models [33]. Comparing two models is done by matching elements of the models against

each other. This relies on a similarity measure for individual model elements. The similarity

of two model elements can be determined by comparing their type, features, position in

the model and contents. For models with a common ancestor, it is possible to also take the

identifiers of model elements into account.
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5. Evaluation

To calculate the Jaccard Coefficient between two models, we define that the elements

of a model are its set. Further, we define that model elements that were successfully

matched are part of the intersection of the two sets. The union of the two sets contains

the intersection and all unmatched elements. It follows that the informative value of the

Jaccard Coefficient depends on the quality or stringency of the matching that is used to

match the two models.

5.1.2. F-Score

The F-Score or F-Measure is a measure for the accuracy of binary classifications [10].

Binary classification can observe the following results: true positive (TP) classification,

true negative (TN) classification, false positive (FP) classification and false negative (FN)

classification.

The F-Score is often used measure the quality of a retrieval process that selects data

from a large pool of information. In this case the F-Score relies on a relevance definition,

that which prescribes which data of the pool are relevant and should therefore be retrieved.

The F-Score of classification results is derived from the recall and precision of the

classification results, which are defined as:

Precision: 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5.2)

Recall: 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5.3)

Precision is a measure for the quality of the retrieved entities, while Recall is a measure

for the completeness of the retrieval. Because both precision and recall are not conclusive

measures regarding the classification, the F-Score tries to balance both measures by using

the harmonicmean of precision and recall[10]. The general F-Score or 𝐹𝛽 and the commonly

used 𝐹1 form are displayed in Equation 5.4 and Equation 5.5 respectively.

𝐹𝛽 =
(1 + 𝛽2)𝑃𝑅
𝛽2𝑃 + 𝑅

(5.4)

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(5.5)

This thesis uses the 𝐹1 form of the F-Score and we will subsequently refer to this form

as the F-Score.

We use the F-Score to measure the consistency of two models that are kept by processes

of the presented approach. Given models 𝐴 and 𝐵 that are consistent if the existence of a

model object 𝑎 ∈ 𝐴 implies the existence of a corresponding element 𝑏 ∈ 𝐵. We say that

cases were we find such corresponding 𝑎 and 𝑏 are the true positives. Cases were we find

an 𝑎 without a corresponding 𝑏 are the false negatives. On the contrary, cases were we

find an 𝑏 without a corresponding 𝑎 are the false negatives. In cases where there are no

relevant model elements in either models, the F-Score is not defined.
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5.2. GQM Plan

5.1.3. Total Instrumentation Point Activation

This section defines the Total Instrumentation Point Activation (TIPA), a measure for how

many instrumentation point were active during the propagation of a sequence of commits

using the the adapted CIPM approach.

Given a sequence of commits 𝐶 the TIPA of the sequence is defined by

𝐴𝐼𝑃 (𝑐) := The set of active instrumentation points after propagation of c

𝐼𝑃 (𝑐) := The set of instrumentation points after propagation of c

𝑇 𝐼𝑃𝐴(𝐶) =
∑

𝑐∈𝐶 |𝐴𝐼𝑃 (𝑐) |∑
𝑐∈𝐶 |𝐼𝑃 (𝑐) | (5.6)

The TIPA has values from 0 to 1 with 1 meaning all instrumentation points were active

after all propagations and 0 indicating that no instrumentation points were ever active.

TIPA allows the coarse grained analysis of how the overhead of monitoring active

instrumentation points was reduced by the approach.

5.2. GQM Plan

This section presents the GQM plan that was used for the evaluation of the approach. The

goals and subgoals correspond to the contributions from section 3.4 as indicated by their

indices.

G1 Adapt, extend and evaluate the CIPM approach and the prototypical implementation

with support for Lua applications.

Q1 Does the prototypical implementation support Lua code?

M1 Satisfaction of the subgoals G1.1 and G1.2.

Q2 Howmuch does the the adapted CIPM approach reduce the monitoring overhead

of a Lua application in terms of activated instrumentation points?

M2 [TIPA] Active instrumentation points, see subsection 5.1.3.

We can calculate this metric by aggregating the results of all propagations

of the commit history of an applications. For each propagation we can

determine the total number of AIPs which existed after the propagation. In

addition we can calculate how many of these AIPs were activated.

By accumulating these values for all the propagations we can calculate the

TIPA as defined in subsection 5.1.3.

Q3 What is the execution time of the change propagation?

M3 [Execution Time] Both the change propagation time for a commit and the

change propagation time per propagated change can be calculated.
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G1.1 Lua source code of applications can be parsed and a code model for use with the

CIPM approach can be generated. Further, changes within the code model can be

derived using a state based approach.

Q4 For how many commits of an application can a correct CM of the Lua source

code be generated?

M4 [Textual Differences] Similarity of:

• Original source code of a Lua application and commit 𝑐: 𝑂 (𝑐)
• The result of parsing 𝑂 (𝑐) into a code model and printing it

The compared texts may differ, but not in a semantically relevant manner.

The original source code of an application can be acquired during the parsing

step of the approach. Having parsed a source file into an EMF Resource, we

print the Resource as source code using the printing functionality provided

by Xtext. This yields us two text files for comparison: The original source

file and the parsed and printed file. The two files are compared character by

character. If they are equal, then both files are considered "identical". If not

both files are put through the same filtering process: Extraneous contents

such as blank lines, comments are stripped from the files, as these are not

reproduced well by the printing facilities from Xtext. If the filtered texts

now match the files are considered similar, otherwise they are considered

dissimilar.

Q5 How many changes to the CM can be propagated correctly to the Vitruvius

VSUM?

M5 [Jaccard Coefficient] Similarity of:

• The parsed code model 𝑃 (𝑐) of a commit 𝑐 .

• The VSUM code model after the commit 𝑐 was propagated into the

VSUM.

These two models are compared to determine if the code model of the

VSUM was updated correctly. Both models are matched against each other

using the hierarchical matching approach described in subsection 4.5.5.

Based on the matched and unmatched elements of both models the Jaccard

Coefficient as defined in subsection 5.1.1 can be calculated.

G1.2 Architectural changes to the Lua CM can be propagated to the PCM and the IM using

the adapted CPRs.

Q6 Are architectural changes to the CM propagated correctly?

M6 Satisfaction of the subgoals G1.2.1 and G1.2.2.

Q7 How many CPRs are executed during the propagation of the commits of a Lua

application?

M7 [Coverage Percentage]
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5.2. GQM Plan

To our knowledge no approach to calculating the coverage of the execu-

tion of Vitruv reactions exists. We can approximate the coverage of the

reactions by gathering the coverage data of the generated Java code for the

implemented reactions.

G1.2.1 Architectural changes to the Lua CM can be propagated to the PCM using adapted

CPRs.

Q8 Howmany architectural changes to the CM correctly propagated to the repository

model of the PCM?

M8.1 [Jaccard Coefficient] Similarity of:

• The PCM Repository model of the VSUM after the propagation of a

sequence of commits 𝐶 := {𝑐0, . . . , 𝑐𝑖}: 𝑅(𝐶)
• A manually created and validated PCM Repository model for the Lua

application and commit 𝑐𝑖 : 𝑀𝑅(𝑐𝑖).
M8.2 [Jaccard Coefficient] Similarity of:

• The PCM Repository model of the VSUM after the propagation of a

sequence of commits 𝐶 := {𝑐0, . . . , 𝑐𝑖}: 𝑅(𝐶).
• The PCM Repository model of the VSUM after the propagation the of

commit 𝑐𝑖 : 𝑅({𝑐𝑖}).
To compare the two models a matching is required. We reuse an existing

comparison matching implementation for the PCM repository model which

is not based on identifiers.

G1.2.2 The prototypical implementation can propagate architectural changes to the in-

strumentation model of the VSUM. Further, it is possible to implement adaptive

instrumentation using this instrumentation model.

Q9 How many changes to the PCM repository model are propagated correctly to

the IM of the VSUM?

M9.1 [F-Score] Matching of SEFFs and SIPs of the two models.

This metric can be calculated for a propagation by iterating through all

SIPs and SEFFs of the resulting instrumentation model and PCM repository

model contained in the VSUM. For each SIP in the instrumentation model

we check if its referenced SEFF exists in the PCM repository model. If the

referenced SEFF is found the SIP and SEFF are considered "matched", if not

the SIP is considered "unmatched". In addition we iterate through all the

SEFFs found in the PCM repository model and check if they have matched

a SIP previously. If this is not the case the SEFF is considered unmatched
Using Table 5.1 the F-Score as defined in subsection 5.1.2 can be calculated.

M9.2 [F-Score] Matching of abstract actions and AIPs of the two models.

This metric can be calculated using an analogous matching scheme to the

one used for the previous metric and Table 5.2.
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TP Matching SEFF and SIP exist

FP SIP without matching SEFF exists

FN SEFF without matching SIP exists

Table 5.1.: The classification of matching results regarding service instrumentation for the

calculation of an F-Score.

TP Matching abstract action and AIP exist

FP AIP without matching abstract action exists

FN Abstract action without matching AIP exists

Table 5.2.: The classification of matching results regarding action instrumentation for the

calculation of an F-Score.

Q10 How many instrumentation points of the IM are correctly activated and deacti-

vated and is it consequently possible to implement adaptive instrumentation

using the instrumentation model?

M10 [F-Score] Matching of abstract actions that were changed since the last

instrumentation and active AIPs of the two models.

A matching scheme similar to the scheme used for the service and action

instrumentation in the previous two metrics can be used to calculate this

metric for a propagation. We determine which actions changed by matching

the PCM repository model with its version from the previous propagation.

An identifier based matching can be used for the matching, as the newer

model is a descendant from its previous model, and consequently uses

the same identifiers for unchanged actions. Unmatched actions of the

newer repository model are considered the changed actions and require

a corresponding active AIP. Analogous to the previously used matching

schemes we search for matching changed actions and active AIPs.

The F-Score of this matching can then be calculated using Table 5.3 and

Equation 5.5. If no changed actions are found, no F-Score can be calculated

because the F-Score is not defined for retrievals without any true positive

cases.

As we did not actually implement the instrumentation and monitoring of

Lua applications we simulate the complete instrumentation and monitor-

ing of the application by deactivating all the AIPs before the subsequent

propagation.

G2 The adapted prototypical implementation can automatically detect Apps of the SICK

AppSpace ecosystem.

Q11 How many apps can the adapted prototypical implementation discover cor-

rectly?

M11.1 [Manual Inspection] # discovered apps

# existing apps
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TP Matching changed abstract action and active AIP exist

FP Active AIP without matching abstract action exist

FP Active AIP with matching unchanged abstract action exist

FN Changed abstract action without matching AIP exist

FN Changed abstract action with matching deactivated AIP exist

Table 5.3.: The classification of matching results regarding adaptive action instrumentation

for the calculation of an F-Score.

M11.2 The previously presented metric M8.1 compares a manually created and

validated model to an automatically created model. During the creation

of the manual model, SICK AppSpace apps were found and mapped to

components in the PCM repository model. A correct component detection

is therefore implied by the correct matching of the components.

5.3. Case Study Requirements and Application Concepts

This section discusses requirements and applications concepts for the case studies that

were used for the evaluation of the prototypical implementation.

The following requirements should be satisfied by the case study application concepts:

REQ1 The case study is an application implemented in the SICK AppSpace ecosystem

using the Lua programming language.

REQ2 The case study has a sufficiently long development history, reflected by a Git

repository with several commits.

REQ3 The case study is a real world application for use on programmable sensor nodes

and SIMs.

REQ4 The case study contains multiple components which can be deployed using multiple

allocations on the hardware nodes.

Based on these requirements we devised two applications concepts for the case studies

of the evaluation: When the satisfaction of a requirement by the application concept is

contentious, additional discussion is provided.

CSAC1 Realistic application using SICK AppSpace samples

SICK provides a large number of small SICK AppSpace application samples to the

public [40]. Each sample demonstrates a specific functionality, e.g. how to read a

barcode using a sensor. Theses samples can be combined to implement a realistic

application, that could be used in an industrial setting.

Satisfaction of REQ2 The SICK AppSpace samples do not have sufficiently long de-

velopment histories because of their compact nature. In addition, combining

the samples into a functioning application is not expected to require enough

code to yield a sufficiently long development history either. To satisfy REQ2 the
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following proposition is made:

Merging the repositories of the used SICK AppSpace samples into the repository

of the application will result in a single repository. Under the assumption that

this repository reflects the development history of both the samples and the

application, the development history should be sufficiently long to satisfy REQ2.
While the development history is artificial, it is not unrealistic per se. The devel-

opment history would reflect the development using a strictly component-based

architecture. This makes this case study candidate attractive because the PCM

described in section 2.5 is intended for use with component-based architectures.

Satisfaction of REQ3 The application is implemented for the purpose of evaluating

the CIPM approach and therefore artificial in nature. It is still a realistic ap-

plication for use in an industrial Internet of Things (IoT) use case. Running

the application on the intended sensor hardware is feasible. This makes this a

credible candidate for study with regard to REQ3.

CSAC2 Real-world application from the SICK AppPool

SICK sells fully featured applications (“SensorApps”) through the SICK AppPool [38].

These applications can be used by customers without customization and are in use

in industrial settings. The applications from the SICK AppPool are more realistic

than the application described in CSAC1.

Satisfaction of REQ2 The applications from the SICK AppPool are fully featured

and usually have a sufficiently long development history to satisfy REQ2. The
studying the “real” development history is attractive, as it would make the case

study more credible. A significant downside is, that this development history is

not available to third parties to reproduce the evaluation.

Satisfaction of REQ4 The applications from the SICK AppPool are usually not imple-

mented to run on multiple hardware nodes. The applications usually contain

only one app and would be therefore be modelled using one component in our

case. As the component based architecture modelling approach we use only

considers external calls, this is an issue because no external calls would exist

for this. We intended to split a real-world application into multiple apps to

better satisfy this requirement. Because of the time constraints of this thesis

we could not split an application into multiple apps. Instead we, changed the

reconstruction mapping of function calls to actions to simulate the splitting of

the application into multiple apps. This is further discussed in section 5.7.

REQ CSAC1 CSAC2
REQ1 ✓ ✓

REQ2 (✓) (✓)

REQ3 (✓) ✓

REQ4 ✓ (✓)

Table 5.4.: Requirement satisfaction of the case study application concepts.
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An overview over the application concepts with regard to the satisfaction of the previ-

ously presented requirements is depicted in Table 5.4. Check marks in brackets denote

contentious requirements. These are discussed in the previous listing.

5.4. Case Studies

This section describes the example applications which serve as case studies for the evalua-

tion of the adapted CIPM approach.

5.4.1. Case Study 1

For case study 1 the author of this thesis developed an example application using CSAC1.
The example application can take images using a camera module, detect barcodes in it

and send this information to another device for storage in a database using HTTP. The

application consists of 4 SICK AppSpace samples which in unison represent the application

for the evaluation. We used the following SICK AppSpace samples:

• A barcode scanner app that can be used to take images from a camera module detect

barcodes in the image. We simplify the setup of the application by not working with

the camera module, but instead a directory image provider that yields images from a

storage directory on the device.

• A HTTP client App that provides a serve call to submit the information contained in

the barcode to a webserver.

• A HTTP server App that enables the webserver functionality of the underlying

SIM and hooks into received information from the be client. Once a new set of

information is received the information is printed to the command line and the

information is inserted forwarded to the Database App

• The database application provides a function to the HTTP Server app, that allows

the insertion of infos about a new barcode, like its type and value into the database.

In addition, the database app provides a web user interface so users can see which

barcodes were scanned by the application.

A component diagram of the application can be seen in Figure 5.1. The four previously

described apps are deployed on two app engines 𝐴 and 𝐵. After a new image is captured

by the hardware the NewImage event is sent to the BarcodeReader app. This causes the app

to detect barcodes in the image and extracts the data from the barcode. The app submits

each data objects to the HTTPClient app using a direct CROWN call. The HTTPClient

app in turn creates a HTTP request using the data object and submits it to the HTTP

implementation that is provided of by AppEngine 𝐴. AppEngine 𝐴 executes the HTTP

request in which AppEngine 𝐵 acts as the server. 𝐵 is configured to pass HTTP requests

through to the HTTPServer app. The HTTPServer app prints information about the

received request to the command line and submits the received data to the DatabaseAPI.

The DatabaseAPI is called using a direct CROWN call and inserts the data object into
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the underlying database. Finally, AppEngine 𝐵 make the web frontend available which

is provided by the DatabaseAPI app and allows users to inspect which barcodes where

scanned.

submitData(...) doInsert(...)

client:execute(request)

NewImage event

httpReceive(...)

sqlExecute(...)

BarcodeReader HTTPClient HTTPServer DatabaseAPI

Direct CROWN callDirect CROWN call Direct CROWN callDirect CROWN call

AppEngine A AppEngine B

HTTPHTTP

Figure 5.1.: The components of Case Study 1 and their interaction.

The investigated development history of case study consists of seven commits. An overview

regarding the changes in commits can be seen in Table 5.5.

At commit 1 the application consists of only three apps: The BarcodeReader, the HTTP-

Client and the HTTPServer. In commit 2 the DatabaseAPI app is introduced into the

application. Functionality that was part of the DatabaseAPI but not relevant for the case

study is removed in commit 3 Commit 4 adds a conditional to prevent the submission

of empty barcode API objects to the HTTPClient. Further, commit 5 prints a message

if an empty API object was found. All serve calls are removed from the DatabaseAPI in

commit 6. Subsequently, the DatabaseAPI app is removed from the application completely

in commit 7.

This commit history was created to emulate the development process of a larger appli-

cation. We therefore included the artificial deletion of the DatabaseAPI to more reactions

would need to be executed during the propagation of the commit history.

All commits of the case study 1 development history are architecturally relevant.

5.4.2. Case Study 2

The second case study uses the CSAC2.
The application “Color Inspection and Sorting” from the SICK AppPool allows the

detection of objects using attributes like their color. The image processing contains which

multiple distinct operations: image resizing, image separation, blob detection and the

processing of the blobs.
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Commit Index Hash Added Lines Removed Lines Changed Files
1 e25fb6b 575 0 4

2 7126aab 204 0 1

3 d92b459 76 81 3

4 e6d87e0 4 1 1

5 542d2e9 2 0 1

6 6b7b35f 1 21 2

7 1f2fb08 0 180 1

Table 5.5.: The commits of case study 1

Commit Index Total Files Blank Lines Comment Lines Lines of Code
1 4 98 89 388

2 5 125 124 530

3 5 128 130 516

4 5 129 130 518

5 5 129 130 520

6 5 126 127 506

7 4 99 94 386

Table 5.6.: Characterisation of the case study 1 application for the given commits

We intended to split this real world app into multiple apps and therefore multiple

components for each of the aforementioned distinct operations. Because of time constraints,

we were unable to split the case study 2 application into multiple apps / components. We

still use the application for the evaluation of the approach to evaluate the approach using

a real world application, even if a single component application is not really the intended

use case for the adapted CIPM approach.

The complete development history of the application up to its current master version

contains 47 commits. From those 47 commits we filtered out commits that do not change

a Lua source file.

The selected commits of the development history of case study 2 is depicted in Table 5.7.

The changes in the selected commits are described in Table 5.8. The total amount of Lua

files and content in terms of Lines of Code (LOC) are listed in Table 5.9.

5.5. Experiments

This section lists the experiments which were conducted to acquire the metrics for the

GQM plan. The propagation of case study 1 which forms experiment one discussed in

subsection 5.5.1. Experiment 2, the propagation of case study 2 is further, discussed in

subsection 5.5.2.
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Commit Index Hash Added Lines Removed Lines Changed Files
1 f713180 1855 0 7

2 1466c57 3 1 2

3 f57823c 10 4 3

4 40bf36e 451 122 7

5 473c9d9 1 1 1

6 995ecc0 505 187 7

7 956aeb9 448 234 7

8 0da3169 88 19 3

9 00b44f8 60 44 3

10 88d005a 41 14 1

11 92cb3bc 3188 2036 13

12 916fc52 1 1 1

Table 5.7.: The selected git commit history of case study 2.

Commit Description
1 Initial import of existing application into new repository

2 This commits contains the minor changing of some texts.

3 In this commit a bug was fixed in the application.

4 New features for the applications, e.g. the handling of more objects and

jobs.

5 Minor bug fix

6 New features including different LED behaviour and a different camera

trigger mode

7 Minor bug fix, v2.6.0

8 New features, improvements and bug fixes, v2.7.0

9 Improvements of the UI, v3.0.0

10 New feature and bug fixes, v3.1.0

11 Refactoring of the code structure, compatibility with new hardware, 10

new features

12 Minor bug fix

Table 5.8.: The selected git commit history of case study 2.

5.5.1. E1: Propagation of Case Study 1

This section describes experiment E1 and lists and discusses its results.

Goal of experiment E1 was to acquire metrics for the GQM plan using case study 1, see

subsection 5.4.1. The commits with index 1 to 7 were used for the experiment.

The experiment was executed using a version that did not implement the changed

statement reactions as described subsection 4.5.6.

The experiment was conducted as follows:
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Commit Index Total Files Blank Lines Comment Lines Lines of Code
1 7 261 291 1303

2 7 261 291 1305

3 7 262 291 1310

4 7 292 322 1578

5 7 292 322 1578

6 7 313 481 1716

7 7 338 489 1897

8 7 342 494 1957

9 7 346 496 1967

10 7 350 498 1988

11 10 487 697 2804

12 10 487 697 2804

Table 5.9.: Total source code size for the commits of case study 2.

1. For each commit: Start with an empty VSUM and propagate the commit. After the

propagation a copy of the commit integration state is stored persistently. The commit

integration state consists among other things all the models which are part of the

VSUM. In addition models, such as the parsed code model are also part of the commit

integration state. This yields models versions for each commit, which we’ll refer to

as the "automatic" models.

2. We start with another empty VSUM. Then we propagate all the commits from first

to last to the VSUM. After each propagation another copy of the commit integration

state in created for the purpose of the evaluation.

3. Having created all needed model versions, we evaluate all the propagations of the

previous step and calculate the required metrics for the GQM plan.

Figure 5.2.: An exemplary overview over the contents of the repository after the propaga-

tion of commit 5 of case study 1.

49



5. Evaluation

An exemplary overview over an instance of PCM repository model can be seen in

Figure 5.2. The Repository instance contains the four BasicComponents and OperationIn-

terfaces that were reconstructed for the case study 1 application. Is addition the composite

data type that is used by the approach to model any type can be seen.

Figure 5.3.: An exemplary SEFF of the previous repository after the propagation of commit

5 of case study 1.

In addition, one SEFF of the previously depicted Repository can be seen in Figure 5.3. The

handleNewImage SEFF exhibits the used type of AbstractAction: StartAction, StopAction,

InternalAction, LoopAction, BranchAction and ExternalCallAction.

5.5.1.1. Results and Analysis

This section will list the results of experiment E1, split by goals and metrics according to

the GQM plan presented in section 5.2.

G1.1: Code Model The obtained code model was evaluated regarding its correctness and

regarding that the approach correctly updates code model instances of the VSUM.

M4: Code Model Correctness This metric is used to determine if the code model used

for the approach is correct. The result of experiment E1 with regard to this

metric are displayed in Table 5.10.

No identical or dissimilar were found by the comparison. All parsed files of

all commits were classified as similar by the textual comparison. As explained

in the GQM plan, the Xtext printer may not reproduce lines with comments

and white space of the original source file correctly. This seems to be the case
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Commit Index Total Files Identical Files Similar Files Dissimilar Files
1 4 0 4 0

2 5 0 5 0

3 5 0 5 0

4 5 0 5 0

5 5 0 5 0

6 5 0 5 0

7 4 0 4 0

Table 5.10.: The results of experiment E1: Correctness of the code model.

for every commit, hence no printed file is identical to its original counterpart.

After the filtering of the comment lines, etc. all files are equal, leading to a

classification as similar. The semantically relevant source code is reproduced

by the parsing and printing.

This indicates that the approach can obtain a correct codemodel for each commit

of case study 1. Consequently, G1.1 was achieved regarding case study 1.

M5: Code Model Update We determine if the prototypical implementation correctly

updates the code model of the VSUM using this metric. The result of experiment

E1 with regard to this metric are listed in Table 5.11.

Commit Index Unmatched Intersection Union Jaccard Coefficient
1 0 1746 1746 1

2 0 2195 2195 1

3 0 2144 2144 1

4 0 2151 2151 1

5 0 2155 2155 1

6 0 2097 2097 1

7 0 1726 1726 1

Table 5.11.: The results of experiment E1: Correctness of the code model update process.

The calculated Jaccard Coefficient is 1 for every propagation. Consequently,

the intersection and the union of the model comparison have identical cardi-

nality after every propagation. This indicates on the one hand that the change

derivation approach using the hierarchical matching can correctly match the

code model instances and obtain the changes between the models. On the other

hand this indicates that the code model of the VSUM is updated correctly.

As shown by the previous two metrics, the code model is both correct and changes to

it can be correctly derived. The code model therefore be used for the wider approach.

This experiment consequently indicates that G1.1 was achieved regarding case study

1.
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G1.2.1: CPRs between the Lua code model and the PCM The CPRs between the Lua code

model and the PCM were evaluated by comparing the updated PCM instances to

manually and automatically created reference model instances:

M8.1: Manually created Reference Model We manually created and validated PCM

Repository Models for the commits 1 and 5 of the case study. These manually

created reference models where compared with the PCM repository model

which was updated by the prototypical implementation during the propagation

of commits 1 to 5. The result of the model comparisons are listed in Table 5.12.

Commit Index Unmatched Intersection Union Jaccard Coefficient
1 0 50 50 1

5 0 121 121 1

Table 5.12.: Results of experiment E1: Correctness of the CPRs between the Lua code

model and the PCM repository model measured by comparison with manually

created reference models.

Commit 1 is the initial commit of the case study. Therefore, no change derivation

is needed during the propagation of commit 1. Instead commit 1 can is used

to analyse if the prototypical implementation can statically reverse engineer

the PCM repository model for the initial version of the case study application.

Table 5.12 indicates that the PCM repository model reverse engineered by the

prototypical implementation matches the manually created reference model

completely, which indicates that the prototypical implementation can correctly

reverse engineer the repository model for case study 1.

Commit 5 was selected for this evaluation, because the PCM repository model

contains the most objects after this commit as can be seen in Table 5.13. The

correct propagation of commit 5 to the VSUM requires the correct functioning

of both the change derivation implemented in the prototypical implementation

and the correct implementation of the CPRs, in particular the SEFF update.

The change derivation further relies on the custom matching as previously

described.

As can be seen in Table 5.12 the manually created reference model did match

the PCM repository model updated by the prototypical implementation. This

indicates that the prototypical implementation updated the PCM repository

model correctly for the propagation of the commits 2 to 5. This result implies

that the change derivation and consequently the implemented hierarchical

matching works correctly for the case study 1 application.

M8.2: Automatically created Reference Model Aswewere unable to manually create

and validate reference models for all versions of case study 1, we extended the

evaluation of the CPRs from the Lua code model to the PCM repository model:

We automatically create a PCM repository model for each commit of case study

1 by propagating this single commit into an empty Vitruv VSUM. The models

which are obtained by this process are then compared to the actual VSUM
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Repository models, which were updated commit by commit. The result of the

model comparisons are listed in Table 5.13.

Commit Index Unmatched Intersection Union Jaccard Coefficient
1 0 50 50 1

2 0 77 77 1

3 0 111 111 1

4 0 120 120 1

5 0 121 121 1

6 0 68 68 1

7 0 60 60 1

Table 5.13.: Results of experiment E1: Correctness of the CPRs between the Lua code model

and the PCM repository model measured by comparison with an automatically

created reference model.

The model comparison yielded an Jaccard Coefficient of 1 for the commit prop-

agation of all commits. This indicates that the PCM repository models that

are updated by the adapted approach match the automatically created PCM

repository models. As further expanded upon in subsection 5.7.1, we can make

no strong assertions regarding the correct updating of the PCM repository

model, because the compared models were created by the same set of CPRs.

Still, these CPRs operate differently when creating new objects in the PCM

repository model compared to when they update already existing objects. So

different code paths may have been compared to each other, depending on the

nature of the propagated changes. Comparing Table 5.13 with Table 5.12, one

can see that for the commits 1 and 5 the object count for the intersection and

the union are identical, as expected.

Because of the time constrains of this thesis we were unable to create manual

reference models for all commits of case study 1. Instead we manually created and

validated two reference models for the the first commit and the commit with PCM

repository model with the most elements. In addition we compared the repository

models that were updated by the prototypical implementation with repositorymodels

that were automatically created by the prototypical implementation for this specific

commit.

The comparison of the manual reference model for commit 1 showed no difference

between the reference model and the model reverse engineered by the prototypical

implementation. This leads us to believe that the reverse engineering process used

to create the automatic reference models is working correctly. The results of the

evaluation regarding M8.2 indicate that architectural changes to the code model are

propagated PCM repository model correctly by the prototypical implementation.

The prototypical implementation therefore achieved G1.2.1.

G1.2.2: CPRs to the IM The following metrics were acquired to determine if the CPRs

update the instrumentation model correctly,
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M9.1: Instrumentation of Services This metric was acquired to determine if services

as described by SEFFs in the PCM repository model, are able to be instrumented

using the instrumentation model. This requires the existence of a SIP in the

instrumentation model for each SEFF of the PCM repository model.

The result of experiment E1 with regard to this metric are listed in Table 5.14.

The calculated F-Score for the matching SEFFs and SIPs is 1 for all propagations.

Commit Index SIPs Matched SIPs F-Score
1 5 5 1

2 6 6 1

3 16 16 1

4 16 16 1

5 16 16 1

6 6 6 1

7 5 5 1

Table 5.14.: Results of experiment E1: Correctness of the CPRs between the PCM repository

model and the instrumentation model, with regard to the instrumentation of

services.

The results displayed in Table 5.14 indicate that SIPs were correctly created and

removed for each SEFF of the PCM repository model and consequently that the

change propagation from the PCM repository model to the instrumentation

model works correctly with regard to the service instrumentation.

M9.2: Instrumentation of Actions The result of experiment E1 with regard to this

metric are listed in Table 5.15. The calculated F-Score for the matching actions

and AIPs is 1 for all propagations.

Commit Index AIPs Matched AIPs F-Score
1 9 9 1

2 10 10 1

3 17 17 1

4 18 18 1

5 19 19 1

6 12 12 1

7 11 11 1

Table 5.15.: Results of experiment E1: Correctness of the CPRs between the PCM repository

model and the instrumentation model, with regard to the instrumentation of

actions.

As depicted in Table 5.15, AIPs were correctly created or removed for the

actions of the PCM repository model. This indicates that the changes to the

PCM repository model are correctly propagated to the instrumentation model

with regard to the AIPs.
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M10: Instrumentation of Changed Actions This evaluation is used to asses if the the

instrumentation points are activated and deactivated correctly during the change

propagation process of the prototypical implementation. Only actions which

were added or changed since the last instrumentation and monitoring cycle

need instrumentation. The result of experiment E1 with regard to this metric

are listed in Table 5.16.
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1 9 9 9 9 0 1 1

2 10 1 1 1 0 0.1 1

3 17 9 9 8 1 0.529 1

4 18 2 2 2 0 0.111 1

5 19 1 1 1 0 0.053 1

6 12 0 0 0 0 0 -

7 11 0 0 0 0 0 -

Table 5.16.: Results of experiment E1: Correctness of the CPRs between the PCM repository

model and the instrumentation model, with regard to the instrumentation of

actions since the last instrumentation.

The calculated F-Score for the matching actions and AIPs is 1 for the first 5

propagations. This indicates that all added or changed actions could be matched

to an active AIP and vice versa. For the commits 6 and 7 no changed or added

actions exist. Therefore no F-Score can be calculated, because the F-Score is

undefined if no true positives exist (see subsection 5.1.2). Further, no active AIPs

exists as expected.

This result indicates that the prototypical implementation correctly deactivated

and activated the instrumentation points of the instrumentation model. Con-

sequently the instrumentation model can be used to further implement the

adaptive instruction as was intended for this thesis.

The results of the experiment regarding this goal indicate that the changes to the

PCM repository model are correctly propagted to the instrumentation model by the

prototypical implementation. Further, the instrumentation points are activated and

deactivated correctly. Hence, G1.2.2 was achieved by the prototypical implementa-

tion.

G1.2: CPRs We additionally evaluated how many CPRs are executed during the execution

of the experiment.
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M7: Ratio of executed Reactions This metric serves as an indicator for how much of

the implemented functionality of the reactions was actually executed during

this experiment.

The coverage results for the implemented reactions from the Lua code model to

the PCM repository model and the instrumentation model implemented can be

seen in the appendix in Figure A.1. All reactions except the RemovedBlockReturnReaction

were executed during the propagation of case study 1. The total instruction

coverage is 93% while the total branch coverage of the reactions is 81%.

The reaction coverage from the PCM repository model to the instrumentation

model are depicted further in Figure A.2. All reactions were executed. A

instruction coverage of 95% and a branch coverage of 84% was achieved.

The coverage data shows that all implemented reactions except one were exe-

cuted during experiment 1. The RemovedBlockReturnReactionwas not executed

because the case study does not contain a commit, that changes a function with

a return value into a function without one.

While this coverage result does not indicate that all the covered reactions are

correct, only one reaction was not executed, which conceals all possible errors

for this reaction.

G2: Detection of SICK AppSpace Apps A manual inspection was used to evaluate the cor-

rect component detection.

M11.1: Manual Inspection The number of existing apps and the amount of created

PCM components after each propagation is listed in Table 5.17.

After the propagation of every commit the number of PCM components matches

the number of existing SICK AppSpace Apps in the repository.

Commit Index Existing Apps Created PCM Components
1 3 3

2 4 4

3 4 4

4 4 4

5 4 4

6 4 4

7 3 3

Table 5.17.: The results of experiment E1: Existing Apps and created PCM Components.

As shown by the previous table, all existing Apps were detected for every

commit. This indicates that the prototypical implementation can correctly

detect Apps and map them to PCM components.

G1: Overall Approach Reduction of Monitoring Overhead: M2 This metric was calculated

to quantify the potential saving of monitoring overhead of the instrumentation
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of action instrumentation points that is achievable with the the adapted CIPM

approach. The results are displayed in Table 5.18.

AIPs Active AIPs TIPA 1 - TIPA
96 22 0.229 0.771

Table 5.18.: Results of experiment E1: Potential reduction of monitoring overhead.

The propagation of the 7 commits of case study 1 would have caused the in-

strumentation of 96 action instrumentation points without the adaptive in-

strumentation of the CIPM approach. Instead only 22 action instrumentation

points needed to be instrumented during the propagation of the case study.

Instrumentation points require a different number of instrumentation state-

ments depending on their type. Therefore no fine-grained assertion can be

made regarding the reduction of the actual monitoring overhead. Still, the

monitoring overhead is correlated with the amount of instrumentation points

and therefore the 77.1% reduction of activated action instrumentation points

indicates a significant reduction of the monitoring overhead.

Execution Time: M3 We measured the execution time of the change propagation of

the commits of case study 1. The used hardware uses an AMD Ryzen 7 5850U 8

core processor, 32GiB of system memory and an SSD. The execution times of

each commit can be seen in Table 5.19. Most propagations take around 250ms

to execute. Outliers are the commits 2 and 3 with a change propagation time of

1092ms and 772ms respectively. The propagation time per propagated changes

varies significant between 0.056ms and 4.216ms. Between 51 and 4832 changes

are propagated for the commits.

Commit Time (ms) Time per Change (ms) Propagated Changes
Total Lua Repository IM

1 269 0.056 4832 4551 209 72

2 1092 0.847 1290 1161 110 10

3 772 0.622 1241 901 242 93

4 253 2.433 104 32 50 14

5 215 4.216 51 10 34 5

6 251 1 251 145 83 22

7 201 0.235 855 833 18 4

Table 5.19.: Execution time and numbers of changes of the change propagation of the

commits of case study 1

During the change propagation, changes to the Lua code model are derived and

propagated to the PCM repository model and the instrumentation model of the

VSUM using CPRs.
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The propagation of commit 1 is significantly faster per propagated change than

the other commits because no change derivation is needed for the first commit.

Instead a repository is reverse engineered statically.

Each commit is propagated in significantly less than or around 1 second. We

feel this is completely acceptable for the use in a commit integration pipeline.

Because of the compact size of case study 1 no assertions can be made regarding

larger real-world applications, based on this data.

As previously discussed the results of experiment 1 indicate that the subgoals G1.1
and G1.2 were achieved. Further, the evaluation regarding M2 showed a significant

reduction in the amount of instrumentation points that need instrumentation. The

measured execution times characterised in the evaluation regarding M3 show that

the approach is able to propagate the commits of case study 1 with negligible delay.

Summing up, the satisfaction of the subgoals indicate that the prototypical imple-

mentation achieved G1.

5.5.2. E2: Propagation of Case Study 2

Experiment 2 follows the same procedure as experiment 1 which was described in subsec-

tion 5.5.1.

The prototypical implementation was slightly adapted since the execution of experiment

1. The previously described changed statement reaction was added for experiment 2.

5.5.2.1. Results and Analysis

This section will list the results of experiment E2, split by goals and metrics according to

the GQM plan presented in section 5.2.

G1.1: Code Model The obtained code model was evaluated regarding its correctness and

regarding that the approach correctly updates code model instances of the VSUM.

M4: Code Model Correctness This metric is used to determine if the code model used

for the approach is correct. The result of experiment E2 with regard to this

metric are displayed in Table 5.20.

All parsed files during the propagation of all commits were classified as similar.
This indicates that the prototypical implementation correctly parses and prints

all these files. Further, this indicates that the code model is correct.

M5: Code Model Update We determine if the prototypical implementation correctly

updates the code model of the VSUM using this metric. The result of experiment

E2 with regard to this metric are listed in Table 5.21.

For the commits 1 to 6 the Jaccard Coefficient (JC) is 1 which means that

the parsed code models matches the code model updated by the VSUM. This

indicates that the change derivation and the code model update process works

correctly for these commits.
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Commit Index Total Files Identical Files Similar Files Dissimilar Files
1 7 0 7 0

2 7 0 7 0

3 7 0 7 0

4 7 0 7 0

5 7 0 7 0

6 7 0 7 0

7 7 0 7 0

8 7 0 7 0

9 7 0 7 0

10 7 0 7 0

11 10 0 10 0

12 10 0 10 0

Table 5.20.: Results of experiment 2 regarding the code model correctness

Commit Index Unmatched Intersection Union JCReference VSUM
1 0 0 6017 6017 1

2 0 0 6025 6025 1

3 0 0 6054 6054 1

4 0 0 7219 7219 1

5 0 0 7219 7219 1

6 0 0 7892 7892 1

7 37 37 8756 8830 0.9916

8 37 37 9074 9148 0.9919

9 37 37 9108 9182 0.9919

10 37 37 9160 9234 0.992

11 354 354 12712 13420 0.9472

12 354 354 12712 13420 0.9472

Table 5.21.: code model update

Commits 7 to 12 present a different picture. The JC is close to 0.992 for the

commits 7 to 10. 37 unmatched elements were found for all of these commits

in both the automatically created reference model and the VSUM code model.

Manual inspection of the models reveals that these unmatched elements are

the same elements for commits 7 to 10. Further inspection shows that these

unmatched elements are represent statement that is out of order in the VSUM

code model.

A JC of 0.9472 for was achieved for the commits 11 and 12. Again 354 unmatched

elements were found both in the automatically created reference and the VSUM

code model. Like with the commits 7 to 10, closer inspection reveals that these
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mismatched elements correspond to statements that are at an incorrect position

in their containing block.

Because of the time constraints of this thesis, we could only perform a limited

investigation regarding the code model elements that are created correctly but

appear out of order in the VSUM code model. The prototypical implementation

uses EMF compare to find the differences between the old VSUM code model

and the newly parsed code model. These differences are then merged onto

the old VSUM code model while the changes to this model are recorded. The

recorded changes then represent the change sequence between the models.

EMF compare find the differences between the models by matching them against

each other. The used matching is the hierarchical matching approach described

in subsection 4.5.5. We suspect that the matching implemented in the proto-

typical implementation does not match the out of order elements correctly for

some reason. This matching is used during the initial model matching and the

merging phase of the change derivation. During the merging the matching is

used to determine where to insert an element into an container. An insertion

index is calculated by finding the longest common subsequence of elements

of the container in the model which is currently merged onto and the newly

parsed code model. The incorrect matching seems to cause EMF compare to

not find any common subsequence, which results in the element being inserted

at the end of its container.

Concluding, the VSUM code model is not correctly updated during all propa-

gations. We feel that this represents a minor technical difficulty in the custom

Lua matching. Given more time, we would have likely found the underlying

matching issue, which would then result in the correct updating of the VSUM

code model. This represents no conceptual difficulties of the approach, but only

technical difficulties with the prototypical implementation.

The discussion of M4 showed that the code model is correct. The evaluation of the

code model update revealed that the code model is updated correctly in nearly all

cases. For a small portion of code model elements, we experience matching issues,

which causes the incorrect updating of the code model. Therefore, G1.1 was not

achieved completely with regard to case study 2. Minor issues with the prototypical

implementation remain, which could likely be fixed by future work.

G1.2.1: CPRs between the Lua code model and the PCM The CPRs between the Lua code

model and the PCM were evaluated by comparing the updated PCM instances to

automatically created reference model instances:

M8.2: Automatically created Reference Models We automatically create a reference

PCM repository model for each commit of case study 2 by propagating this

single commit into an empty Vitruv VSUM. The models which are obtained by

this process are then compared to the actual VSUM Repository models, which

were updated commit by commit. The result of the model comparisons are

listed in Table 5.22.
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Index Unmatched Intersection Union JCReference VSUM
1 0 0 600 600 1

2 0 0 600 600 1

3 0 0 600 600 1

4 0 0 693 693 1

5 0 0 693 693 1

6 0 0 745 745 1

7 2 1 810 813 0.9963

8 2 1 831 834 0.9964

9 2 1 841 844 0.9964

10 2 1 847 850 0.9965

11 11 9 632 652 0.9693

12 11 9 632 652 0.9693

Table 5.22.: Results of experiment E2: Correctness of the CPRs between the Lua code model

and the PCM repository model measured by comparison with an automatically

created reference model.

The PCM repository model matches the automatically created reference model

for the commits 1 to 6. For the commits 7 to 12 the PCM repository model

updated by the CPRs does not match the automatically created reference. This is

to be expected as the update of the PCM repositorymodel is based on the changes

to the code model, which we discovered in the evaluation of the previous metric

does not work correctly for these exact commits. In this previous evaluation

we discovered that some statements were placed out of order in their container

during the code model update. This caused the existence of an equal amount of

unmatched elements in the reference and the updated model. Regarding the

results in Table 5.22, we find an unequal amount of unmatched elements for

the reference and the VSUM PCM repository model. The unmatched elements

are caused by the incorrect order of the elements in the code model. Further,

the unequal amount of unmatched elements is explained by the internal action

fusing described in subsection 4.5.6: Depending on the ordering adjacent internal

actions are fused or not, which causes the unequal amount of unmatch elements.

Manual inspection of some of themismatched elements reveals that the incorrect

order of the source elements in the code model cause the incorrect update of the

PCM repository model in the VSUM. We suspect that the CPRs from the Lua

code model to the PCM repository model work correctly and all mismatched

elements are caused by the incorrect update of the code model.

Because of the time constraints of this thesis, we were unable to create a manual

reference model for commits of case study 2, like we did for case study 1. The

evaluation of the CPRs from the Lua code model to the PCM repository model is

hindered by the incorrect code model discussed regarding the previous goal. Because

of this we can make no strong assertions regarding the correct operation of these
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CPRs. Still, we suspect that the CPRs actually work correctly. We therefore suspect

that the prototypical implementation achieved G1.2.1 with regard to case study 2.

Future work could investigate this suspicion further, by fixing the code model update

process and repeating this experiment.

G1.2.2: CPRs to the IM The following metrics were acquired to determine if the CPRs

update the instrumentation model correctly,

M9.1: Instrumentation of Services This metric was acquired to determine if services

as described by SEFFs in the PCM repository model, are able to be instrumented

using the instrumentation model. This requires the existence of a SIP in the

instrumentation model for each SEFF of the PCM repository model.

The result of experiment E2 with regard to this metric are listed in Table 5.23.

The calculated F-Score for the matching SEFFs and SIPs is 1 for all propagations.

Commit Index SIPs Matched SIPs F-Score
1 119 119 1

2 119 119 1

3 119 119 1

4 137 137 1

5 137 137 1

6 148 148 1

7 162 162 1

8 166 166 1

9 168 168 1

10 170 170 1

11 111 111 1

12 111 111 1

Table 5.23.: Results of experiment E2: Correctness of the CPRs between the PCM repository

model and the instrumentation model, with regard to the instrumentation of

services.

The results displayed in Table 5.23 indicate that SIPs were correctly created and

removed for each SEFF of the PCM repository model and consequently that the

change propagation from the PCM repository model to the instrumentation

model works correctly with regard to the service instrumentation.

M9.2: Instrumentation of Actions The result of experiment E2 with regard to this

metric are listed in Table 5.24.

The calculated F-Score for thematching actions andAIPs is 1 for all propagations.

AIPs were correctly created or removed for the actions of the PCM repository

model. This indicates that the changes to the PCM repositorymodel are correctly

propagated to the instrumentation model with regard to the AIPs.

M10: Instrumentation of Changed Actions The result of experiment E2 with regard

to this metric are listed in Table 5.25.
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Commit Index AIPs Matched AIPs F-Score
1 69 69 1

2 69 69 1

3 69 69 1

4 78 78 1

5 78 78 1

6 86 86 1

7 90 90 1

8 93 93 1

9 94 94 1

10 91 91 1

11 103 103 1

12 103 103 1

Table 5.24.: Results of experiment E2: Correctness of the CPRs between the PCM repository

model and the instrumentation model, with regard to the instrumentation of

actions.
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1 69 69 69 69 0 1 1

2 69 1 1 1 0 0.0145 1

3 69 2 2 2 0 0.029 1

4 78 29 29 29 0 0.3718 1

5 78 0 0 0 0 0 -

6 86 37 37 37 0 0.4302 1

7 90 36 36 35 1 0.4 1

8 93 11 11 11 0 0.1183 1

9 94 7 7 7 0 0.0745 1

10 91 5 5 5 0 0.0549 1

11 103 76 76 76 1 0.7379 0.9935

12 103 5 5 5 0 0.0485 1

Table 5.25.: Results of experiment E2: Correctness of the CPRs between the PCM repository

model and the instrumentation model, with regard to the instrumentation of

actions since the last instrumentation.

The F-Score is 1 for all commits of case study 2 except 5 and 11. For the commit

5 no F-Score can be calculated as no actions were added or changed. During

the propagation of commit 11, 76 actions were added to the PCM repository
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model of the vsum. One action of the PCM repository model was changed by

the CPRs. The AIP corresponding to this changed action was not activated

correctly. We could not execute an in-depth investigation the cause of this

because of the time constraints of this thesis. Commit 11 is the largest commit

of case study 2 and changes large portions of the Color Inspection and sorting

app. We suspect that this missing activation is the result of a missing corner

case in the implementation of the CPRs from the Lua code model. Given more

time, would have likely been able to fix this minor issue.

As presented, the CPRs correctly create and remove SIPs for PCM services and AIPs

for actions in the PCM repository model. A minor issue with the implementation

of the CPRs results in an AIP not being activated correctly. All other added actions

and changed actions are activated correctly. Overall we feel that the prototypical

implementation achieved G1.2.2 with regard to case study 2, with the exception of

one minor technical issue.

G1.2: CPRs In addition to the to the evaluation of the CPRs from the code model and to

the instrumentation model we, evaluated how many CPRs were executed during the

execution of the experiment.

M7: Ratio of executed Reactions The coverage results for the implemented reactions

from the Lua code model to the PCM repository model and the instrumentation

model implemented can be seen in the appendix in Figure A.3. All reactions

except the RemovedLuaComponentReaction and RemovedBlockReturnReaction

were executed during the propagation of case study 2. The total instruction

coverage is 80% while the total branch coverage of the reactions is 75%.

The reaction coverage from the PCM repository model to the instrumentation

model are depicted further in Figure A.4. All reactions were executed. An

instruction coverage of 86% and a branch coverage of 74% was achieved.

The coverage data shows that all implemented reactions except one were

executed during experiment 1. The RemovedBlockReturnReaction was not

executed because the case study does not contain a commit, that changes

a function with a return value into a function without one. Further, the

RemovedLuaComponentReactionwas not executed because the evaluated commit

history of case study 2 never removes a SICK AppSpace app.

The metric indicates that nearly all of the reactions were executed and conse-

quently nearly all functionality of the CPRs was at least executed once.

G2: Detection of SICK AppSpace Apps This goal is achieved if all existing SICK AppSpace

apps can be detected by the approach.

M11.1: Manual Inspection Case study 2 contains only one SICK AppSpace app dur-

ing all the used commits. We manually verified that after each propagation

one corresponding BasicComponent exists in the PCM repository model. This

indicates that the prototypical implementation can correctly detect apps of the

SICK AppSpace ecosystem and map them to PCM components.
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G1: Overall Approach To evaluate the overall approach we estimate the reduction of the

monitoring overhead that is achievable by the approach and measure the propagation

time of commits.

Reduction of Monitoring Overhead: M2 This metric was calculated to quantify the

potential saving of monitoring overhead of the instrumentation of action in-

strumentation points that is achievable with the the adapted CIPM approach.

The results are displayed in Table 5.26.

AIPs Active AIPs TIPA 1 - TIPA
1023 270 0.264 0.736

Table 5.26.: Results of experiment E2: Potential reduction of monitoring overhead.

The propagation of the 12 commits of case study 2 would have caused the

instrumentation of 1023 action instrumentation points without the adaptive

instrumentation of the CIPM approach. Instead 270 action instrumentation

points would have been instrumented during the propagation of the case study.

As previously discussed in the evaluation of the CPRs to the instrumentation

model, the prototypical implementation did not correctly activate one AIP

during the propagation. Factoring in this missing activated AIP would result in

the activation of 271 AIPs and reduction of the activated AIPs of 73,51%.

As previously described no fine-grained assertion can be made regarding the

reduction of the actual monitoring overhead. The monitoring overhead is

correlated with the amount of instrumentation points and therefore the 73.6%

(or 73,51%) reduction of activated action instrumentation points indicates a

significant reduction of the monitoring overhead.

Execution Time: M3 We measured the execution time of the change propagation of

the commits of case study 2. The execution times of each commit can be seen

in Table 5.27.

During the change propagation, changes to the Lua code model are derived and

propagated to the PCM repository model and the instrumentation model of the

VSUM using CPRs. The median propagation time is 1165.5 ms. Commit 11 is

the commit with the most propagated changes and consequently it takes the

longest to propagate with around 21.1 seconds. The propagations times show

that the prototypical implementation can propagate changes relatively quickly

regarding its intended use in a commit propagation pipeline.

Overall the prototypical implementation was able to operate as expected. Because of

the time constraints of this thesis we were unable to overcome a few minor technical

issues with the prototypical implementation: The code model update erroneously

creates elements in an incorrect order in a small portion of the propagations. Because

of this the evaluation of the CPRs from the Lua codemodel is hindered. The evaluation

of the CPRs to the instrumentation model revealed a single case in which a changed

action is not correctly activated.
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Commit Time (ms) Time per Change (ms) Propagated Changes
Total Lua Repository IM

1 2092 0.074 28257 15759 7636 4862

2 568 3.463 164 47 27 21

3 577 0.645 894 859 20 14

4 3553 0.23 15418 12501 1756 1157

5 219 0.566 387 359 0 28

6 4023 0.244 16454 12069 2767 1616

7 7617 0.321 23727 17212 4013 2461

8 1488 0.179 8311 7104 704 462

9 843 0.38 2216 1758 283 162

10 605 0.602 1005 707 175 114

11 21126 0.48 44043 37638 4051 2339

12 479 0.251 1905 1702 76 51

Table 5.27.: Execution time and numbers of changes of the change propagation of the

commits of case study 2

Summing up, the prototypical implementation falls short of achieving G1 with regard

to case study 2. Future work could sort out the remaining minor technical difficulties,

which would allow the reevaluation of the prototypical implementation to determine

if G1 is finally achieved with regard to case study 2.

5.6. Discussion

This section will discuss the findings of the evaluation of the prototypical implementation

of the CIPM approach for Lua-based sensor applications.

We used two case studies for the evaluation of the prototypical implementation: Case

study 1 was created by us as a minimal running example, by combining multiple existing

application samples from the SICK AppSpace ecosystem. The Color Inspection and Sorting

app from the SICK AppPool was used as case study 2. The application of case study

1 contains 3 to 4 SICK AppSpace apps, while the case study 2 application contains a

single app. Because component based applications with only one component exhibit no

calls between components we changed the operation of the SEFF reconstruction for the

propagation of experiment 1: Calls to SEFFs of the same component are reconstructed as

if they were external function calls. This emulates the behaviour of case study 2, had we

had the time to split the application into multiple apps as originally planned. Case study

1 is an near-real-world application, while case study 2 is a real-world application. The

selected commit history of case study applications contains 7 and 12 commits respectively.

The maximum extent with regard to the Lua source code of the case study applications

during their development are 530 LOC and 2804 LOC.

We will now discuss the overall results of the evaluation based on the results of both

experiments with regard to the achievement of the goals of the GQM plan presented in

section 5.2.
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G1.1: Code Model The results of both results experiments indicate that the contributed

Lua code model is correct.

While experiment 1 showed no issues with the updating of the VSUM code model

by the prototypical implementation, experiment 2 revealed that in a small portion

of changes to the code model the ordering of Statements in a Blocks elements is

incorrect. Our investigation of the misplaced statements indicates that the matching

which we implemented for the Lua code model and the procedure by which EMF com-

pare inserts elements into a model during the change derivation cause the misplaced

elements. We feel that this is a minor technical issue, which could be remedied by

e.g. extending the implemented matching. Overall, the prototypical implementation

therefore achieved G1.1 but still experiences minor technical difficulty which could

be addressed by future work.

G1.2.1: CPRs between the Lua code model and the PCM No reference PCM repositorymod-

els were available for the case study applications. Therefore the author of this thesis

manually created and validated repository models for two commits of case study 1.

Because of the time constraints of this thesis we could not create more reference

models for case study 1 and especially case study 2, because of the extent of the case

study application. Instead we automatically created reference models, by propagating

only a single commit into an empty VSUM. The automatically created reference

models were used for all commits, and the manual reference models were used where

available.

Experiment 1 indicates that the changes to the code model could be correctly propa-

gated to the PCM repository model. The previously discussed incorrect updating

of the VSUM code model interfered with the evaluation of the CPRs in experiment

2. Because of the correlation of the issues with the code model update and the

mismatches in the PCM repository model, we suspect that the PCM repository model

is actually correctly updated.

Because of the successful updating of the PCM repository model in experiment 1,

we suggest that the prototypical implementation achieved G1.2.1. Future work is

required to investigate this claim more thoroughly.

G1.2.2: CPRs to the IM Both experiments indicated that the instrumentation points are

created and removed correctly in the instrumentation model. Regarding the correct

activation of changes by the prototypical implementation a single AIP was not

correctly activated in experiment 2. Because of the time constraints of this thesis we

could not thoroughly investigate the cause for this missing activation. We suspect

that this represents a missed corner case in the implementation of the CPRs, which

could be addressed by future work.

Overall, the prototypical implementation correctly populates the instrumentation

model with instrumentation points and activates them correctly, except for a single

action instrumentation point. The instrumentation model can be used for the imple-

mentation of adaptive instrumentation by future work. We feel that the prototypical

implementation achieved 1.2.2 except for a single technical issue.
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G1.2: CPRs The coverage data of both experiments indicate that nearly all reactions were

executed during the experiments.

The sub goal G1.2.1 was achieved by the prototypical implementation, but requires

more investigation. G1.2.2 was nearly achieved, because of a minor technical is-

sue. Therefore we think that the prototypical implementation achieved G1.2 with

limitations.

G2: Detection of SICK AppSpace Apps Both experiments showed that the prototypical im-

plementation could detect SICK AppSpace apps correctly. Therefore the prototypical

implementation achieved G2.

G1: Overall Approach Both experiments indicate that a significant amount of instrumen-

tation points must not be instrumented by the approach because of the adaptive

instrumentation enabled by the instrumentation model. Experiment 1 shows that

77.1% of PCM actions would not have been instrumented during the experiment. For

experiment 2 this number is 73.51%

The approach was able to propagate the changes quickly to the VSUM. The median

propagation time per commit during the experiments were 253ms and 1165.5ms

respectively. An outlier was commit 11 of case study 2 which took around 21 seconds

to propagate. This commit completely restructured the whole case study application.

Concluding the discussion of the experiment results, the prototypical implementation

falls short of reaching the main goal G1. While the evaluation demonstrated that the

CIPM approach is amendable to being adapted to another programming language, we

revealed multiple minor technical difficulties with the prototypical implementation.

Future work is needed to address these issues and to reevaluated the overall approach.

In the following we will discuss issues we faced during the development of the proto-

typical implementation.

Matching of the Code Models The integration of the used Lua code model into the ap-

proach required the implementation of a new matching for the code models. This

matching was implemented by reusing the hierarchical match engine from SPLevo

[22]. We implemented an equality helper that is used to by the hierarchical match

engine to compare single model elements. In the beginning we implemented as few

matchings ourselves as possible and deferred to the edition distance matcher from
EMF compare for other elements. This approach proved unreliable and caused issues

with the change derivation. We therefore extended our equality helper, so it can

match all elements of the code model.

Initially we compared variable expressions, which have a reference to the assignment

of the variable by comparing the name of the referenced variable. This approach

yielded invalid code models, when changes to the source code cause the referenced

assignment to change position in the code model. The cause for this is that the

comparison of the variable expression which references the moved assignment does

not detect the changes is position of the referenced assignment. The reference of the
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variable expression is therefore not updated during the change derivation, which

causes the reference to be dangling and the code model to be unusable. We worked

around this issue by additionally comparing the scope and position of the elements

referenced by variable expressions.

An previously described EMF compare uses the matching both during the calculation

of the code model differences and during the merging process. In the latter case the

matching is used during the calculation of the insertion index of elements that are

inserted into a list. We often encountered matches that worked acceptable during the

difference calculation of the models, but caused errors in the merging process. This

causes out of order elements in the updated code model. The presented evaluation

revealed that the final prototypical implementation still experiences some of these

issues.

The difficulty of implementing a matching for the code model is further amplified

by its integration into the CIPM approach. The changes derived using the matching

are used in the CPRs to propagate the changes to the other models of the approach.

Depending on the matching changed elements may be matched or they may not

be. When elements are matched only the actual changes in an element are passed

through to the CPRs. If a changed element can not be matched, it causes the deletion

of the old element and the creation of a new element. Consequently, changes to the

matching may require further changes to the CPRs, which increases the difficulty of

the implementation of both the matching and the CPRs

Future work could investigate different approaches for the model matching.

Change Order processed by the CPRs The CPRs propagate changes in the same order as

the change derivation process created the changes. EMF compare for example orders

the changes so, e.g. a referenced code model element is created before its reference.

We will now illustrate issues with the change ordering using an example. An external

function call is added to a component, which calls a function of another component

that is added in the same propagation. The external call may be processed before the

newly created function is processed. During the propagation of the added external

call, an ExternalCallAction is created. The ExternalCallAction has an attribute to

the OperationSignature of the service it is calling. This OperationSignature does

not exist at this point in time, because the added function has not yet been created.

Therefore, the ExternalCallAction is created but invalid and needs to be repaired

later, when the signature is actually created. This requires some kind of linking data

structure that so the external call can be completed, when the added function is

finally processed.

Another example issue is the handling of serve calls in the CPRs. Serve calls register

a function with the SICK AppEngine and our approach uses these calls to determine

which functions can be called by other apps. When the code around a serve call is

modified the serve calls may not be matched correctly even if it is unchanged. This

causes the removal of the old serve call and the creation of a new serve call. These

two operations have no strict order and consequently the creation of the new may
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be processed before the removal of the old serve call. Processing these two changes

naively causes issues, as the creation of a new serve call does nothing (because the

SEFF which is served by the call does already exist). The removal of the old serve call

would then cause the removal of the corresponding SEFF which unintended. This

situation can be correctly handled by additional checks before the removal of a SEFF.

These two examples demonstrate, that while it is possible to implement CPRs that

result in the correct updating of the other models, the resulting CPRs are complicated,

difficult to reason about and to implement. This interferes with the maintainability

of the CPRs.

5.7. Threats to Validity

This section lists threats to the validity of the evaluation. Threats to the internal threats to

validity are discussed in subsection 5.7.1. Further, external threats to validity are discussed

in subsection 5.7.2.

5.7.1. Internal Threats to Validity

Internal threats to the validity of an experiment e.g. refers to whether the tested subject

matter actually makes a difference to the acquired metrics. Experiments with high internal

validity have sufficient evidence to support their claim [52].

Reference Repository Models Previous work could rely on the availability of reference

models for the used case study applications, because these applications were designed

as benchmarks for research into component based software.

No such reference models were available for the case study applications presented

in this thesis. Because of the time constraints of this thesis, the author of this

thesis manually created and validated two PCM repository model instances for the

evaluation of the model update process.

For the evaluation of the updating process of the PCM Repository models, we use

an additional comparison with automatically created models in Table 5.5.1.1. The

automatically created models are created by the same CPRs that update the evaluated

models. This is certainly a threat to the internal validity of this particular evaluation.

Creating and updating objects in the PCM repository model uses different logic, so

depending on the propagated change not the same CPR logic is used in the process

of the model propagation. We feel that this warrants the addition of comparison

with automatically created PCM repository models to the evaluation.

Future work could include the creation of reference models for all commits of the

case studies, ideally by a third party that was not part of the development process of

this approach. Further, the created model could be validated by such third parties.

Same Matching in Approach and Evaluation Because of our newLua codemodel, nomatch-

ing implementation was available to match code model instances. We therefore also
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implemented a new custom hierarchical matching for the new code model. This

matching is used during the change derivation for the updating of the VSUM code

model. Further, we have to use this matching during the evaluation of the code

model updating process. In specific, the matching is used to compare the updated

code model of the VSUM with the parsed code model.

The use of the same matching for the code model update and the evaluation of

the former clearly presents a threat to the internal validity of the evaluation. The

matching is an integral part of the wider approach. Errors in the matching would

likely have caused significant errors in other parts of the evaluation, in particular

the comparison with the manually created PCM repository model. We therefore

feel that the risk for a faulty matching is low, and consequently that the use of the

matching during the evaluation of the code model update does not invalidate the

results of said evaluation.

Low Complexity of Case Study 1 No software from the AppSpace ecosystem was imme-

diately usable to for the evaluation of the approach. This is caused by the fact that

the applications mostly consist of a single AppSpace app that implements a specific

function. In specific, no applications using multiple apps in unison were available

for the evaluation of this thesis, which is be required for a substantial evaluation of

an approach for component based software.

Instead a relatively minimal case study application was implemented by the author of

this thesis. The case study 1 applications consists of 4 AppSpace apps and therefore

contains 4 components. We implemented the case study application to demonstrate

all parts of the approach, and therefore also include e.g. the removal of a component

from the application.

This threat to validity could be mitigated if a third party provided an application

with multiple apps for evaluation in future work.

Case Study 2 Application As described above no applications with multiple apps were

directly available for the evaluation of the approach. For case study 2 we resorted to

evaluating an application consisting of an application consisting of a single SICK

AppSpace app. External calls are calls between the components of an application and

are the only action that is classified by the approach as architecturally relevant. As

previously described, the control flow is only reconstructed for such architecturally

relevant calls.

Having no architecturally relevant calls, results in the reconstruction of trivial SEFFs.

To remedy this wemap calls to functions which are served (and therefore have a SEFF)

as external calls, even though the called function resides in the same component. By

doing this we emulate the behaviour of the split application we originally intended

to create.
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5.7.2. External Threats to Validity

External validity of an experiment characterises to what degree its results can be gener-

alised [52]. Consequently, threats to external validity are limitations or constraints of the

evaluation.

Narrow Scope Only applications from the SICK AppSpace ecosystem are used for the

evaluation of the approach.

We use the notion of an app as components for the reverse engineered component

based architecture. This approach may not be generalisable to other component

based Lua applications.

Further, we use the notion of served functions from the SICK AppSpace ecosystem

to determine which functions can be called by other components. Other Lua applica-

tions may use a looser definition of exported functions which therefore may not be

amendable to our approach.

This threatens the generalisability of the evaluation results to other Lua applications.

Future work could investigate other Lua applications to mitigate this threat.
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This section will present related work to our approach.

6.1. Lua Analysis in Rascal

Klint et al. presented the Lua Analysis in Rascal (AiR) framework the static analysis of

Lua programs that are used in the context of game engines [23]. Within the context of the

their presented work, Lua scripts are used to customize the behaviour of a game without

changing the game engine itself. The Lua code is embedded into the game engine and

interacts with it through some sort glue code, which usually implemented in C/C++. While

Lua allows for quick prototype creation, they identify two issues with the scalability of

this approach: Once larger quantities of Lua scripts have accumulated, the maintenance

of the overall system is hindered by a lack of tooling for the static analysis of the Lua

scripts. Further, the glue code between the Lua scripts and the game engine and its

libraries becomes an issue. The glue code may be generated by a standard generator, but

this approach is prone to producing suboptimal bindings, which is not acceptable in this

context. Another option is the manual implementation of the glue code which further

strains the maintainability of the overall system. The authors approach is to enable the

static analysis of Lua applications in their embedded context. This means that the glue

code or bindings to the other libraries of the system are also considered during the static

analysis of the system.

They implement LuaAiR as a Rascalmeta-program [23, 24]. Rascal is ameta-programming

language:

Meta-programs are programs that analyze, transform or generate other pro-

grams. Ordinary programs work on data; meta-programs work on programs.

[24]

Rascal programs follow the Extract Analyse Synthesize (EASY) paradigm: Interesting

artifacts arise extracted, analysed and finally results are synthesized. Rascal uses its own

grammar to textually define a meta-program. A parser can then be generated using this

grammar, which can parse the target language into a parse tree a custom representation of

the source code.

In the context of Lua AiR the Lua scripts interact with a game engine through generated

glue code [23]. The structure and functionality of the glue code is modelled using two

DSLs: The Interface Definition Language (IDL) defines which interfaces exist in the glue

code for the Lua scripts. In addition the signature of the functions of the interface are

defined, including parameter types. The mapping from game engine functionality to the

interfaces modelled using the IDL is defined using the Interface Generator Language (IGL).
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The analysis of a system using Lua AiR works as follows [23]. First the Lua code is

parsed using the parser generated by Rascal. The parse tree obtained from the Rascal

parsed is then imploded by matching its nodes against algebraical data types which then

comprise the Abstract Syntax Tree (AST) used by the approach. The AST is then reduced

to simplify the further analysis. A checker statically checks the types and annotates AST

with scope information. A Control Flow Graph (CFG) is then generated and used by

another analyzer to perform a reaching definition check.

Category Lua AiR CIPM for Lua
Parser Rascal grammar (130 LOC) Xtext grammar (370 LOC)

Model Rascal Parse Tree, AST Ecore-based code model

Application

Context

Game Engine SICK AppEngine, Sensor Hardware

Interface

Definition

IDL XML Manifest, Profile, Serve-calls

Typing Types of IDL used for type check-

ing

Not modelled

Goal Static Analysis Architecture and Performance

model

Table 6.1.: Comparison of LuaAiR to the presented approach.

We compare Lua AiR to our approach it Table 6.1. While we use an Xtext-based grammar

for our code model, LuaAiR uses a Rascal grammar. It is noteworthy that the grammar used

by Lua AiR was implemented in less than half the LOC of our Xtext grammar. While Lua

AiR parses the Lua source code into an Rascal parse tree and the converts this parse tree to

an AST, we parse directly parse Lua source code into an Ecore-based model. This makes

our approach more versatile, because Ecore-based models are automatically supported

by tooling of the popular EMF. Applications of our approach are executed by the SICK

AppEngine on the sensor hardware or on SIMs. SICK AppSpace apps can interface with

other apps, or with functionality implemented by the platform to facilitate e.g. the reading

of sensor data. The functions exposed by one app to the others is defined using an XML-

based manifest. The actual bindings are created within an app by calling a function of

the AppEngine that registers an exported function. In Lua AiR, script are embedded

into a game engine to customize the behaviour for the respective game product. The

Lua scripts interface with generated bindings which are defined using the IDL language.

Lua AiR uses the type information expressed in the IDL model to implement static type

checking in the Lua scripts. The presented approach does currently not model any types

of function arguments and return values. Because this information is also available in

the app manifests a similar approach to the one used with Lua AiR is thinkable. Overall

both approaches have the goal of aiding the development of software with good code

quality. Lua AiR uses static analysis, so bugs like the usage of undefined variables can be

detected early during the implementation, ideally through the use of IDE support. The

presented adapted CIPM approach aims to increase the code quality by making on the one

hand up-to-date architectural models of the software available automatically during its
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development, which we hope can help developers to engineer better structured software.

On the other hand, by providing the developers with the means to get insights into the

performance of software during its development we believe that the developer can easier

diagnose the performance issues, which leads to better overall performance.

6.2. SiDiff

Schmidt and Gloetzner presented the SiDiff frame work [36, 46]. They identify the im-

portance of complete tooling for MBSE. This includes finding the difference between two

models, which is often referred to as state-based model comparison. Many different mod-

elling languages exist which exacerbates the issue of available tooling for these languages.

Further, Domain-Specific Language are created and used for a specific use case. Tools

for the differencing and merging of models are created by implementing an matching

algorithm for the specific models.

The authors present a general approach to simplify the implementation process of

tooling for model differencing and merging [36]. The use a model agnostic kernel that can
be adapted to a large number ofmodels through configuration. The kernel supports different
matching types: Both a Top-Down-Matching and Bottom-Up-Matching are supported.

The former starts at the root of both elements and only compares elements which parent

elements were matching. A Bottom-Up-Matching is used for models where the similarity of

two elements depends on the similarity of their respective descendants. In addition to these

two matching types elements can be matched based on three further matching disciplines:

Identifier-based matching compares elements based on their identifier. Signature-based

matching calculates a signature of an element based on its attributes and elements are

considered matching when their signatures are identical. Finally, model elements can

be compared based on their similarity, rather than on their identifiers or signature. This

makes the approach usable for models generated from another source, which inherently

cannot be compared using persistent identifiers. The kernel configuration is used to specify

which attributes of elements are used for the similarity calculation of elements. In addition,

SiDiff provides 20 algorithms than can be selected for the similarity calculation of elements.

Further, the differences in the models can be filtered according to user preferences, for

changes which may not be relevant in a specific use case. Model elements which are

similar enough, depending on some threshold are said to be corresponding. Changed

elements are identified by their lack of correspondences into the other model.

The SiDiff framework workflow initially annotates both models that are compared.

Based on the annotations and the kernel configuration both models are matched, yielding

element correspondences. The correspondences are processed by a difference engine, to

create representations of the differences in the models.

The authors use a configuration based approach to be able to compare models of many

meta models without the need for the implementation of a custom matching algorithm.

Our presented approach uses a custom matching paired with a hierarchical match engine

and EMF compare to find the differences in different versions of a code model.
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6.3. Semantic Lifting

Kehrer et al. presented an approach to semantic lifting of differences between software

models [20]. State-based model comparison works by matching the elements of two

models using a matching algorithm, which yields correspondences between matched

model elements. In a second step differences are generated by processing model elements

which have no correspondences. Such differences are low-level representations of the

changes to the model and as such they are nearly incomprehensible to the users according

to the authors.

The presented approach aims to semantically lift these low level differences to the level

of conceptual descriptions of the model modifications. They achieve this by transforming

the low level changes into what they call user level changes. The idea is to partition

the set of low-level changes into so called semantic change sets. A semantic change set

contains the low level changes belonging to one user level change. An example for such

a user level change is presented in the form of the pull up attribute editing function of

modern IDEs. The semantic change sets are created using Henshin transformation rules

[44]. Henshin is a model transformation framework for EMF-based models, which is

based on graph transformation concepts. According to the authors the semantic change

set recognition rules implemented using Henshin are highly complex but also schematic

in nature. Therefore the can be automatically generated by the authors. They provide

recognition rules for the detection and transformation of 41 edit operations. Given a set

of low-level changes, they recognize all possible edit operations. Because the detected

operations may be overlapping, the authors post process the recognized edit operations to

ensure that a minimum number of edit operations that simultaneously cover all low-level

changes is selected. The evaluation of the approach indicates that on average between 6

and 18 low level changes can be semantically lifted into a user level change, depending on

the type of used model.

The authors semantically lift changes to make them more comprehensible to users of

the models. Our presented approach uses a matching based on the hierarchical match

engine from SPLevo and EMF compare to find the differences between two versions of

a code model. The low level changes are used verbatim by the the Vitruvius framework

CPRs to propagate the changes to other models.

6.4. A posteriori Operation Detection in Evolving Software
Models

Langer et al. presented an approach for the a posteriori detection of change operations for

software models [26]. Logging or recording based approaches exist for finding changes or

operations which are made to a software model. The authors state that such approaches

are limited, because the recording depends on the modelling layout and only changes

supported by the model editor can be recorded. The authors approach is based on EMF

and is consequently usable for all Ecore based models. A posteriori approaches like state

based model comparison can be used to find the differences of a model before and after

the executed changes. They differentiate changes to a model into two classes: Atomic
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operations are additions, removals, updates and moves of model elements. On the other

hand composite operations are composed of a set of such atomic operations. Atomic

changes can be derived using approaches for state base model comparison. According

tho the authors relying solely on atomic changes does not scale. Therefore, they favour

combining atomic changes into composite changes. The authors extend the usual state

based model comparison with an additional phase for the detection composite operations.

They reuse existing operation specifications as a basis for the creation of composite

operations. The differences which were created in previous phases using a state base

model comparison are matched against the pre- and post-conditions of the operation

specifications. This matching process is iteratively repeated until a fixpoint is reached, in

order to handle possibly overlapping composite operations.

The authors combine atomic model changes to composite changes by reusing existing

operation specifications. Our presented approach uses the atomic changes verbatim to

propagate the changes to other models.
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7. Conclusion and Future Work

In this last chapter we conclude this thesis with a summary of the presented approach.

We further outline possible future work regarding the approach.

7.1. Conclusion

The Continuous Integration of Performance Models (CIPM) approach makes calibrated

performance and architecture models of an application automatically available during its

development [31]. Three software models are used by the CIPM approach: A model of the

applications source code; the Palladio Component Model (PCM), a hybrid architecural-

and performance-model, and an instrumentation model [6]. Changes to the source code of

an application are automatically propagated to these models by integrating the models

into Vitrivius, a view-based model consistency framework [48]. Consistency Preservation

Rules (CPRs) propagate changes from changed model the others, to keep the models

consistent. The CIPM approach was previously prototypically implemented and evaluated

for microservice-based web applications implemented in the Java programming language.

We presented an adapted CIPM approach for Lua-based sensor applications in this

thesis. Lua source code can be parsed into a contributed Lua code model based on an Xtext

grammar. The code model is integrated into the CIPM approach by implementing and

adapting the required Vitruvius CPRs. In addition we provided a new approach to updating

existing Service Effect Specifications (SEFFs) of the PCM, which model the behaviour and

resource demand of the services of a component.

A prototype of the presented approach was implemented. We were unable to implement

the adaptive instrumentation required to complete the presented approach, because of

technical difficulties and the time constraints of this thesis. Consequently the obtained

PCM model is not calibrated by the implementation. Because of the difficulty of type

inference in Lua code, the prototypical implementation does not model Lua types.

The prototypical implementation was evaluated using two case study applications from

the SICK AppSpace ecosystem, which uses the Lua programming language to implement

applications running on sensor- and related hardware. The first case study was imple-

mented by us as a minimal running example by combining existing example applications

from the SICK AppSpace, while the second case study is a commercial SICK sensor ap-

plication for the detection and sorting of objects using their color. The evaluation of the

case studies showed that the prototypical implementation was able create correct code

models for the case studies. Further, the evaluation revealed minor technical issues with

the prototypical implementation. The code models that are updated by the prototypical

implementation contain out-of-order elements in a small number of propagations, which

makes them unusable for the approach. In addition, an instrumentation point was not
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correctly activated in a single case. Still, we demonstrated that the overall CIPM approach

is amendable to the integration of support for other programming languages. The applica-

bility of the CIPM approach was extended by integrating support for the Lua programming

language.

7.2. Future Work

We did not complete the prototypical implementation of the presented approach because

of the time constraints of this thesis. Future work could complete the prototypical im-

plementation by implementing the adaptive instrumentation of Lua applications using

the instrumentation model that is updated by the current implementation. Further, the

monitoring and calibration which was previously implemented may require adapting to

the prototypical implementation of the presented approach. The technical difficulties

which were revealed by the evaluation can be addressed by future work.

We limited the scope of the prototypical implementation of the approach. The PCM

repository model can model types for e.g. the arguments and return values of SEFFs. We do

not model the types of the Lua functions, because the inferrence of Lua types is challenging.

This difficulty is demonstrated by the lack of tooling for the static analysis of Lua code that

supports type inference [23]. Lua uses syntactic sugar for e.g. the declaration of functions.

The prototypical implementation has only partial support for the Lua syntactic sugar.

Future work could complete the partial implementation of the presented approach,

evaluate the the approach as a whole, and address the limitations and minor technical

issues of the prototypical implementation.
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A. Appendix

A.1. Reaction Coverage Data

The coverage data of the reactions from the exececution of Experiment 1 can be seen in

Figure A.1 and Figure A.2.
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