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A B S T R A C T

The T-matrix is a powerful tool that provides the complete description of the linear interaction between the
electromagnetic field and a given object. In here, we generalize the usual monochromatic formalism to the
case of polychromatic field-matter interaction. The group of transformations of special relativity provides the
guidance for building the new formalism, which is inherently polychromatic. The polychromatic T-matrix
affords the direct treatment of the interaction of electromagnetic pulses with objects, even when the objects
move at constant relativistic speeds.
1. Introduction

Understanding and engineering the interaction between electro-
magnetic radiation and matter has been, is, and will be crucial for
our scientific and technological development. These endeavors benefit
from accurate an efficient theoretical and numerical tools of wide
applicability. The T-matrix is a particularly useful formalism for the
study of light-matter interactions featuring such beneficial properties.
The T-matrix of an object is a linear operator that produces the field
scattered by the object upon a given incident illumination. In the
most common embodiment the incident field is expanded into regular
multipolar fields, the scattered field is expanded into irregular outgoing
multipolar fields, and the T-matrix connects the two sets of expansion
coefficients. Following the seminal paper by Waterman [1], the T-
matrix formalism has been established as one of the most powerful
and popular techniques for computing the electromagnetic response of
single and composite objects. The amount of research related to the
T-matrix and its manifold applications grows at an increasing rate [2,3].

For all its outstanding properties, the T-matrix formalism has still
some limitations. One important question whose theoretical details
and algorithmic answers are currently under intense study [4–10]
is the validity of the expansion of the scattered fields outside the
object, but inside the smallest sphere circumscribing the object. Such
question compromises the computation of the joint T-matrix of two
objects that invade each others smallest circumscribing spheres. In
here, we address another important limitation. The T-matrix formalism
is monochromatic at its core, that is, it has been defined and developed
systematically assuming that the illuminating fields are monochro-
matic, with time dependence exp(−𝑖𝜔0𝑡) for some fixed frequency 𝜔0. It
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is clear that the linearity of Maxwell equations permits the computation
of the response of an object to an incident polychromatic field by
superposing the responses to many monochromatic fields with different
frequencies. Yet, as far as we know, a systematic development of the
polychromatic T-matrix does not exist, which in particular leaves out
the direct treatment of the interaction of objects with light pulses.
The practical significance of such interactions is already well recog-
nized, including applications such as particle size and refractive index
measurements [11], pulsed optical tweezers [12], and reversion of
matter magnetization [13]. Other cases where a robust polychromatic
T-matrix formalism will be beneficial are linear processes that change
the frequency of light. One example is the illumination of objects
moving at constant speeds. While the source may be approximately
monochromatic in its frame, new frequencies will appear after con-
sidering the light in the reference frame of the object. The problem
is readily solved if the T-matrix in the rest frame of the object can be
transformed with the appropriate Lorentz boost. Raman scattering is
another example where the energy of internal vibrations in the object is
added to or subtracted from the incident frequency, while the response
is still linear from the point of view of the illumination.

We will use an approach to the T-matrix that is not in the main
stream of T-matrix research, but that has already shown its value. The
T-matrix can be approached from the perspective of group theory, that
is, the study of symmetry transformations of physical systems [14].
Of special importance for the T-matrix is the concept of irreducible
representations of a group of transformations, which can be understood
as elementary components of e.g. an operator or a physical field,
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Nomenclature

𝜖0 Vacuum permittivity
ℏ Reduced Planck constant
𝜆 Helicity
𝜉 Rapidity
𝑐 Speed of light in vacuum
𝐶𝑗3𝑚3
𝑗1𝑚1;𝑗2𝑚2

Clebsch–Gordan coefficient
𝐷𝑗
𝑚𝑛(𝛼, 𝛽, 𝛾) Wigner matrix

𝑑𝑗𝑚𝑛(𝛽) Small Wigner matrix
𝑥𝜇𝑦𝜇 Scalar product in (− + + +) Minkowski

metric
(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)

Wigner 3j-symbol

that transform in distinct ways under the transformations belonging
to a given group, and that do not mix with each other upon such
transformations. Starting from the T-matrix formalism that Waterman
had developed for a single object [1], Peterson and Ström extended it
to multiple objects with the help of group theory [15]. They showed
that the monochromatic T-matrix transforms according to the 3D Eu-
clidean group, which consists of spatial translations and rotations, and
exploited the transformation properties of the irreducible representa-
tions of such group for conveniently formulating the translations and
rotations of individual T-matrices that are needed for computing the
T-matrix of a composite object. The connection between the monochro-
matic T-matrix and the 3D Euclidean group is well illustrated by the
fact that the translation theorems for vector spherical harmonics can
be derived within the context of group theory [14, Secs. 8.6 and 9.8].

The 3D Euclidean group is not sufficient for treating polychromatic
electromagnetic fields. Wigner showed in a landmark paper [16] that
physical fields describing elementary particles such as electrons and
photons transform under the Poincaré group, which consist of the 3D
Euclidean group plus time translations and Lorentz boosts, also known
as Lorentz transformations, or changes of inertial reference frame.
Lorentz boosts change the frequency content of the field, as exemplified
by the Doppler effect, which makes a monochromatic treatment im-
possible. The Poincaré group is the group of transformations of special
relativity, and its relevance in electromagnetism can be appreciated in
the decomposition of the electromagnetic field in irreducible parts [17],
and in the formulation of a scalar product [18] between two given
electromagnetic fields whose result is invariant under all the trans-
formations of the Poincaré group. Such scalar product enables one to
use the tools of Hilbert spaces in electromagnetism and, in particular,
allows one to systematically compute fundamental quantities such as
energy and momentum contained in a given electromagnetic field [19,
§9, Chap. 3]. Combining the scalar product with the S-matrix operator,
one obtains a unified theory of conservation laws in light-matter in-
teractions [20]. The S-matrix is a linear operator that maps irregular
incoming fields to irregular outgoing fields, and that is numerically
related to the T-matrix in a bijective and straightforward manner.

In this article, we extend the T-matrix formalism to the polychro-
matic setting by following the guidance provided by the representation
of the Poincaré group of transformations in the Hilbert space of solu-
tions of Maxwell equations. The formalism developed with the help of
such algebraic structures and methods is inherently polychromatic, and
facilitates the definitions of basis states and frequency integrals, among
other aspects. The appropriate basis states and corresponding expansion
coefficient functions for the fields are found by requiring that they
transform unitarily according to the representations of the Poincaré
group appropriate for photonic fields, as established by Wigner [16].
The requirement of unitarity is fulfilled with respect to the scalar
product whose result is invariant under all the transformations of
2

the conformal group [18], which includes the Poincaré group. These
requirements led us to modify the usual definitions of plane waves and
multipolar fields. Importantly, we show that the irregular incoming and
outgoing multipolar fields transform under Lorentz boost as the regular
multipolar fields, a new result that is needed for building the polychro-
matic T-matrix formalism. As an example, we derive within our theory
the relativistic transformation law that can convert the T-matrix of a
stationary object into that of the object moving with a constant speed.
This technique can be applied to any object described by the T-matrix,
in contrast to previous approaches, which were confined to dealing
with the relativistic motion of spherical objects [21,22]. Since the
polychromatic domain can represent the linear dependence between
general time-dependent incident and scattered fields, the polychromatic
T-matrix constitutes a new theoretical method for describing time-
dependent scattering, and hence complements existing approaches [23,
24].

In the rest of the article we advance towards the definition of the
polychromatic T-matrix and S-matrix in the following way. First, we
define the basis states that are relevant in the T-matrix and S-matrix
settings. Namely, regular multipolar fields for representing incident
fields and irregular multipolar fields for representing incoming, out-
going, and scattered fields. To such end, we connect in Section 2 the
traditional formalism of electric and magnetic fields {𝑬(𝒓, 𝑡),𝑩(𝒓, 𝑡)}

ith the formalism based on abstract kets in a Hilbert space |𝑓 ⟩, and
hen define the plane wave states so that they transform according to
he massless unitary representations of the Poincaré group with well
efined helicity(handedness) 𝜆 = +1, or 𝜆 = −1. The regular multipolar
ields are then defined from the plane waves. Both plane waves and
ultipoles defined in this way feature an extra factor of 𝑘 with respect

o the usual definitions. Such factor ensures that both the fields and
he expansion coefficients multiplying them transform unitarily under
orentz boosts. For the case of incoming and outgoing multipolar fields,
e are also led to multiply the usual definitions by a factor of 1∕2 by

he notable properties of polychromatic irregular fields: namely that
hey vanish identically either before or after the light-matter interac-
ion period, and are correspondingly equal to regular fields at certain
ime regions. We provide all the transformation properties for states
nd coefficients under the isometries of the Minkowski space–time:
oincaré transformations, parity, and time-reversal. The polychromatic
-matrix is defined in Section 3.1 and the polychromatic S-matrix is
efined in Section 3.3. In Section 3.2 we consider the special case
here the polychromatic T-matrix is diagonal in frequency, and show
ow to build it using monochromatic T-matrices that are computed
ith the usual conventions. As an exemplary application, the formalism

s applied in Section 4 to the computation of the energy and linear
omentum transferred from a pulse of light onto a silicon sphere.

All the numerical results contained in the paper can be reproduced
ith the code provided by request, together with the treams Python
ackage [25,26], which is publicly available at https://github.com/tfp-
hotonics/treams. We note that the methodology is independent of the
articular technique used for obtaining T-matrices [27–30].

. Group theory-guided representations of electromagnetic fields

Maxwell equations in frequency domain for the electric 𝑬̃(𝒓, 𝑘) and
agnetic fields 𝑩̃(𝒓, 𝑘) in vacuum and in SI units are

× 𝑬̃(𝒓, 𝑘) = 𝑖𝑐𝑘𝑩̃(𝒓, 𝑘), 𝛁 × 𝑩̃(𝒓, 𝑘) = − 𝑖𝑘
𝑐2

𝑬̃(𝒓, 𝑘), (1)

𝛁 ⋅ 𝑬̃(𝒓, 𝑘) = 0, 𝛁 ⋅ 𝑩̃(𝒓, 𝑘) = 0, (2)

where 𝑐 = 1∕
√

𝜖0𝜇0 is the speed of light in vacuum and for convenience
we describe frequency via the absolute value of the wavevector 𝑘 =
√

𝒌 ⋅ 𝒌 = |𝒌| = 𝜔∕𝑐. Since the magnetic field is completely determined
by the electric field, we will focus on the latter for describing the
electromagnetic field.

https://github.com/tfp-photonics/treams
https://github.com/tfp-photonics/treams
https://github.com/tfp-photonics/treams
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It is convenient to start from the complex-valued electric field in
the space–time domain, defined by setting the components of negative
frequency in the Fourier decomposition of the field to zero:

𝑬(𝒓, 𝑡) = 1
√

2𝜋 ∫

∞

0
𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡 𝑬̃(𝒓, 𝑘), (3)

while the real-valued electric field can be restored via

(𝒓, 𝑡) = 𝑬(𝒓, 𝑡) + 𝑬∗(𝒓, 𝑡) = 2ℜ[𝑬(𝒓, 𝑡)]. (4)

2.1. Plane waves |𝐤𝜆⟩

One can decompose the electric field in plane waves of right-handed
circular polarization, helicity 𝜆 = −1, and of left-handed circular
olarization, helicity 𝜆 = 1, using polarization vectors as defined in [31]
Sec. 1.1.4)

𝜆(𝒌̂) ∶= − 1
√

2
(𝜆𝒆𝜃(𝒌̂) + 𝑖𝒆𝜙(𝒌̂)) (5)

= 1
√

2

⎛

⎜

⎜

⎝

−𝜆 cos𝜙 cos 𝜃 + 𝑖 sin𝜙
−𝜆 sin𝜙 cos 𝜃 − 𝑖 cos𝜙

𝜆 sin 𝜃

⎞

⎟

⎟

⎠

, (6)

where 𝒆𝜃 , 𝒆𝜙 are spherical basis vectors, 𝒌̂ is the unit vector along
he direction of the wave vector, with 𝜃 = arccos

(

𝑘𝑧∕|𝒌|
)

and 𝜙 =
tan2

(

𝑘𝑦, 𝑘𝑥
)

being its polar and azimuthal angles.
The vectors 𝒆𝜆(𝒌̂), 𝜆 = ±1 together with 𝒆0(𝒌̂) ∶= 𝒌̂ build a local

rthonormal basis at 𝒌. They are eigenvectors of the helicity operator
= 𝑖ℏ𝒌×

𝑘 :

𝑖ℏ𝒌×
𝑘

𝒆𝜆(𝒌̂) = 𝜆ℏ𝒆𝜆(𝒌̂) , for 𝜆 = −1, 0, 1. (7)

The 𝜆 = ±1 basis vectors are suitable for decomposition of transverse
fields into parts of definite circular polarizations, since the 𝜆 = 0 fields
ave zero curl and do not occur in 𝑘 > 0 Maxwell fields. To achieve

the decomposition, first one performs the 3D Fourier transform of the
complex electric field

𝑬(𝒓, 𝑡) = 1
√

(2𝜋)3 ∫ 𝑑3𝒌 𝑬̄(𝒌) 𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌⋅𝒓, (8)

ith absolute value of wave vector 𝑘 = |𝒌| = 𝜔∕𝑐, and then projects
he polarization vectors of helicity 𝜆 = ±1 onto 𝑬̄(𝒌), with dimensional
onstants chosen for future convenience:

𝜆(𝒌) =
√

2
√

𝜖0
𝑐ℏ

𝒆𝜆(𝒌̂)∗ ⋅ 𝑬̄(𝒌), (9)

so 𝑬̄(𝒌) = 1
√

2

√

𝑐ℏ
𝜖0

∑

𝜆=±1 𝑓𝜆(𝒌)𝒆𝜆(𝒌̂), which results in the decomposition

(𝒓, 𝑡) =
√

𝑐ℏ
𝜖0

1
√

2

1
√

(2𝜋)3

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) 𝑘 𝒆𝜆(𝒌̂) 𝑒𝑖(𝒌⋅𝒓−𝑐𝑘𝑡), (10)

here the coefficients 𝑓𝜆(𝒌) obey [17] the transformation laws of a
hoton wave function. The independent helicity 𝜆 = ±1 components
left- and right-handed polarization) of the electric field are the two
iemann–Silberstein vectors 𝑭 𝜆(𝒓, 𝑡) =

(

𝑬(𝒓, 𝑡) + 𝑖𝜆𝑐𝑩(𝒓, 𝑡)
)

∕
√

2:

𝜆(𝒓, 𝑡) =
1

√

(2𝜋)3 ∫ 𝑑3𝒌 𝑬̄(𝒌) + 𝑖𝜆𝑐𝑩̄(𝒌)
√

2
𝑒𝑖(𝒌⋅𝒓−𝑐𝑘𝑡) (11)

= 1
√

2

1
√

(2𝜋)3 ∫ 𝑑3𝒌
(

𝑬̄(𝒌) + 𝑖𝜆𝒌×
𝑘

𝑬̄(𝒌)
)

𝑒𝑖(𝒌⋅𝒓−𝑐𝑘𝑡) (12)

=
√

𝑐ℏ
𝜖0

1
√

2

1
√

(2𝜋)3 ∫ 𝑑3𝒌 1
√

2

(

𝑓+(𝒌)𝒆+(𝒌̂) + 𝑓−(𝒌)𝒆−(𝒌̂)

+ 𝜆𝑓+(𝒌)𝒆+(𝒌̂) − 𝜆𝑓−(𝒌)𝒆−(𝒌̂)
)

𝑒𝑖(𝒌⋅𝒓−𝑐𝑘𝑡)

=
√

𝑐ℏ
𝜖0

1
√

(2𝜋)3 ∫
𝑑3𝒌
𝑘

𝑓𝜆(𝒌)𝒆𝜆(𝒌̂) 𝑘 𝑒𝑖(𝒌⋅𝒓−𝑐𝑘𝑡), (13)
3

⟨

here we used the Maxwell equation in the wave vector space 𝒌 ×
𝑬̄(𝒌) = 𝑐𝑘𝑩̄(𝒌) in the second line of Eq. (13). Since we work with
omplex-valued electric and magnetic fields, the two Riemann–Silber-
tein vectors are independent and only together provide the com-
lete description of the electromagnetic field: 𝑭 − for waves of the
ight-handed circular polarization and 𝑭 + for the left-handed.

We define the electromagnetic plane wave as

|𝒌 𝜆⟩ ≡ 𝑸𝜆(𝒌, 𝒓, 𝑡)

=
√

𝑐ℏ
𝜖0

1
√

2

1
√

(2𝜋)3
𝑘 𝒆𝜆(𝒌̂)𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌⋅𝒓

(14)

so the decomposition of the electromagnetic field is written as

𝑬(𝒓, 𝑡) =
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌)𝑸𝜆(𝒌, 𝒓, 𝑡). (15)

The factor 𝑘 in the definition of the plane wave in Eq. (14) is
important. We see that it appears because in Eq. (10) we have changed
from the integration measure 𝑑3𝒌 of the 3D Fourier transform, to the
ntegration measure 𝑑3𝒌

𝑘 , which is the Lorentz invariant integration
measure in the light cone [32, Eq. (2.5.15)][14, Sec. 10.4.6]. This
change then introduces a factor of 𝑘 in the definition of the plane
wave in Eq. (14), and, as we show in Section 2.1.1, it is precisely
this factor of 𝑘 that makes 𝑸𝜆(𝒌, 𝒓, 𝑡) and 𝑓𝜆(𝒌) transform as massless
nitary irreducible representations of the Poincaré group with helicity
= ±1, which are the transformation properties that the photon

ave function must have, according to Wigner’s classification [16]. The
ransformation rules are [14, Eqs. (10.4–23), (10.4–24)]:

𝑇 (𝑎𝜇)|𝒌 𝜆⟩ = |𝒌 𝜆⟩𝑒−𝑖𝑎
𝜇𝑘𝜇 (16)

(𝛼, 𝛽, 𝛾)|𝒌 𝜆⟩ = |𝒌̃ 𝜆⟩𝑒−𝑖𝜆𝜓 , 𝒌̃ = 𝑅(𝛼, 𝛽, 𝛾)𝒌 (17)

𝐿𝑧(𝜉)|𝒌 𝜆⟩ = |𝒌′ 𝜆⟩, 𝒌′ = 𝐿𝑧(𝜉)𝒌 (18)

here 𝑇 (𝑎𝜇) is a 4D translation in Minkowski space (we use the
onvention of metric signature (− + ++)), so 𝑎𝜇𝑘𝜇 = −𝑎0|𝒌| + 𝒂 ⋅ 𝒌.
(𝛼, 𝛽, 𝛾) = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾) is a rotation operator with corresponding
uler angles, 𝜓 satisfies 𝑅(0, 0, 𝜓) = 𝑅(𝜙̃, 𝜃, 0)−1𝑅(𝛼, 𝛽, 𝛾)𝑅(𝜙, 𝜃, 0) (𝜙̃, 𝜃
re spherical angles of the rotated wave vector 𝒌̃ = 𝑅(𝛼, 𝛽, 𝛾)𝒌), and
𝑧(𝜉) is a Lorentz boost (Appendix B) along the 𝑧-axis with rapidity 𝜉.
ince boosting along an arbitrary direction can be decomposed into a
omposition of rotations and a boost in the 𝑧-direction with Eq. (150),
e will only treat explicitly the boost along the 𝑧-direction.

Plane waves in this representation transform under parity and time
eversal1 as

𝑠|𝒌𝜆⟩ = |−𝒌 − 𝜆⟩ (19)

𝐼𝑡|𝒌𝜆⟩ = |−𝒌 𝜆⟩. (20)

The measure ∫ 𝑑3𝒌
𝑘 is invariant under the action of the Poincaré

group, which allows one to formulate the transformation of the field
by transforming the coefficients 𝑓𝜆(𝒌) in a way similar to the basis
ectors [14, Secs. 7.6 and 10.5.1]. For example, for a boost in the 𝑧-
irection Eq. (18) the invariance of the measure means that ∫ 𝑑3𝒌

|𝒌| =

∫ 𝑑3𝐿−1
𝑧 (𝜉)𝒌

|𝐿−1
𝑧 (𝜉)𝒌|

, which, together with the linearity of the boost operator and
q. (18) results in:

𝑧(𝜉)|𝑓 ⟩ =
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) |𝐿𝑧(𝜉)𝒌 𝜆⟩

=
∑

𝜆=±1
∫

𝑑3𝐿−1
𝑧 (𝜉)𝒌

|𝐿−1
𝑧 (𝜉)𝒌|

𝑓𝜆(𝐿−1
𝑧 (𝜉)𝒌) |𝒌𝜆⟩

=
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝐿−1
𝑧 (𝜉)𝒌) |𝒌𝜆⟩. (21)

1 The time reversal is represented anti-unitarily by an operator 𝐼𝑡 satisfying
𝐼 𝜙|𝐼 𝜓⟩ = ⟨𝜙|𝜓⟩∗ = ⟨𝜓|𝜙⟩.
𝑡 𝑡
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The rules for transforming the coefficients 𝑓𝜆(𝒌) are

𝑇 (𝑎𝜇)𝑓𝜆(𝒌) = 𝑓𝜆(𝒌)𝑒−𝑖𝑎
𝜇𝑘𝜇 , (22)

𝑅(𝛼, 𝛽, 𝛾)𝑓𝜆(𝒌) = 𝑓𝜆(𝒌̃)𝑒−𝑖𝜆𝜓 , 𝒌̃ = 𝑅−1(𝛼, 𝛽, 𝛾)𝒌 (23)

𝐿𝑧(𝜉)𝑓𝜆(𝒌) = 𝑓𝜆(𝒌′), 𝒌′ = 𝐿−1
𝑧 (𝜉)𝒌 (24)

with 𝜓 found this time from 𝑅(0, 0, 𝜓) = 𝑅(𝜙, 𝜃, 0)−1𝑅(𝛼, 𝛽, 𝛾)𝑅(𝜙̃, 𝜃, 0),
where 𝜙̃, 𝜃 belong to the wave vector 𝒌̃ = 𝑅−1(𝛼, 𝛽, 𝛾)𝒌. The transforma-
tions under parity and time reversal are

𝐼𝑠𝑓𝜆(𝒌) = 𝑓−𝜆(−𝒌) (25)

𝐼𝑡𝑓𝜆(𝒌) = 𝑓 ∗
𝜆 (−𝒌). (26)

Transformation properties of the defined plane waves and coeffi-
cients in the decomposition Eq. (15) justify the way of writing the
electric field as a ket

|𝑓 ⟩ =
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) |𝒌𝜆⟩. (27)

The coefficients 𝑓𝜆(𝒌) belong to a Hilbert space with the scalar product

⟨𝑓 |𝑔⟩ =
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓 ∗
𝜆 (𝒌)𝑔𝜆(𝒌). (28)

Such Hilbert space is isomorphic to the Hilbert space of solutions of
Maxwell equations.

Thanks to the extra dimensional factors in Eq. (9), the 𝑓𝜆(𝒌) have
the units inverse to the wavevector, that is, meters: [𝑓𝜆(𝒌)] = m. The
scalar product Eq. (28) is then dimensionless, which is consistent with
the physical interpretation of ⟨𝑓 |𝑓 ⟩ as the number of photons [33]
contained in the field described by |𝑓 ⟩. The integral in [33, Eq. (1)]
is a different representation of the same scalar product, as can be seen
by comparing Eq. (3) and Eq. (6) in [18].

The scalar product also allows to quantify fundamental properties
that are carried by the field, for example, energy, linear momentum,
and angular momentum — using the expectation values ⟨𝑓 |𝛤 |𝑓 ⟩ with
𝛤 being the generator of the corresponding symmetry transformation:
time translation for energy, spatial translation for linear momentum
and rotation for angular momentum.

It is also known [18] that the scalar product in Eq. (28) is in-
variant under the conformal group, which is the largest group of
invariance of Maxwell equations [34]. It contains the Poincaré group,
and additionally special conformal transformations and dilations.

Appendix A contains a brief discussion about the representation of
the vector potential and its transformation properties. In particular, the
plane waves for decomposing the vector potential do not feature the
extra factor of 𝑘.

2.1.1. Lorentz boosts 𝐿𝑧(𝜉)|𝐤𝜆⟩
We provide here the explicit derivation of the transformation of

𝑸𝜆(𝒌, 𝒓, 𝑡) upon an active boost of in 𝑧-direction with rapidity 𝜉. The
rest of the transformation properties in Eqs. (16), (17), (19), (20) are
derived in Appendix C.

The transformation of general electromagnetic fields in
[35, Eq. (11.149)] can be used to derive the action of the boost (see
also Eq. (157)):

𝑸𝜆(𝒌, 𝒓, 𝑡) = 𝛾𝑸𝜆(𝒌, 𝒓̃, 𝑡) +
𝑖𝜆𝛾
𝑐

𝒗 ×𝑸𝜆(𝒌, 𝒓̃, 𝑡) −
𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 ⋅𝑸𝜆(𝒌, 𝒓̃, 𝑡)

≡
(

𝛾1 +
𝑖𝜆𝛾
𝑐

𝒗 × −
𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗⋅
)

𝑸𝜆(𝒌, 𝒓̃, 𝑡), (29)

where in Eq. (29) we factored out 𝑸𝜆 and combined three linear
perators 1, 𝒗×, and 𝒗 𝒗⋅. Here 𝒗 = 𝑣𝒆 = 𝑐 tanh(𝜉)𝒆 , 𝛾 = (1 −
4

𝑧 𝑧
𝑣2∕𝑐2)−1∕2 = cosh(𝜉), 𝛾𝑣 = 𝑐 sinh(𝜉) and space–time coordinates are
nversely transformed via

𝑐𝑡
𝒓̃

)

= 𝐿−1
𝑧 (𝜉)

(

𝑐𝑡
𝒓

)

=

⎛

⎜

⎜

⎜

⎜

⎝

cosh(𝜉) 0 0 − sinh(𝜉)
0 1 0 0
0 0 1 0

− sinh(𝜉) 0 0 cosh(𝜉)

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑐𝑡
𝑥
𝑦
𝑧

⎞

⎟

⎟

⎟

⎟

⎠

. (30)

t is important to distinguish between the passive and active versions
f the Lorentz boost. In the passive version, where the reference frame
s boosted instead of the field, Eqs. (29)–(30) incorporate −𝒗 in place
f 𝒗 (and, equivalently, −𝜉 instead of 𝜉).

Since the helicity basis vectors 𝒆𝜎 (𝒌̂) can be obtained as 𝒆𝜎 (𝒌̂) =
(𝜙, 𝜃, 0)𝒆𝜎 (𝒛̂), and they transform under rotations as

(𝛼, 𝛽, 𝛾) 𝒆𝜆(𝒌̂) =
∑

𝜎=±1,0
𝐷1
𝜎𝜆(𝛼, 𝛽, 𝛾) 𝒆𝜆(𝒌̂) (31)

here 𝐷𝑗
𝑚𝑛(𝛼, 𝛽, 𝛾) = 𝑒−𝑖𝑚𝛼𝑑𝑗𝑚𝑛(𝛽)𝑒−𝑖𝑛𝛾 are Wigner matrices and 𝑑𝑗𝑚𝑛(𝛽)

re small Wigner matrices, as defined in [14], Sec. 7.3. Then:

𝛾1 +
𝑖𝜆𝛾
𝑐

𝒗 × −
𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗⋅
)

𝑘 𝒆𝜆(𝒌̂)

=
(

cosh(𝜉)1 + 𝑖𝜆 sinh(𝜉)𝒆𝑧 × −
sinh2(𝜉)𝒆𝑧
cosh(𝜉) + 1

𝒆𝑧⋅
)

∑

𝜎=−1,0,1
𝐷1
𝜎𝜆(𝜙, 𝜃, 0) 𝑘 𝒆𝜎 (𝒛̂)

=
∑

𝜎=−1,0,1
𝐷1
𝜎𝜆(𝜙, 𝜃, 0)

(

cosh(𝜉) + 𝜆𝜎 sinh(𝜉) −
sinh2(𝜉)𝛿0𝜎
cosh(𝜉) + 1

)

𝑘 𝒆𝜎 (𝒛̂) (32)

=
∑

𝜎=−1,0,1
𝑒−𝑖𝜙𝜎 𝑑1𝜎𝜆(𝜃)

(

𝜎𝜆 sinh(𝜉) +
cosh(𝜉) + cosh2(𝜉) − sinh2(𝜉)𝛿0𝜎

cosh(𝜉) + 1

)

𝑘 𝒆𝜎 (𝒛̂)

=
∑

𝜎=−1,0,1
𝑒−𝑖𝜙𝜎 𝑑1𝜎𝜆(𝜃) 𝑘̃ 𝒆𝜎 (𝒛̂) (33)

= 𝑘̃ 𝒆𝜆( ̂̃𝒌). (34)

For Eq. (32) we have used 𝒆𝑧 × 𝒆𝜎 (𝒛̂) = −𝑖𝜎𝒆𝜎 (𝒛̂) and 𝒆𝑧
(

𝒆𝑧 ⋅ 𝒆𝜎 (𝒛̂)
)

=
𝛿0𝜎𝒆𝜎 (𝒛̂) for 𝜎 = −1, 0, 1. Eq. (33) follows from the transformation rules
for the wave vector 𝒌 (Appendix B):

𝑘̃ 𝑑10𝜆(𝜃) =
𝜆𝑘̃
√

2
sin(𝜃) = 𝜆𝑘

√

2
sin(𝜃) = 𝑘 𝑑10𝜆(𝜃) (35)

for 𝜆 = ±1, 𝜎 = 0 and

𝑘̃ 𝑑1𝜎𝜆(𝜃) =
𝑘̃
2
(

1 + 𝜎𝜆 cos(𝜃)
)

(36)

=
𝑘
(

cosh(𝜉) + cos(𝜃) sinh(𝜉)
)

2

(

1 + 𝜎𝜆
cos(𝜃) cosh(𝜉) + sinh(𝜉)
cosh(𝜉) + cos(𝜃) sinh(𝜉)

)

= 𝑘
2
(

cosh(𝜉) + cos(𝜃) sinh(𝜉) + 𝜎𝜆(cos(𝜃) cosh(𝜉) + sinh(𝜉))
)

= 𝑘
2
(

1 + 𝜎𝜆 cos(𝜃)
)(

cosh(𝜉) + 𝜎𝜆 sinh(𝜉)
)

= 𝑘 𝑑1𝜎𝜆(𝜃)
(

1 + 𝜎𝜆 sinh(𝜉)
)

(37)

for 𝜆 = ±1, 𝜎 = ±1.
Together with the fact that for any Lorentz boost 𝐿

𝑒−𝑖𝑘
𝜇 (𝐿−1𝑥)𝜇 = 𝑒−𝑖(𝐿𝑘)

𝜇𝑥𝜇 , (38)

his implies Eq. (18):

(

𝛾1 +
𝑖𝜆𝛾𝑣
𝑐

𝒆𝑧 × −
𝛾2𝑣2𝒆𝑧
(𝛾 + 1)𝑐2

𝒆𝑧⋅
)

𝑸𝜆(𝒌, 𝒓̃, 𝑡) = 𝑸𝜆(𝒌̃, 𝒓, 𝑡). (39)

We emphasize that without the 𝑘-factor in the definition Eq. (14),
the plane wave would not transform according to the unitary represen-
tation Eq. (18).

2.2. Angular momentum basis for regular fields |𝑘𝑗𝑚𝜆⟩

The multipolar fields, also known as vector spherical harmonics or
angular momentum fields, play a crucial role in the T-matrix formalism:
they constitute the basis with respect to which the fields are expanded.
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The angular momentum basis can be defined with respect to the
plane wave basis as [14, Sec. 8.4.1]:

|𝑘𝑗𝑚𝜆⟩ =
√

2𝑗 + 1
4𝜋 ∫

2𝜋

0
𝑑𝜙 ∫

1

−1
𝑑(cos 𝜃)𝐷𝑗

𝑚𝜆(𝜙, 𝜃, 0)
∗
|𝒌𝜆⟩ (40)

|𝒌𝜆⟩ =
∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗

√

2𝑗 + 1
4𝜋

𝐷𝑗
𝑚𝜆(𝜙, 𝜃, 0)|𝑘𝑗𝑚𝜆⟩ (41)

with the corresponding connection between coefficients in the angular
momentum and the plane wave basis

𝑓𝑗𝑚𝜆(𝑘) =
√

2𝑗 + 1
4𝜋 ∫

2𝜋

0
𝑑𝜙 ∫

1

−1
𝑑(cos 𝜃)𝐷𝑗

𝑚𝜆(𝜙, 𝜃, 0) 𝑓𝜆(𝒌) (42)

𝑓𝜆(𝒌) =
∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗

√

2𝑗 + 1
4𝜋

𝐷𝑗
𝑚𝜆(𝜙, 𝜃, 0)

∗ 𝑓𝑗𝑚𝜆(𝑘). (43)

The indices in |𝑘𝑗𝑚𝜆⟩ correspond to eigenvalues of Hermitian oper-
ators of energy 𝐻 , total angular momentum 𝐽 2 = 𝐽 2

𝑥 + 𝐽
2
𝑦 + 𝐽

2
𝑧 , angular

momentum along 𝑧-axis 𝐽𝑧, and helicity 𝛬:

𝐻|𝑘𝑗𝑚𝜆⟩ = ℏ𝑐𝑘|𝑘𝑗𝑚𝜆⟩

𝐽 2
|𝑘𝑗𝑚𝜆⟩ = ℏ2𝑗(𝑗 + 1)|𝑘𝑗𝑚𝜆⟩, 𝑗 = 1, 2,…

𝐽𝑧|𝑘𝑗𝑚𝜆⟩ = ℏ𝑚|𝑘𝑗𝑚𝜆⟩, 𝑚 = −𝑗,−𝑗 + 1,… , 𝑗

𝛬|𝑘𝑗𝑚𝜆⟩ = ℏ𝜆|𝑘𝑗𝑚𝜆⟩, 𝜆 = ±1.

In particular, 𝑗 = 1 corresponds to the dipolar fields, 𝑗 = 2
corresponds to the quadrupolar fields, and so on. We remark for com-
pleteness that the plane waves are eigenstates of helicity 𝛬|𝒌𝜆⟩ =
ℏ𝜆|𝒌𝜆⟩, and of the three translation operators, and hence of their
Hermitian generators, the linear momentum operators 𝑃𝑥,𝑦,𝑧|𝒌𝜆⟩ =
ℏ𝑘𝑥,𝑦,𝑧|𝒌𝜆⟩.

A state can be represented in the angular momentum basis by using
Eqs. (40)–(43) in Eq. (27), which results in

|𝑓 ⟩ = ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑓𝑗𝑚𝜆(𝑘) |𝑘𝑗𝑚𝜆⟩ (44)

and the scalar product in Eq. (28) can correspondingly be written in
the angular momentum basis as

⟨𝑔|𝑓 ⟩ =
∑

𝜆=±1
∫

∞

0
𝑑𝑘 𝑘

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑔∗𝑗𝑚𝜆(𝑘)𝑓𝑗𝑚𝜆(𝑘). (45)

We note that coefficients 𝑓𝑗𝑚𝜆(𝑘) have the units of meters just as 𝑓𝜆(𝒌).
This allows one to obtain explicit (𝒓, 𝑡)-dependent expressions of the

angular momentum basis |𝑘𝑗𝑚𝜆⟩ for the regular electromagnetic field
as follows:

𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) =
√

2𝑗 + 1
4𝜋 ∫

2𝜋

0
𝑑𝜙 ∫

1

−1
𝑑(cos 𝜃)𝐷𝑗

𝑚𝜆(𝜙, 𝜃, 0)
∗𝑸𝜆(𝒌, 𝒓, 𝑡)

=
√

𝑐ℏ
𝜖0

𝑘 𝑒−𝑖𝑘𝑐𝑡
√

2
√

(2𝜋)3

√

2𝑗 + 1
4𝜋 ∫

2𝜋

0
𝑑𝜙 ∫

1

−1
𝑑(cos 𝜃)𝐷𝑗

𝑚𝜆(𝜙, 𝜃, 0)
∗𝒆𝜆(𝒌̂)𝑒𝑖𝒌⋅𝒓,

(46)

where the integration proceeds over the polar and azimuthal angles (𝜃,
𝜙) of the wave vector. The integration results in

𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) =
√

𝑐ℏ
𝜖0

𝑘 𝑒−𝑖𝑘𝑐𝑡
√

𝜋
√

2𝑗 + 1

𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿𝑗𝐿(𝑘𝑟)𝐶
𝑗𝜆
𝐿0,1𝜆𝒀

𝐿
𝑗𝑚(𝒓̂)

(47)
≡ |𝑘𝑗𝑚𝜆⟩

with Clebsch–Gordan coefficients 𝐶𝑗3𝑚3
𝑗1𝑚1𝑗2𝑚2

and vector spherical har-
onics [31, Sec. 7.3.1]

𝐿
𝑗𝑚(𝒓̂) =

√

2𝐿 + 1
4𝜋

∑

𝒆𝜎 (𝒛̂)𝐷𝐿
𝑚−𝜎,0(𝜙, 𝜃, 0)

∗ 𝐶𝑗𝑚𝐿𝑚−𝜎,1𝜎 . (48)
5

𝜎=±1,0
The decomposition of the regular electromagnetic field 𝑬(𝒓, 𝑡) then
reads, as suggested by Eq. (44)

𝑬(𝒓, 𝑡) = ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑓𝑗𝑚𝜆(𝑘)𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡). (49)

The connection between 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) and the usual regular electric
and magnetic multipoles

𝑵 𝑗𝑚(𝑘𝑟, 𝒓̂) = 𝑖𝑗𝑗−1(𝑘𝑟)

√

𝑗 + 1
2𝑗 + 1

𝒀 𝑗−1
𝑗𝑚 (𝒓̂) − 𝑖𝑗𝑗+1(𝑘𝑟)

√

𝑗
2𝑗 + 1

𝒀 𝑗+1
𝑗𝑚 (𝒓̂) (50)

𝑗𝑚(𝑘𝑟, 𝒓̂) = 𝑗𝑗 (𝑘𝑟)𝒀
𝑗
𝑗𝑚(𝒓̂) (51)

an be found using the expression for Clebsch–Gordan coefficients

𝑗𝜆
𝐿0,1𝜆 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

𝑗
2(2𝑗+3) , if 𝐿 = 𝑗 + 1

− 𝜆
√

2
, if 𝐿 = 𝑗

√

(𝑗+1)
2(2𝑗−1) , if 𝐿 = 𝑗 − 1

(52)

or 𝜆 = ±1. The relation is then

|𝑘𝑗𝑚𝜆⟩ ≡ 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡)

= −
√

𝑐ℏ
𝜖0

1
√

2𝜋
𝑘 𝑖𝑗

(

𝑒−𝑖𝑘𝑐𝑡𝑵 𝑗𝑚(𝑘𝑟, 𝒓̂) + 𝜆 𝑒−𝑖𝑘𝑐𝑡𝑴 𝑗𝑚(𝑘𝑟, 𝒓̂)
) (53)

with corresponding inverse relations

𝑒−𝑖𝑘𝑐𝑡𝑵 𝑗𝑚(𝑘𝑟, 𝒓̂) = −
√

𝜖0
𝑐ℏ

1
2

(

𝑹𝑗𝑚+(𝑘, 𝒓, 𝑡) +𝑹𝑗𝑚−(𝑘, 𝒓, 𝑡)
) (−𝑖)𝑗

√

2𝜋
𝑘

(54)

𝑒−𝑖𝑘𝑐𝑡𝑴 𝑗𝑚(𝑘𝑟, 𝒓̂) = −
√

𝜖0
𝑐ℏ

1
2

(

𝑹𝑗𝑚+(𝑘, 𝒓, 𝑡) −𝑹𝑗𝑚−(𝑘, 𝒓, 𝑡)
) (−𝑖)𝑗

√

2𝜋
𝑘

.

(55)

We note that the factor of 𝑘 in the plane wave definition of Eq. (14)
leads to the extra factor of 𝑘 in the angular momentum basis in Eq. (53)
compared to the usual multipolar basis 𝑴 and 𝑵 . Such difference
ensures that 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) have the same transformation laws as |𝑘𝑗𝑚𝜆⟩
under the action of the Poincaré group (see Sec. 2.2.2). The |𝑘𝑗𝑚𝜆⟩
transform unitarily in particular under Lorentz boosts because the
|𝑘𝑗𝑚𝜆⟩ are unitarily connected to |𝒌𝜆⟩ by Eq. (40), and we have already
shown that the |𝒌𝜆⟩ transform unitarily under Lorentz boosts.

Computing the T-matrix of an object moving with constant speed
from the T-matrix of the object at rest requires the Lorentz boost of
the T-matrix at rest. The T-matrix connects regular incident fields with
irregular outgoing fields, and one cannot a priori assume that the two
kinds of fields transform identically under boosts. Yet, that is indeed the
case, as we proof in Section 2.3.1. Therefore, knowledge of the boost
matrix in the regular angular momentum basis, which we derive in
Section 2.2.1, is sufficient for boosting T-matrices. The transformation
properties of the |𝑘𝑗𝑚𝜆⟩ under other transformations can be found in
Section 2.2.2.

2.2.1. Matrix element of Lorentz boosts ⟨𝑘1𝑗1𝑚1𝜆1|𝐿𝑧(𝜉)|𝑘2𝑗2𝑚2𝜆2⟩
Here we derive the matrix element of the Lorentz boost along the

-direction in the angular momentum basis. The core idea of the deriva-
ion consists in switching to the plane wave basis via Eqs. (40)–(41)
nd utilizing the known transformation property of the plane waves
q. (18). Subsequently, we switch back to the angular momentum basis.

We will refer to the plane wave basis states |𝒌𝜆⟩ as |𝑘𝜃𝜙𝜆⟩ with 𝜃
nd 𝜙 denoting the spherical angles of the wavevector for convenience.

𝑧(𝜉)|𝑘2𝑗2𝑚2𝜆2⟩ =

= 𝐿𝑧(𝜉)

√

2𝑗2 + 1
4𝜋 ∫

2𝜋

0
𝑑𝜙2 ∫

1

−1
𝑑(cos 𝜃2)𝐷

𝑗2
𝑚2𝜆2

(𝜙2, 𝜃2, 0)∗|𝑘2𝜃2𝜙2𝜆2⟩

=

√

2𝑗2 + 1 2𝜋
𝑑𝜙2

1
𝑑(cos 𝜃2)𝐷

𝑗2 (𝜙2, 𝜃2, 0)∗|𝑘1𝜃1𝜙2𝜆2⟩ (56)

4𝜋 ∫0 ∫−1 𝑚2𝜆2
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∫
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with boosted plane wave |𝑘1𝜃1𝜙2𝜆2⟩ according to Eq. (18). Its azimuthal
ngle 𝜙2 and helicity 𝜆2 are unchanged, the wavenumber and the polar
ngles are transformed according to (Appendix B):

os(𝜃1) =
cos(𝜃2) + tanh(𝜉)
1 + cos(𝜃2) tanh(𝜉)

(57)

𝑘1 = 𝑘2(cosh(𝜉) + cos(𝜃2) sinh(𝜉)). (58)

Writing the transformed plane wave in the angular momentum basis
ives

𝑧(𝜉)|𝑘2𝑗2𝑚2𝜆2⟩ =

√

2𝑗2 + 1
4𝜋 ∫

2𝜋

0
𝑑𝜙2 ∫

1

−1
𝑑(cos 𝜃2)𝐷

𝑗2
𝑚2𝜆2

(𝜙2, 𝜃2, 0)∗

×
∞
∑

𝑗1=1

𝑗1
∑

𝑚1=−𝑗1

√

2𝑗1 + 1
4𝜋

𝐷𝑗1
𝑚1𝜆2

(𝜙2, 𝜃1, 0)|𝑘1𝑗1𝑚1𝜆2⟩ (59)

= 1
2 ∫

1

−1
𝑑(cos 𝜃2)

∞
∑

𝑗1=1

√

2𝑗1 + 1
√

2𝑗2 + 1 𝑑𝑗1𝑚2𝜆2

× (𝜃1) 𝑑
𝑗2
𝑚2𝜆2

(𝜃2)|𝑘1𝑗1𝑚2𝜆2⟩, (60)

here the last step involved integration over 𝜙2. It is possible to
rite this expression in terms of the integral over the wavenumber by

ubstitution defined via Eq. (58):

𝑧(𝜉)|𝑘2𝑗2𝑚2𝜆2⟩ =

= 1
2 ∫

𝑘2𝑒𝜉

𝑘2𝑒−𝜉

𝑑𝑘1
𝑘2 sinh(𝜉)

∞
∑

𝑗1=1

√

2𝑗1 + 1
√

2𝑗2 + 1 𝑑𝑗1𝑚2𝜆2
(𝜃1) 𝑑

𝑗2
𝑚2𝜆2

(𝜃2)|𝑘1𝑗1𝑚2𝜆2⟩ (61)

= 1
2 ∫

𝑘2𝑒|𝜉|

𝑘2𝑒−|𝜉|

𝑑𝑘1
𝑘2 sinh(|𝜉|)

∞
∑

𝑗1=1

√

2𝑗1 + 1
√

2𝑗2 + 1 𝑑𝑗1𝑚2𝜆2
(𝜃1) 𝑑

𝑗2
𝑚2𝜆2

(𝜃2)|𝑘1𝑗1𝑚2𝜆2⟩.

(62)

The derived equations hold for both positive and negative 𝜉 that corre-
spond to movement in positive and negative 𝑧-direction. The Eq. (61)
is the closed form expression equivalent to Eq. (5.15) in [36].

The matrix element of the Lorentz boost is defined to satisfy

𝐿𝑧(𝜉)|𝑘2𝑗2𝑚2𝜆2⟩ =

= ∫

∞

0
𝑑𝑘1 𝑘1

∑

𝜆1=±1

∞
∑

𝑗1=1

𝑗1
∑

𝑚1=−𝑗1

|𝑘1𝑗1𝑚1𝜆1⟩⟨𝑘1𝑗1𝑚1𝜆1|𝐿𝑧(𝜉)|𝑘2𝑗2𝑚2𝜆2⟩.

(63)

Bringing Eq. (62) in this form leads to

⟨𝑘1𝑗1𝑚1𝜆1|𝐿𝑧(𝜉)|𝑘2𝑗2𝑚2𝜆2⟩ =

= 𝛿𝑚1𝑚2
𝛿𝜆1𝜆2𝛩

(

|𝜉| − |ln(𝑘1∕𝑘2)|
)

√

2𝑗1 + 1
√

2𝑗2 + 1
2𝑘1𝑘2 sinh(|𝜉|)

𝑑𝑗1𝑚1𝜆1
(𝜃1)𝑑

𝑗2
𝑚2𝜆2

(𝜃2)

with

os 𝜃1 =
𝑘1 cosh(𝜉) − 𝑘2
𝑘1 sinh(𝜉)

(64)

cos 𝜃2 =
𝑘1 − 𝑘2 cosh(𝜉)
𝑘2 sinh(𝜉)

. (65)

he Heaviside function

(𝑥) =

{

1, if 𝑥 ≥ 0
0, if 𝑥 < 0

(66)

ccounts for the correct spectrum of boosted wave numbers 𝑒−|𝜉| ≤
1∕𝑘2 ≤ 𝑒|𝜉|:
∞

0
𝑑𝑘1 𝛩

(

|𝜉| − |ln(𝑘1∕𝑘2)|
)

= ∫

𝑘2𝑒|𝜉|

𝑘2𝑒−|𝜉|
𝑑𝑘1. (67)

We note that setting rapidity 𝜉 = 0 in Eqs. (57), (58), (60) leads to

𝑧(0)|𝑘2𝑗2𝑚2𝜆2⟩ =
1
2
√

2𝑗2 + 1
∞
∑ √

2𝑗1 + 1
6

𝑗1=1
u

× ∫

1

−1
𝑑(cos 𝜃2) 𝑑

𝑗2
𝑚2𝜆2

(𝜃2) 𝑑
𝑗1
𝑚2𝜆2

(𝜃2)|𝑘2𝑗1𝑚2𝜆2⟩

=
∞
∑

𝑗1=1
𝛿𝑗1𝑗2 |𝑘2𝑗1𝑚2𝜆2⟩ = |𝑘2𝑗2𝑚2𝜆2⟩, (68)

where we used the well-known orthogonality of small Wigner matrices:

1
2
√

2𝑗 + 1
√

2𝑗′ + 1∫

1

−1
𝑑(cos 𝜃) 𝑑𝑗𝑚𝜆(𝜃) 𝑑

𝑗′
𝑚𝜆(𝜃) = 𝛿𝑗𝑗′ . (69)

This presents the expected result that the zero velocity Lorentz boost
acts as the identity operator.

We emphasize that the derived law for transformation of |𝑘𝑗𝑚𝜆⟩
describes the transformation properties of basis vector fields 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡)
for all space–time points (𝒓, 𝑡).

2.2.2. List of transformations for |𝑘𝑗𝑚𝜆⟩
The complete list of transformation laws of the angular momentum

basis states under the isometries of the Minkowski space–time reads:

𝑇𝑡(𝜏)|𝑘𝑗𝑚𝜆⟩ = |𝑘𝑗𝑚𝜆⟩𝑒𝑖𝑘𝑐𝜏 (70)

𝑇𝑧(𝑎)|𝑘𝑗𝑚𝜆⟩ =
∞
∑

𝑗′=1

√

2𝑗′ + 1
2𝑗 + 1

𝑗+𝑗′
∑

𝑙=|𝑗−𝑗′|
(2𝑙 + 1)(−𝑖)𝑙𝑗𝑙(𝑎𝑘)𝐶

𝑗𝑚
𝑗′𝑚,𝑙0𝐶

𝑗𝜆
𝑗′𝜆,𝑙0|𝑘𝑗

′𝑚𝜆⟩, (71)

(𝛼, 𝛽, 𝛾)|𝑘𝑗𝑚𝜆⟩ =
𝑗
∑

𝑚′=−𝑗
𝐷𝑗
𝑚′𝑚(𝛼, 𝛽, 𝛾)|𝑘𝑗𝑚

′𝜆⟩ (72)

𝑧(𝜉)|𝑘𝑗𝑚𝜆⟩ =
1
2
√

2𝑗 + 1
∞
∑

𝑗′=1

√

2𝑗′ + 1∫

1

−1
𝑑(cos 𝜃) 𝑑𝑗𝑚𝜆(𝜃) 𝑑

𝑗′
𝑚𝜆(𝜃

′)|𝑘′𝑗′𝑚𝜆⟩

(73)

here 𝜃′ and 𝑘′ are related to 𝜃 and 𝑘 via Eqs. (57)–(58). 𝑇𝑡(𝜏) is
he time translation by 𝜏, 𝑇𝑧(𝑎) is the translation in the positive 𝑧-
irection by 𝑎, and the translation in the general direction 𝒏̂(𝛼, 𝛽) can
e described by 𝑇𝒏̂(𝜉) = 𝑅(𝛼, 𝛽, 0)𝑇𝑧(𝑎)𝑅−1(𝛼, 𝛽, 0) in the similar way as
eneral Lorentz boosts.

The actions of parity and time reversal are given by (See Ap-
endix D)

𝑠|𝑘𝑗𝑚𝜆⟩ = |𝑘𝑗𝑚 − 𝜆⟩(−1)𝑗 (74)

𝐼𝑡|𝑘𝑗𝑚𝜆⟩ = −|𝑘𝑗 − 𝑚𝜆⟩(−1)𝑗+𝑚. (75)

he corresponding rules for transformations of coefficients are

𝑡(𝜏)𝑓𝑗𝑚𝜆(𝑘) = 𝑓𝑗𝑚𝜆(𝑘)𝑒𝑖𝑘𝑐𝜏 (76)

𝑧(𝑎)𝑓𝑗𝑚𝜆(𝑘) =
∞
∑

𝑗′=1

√

2𝑗 + 1
2𝑗′ + 1

𝑗+𝑗′
∑

𝑙=|𝑗−𝑗′|
(2𝑙 + 1)(−𝑖)𝑙𝑗𝑙(𝑎𝑘)𝐶

𝑗′𝑚
𝑗𝑚,𝑙0𝐶

𝑗′𝜆
𝑗𝜆,𝑙0 𝑓𝑗′𝑚𝜆(𝑘), (77)

𝑅(𝛼, 𝛽, 𝛾)𝑓𝑗𝑚𝜆(𝑘) =
𝑗
∑

𝑚′=−𝑗
𝐷𝑗
𝑚𝑚′ (𝛼, 𝛽, 𝛾) 𝑓𝑗𝑚′𝜆(𝑘), (78)

𝐿𝑧(𝜉)𝑓𝑗𝑚𝜆(𝑘) =
1
2
√

2𝑗 + 1
∞
∑

𝑗′=1

√

2𝑗′ + 1∫

1

−1
𝑑(cos 𝜃) 𝑑𝑗𝑚𝜆(𝜃) 𝑑

𝑗′
𝑚𝜆(𝜃

′)𝑓𝑗′𝑚𝜆(𝑘′)

(79)

ith 𝜃′ and 𝑘′ given by

cos(𝜃′) =
cos(𝜃) − tanh(𝜉)
1 − cos(𝜃) tanh(𝜉)

, (80)

𝑘′ = 𝑘
(

cosh(𝜉) − cos(𝜃) sinh(𝜉)
)

. (81)

The actions of parity and time reversal are

𝐼𝑠𝑓𝑗𝑚𝜆(𝑘) = 𝑓𝑗𝑚−𝜆(𝑘)(−1)𝑗 (82)

𝐼𝑡𝑓𝑗𝑚𝜆(𝑘) = −𝑓 ∗
𝑗−𝑚𝜆(𝑘)(−1)

𝑗+𝑚. (83)

2.3. Angular momentum basis for irregular fields |𝑘𝑗𝑚𝜆⟩in/out

Besides the regular angular momentum basis vectors, which are
sed to expand the incident field, the T-matrix formalism also uses
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the irregular outgoing angular momentum basis vectors to expand the
scattered field. In the S-matrix formalism only irregular fields are used,
to expand the incoming and outgoing fields. Physically, the energy
flux of outgoing fields is outwards from the origin, while the flux is
inwards towards the origin for the incoming fields. The regular fields
have zero net flux. Mathematically, the difference between irregular
and regular fields consists in the function responsible for the radial
dependence: spherical Hankel functions of certain type for irregular
fields instead of the spherical Bessel functions in Eq. (47) for regular
fields. The Hankel functions have a singularity at |𝒓| = 0. We define
the incoming/outgoing states as:

|𝑘𝑗𝑚𝜆⟩in/out ≡ 𝑺 in/out
𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) =

1
2

√

𝑐ℏ
𝜖0

𝑘 𝑒−𝑖𝑘𝑐𝑡
√

𝜋
√

2𝑗 + 1

𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿ℎin/out
𝐿 (𝑘𝑟)𝐶𝑗𝜆

𝐿0,1𝜆𝒀
𝐿
𝑗𝑚(𝒓̂)

(84)

with spherical Hankel functions ℎin/out
𝐿 = 𝑗𝐿∓𝑖𝑛𝐿, 𝑛𝐿 being the spherical

Neumann functions.
The usual incoming/outgoing electric and magnetic multipoles are

defined by substituting spherical Hankel functions of the second/first
kind instead of the spherical Bessel functions in the regular multipoles
in Eqs. (50)–(51):

𝑵 in/out
𝑗𝑚 (𝑘𝑟, 𝒓̂) = 𝑖ℎin/out

𝑗−1 (𝑘𝑟)

√

𝑗 + 1
2𝑗 + 1

𝒀 𝑗−1
𝑗𝑚 (𝒓̂) − 𝑖ℎin/out

𝑗+1 (𝑘𝑟)
√

𝑗
2𝑗 + 1

𝒀 𝑗+1
𝑗𝑚 (𝒓̂)

(85)

𝑴 in/out
𝑗𝑚 (𝑘𝑟, 𝒓̂) = ℎin/out

𝑗 (𝑘𝑟)𝒀 𝑗
𝑗𝑚(𝒓̂). (86)

The |𝑘𝑗𝑚𝜆⟩in/out can then also be written as:

𝑺 in/out
𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) = − 1

2

√

𝑐ℏ
𝜖0

1
√

2𝜋
𝑘 𝑖𝑗

(

𝑒−𝑖𝑘𝑐𝑡𝑵 in/out
𝑗𝑚 (𝑘𝑟, 𝒓̂) + 𝜆 𝑒−𝑖𝑘𝑐𝑡𝑴 in/out

𝑗𝑚 (𝑘𝑟, 𝒓̂)
)

.

(87)

We highlight that an extra factor of 1∕2 in this definition leads to

𝑺 in
𝑗𝑚𝜆 + 𝑺out

𝑗𝑚𝜆 = 𝑹𝑗𝑚𝜆, (88)

the motivation and significance of which will be explained in Sec-
tion 2.3.2.

The fact that irregular basis states 𝑺 in/out
𝑗𝑚𝜆 transform as the regular

ields 𝑹𝑗𝑚𝜆 under spatial translations and rotations is known [15]. It
s evident from the definition in Eq. (84) that irregular basis states
lso transform as the regular basis states under time translation. Their
ehavior under parity and time reversal are discussed in Appendix D.
n the next subsection we show that the irregular |𝑘𝑗𝑚𝜆⟩in/out transform

under Lorentz boosts as the regular |𝑘𝑗𝑚𝜆⟩, completing the picture
of their transformations under all isometries of the Minkowski space–
time. This result is necessary for properly connecting the T-matrix and
S-matrix formalisms to the Poincaré group.

2.3.1. Irregular fields transform under boosts as regular fields
In this section we discuss the transformation law for irregular basis

vectors 𝑺𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) corresponding to either incoming or outgoing basis
states in Eq. (84). We show that they transform in the same way as the
regular basis vectors 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡), according to Eq. (60):

𝑺 in/out
𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) ↦ 1

2
√

2𝑗 + 1
∞
∑

𝑗′=1

√

2𝑗′ + 1

× ∫

1

−1
𝑑(cos 𝜃) 𝑑𝑗𝑚𝜆(𝜃) 𝑑

𝑗′
𝑚𝜆(𝜃

′)𝑺 in/out
𝑗′𝑚𝜆 (𝑘′, 𝒓, 𝑡) (89)
7

Since the general formula for boosting electromagnetic field is
independent of its type, Eq. (157) implies that

𝑺 in/out
𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) →

(

cosh(𝜉)1 + 𝑖𝜆 sinh(𝜉)𝒆𝑧 × −
sinh2(𝜉)𝒆𝑧
cosh(𝜉) + 1

𝒆𝑧⋅
)

𝑺 in/out
𝑗𝑚𝜆 (𝑘, 𝒓̃, 𝑡)

(90)

nd since Lorentz boosts in the 𝑧-direction constitute a one-parameter
ie group, it is enough to prove the following equality of derivatives
.r.t. 𝜉 at zero:

𝜉
1
2
√

2𝑗 + 1
∞
∑

𝑗′=1

√

2𝑗′ + 1∫

1

−1
𝑑(cos 𝜃) 𝑑𝑗𝑚𝜆(𝜃) 𝑑

𝑗′
𝑚𝜆(𝜃

′)𝑺 in/out
𝑗′𝑚𝜆 (𝑘′, 𝒓, 𝑡)||

|𝜉=0

= 𝜕𝜉
(

cosh(𝜉)1 + 𝑖𝜆 sinh(𝜉)𝒆𝑧 × −
sinh2(𝜉)𝒆𝑧
cosh(𝜉) + 1

𝒆𝑧⋅
)

𝑺 in/out
𝑗𝑚𝜆 (𝑘, 𝒓̃, 𝑡)||

|𝜉=0
. (91)

The proof is also simplified by the fact that regular fields already satisfy
this condition and the only difference consists in the functions respon-
sible for the radial dependence (spherical Hankel functions instead of
spherical Bessel functions). Lengthy but straightforward calculations
allow one to re-write Eq. (91) (and the analogous expression for regular
fields as well) by separating the radial and angular dependencies of
both sides as

𝑟ℎin/out
0 (𝑟)𝑨(𝒓̂, 𝑡) + 𝑟ℎin/out

1 (𝑟)𝑩(𝒓̂, 𝑡) +
𝑁
∑

𝑙=0
ℎin/out
𝑙 (𝑟)𝑪 𝑙(𝒓̂, 𝑡)

= 𝑟ℎin/out
0 (𝑟)𝑨′(𝒓̂, 𝑡) + 𝑟ℎin/out

1 (𝑟)𝑩′(𝒓̂, 𝑡) +
𝑁
∑

𝑙=0
ℎin/out
𝑙 (𝑟)𝑪 ′

𝑙(𝒓̂, 𝑡), (92)

where the decomposition with primed coefficient functions corresponds
to the right hand side of Eq. (91) and the unprimed one to the left hand
side. 𝑁 is finite, and for readability and without loss of generality we
set 𝑘 = 1.

We use the fact that the statement in question already holds for
regular fields, which means that exactly the same coefficients solve the
equation for spherical Bessel functions:

𝑟𝑗0(𝑟)𝑨(𝒓̂, 𝑡) + 𝑟𝑗1(𝑟)𝑩(𝒓̂, 𝑡) +
𝑁
∑

𝑙=0
𝑗𝑙(𝑟)𝑪 𝑙(𝒓̂, 𝑡)

= 𝑟𝑗0(𝑟)𝑨′(𝒓̂, 𝑡) + 𝑟𝑗1(𝑟)𝑩′(𝒓̂, 𝑡) +
𝑁
∑

𝑙=0
𝑗𝑙(𝑟)𝑪 ′

𝑙(𝒓̂, 𝑡). (93)

Writing

sin(𝑟)𝑨(𝒓̂, 𝑡) +
( sin(𝑟)

𝑟
− cos(𝑟)

)

𝑩(𝒓̂, 𝑡) +
𝑁
∑

𝑙=0
𝑗𝑙(𝑟)𝑪 𝑙(𝒓̂, 𝑡)

= sin(𝑟)𝑨′(𝒓̂, 𝑡) +
( sin(𝑟)

𝑟
− cos(𝑟)

)

𝑩′(𝒓̂, 𝑡) +
𝑁
∑

𝑙=0
𝑗𝑙(𝑟)𝑪 ′

𝑙(𝒓̂, 𝑡) (94)

one notes that in the limit 𝑟 → ∞ the spherical Bessel functions and sin(𝑟)
𝑟

vanish, hence the coefficients at sin and cos functions must be equal:
𝑨(𝒓̂, 𝑡) = 𝑨′(𝒓̂, 𝑡) and 𝑩(𝒓̂, 𝑡) = 𝑩′(𝒓̂, 𝑡). Then, from
𝑁
∑

𝑙=0
𝑗𝑙(𝑟)𝑪 𝑙(𝒓̂, 𝑡) =

𝑁
∑

𝑙=0
𝑗𝑙(𝑟)𝑪 ′

𝑙(𝒓̂, 𝑡) (95)

and the orthogonality of spherical Bessel functions follows the equality
𝑪 𝑙(𝒓̂, 𝑡) = 𝑪 ′

𝑙(𝒓̂, 𝑡) for all 𝑘. This proves the statement for the Hankel
functions Eq. (92), as well as for any functions that satisfy the same
differential equation as spherical Bessel functions.

2.3.2. Relation between incoming, outgoing, and regular fields
Consider a regular electromagnetic pulse with a Gaussian profile of

width 𝛥 in 𝑘 = 𝜔∕𝑐

𝑬p(𝒓, 𝑡) = 𝐴
∞
𝑑𝑘 𝑘 𝑒−

(𝑘−𝑘0)
2

2𝛥2 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡), (96)
∫0
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normalized with some constant 𝐴, and that is constructed as a spectral
superposition of regular basis vector fields 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) with some fixed
𝑗, 𝑚 and 𝜆. It can be decomposed into incoming and outgoing parts
using the connection between spherical Bessel and Hankel functions
𝑗 = (ℎin + ℎout)∕2 as

𝑬p(𝒓, 𝑡) = 𝑬in
p (𝒓, 𝑡) + 𝑬out

p (𝒓, 𝑡) (97)

with

𝑬in
p (𝒓, 𝑡) = 𝐴∫

∞

0
𝑑𝑘 𝑘 𝑒−

(𝑘−𝑘0)
2

2𝛥2 𝑺 in
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) (98)

𝑬out
p (𝒓, 𝑡) = 𝐴∫

∞

0
𝑑𝑘 𝑘 𝑒−

(𝑘−𝑘0)
2

2𝛥2 𝑺out
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) (99)

for |𝒓| > 0.
The regular pulse 𝑬𝑝(𝒓, 𝑡) has finite length, so it is possible to define

a time period before the pulse first reaches the origin at 𝒓 = 𝟎, and a
time period after the pulse has completely crossed the origin. During
the first period the pulse completely consists of the incoming part

𝑬p(𝒓, 𝑡) = 𝑬in
p (𝒓, 𝑡) (100)

while 𝑬out
p (𝒓, 𝑡) = 0, and during the second period it solely consists of

the outgoing part

𝑬p(𝒓, 𝑡) = 𝑬out
p (𝒓, 𝑡) (101)

hile 𝑬in
p (𝒓, 𝑡) = 0.

A representative example is shown on Fig. 1. We plot numerically
omputed values of concrete Gaussian pulses Eqs. (96), (98), (99) with
enter wavelength 2𝜋

𝑘0
= 400 nm, Gaussian width 𝛥−1 = 300 nm, total

ngular momentum 𝑗 = 1, angular momentum around 𝑧-axis 𝑚 = 1 and
elicity 𝜆 = 1. The integrals are truncated to the region 3 μm−1 ≤ 𝑘 ≤

28 μm−1, which includes the Gaussian profile of the wave function apart
from a practically insignificant portion. The values of the integrals are
computed via the Riemann sum with number of points 𝑁𝑘 = 150. The
adius of the displayed space region is 6.4 μm. The points near the origin
f coordinates are disregarded in the plots of irregular fields because
f the divergence of the Hankel functions.

The time stamps are selected to be within the two periods defined
bove, when irregular pulses are either equal to the regular pulse or
dentically zero. In these periods, the substitution of irregular basis
ields by regular basis fields would not change the value of the total
ield of the pulse, which can be useful for practical applications because
he spherical Bessel functions in regular fields are numerically better
ehaved than the spherical Hankel functions [37, App. B]. The notable
plit illustrated in Fig. 1 does not happen for monochromatic fields,
.g. when beams of infinite duration are involved, because at each point
f time and space the regular field contains contributions from both
ncoming and outgoing components.

In general, such connection is present in regions of space–time when
he regular field is known to contain only an incoming or only an
utgoing part.

Now, if we consider coefficients 𝑓𝑗𝑚𝜆(𝑘) that have finite norm ⟨𝑓 |𝑓⟩,
hen, when combined with regular basis fields 𝑹, they describe a
egular freely propagating physical field. When the same coefficients
re combined with outgoing basis fields 𝑺out, they describe an emitted

electromagnetic field that is zero before the start of the emission and
that is identically equal to the corresponding regular field at times
after the end of the emission. On the other hand, when 𝑓𝑗𝑚𝜆(𝑘) are
combined with incoming basis fields 𝑺 in, the linear combination will
result in an electromagnetic field that will be absorbed during some
time, such that after this period the field will be zero and before the
start of the absorption the field will be identically equal to the regular
field combined with the same coefficients. This allows one to connect
irregular fields to the Hilbert space formalism and to use the same
scalar product Eqs. (28), (45) to, in particular, compute quantities of
emitted or absorbed fields, such as energy and momentum. While using
8

m

the ket notation, we will distinguish incoming and outgoing types of
fields that share the same coefficients 𝑓𝑗𝑚𝜆(𝑘) by a superscript |𝑓 ⟩in

r |𝑓 ⟩out, versus the regular |𝑓 ⟩. Values of the corresponding scalar
roducts are computed identically according to Eq. (28), (45), hence
𝑓 |𝑔⟩ = ⟨𝑓 |𝑔⟩in in = ⟨𝑓 |𝑔⟩out out for any coefficient functions 𝑓 , 𝑔.

We can now see that our definition of basis fields 𝑺 in/out that
ncorporates an extra factor of 1∕2 when compared to its regular
ounterpart, and that differs from the usual approaches, follows from
equiring the use of the same scalar product for regular, incoming and
utgoing fields. Let us consider the number of photons in a regular
ulse, which does not change with time. The decomposition of the
egular pulse as |𝑓 ⟩ = |𝑓 ⟩in + |𝑓 ⟩out applies at all times, only that there
re time periods where either |𝑓 ⟩out or |𝑓 ⟩in vanish. Notably, the total
umber of photons in the regular pulse ⟨𝑓 |𝑓⟩ is equal to the number
f photons absorbed ⟨𝑓 |𝑓 ⟩in in and also equal to the number of photons
mitted ⟨𝑓 |𝑓 ⟩out out.

.4. On the convergence regions of some expansions

A discussion about the validity of particular kinds of field ex-
ansions is in order at this point. In the previous sections, we have
dentified the coefficient functions in expansions of electromagnetic
ields as members of the Hilbert space. We argue here that, while some
f those expansions do not converge at all space–time points, where
ore complicated expansions are needed, the coefficient functions

ontain sufficient information to recover the fields at all points outside
aterial objects. The T-matrix and the S-matrix that we discuss in the
ext section are linear mappings between such coefficient functions.

Irregular basis fields are not defined in the whole space because they
re singular at the origin |𝒓| = 0. However, in Eq. (97), the validity
f the separation of a general regular pulse into the incoming and
utgoing parts 𝑬in

p (𝒓, 𝑡) and 𝑬out
p (𝒓, 𝑡) depends on the pulse and may be

estricted by a stronger condition than |𝒓| > 0. For example, a spatial
ranslation of the pulse Eq. (97) by some distance 𝑎 in any direction
ould decrease the region of validity of Eqs. (98)–(99) to points
utside of the sphere with radius 𝑎, |𝒓| > 𝑎, while inside such sphere
ne must use another expansion branch featuring regular fields [38,
q.(47ab)]. Similarly, the Lorentz boosted irregular electromagnetic
ield in Eq. (89) will not converge for all the (𝒓, 𝑡) points, and an ex-
ansion with branches would also be then needed. A similar issue that
rises in the T-matrix formalism is the validity of the expansion of the
cattered field into only outgoing multipoles, similar to Eq. (99), which
s strictly valid only outside the smallest sphere enclosing the scatterer.
his issue, which can be addressed with more complicated expan-
ions [4–10], also affects the S-matrix formalism, and the latter could
lso need branches to expand the incoming field, as in the case of the
patially translated pulse that we just discussed. However, even though
xpansions with branches are sometimes needed, it should be noted
hat the expansion coefficients of the far field are sufficient information
o determine the field everywhere outside material objects. This follows
rom the fact that such coefficients determine the far field, which at
ts turn determines the field everywhere outside material objects [39,
heorems 6.9 and 6.10]. The work in [6] provides a clear illustration of
his, since an accurate T-matrix of two nearby disks that grossly invade
ach other’s smallest enclosing spheres can be computed using solely
he positions and the T-matrices of each individual disk. Therefore,
he expansion coefficient functions that constitute the Hilbert space,
hich determine the far fields, are sufficient information to recover the

ields everywhere outside material objects, albeit potentially through
elatively complicated expansions with e.g. several branches.

. Polychromatic T-matrix and S-matrix

We now have all the necessary elements in place for defining
he polychromatic T-matrix. Afterwards we will define the polychro-

atic S-matrix. Both operators contain the same information and are
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Fig. 1. Comparison of Gaussian pulses with center wavelength 2𝜋
𝑘0

= 400 nm and Gaussian width 𝛥−1 = 300 nm constructed as spectral superposition with the same coefficients of
basis fields of different types: regular 𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) (top), incoming 𝑺 in

𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) (middle) and outgoing 𝑺out
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) (bottom), for 𝑗 = 1, 𝑚 = 1 and helicity 𝜆 = 1. Figures depict absolute

values of the electric field in the 𝑧𝑥-plane (𝑧-axis points horizontally to the right, 𝑥-axis – vertically to the top) at four different points in time. The incoming pulse is computed
to be identically zero after the end of its absorption in the origin, and is equal to the corresponding regular field for times before the start of its absorption. The outgoing pulse
is computed to be identically zero before the start of its emission from the origin, and is equal to the corresponding regular field for times after the end of its emission.
Fig. 2. An electromagnetic pulse interacts with a material object during a finite time
(gray shade). The 𝑇 -matrix is a linear operator in the Hilbert space of solutions of
Maxwell equations that maps the incident fields (lilac) to the scattered fields (green).
The light-matter interaction starts at 𝑡 = 𝑡1. Before 𝑡1, causality forbids the existence
of any scattered field. Time 𝑡 = 𝑡2 marks the end of the emission of the scattered field
from the object.

bijectively connected, but they map different parts of the total electro-
magnetic field. The T-matrix connects the regular field, called incident
field, with the irregular outgoing field, called scattered field. The
S-matrix connects irregular incoming fields to irregular outgoing fields.

Let us start by considering the light-matter interaction picture in
Fig. 2, where a light pulse interacts with a material object.

3.1. Polychromatic T-matrix

In the usual definition of the monochromatic T-matrix [40, Sec.
5.1], a time-harmonic field outside of the smallest sphere that encloses
a localized electromagnetic scatterer can be written as a sum of the
regular and outgoing multipoles

𝑬(𝑘, 𝒓, 𝑡) = 𝑒−𝑖𝑘𝑐𝑡
∞
∑

𝑗
∑

𝑎𝑗𝑚𝑵 𝑗𝑚(𝑘𝑟, 𝒓̂) + 𝑏𝑗𝑚𝑴 𝑗𝑚(𝑘𝑟, 𝒓̂)
9

𝑗=1 𝑚=−𝑗
+ 𝑒−𝑖𝑘𝑐𝑡
∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑝𝑗𝑚𝑵out

𝑗𝑚 (𝑘𝑟, 𝒓̂) + 𝑞𝑗𝑚𝑴out
𝑗𝑚 (𝑘𝑟, 𝒓̂) (102)

with the second equation valid for 𝑟 = |𝒓| larger than the radius of the
smallest sphere enclosing the object. The first, regular part of Eq. (102)
is called the incident field and the second, irregular part is called the
scattered field.

In the case of a single monochromatic field, the usual monochro-
matic T-matrix is defined as the matrix that maps the coefficients of
the incident and the scattered electromagnetic fields:
(

𝑝
𝑞

)

= 𝑇u

(

𝑎
𝑏⃗

)

. (103)

However, the most general linear scattering situation concerns in-
teraction of a polychromatic field with an object. A total field in this
case is a spectral superposition of monochromatic fields:

𝑬(𝑘, 𝒓, 𝑡) = ∫

∞

0
𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑎𝑗𝑚(𝑘)𝑵 𝑗𝑚(𝑘𝑟, 𝒓̂) + 𝑏𝑗𝑚(𝑘)𝑴 𝑗𝑚(𝑘𝑟, 𝒓̂)

+ ∫

∞

0
𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑝𝑗𝑚(𝑘)𝑵out

𝑗𝑚 (𝑘𝑟, 𝒓̂) + 𝑞𝑗𝑚(𝑘)𝑴out
𝑗𝑚 (𝑘𝑟, 𝒓̂).

(104)

A principal difference to the monochromatic picture consists in the fact
that a general linear connection between the incident and scattered
field allows coupling of different frequencies. An example of a physical
situation when this coupling is necessary is the relativistic scattering: a
monochromatic beam that hits a moving object will produce a scattered
field with components of several different frequencies.

Following the path suggested by the representation theory, we
connect the electric field to the Hilbert space of solutions of Maxwell’s
equations by writing it in terms of the basis fields 𝑹𝑗𝑚𝜆(𝑘) and 𝑺out

𝑗𝑚𝜆(𝑘):

𝑬(𝒓, 𝑡) = ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑓𝑗𝑚𝜆(𝑘)𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡)

+ ∫

∞
𝑑𝑘 𝑘

∑

∞
∑

𝑗
∑

𝑔𝑗𝑚𝜆(𝑘)𝑺out
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡), (105)
0 𝜆=±1 𝑗=1 𝑚=−𝑗
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𝑬

o

or, equivalently

|𝑓 ⟩ + |𝑔⟩out = ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑓𝑗𝑚𝜆(𝑘) |𝑘𝑗𝑚𝜆⟩

+ ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑔𝑗𝑚𝜆(𝑘) |𝑘𝑗𝑚𝜆⟩out,

(106)

with coefficients that follow from Eqs. (105), (53), (87), and that,
crucially, are compatible with the scalar product in Eq. (45):

𝑓𝑗𝑚𝜆(𝑘) = −
√

𝜋𝜖0
2𝑐ℏ

(−𝑖)𝑗

𝑘2
(

𝑎𝑗𝑚(𝑘) + 𝜆𝑏𝑗𝑚(𝑘)
)

𝑔𝑗𝑚𝜆(𝑘) = −

√

2𝜋𝜖0
𝑐ℏ

(−𝑖)𝑗

𝑘2
(

𝑝𝑗𝑚(𝑘) + 𝜆𝑞𝑗𝑚(𝑘)
)

.

(107)

In linear light-matter interactions the coefficients of the scattered
field 𝑔𝑗𝑚𝜆(𝑘) are linearly related to the coefficients of the incident field
𝑓𝑗𝑚𝜆(𝑘). We define the polychromatic T-matrix as the linear operator
mapping the regular incident field to the outgoing scattered field via

|𝑔⟩out = 𝑇 |𝑓 ⟩ (108)

which implies for the coefficients

𝑔𝑗1𝑚1𝜆1 (𝑘1) = ∫

∞

0
𝑑𝑘2 𝑘2

∑

𝜆2=±1

∞
∑

𝑗2=1

𝑗2
∑

𝑚2=−𝑗2

𝑇 𝑗1𝑚1𝜆1
𝑗2𝑚2𝜆2

(𝑘1, 𝑘2)𝑓𝑗2𝑚2𝜆2 (𝑘2),

where 𝑇 𝑗1𝑚1𝜆1
𝑗2𝑚2𝜆2

(𝑘1, 𝑘2) = ⟨𝑘1𝑗1𝑚1𝜆1|𝑇 |𝑘2𝑗2𝑚2𝜆2⟩
out .

(109)

Although the integration domain is unbounded, this does not introduce
any computational limitations, since physical scatterers typically only
interact in specific bounded frequency ranges. This allows a truncation
of the integration domain when computing the scattered field.

3.2. Building frequency-diagonal polychromatic T-matrices from monochro-
matic T-matrices

Quite often, one considers scattering processes where frequencies do
not change during light-matter interaction. Such processes can hence
be described by T-matrices that are diagonal in frequency. Here we
show how T-matrices that do not mix frequency are a special case of
the polychromatic T-matrix, and provide the formula for building the
polychromatic T-matrix from the usual monochromatic T-matrices.

Consider scattering of an incident field

𝑬inc(𝒓, 𝑡) = ∫ 𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑵 𝑗𝑚(𝑘𝑟, 𝒓̂) 𝑎𝑗𝑚(𝑘) +𝑴 𝑗𝑚(𝑘𝑟, 𝒓̂) 𝑏𝑗𝑚(𝑘)

(110)

o a scattered field

sc(𝒓, 𝑡) = ∫ 𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑵out
𝑗𝑚 (𝑘𝑟, 𝒓̂) 𝑝𝑗𝑚(𝑘) +𝑴out

𝑗𝑚 (𝑘𝑟, 𝒓̂) 𝑞𝑗𝑚(𝑘),

(111)

here the usual monochromatic T-matrices connect the coefficients at
ach frequency 𝜔 = 𝑘𝑐 as

𝑝(𝑘)
𝑞(𝑘)

)

= 𝑇𝑢(𝑘)
(

𝑎(𝑘)
𝑏⃗(𝑘)

)

=
(

𝑇𝑁𝑁𝑢 (𝑘) 𝑇𝑁𝑀𝑢 (𝑘)
𝑇𝑀𝐸
𝑢 (𝑘) 𝑇𝑀𝑀

𝑢 (𝑘)

)(

𝑎(𝑘)
𝑏⃗(𝑘)

)

. (112)

ccording to Eq. (109), the same scattering is realized by the following
olychromatic T-matrix, which is diagonal in frequency (and written in
10
he helicity basis):

𝑇 𝑗1𝑚1𝜆1
𝑗2𝑚2𝜆2

(𝑘1, 𝑘2) =

1
𝑘2
𝛿(𝑘1 − 𝑘2)

(

𝑇𝑁𝑁𝑢 (𝑘2)
𝑗1𝑚1
𝑗2𝑚2

+ 𝜆1𝑇𝑀𝑁
𝑢 (𝑘2)

𝑗1𝑚1
𝑗2𝑚2

+ 𝜆2𝑇𝑁𝑀𝑢 (𝑘2)
𝑗1𝑚1
𝑗2𝑚2

+ 𝜆1𝜆2𝑇𝑀𝑀
𝑢 (𝑘2)

𝑗1𝑚1
𝑗2𝑚2

)

(113)

Eq. (113) follows from the decomposition of the fields in Eqs. (110)–
(111), and from Eq. (107). We note that this formula already accounts
for the extra factor of 2 that comes from the modified definition of the
outgoing basis fields.

With the contents of this section, the monochromatic T-matrices
𝑇𝑢(𝑘) computed with the usual conventions by currently available
formulas and computer codes can be easily re-used for computing the
polychromatic T-matrix in the new conventions.

3.3. Polychromatic S-matrix

An equivalent description of scattering may be provided by the S-
matrix formalism, which is based on the decomposition of the total
electromagnetic field into the incoming and the outgoing fields [40,
Eq. (5.47)]. Again, we generalize the monochromatic setting by con-
sidering the total field as the spectral superposition of monochromatic
fields

𝑬(𝒓, 𝑡) = ∫

∞

0
𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑎̃𝑗𝑚(𝑘)𝑵 in

𝑗𝑚(𝑘𝑟, 𝒓̂) + 𝑏̃𝑗𝑚(𝑘)𝑴
in
𝑗𝑚(𝑘𝑟, 𝒓̂)

+ ∫

∞

0
𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑝̃𝑗𝑚(𝑘)𝑵out

𝑗𝑚 (𝑘𝑟, 𝒓̂) + 𝑞𝑗𝑚(𝑘)𝑴out
𝑗𝑚 (𝑘𝑟, 𝒓̂).

(114)

Similarly to the previous section, we proceed by writing the total
ield Eq. (114) in terms of 𝑺 in/out

𝑗𝑚𝜆

(𝒓, 𝑡) = ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑓𝑗𝑚𝜆(𝑘)𝑺 in

𝑗𝑚𝜆(𝑘, 𝒓, 𝑡)

+ ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
ℎ𝑗𝑚𝜆(𝑘)𝑺out

𝑗𝑚𝜆(𝑘, 𝒓, 𝑡), (115)

r, equivalently

|𝑓 ⟩in + |ℎ⟩out = ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
𝑓𝑗𝑚𝜆(𝑘) |𝑘𝑗𝑚𝜆⟩in

+ ∫

∞

0
𝑑𝑘 𝑘

∑

𝜆=±1

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗
ℎ𝑗𝑚𝜆(𝑘) |𝑘𝑗𝑚𝜆⟩out,

(116)

with coefficients that follow from Eq. (114) and Eq. (87), and that,
crucially, are compatible with the scalar product in Eq. (45):

𝑓𝑗𝑚𝜆(𝑘) = −

√

2𝜋𝜖0
𝑐ℏ

(−𝑖)𝑗

𝑘2
(

𝑎̃𝑗𝑚(𝑘) + 𝜆𝑏̃𝑗𝑚(𝑘)
)

ℎ𝑗𝑚𝜆(𝑘) = −

√

2𝜋𝜖0
𝑐ℏ

(−𝑖)𝑗

𝑘2
(

𝑝̃𝑗𝑚(𝑘) + 𝜆𝑞𝑗𝑚(𝑘)
)

.

(117)

In linear light-matter interactions, the coefficients of the outgoing
field ℎ𝑗𝑚𝜆(𝑘) are linearly related to the coefficients of the incoming field
𝑓𝑗𝑚𝜆(𝑘). We define the polychromatic S-matrix as the linear operator
mapping the incoming field to the outgoing field via

out in

|ℎ⟩ = 𝑆|𝑓 ⟩ (118)
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which implies for the coefficients

ℎ𝑗1𝑚1𝜆1 (𝑘1) = ∫

∞

0
𝑑𝑘2 𝑘2

∑

𝜆2=±1

∞
∑

𝑗2=1

𝑗2
∑

𝑚2=−𝑗2

𝑆𝑗1𝑚1𝜆1
𝑗2𝑚2𝜆2

(𝑘1, 𝑘2)𝑓𝑗2𝑚2𝜆2 (𝑘2),

where 𝑆𝑗1𝑚1𝜆1
𝑗2𝑚2𝜆2

(𝑘1, 𝑘2) = ⟨𝑘1𝑗1𝑚1𝜆1|𝑆|𝑘2𝑗2𝑚2𝜆2⟩
out in.

(119)

The connection between the T-matrix and the S-matrix formalisms
is determined by decompositions Eq. (105) and Eq. (115). We start
with the T-matrix decomposition of total field into the incident and the
scattered components and separate the regular part into the incoming
and outgoing fields

|𝑓 ⟩ + |𝑔⟩out = |𝑓 ⟩in + |𝑓⟩out + |𝑔⟩out. (120)

This brings the total field to the decomposition that underlines the
S-matrix formalism, implying

𝑆|𝑓 ⟩in = |𝑓 ⟩out + |𝑔⟩out =∶ |ℎ⟩out, (121)

while the T-matrix maps the fields as

𝑇 |𝑓⟩ = |𝑔⟩out. (122)

We see that in our convention the coefficients of the incident and of
the incoming field are equal, namely 𝑓𝑗𝑚𝜆(𝑘), and the coefficients of
the outgoing field are connected to the coefficients of the incident and
of the scattered fields via ℎ𝑗𝑚𝜆(𝑘) = 𝑓𝑗𝑚𝜆(𝑘) + 𝑔𝑗𝑚𝜆(𝑘).

Eq. (121) and Eq. (122) imply the connection between the T-matrix
and the S-matrix as operators to be

𝑆|𝑓 ⟩in = |𝑓 ⟩out + 𝑇 |𝑓⟩ (123)

for arbitrary coefficients 𝑓𝑗𝑚𝜆(𝑘). Numerically, when the elements of the
T-matrix are known, the elements of the S-matrix may be computed via
the simple relation

𝑆 = 1 + 𝑇 , (124)

since the distinction between the incident, incoming and outgoing
fields plays a role only when combining the coefficients with the
corresponding basis elements to construct the physical field 𝑬(𝒓, 𝑡).

Eq. (124) also allows to straightforwardly obtain results identical to
of Section 3.2 for the case of the frequency-diagonal S-matrix.

We note that the connection in Eq. (124) differs from a more
common formula

𝑆u = 1 + 2𝑇u, (125)

where the subscript ‘u’ stands for the usual way of defining basis states.
The reason lies in the way our basis fields 𝑺 in/out

𝑗𝑚𝜆 are defined, namely
via substituting spherical Bessel functions 𝑗𝐿(𝑘𝑟) in 𝑹𝑗𝑚𝜆 by spherical
Hankel functions halved ℎin/out

𝐿 (𝑘𝑟)∕2. In the usual approach, however,
the irregular vector spherical functions 𝑴 in/out

𝑗𝑚 and 𝑵 in/out
𝑗𝑚 are defined

by substituting spherical Bessel functions by spherical Hankel functions
without division by 2.

While the T-matrix in our convention is larger than the usual one
by the factor of two, the S-matrix is identical in both conventions,
because incoming and outgoing basis fields have been changed in the
same way, and therefore numerical values of the S-matrix elements
⟨𝑘1𝑗1𝑚1𝜆1|𝑆|𝑘2𝑗2𝑚2𝜆2⟩

out in do not change.

4. Transfer of energy and momentum from a light pulse to a Si
sphere

In the following example we illustrate how one can use the poly-
chromatic T-matrix method for the computation of the transfer of
energy and momentum between an electromagnetic pulse and a silicon
11

s

sphere. The silicon sphere is represented as a polychromatic T-matrix
that is diagonal in frequency, as per Eq. (113).

The scalar product in Eq. (28) or Eq. (45) allows one to compute fun-
damental physical quantities, such as energy, momentum, and angular
momentum carried by electromagnetic field |𝑓 ⟩:

⟨𝛤 ⟩ = ⟨𝑓 |𝛤 |𝑓 ⟩, (126)

where 𝛤 is the Hermitian operator of the corresponding physical quan-
tity: generator of time translations 𝑐𝑃 0 = 𝐻 for energy, generators for
patial translations 𝑃𝛼 (𝛼 = 𝑥, 𝑦, 𝑧) for linear momentum, and generators

of rotations 𝐽𝛼 (𝛼 = 𝑥, 𝑦, 𝑧) for angular momentum. If the scattering
process is subject to a conservation law, then the difference between
the quantities contained in incoming and outgoing fields is equal to
the amount of the quantity transferred to or extracted from the object.
For the purpose of computing this difference it is most convenient to
describe scattering in terms of the S-matrix. Given the incoming field
|𝑓⟩in and the outgoing field |ℎ⟩out = 𝑆|𝑓 ⟩in, the transferred amount
𝛥𝛤 ⟩ is [20, Eq. (3)]

𝛥𝛤 ⟩ = ⟨𝑓 |𝛤 |𝑓 ⟩in in − ⟨ℎ|𝛤 |ℎ⟩out out

⟨𝑓 |𝛤 − 𝑆†𝛤𝑆|𝑓 ⟩in in, (127)

r, using Eq. (123), in terms of the T-matrix

𝛥𝛤 ⟩ = − ⟨𝑓 |𝛤𝑇 |𝑓 ⟩out −⟨𝑓 |𝑇 †𝛤 |𝑓 ⟩out −⟨𝑓 |𝑇 †𝛤𝑇 |𝑓 ⟩. (128)

he superscripts signify the correct types of the fields, however, as
reviously discussed in Sec. 2.3.2, the values of the scalar products are
ndependent of these types.

We illustrate the transfer of quantities with a left-handed (𝜆 = +1)
ircularly polarized pulse with Gaussian profile in time, described by
he wave function at positive cos 𝜃 as

+(𝒌) = 𝐴𝑒𝑖𝜙 cos 𝜃(1 + cos 𝜃) 𝑒−(𝑘−𝑘0)
2𝛥2𝑡 𝑐

2∕2 𝑒−𝑘
2(1−cos2 𝜃)𝛥2𝜌∕2, (129)

−(𝒌) = 0, (130)

nd set 𝑓𝜆(𝒌) = 0 for cos 𝜃 < 0. The angles 𝜃 and 𝜙 are the polar
nd azimuthal angles of 𝒌 respectively. We choose time width of the
ulse 𝛥𝑡 = 10 fs, spacial parameter 𝛥𝜌 = 1 μm, the central wavelength

2𝜋
𝑘0

= 380 nm. The constructed pulse is focused along the 𝑧-direction,
such that the values of the coefficients that correspond to polar angles
with cos 𝜃 < 0.975 are vanishingly small. We will use this fact for more
efficient discretization of the integrals in the plane wave basis.

We set the constant 𝐴 = 6.5 × 1010 nm to fix the energy of the pulse
to 1 mJ:

⟨𝑓 |𝐻|𝑓 ⟩ =
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

|𝑓𝜆(𝒌)|2𝑐ℏ𝑘 = 1.0 × 10−3 J, (131)

hich is a concrete realization of Eq. (126). Here and later the inte-
ration over 𝑘 is truncated to the region 15.3 μm−1 ≤ 𝑘 ≤ 17.8 μm−1.
utside of this region the pulse has negligible frequency content (see

he corresponding profile on Fig. 3(a) in green). The integral is com-
uted as a Riemann sum with the number of equidistant points 𝑁𝑘 =

150. The numerical integration over directions of the wave vector is
truncated to ∫ 2𝜋

0 𝑑𝜙 ∫ 1
0.975 𝑑(cos 𝜃) with discretization 𝑁𝜙 = 200 and

𝑁cos 𝜃 = 300. The summation over 𝑗 is truncated up to the multipole
order 𝑗max = 8, above which the T-matrix elements are negligible in
the relevant frequency band.

Similarly, the momentum in 𝑧-direction that is contained in the
ulse can be computed via

𝑓 |𝑃𝑧|𝑓 ⟩ =
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

|𝑓𝜆(𝒌)|2ℏ𝑘 cos 𝜃 = 3.3 × 10−12 kgm s−1. (132)

Now let us consider interaction of the defined pulse with a silicon
phere of radius 100 nm located in the origin of the reference frame.
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Fig. 3. (a) Refractive index 𝑛(𝜔) and extinction coefficient 𝜅(𝜔) of Silicon as a function of frequency (blue) together with the photon density with respect to the frequency of the
incident field (green). (b) Transfer of energy from the pulse to the object per frequency (blue), together with the transfer of linear momentum in 𝑧-direction from the pulse to the
object per frequency (green). Integrals of the functions provide the total transferred quantity.
The spectral content of the incident pulse in terms of its photon
density w.r.t. angular frequency 𝜔 = 𝑘𝑐:

𝑁(𝜔) ∶= 𝜔
𝑐2

∑

𝜆=±1
∫

2𝜋

0
𝑑𝜙∫

1

−1
𝑑(cos 𝜃)|𝑓𝜆(𝒌)|2 (133)

is illustrated on top of the optical parameters of the silicon [41]
on Fig. 3(a).

We compute the transfer of the energy and of the momentum in
the angular momentum basis, for which one requires the infinitesimal
versions of the transformation laws Eq. (70)–(71), which read

𝐻𝑓𝑗𝑚𝜆(𝑘) = ℏ𝑐𝑘𝑓𝑗𝑚𝜆(𝑘) (134)
𝑃𝑧𝑓𝑗𝑚𝜆(𝑘) =

ℏ𝑘
√

2𝑗 + 1(−1)𝑚−𝜆
𝑗+1
∑

𝑗′=𝑗−1

√

2𝑗′ + 1

(

𝑗 𝑗′ 1
−𝑚 𝑚 0

)(

𝑗 𝑗′ 1
−𝜆 𝜆 0

)

𝑓𝑗′𝑚𝜆(𝑘),

(135)

where
(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)

are the Wigner 3-j symbols. We generate the

T-matrix of the sphere at different wavenumbers for 𝑗max = 8 with
the treams python package [25,26], which is publicly available at
https://github.com/tfp-photonics/treams, and use Eq. (128) to get the
transfer of energy and momentum to the object:

⟨𝛥𝐻⟩ = 9.15 × 10−6 J (136)

⟨𝛥𝑃𝑧⟩ = 6.80 × 10−14 kgm s−1. (137)

A more specific information on the transfer is provided in Fig. 3(b),
where the density of transferred quantity with respect to the frequency
is plotted for both energy ⟨𝛥𝐻⟩(𝜔) and momentum ⟨𝛥𝑃𝑧⟩(𝜔) transfer.
The amounts of total transfer are connected to the corresponding
densities as

⟨𝛥𝐻⟩ = ∫

∞

0
𝑑𝜔 ⟨𝛥𝐻⟩(𝜔) (138)

⟨𝛥𝑃𝑧⟩ = ∫

∞

0
𝑑𝜔 ⟨𝛥𝑃𝑧⟩(𝜔). (139)

This method differs from alternative approaches that make use of
the Maxwell’s stress tensor [42]. Instead, we employ the scalar product
formula Eq. (45), which enables us to achieve accurate results while
highlighting the underlying group-theoretical principles.
12
4.1. Validation of results

We validate some of our results by computing the energy transfer
via the well-known formula for the energy contained in an electromag-
netic field

𝐸em =
𝜖0
2 ∫ 𝑑3𝒓 |(𝒓, 𝑡)|2 + |𝑐(𝒓, 𝑡)|2, (140)

which can be alternatively written in terms of Riemann–Silberstein
vectors using Eqs. (4) and (13)

𝐸em = 𝜖0 ∫ 𝑑3𝒓 |𝑭 +(𝒓, 𝑡) + 𝑭 ∗
−(𝒓, 𝑡)|

2. (141)

Knowing the coefficients of the incident 𝑓𝑗𝑚𝜆(𝑘) and the scattered field
𝑔𝑗𝑚𝜆(𝑘), the corresponding incoming and outgoing coefficients read (see
Section 3.3)

𝑓 in
𝑗𝑚𝜆(𝑘) = 𝑓𝑗𝑚𝜆(𝑘) (142)

𝑓out
𝑗𝑚𝜆(𝑘) = 𝑓𝑗𝑚𝜆(𝑘) + 𝑔𝑗𝑚𝜆(𝑘). (143)

Combining them with the incoming and outgoing basis fields in Eq. (84),
and taking into account Eq. (13), gives the required electromagnetic
fields in (𝒓, 𝑡)-domain:

𝑭 in/out
𝜆 (𝒓, 𝑡) =

√

2∫

∞

0
𝑑𝑘 𝑘

∞
∑

𝑗=1

𝑗
∑

𝑚=−𝑗

∑

𝜆=±1
𝑓 in/out
𝑗𝑚𝜆 (𝑘)𝑺 in/out

𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡). (144)

As in the previous section, the wavenumber integration can be
truncated to the region 15.3 μm−1 ≤ 𝑘 ≤ 17.8 μm−1. Since the scatterer
does not interact with the parts of the field with 𝑗 > 𝑗max = 8, higher
multipolar component of the outgoing field will be the same as the
corresponding components of the incoming field. Hence, the difference
of their carried energy will be zero, and they do not contribute to the
energy transfer. This allows us to focus on the transfer of energy due
to 𝑗 ≤ 𝑗max = 8 components of the field.

The energy density of the 𝑗 ≤ 8 components of incoming and the
outgoing fields at specific times is depicted in Fig. 4

Numerical integration of Eq. (141) is conducted in spherical coor-
dinates as a Riemann sum in 𝑟 ∈ [0, 55]μm, 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋],
for 𝑁𝑟 = 250, 𝑁𝜃 = 500 and 𝑁𝜙 = 201 equidistant points, preceded
by the integration of Eq. (144) over 𝑁𝑘 = 150 equidistant points. The
incoming field is considered at time 𝑡 = −150 fs and the outgoing at
𝑡 = 150 fs. The resulting energy difference is

𝐸in − 𝐸out = 2.49417 × 10−4J − 2.40224 × 10−4J = 9.1929 × 10−6J, (145)
em em

https://github.com/tfp-photonics/treams
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Fig. 4. Energy density of the incoming (left) and the outgoing (right) parts of the total
field for multipole order up to 𝑗max = 8, plotted in the 𝑧𝑥-plane with horizontal 𝑧-axis
and vertical 𝑥-axis. The radial dimension of the plot is 55 μm, the incoming field is
plotted at time −150 fs and the outgoing field at time 150 fs. The white circle in the
middle represents the silicon sphere.

which is in very good agreement with the value given by the scalar
product approach 9.1503×10−6J. The small difference can be attributed
to numerical noise.

5. Conclusions

In this work, we have generalized the T-matrix method to the
polychromatic setting by exploiting the connection between electro-
magnetism and the theory of group representations. This extension
broadens the range of scenarios that can be accurately modeled and
studied using the T-matrix method, allowing for a more comprehensive
understanding of electromagnetic scattering phenomena.

Through the introduction of a novel convention for electromagnetic
basis fields, which possess the distinctive property of transforming
according to specific unitary representations of the Poincaré group
of special relativity, we have achieved the unification of incoming,
outgoing, and regular fields, enabling the use of the same scalar product
in all cases. Additionally, we have shown that incoming, outgoing
and regular fields transform identically under Lorentz boosts, and
derived the closed form matrix element of the Lorentz boost of the
polychromatic T-matrix, providing a solid theoretical foundation for in-
vestigating the interaction of electromagnetic fields with relativistically
moving objects.

To demonstrate the practical implications of our research, we have
conducted numerical computations of the transfer of quantities such
as energy and momentum from an electromagnetic pulse to a silicon
sphere. These results serve as concrete examples of the applicability of
the proposed enhancements to the T-matrix method.

By refining the T-matrix method and expanding its capabilities, we
provide researchers with valuable tools for advancements in the field
of electromagnetic scattering.
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Appendix A. The representation of the vector potential

The transverse part of the vector potential determines the transverse
electric field

𝑬(𝒓, 𝑡) = −
𝜕𝑨⟂(𝒓, 𝑡)

𝜕𝑡
, (146)

independently of the gauge [43, Eq. B.26]. In the wave vector space
we have hence 𝑨̄⟂(𝒌) = −𝑖𝑬̄(𝒌)

𝑐𝑘 , and the decomposition equivalent to
Eq. (10) reads

𝑨⟂(𝒓, 𝑡) =
√

ℏ
𝑐𝜖0

1
√

2

−𝑖
√

(2𝜋)3

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) 𝒆𝜆(𝒌̂) 𝑒𝑖(𝒌⋅𝒓−𝑐𝑘𝑡), (147)

where the coefficients of the decomposition 𝑓𝜆(𝒌) are the same as
the ones of the corresponding electric field. Since one should keep
the invariant measure 𝑑3𝒌

𝑘 , the decomposition in Eq. (147) induces a
definition of plane waves for the vector potential that differs from one
of the electric plane waves by the factor of 𝑖𝑘∕𝑐:

𝑸𝐴⟂

𝜆 (𝒌, 𝒓, 𝑡) = −𝑖
√

ℏ
𝑐𝜖0

1
√

2

1
√

(2𝜋)3
𝒆𝜆(𝒌̂)𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌⋅𝒓. (148)

Vector potential plane waves obey the same transformation rules
Eqs. (16)–(18) and Eq. (19), with an exception of time reversal, where
the difference in the imaginary unit 𝑖 introduces an extra factor of (−1)
to the right hand side of Eq. (20). The presence of 𝜕

𝜕𝑡 in Eq. (146)
already announces this difference in time-reversal transformation prop-
erties. Also the factor of 𝑘 difference exactly compensates for the
different way that 𝑨⟂(𝒓, 𝑡) and 𝑬(𝒓, 𝑡) transform under Lorentz boosts,
namely as the space component of a four-vector, and as the space–time
component of an anti-symmetric tensor, respectively.

Appendix B. Lorentz boosts in the (𝐫, 𝒕) representation of fields

Active Lorentz boosts relativistically describe an object moving
with a uniform velocity 𝒗. A 4-vector in Minkowski space–time is
transformed under a Lorentz boosts in the 𝑧-direction via

𝑥𝜇 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑐𝑡
𝑥1

𝑥2

𝑥3

⎞

⎟

⎟

⎟

⎟

⎠

↦ 𝐿𝑧(𝜉)𝜇𝜈 𝑥
𝜈 =

⎛

⎜

⎜

⎜

⎜

⎝

cosh(𝜉) 0 0 sinh(𝜉)
0 1 0 0
0 0 1 0

sinh(𝜉) 0 0 cosh(𝜉)

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑐𝑡
𝑥1

𝑥2

𝑥3

⎞

⎟

⎟

⎟

⎟

⎠

, (149)

with rapidity 𝜉 = tanh(𝑣∕𝑐). A Lorentz boost in an arbitrary direction
can be written as a composition the boost in the 𝑧-direction with spatial
rotations:

𝐿𝒏̂(𝜉) = 𝑅(𝜙, 𝜃, 0)𝐿𝑧(𝜉)𝑅−1(𝜙, 𝜃, 0). (150)

where the direction of the boost 𝒏̂ is parametrized by polar angle
𝜃 = arccos

(

𝑘𝑧∕|𝒌|
)

and azimuthal angle 𝜙 = atan2
(

𝑘𝑦, 𝑘𝑥
)

, and the
rotations 𝑅 are parametrized with Euler angles.

In the specific case of a massless 4-wave vector 𝑘𝜇 with 𝑘0 = |𝒌| the
transformation in the 𝑧-direction reads

𝑘𝜇 =

⎛

⎜

⎜

⎜

⎜

⎝

|𝒌|
𝑘1

𝑘2

𝑘3

⎞

⎟

⎟

⎟

⎟

⎠

↦

⎛

⎜

⎜

⎜

⎜

⎝

cosh(𝜉)|𝒌| + sinh(𝜉)𝑘3

𝑘1

𝑘2

sinh(𝜉)|𝒌| + cosh(𝜉)𝑘3

⎞

⎟

⎟

⎟

⎟

⎠

. (151)

and the transformed angles of the wave vector satisfy

𝜙̃ = 𝜙 (152)

https://www.waves.kit.edu/downloads/CRC1173_Preprint_2023-16_Codes.zip
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2023-16_Codes.zip
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2023-16_Codes.zip
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𝛾
b
(
a

i

𝑭

A

𝑸

u
f
k
(
p

C

F

𝑸

𝑅

a

𝑅

E
g

𝒆

A
s

𝑬

F

𝑅

w
t
N
E

𝑅

w
w

𝑒

w

𝑬

cos(𝜃) =
cos(𝜃) cosh(𝜉) + sinh(𝜉)
cosh(𝜉) + cos(𝜃) sinh(𝜉)

(153)

sin(𝜃) =
sin(𝜃)

cosh(𝜉) + cos(𝜃) sinh(𝜉)
. (154)

An active Lorentz boost transformation of real-valued electromagnetic
fields, which we distinguish it from the complex fields by a different
font, is defined as [35, Sec.11.10]

̃(𝒓, 𝑡) = 𝛾(𝒓̃, 𝑡) − 𝛾𝒗 ×(𝒓̃, 𝑡) − 𝛾2𝒗
(𝛾 + 1)𝑐2

𝒗 ⋅ (𝒓̃, 𝑡) (155)

̃(𝒓, 𝑡) = 𝛾(𝒓̃, 𝑡) + 1
𝑐2
𝛾𝒗 × (𝒓̃, 𝑡) − 𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 ⋅(𝒓̃, 𝑡) (156)

with inversely transformed space–time point
(

𝑐𝑡
𝒓̃

)

= 𝐿−1(𝜉)
(

𝑐𝑡
𝒓

)

and

= (1 − 𝑣2∕𝑐2)−1∕2. The passive version of the Lorentz boost, i.e. the
oost of the reference frame instead of the field, differs from Eqs. (155)–
156) by the substitution 𝒗 → −𝒗 and should not be confused with the
ctive version.

One can show that the corresponding Riemann–Silberstein vectors
n Eq. (11) transform under active Lorentz boosts as

̃𝜆(𝒓, 𝑡) = 𝛾𝑭 𝜆(𝒓̃, 𝑡) +
𝑖𝜆𝛾
𝑐

𝒗 × 𝑭 𝜆(𝒓̃, 𝑡) −
𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 ⋅ 𝑭 𝜆(𝒓̃, 𝑡). (157)

ppendix C. Transformation properties of |𝐤𝝀⟩

Here we derive the transformation laws for plane waves

𝜆(𝒌, 𝒓, 𝑡) ∶=
1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0
𝑘 𝒆𝜆(𝒌̂)𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌⋅𝒓 (158)

nder the actions of the full Poincaré group. The transformation laws
or the general electromagnetic field in the (𝒓, 𝑡)-representation are well-
nown, and we show how they can be equivalently formulated in the
𝒌, 𝜆)-domain as a unitary transformation with respect to the scalar
roduct of Eq. (28).

.1. Translations

Active spatio-temporal translations of electric field by 𝑎𝜇 = (𝒂, 𝑎0)
are defined with

𝑬̃(𝒓, 𝑡) = 𝑬(𝒓 − 𝒂, 𝑡 − 𝑎0). (159)

Then, using Eq. (10)

𝑬̃(𝒓, 𝑡) = 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) 𝑘 𝒆𝜆(𝒌̂) 𝑒𝑖𝑘𝜇 (𝑥
𝜇−𝑎𝜇 )

= 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) 𝑝 𝒆𝜆(𝒌̂) 𝑒𝑖𝑘𝜇𝑥
𝜇
𝑒−𝑖𝑘𝜇𝑎

𝜇 (160)

or the plane wave this implies the transformation law

𝜆(𝒌, 𝒓 − 𝒂, 𝑡 − 𝑎0) = 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0
𝑘 𝒆𝜆(𝒌̂)𝑒𝑖𝑘𝜇 (𝑥

𝜇−𝑎𝜇 )

= 𝑸𝜆(𝒌, 𝒓, 𝑡)𝑒−𝑖𝑘𝜇𝑎
𝜇 (161)

which corresponds to Eq. (16).

C.2. Rotations

Active rotations of electric field by Euler angles (𝛼, 𝛽, 𝛾), 𝑅(𝛼, 𝛽, 𝛾) =
𝑅𝑧(𝛼)𝑅𝑦(𝛼)𝑅𝑧(𝛾) are defined in (𝒓, 𝑡)-domain as [35, Sec. 6.10]

𝑬̃(𝒓, 𝑡) = 𝑅(𝛼, 𝛽, 𝛾)𝑬(𝑅−1(𝛼, 𝛽, 𝛾)𝒓, 𝑡) (162)

where arguments are transformed inversely with respect to the vec-
torial part. Here and after we use letter 𝑅 as an abstract operator
to describe rotations, and its action depends on the concrete repre-
sentation of the element that it acts upon. Vectors in the physical
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three-dimensional space are rotated according to the usual represen-
tation of rotations in space, while the polarization vectors 𝒆𝜎 (𝒌̂) are
rotated via the Wigner matrix 𝐷1(𝛼, 𝛽, 𝛾) [31, Eq. (76)]:

(𝛼, 𝛽, 𝛾)𝒆𝜎 (𝒌̂) =
∑

𝜇=−1,0,1
𝒆𝜇(𝒌̂)𝐷1

𝜇𝜎 (𝛼, 𝛽, 𝛾), (163)

special case of which is

𝑧(𝜓)𝒆𝜆(𝒛̂) = 𝒆𝜆(𝒛̂)𝑒−𝑖𝜆𝜓 . (164)

q. (163) also allows to find the polarization vector pointing in a
eneral (𝜙, 𝜃)-direction in terms of the helicity basis at 𝒛̂:

𝜆(𝒌̂) = 𝑅(𝜙, 𝜃, 0)𝒆𝜆(𝒛̂) =
∑

𝜇=−1,0,1
𝒆𝜇(𝒛̂)𝐷1

𝜇𝜆(𝜙, 𝜃, 0). (165)

pplication of the rotation law Eq. (162) to the electric field decompo-
ition Eq. (10) gives

̃ (𝒓, 𝑡) = 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0

×
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) 𝑘𝑅(𝛼, 𝛽, 𝛾)𝒆𝜆(𝒌̂) 𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌⋅(𝑅
−1(𝛼,𝛽,𝛾)𝒓). (166)

irst, we rewrite the vectorial part as

(𝛼, 𝛽, 𝛾)𝒆𝜆(𝒌̂) = 𝑅(𝛼, 𝛽, 𝛾)𝑅(𝜙, 𝜃, 0)𝒆𝜆(𝒛̂)

= 𝑅(𝜙̃, 𝜃, 𝜓)𝒆𝜆(𝒛̂), (167)

here the rotation by angles (𝜙̃, 𝜃, 𝜓) realizes the equivalent action
o the of two consecutive rotations: 𝑅(𝛼, 𝛽, 𝛾)𝑅(𝜙, 𝜃, 0) = 𝑅(𝜙̃, 𝜃, 𝜓).
ext, we separate the rotation 𝑅(𝜙̃, 𝜃, 𝜓) = 𝑅(𝜙̃, 𝜃, 0)𝑅𝑧(𝜓) and use
qs. (164)–(165) to simplify the vectorial part to

(𝛼, 𝛽, 𝛾)𝒆𝜆(𝒌̂) = 𝒆𝜆( ̂̃𝒌)𝑒−𝑖𝜆𝜓 , (168)

ith 𝜃 and 𝜙̃ being the polar and the azimuthal angles of the rotated
ave vector 𝒌̃.

Transformed scalar part satisfies
𝑖𝒌⋅(𝑅−1(𝛼,𝛽,𝛾)𝒓) = 𝑒𝑖(𝑅(𝛼,𝛽,𝛾)𝒌)⋅𝒓 = 𝑒𝑖𝒌̃⋅𝒓, (169)

hich together with the fact |𝒌| = |𝒌̃| brings Eq. (166) to

̃ (𝒓, 𝑡) = 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) 𝑘̃ 𝒆𝜆( ̂̃𝒌)𝑒−𝑖𝜆𝜓 𝑒−𝑖𝑘̃𝑐𝑡𝑒𝑖𝒌̃⋅𝒓

=
∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌)𝑸𝜆(𝒌̃, 𝒓, 𝑡)𝑒−𝑖𝜆𝜓 . (170)

The last equation implies the required Eq. (17):

𝑸𝜆
(

𝒌, 𝒓, 𝑡
)

↦ 𝑸𝜆(𝒌̃, 𝒓, 𝑡)𝑒−𝑖𝜆𝜓 . (171)

C.3. Parity

Electric field transforms under parity as [35, Sec. 6.10]

𝑬′(𝒓, 𝑡) = −𝑬(−𝒓, 𝑡). (172)

Then, using decomposition Eq. (10)

𝑬′(𝒓, 𝑡) = − 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓𝜆(𝒌) 𝑘 𝒆𝜆(𝒌̂) 𝑒𝑖𝒌⋅(−𝒓) 𝑒−𝑖𝑘𝑐𝑡.

(173)

For the plane wave this implies the transformation law

𝑸𝜆(𝒌, 𝒓, 𝑡) ↦ −𝑸𝜆(𝒌,−𝒓, 𝑡)

= − 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0
𝑘 𝒆𝜆(𝒌̂)𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌⋅(−𝒓). (174)

Using the definition Eq. (6) one can directly check that

̂ ̂
−𝒆𝜆(𝒌) = 𝒆−𝜆(−𝒌), (175)
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𝐼

hence one arrives at

𝑸𝜆(𝒌, 𝒓, 𝑡) ↦ 𝑸−𝜆(−𝒌, 𝒓, 𝑡) (176)

which corresponds to Eq. (19).

C.4. Time reversal

Time reversal of real-valued fields is defined as [35, Sec. 6.10]

′(𝒓, 𝑡) = (𝒓,−𝑡). (177)

For the complex representation of electromagnetic field Eq. (3) this
implies

𝑬(𝒓, 𝑡) = 1
√

2𝜋 ∫

∞

0
𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡 𝑬̃(𝒓, 𝑘) ↦ 1

√

2𝜋 ∫

∞

0
𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡 𝑬̃(𝒓, 𝑘)∗. (178)

Then, using decomposition Eq. (10) the time-reversed field can be
written as

𝑬′(𝒓, 𝑡) = 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

[

𝑓𝜆(𝒌) 𝑘 𝒆𝜆(𝒌̂) 𝑒𝑖𝒌⋅𝒓
]∗
𝑒−𝑖𝑘𝑐𝑡

= 1
√

2

1
√

(2𝜋)3

√

𝑐ℏ
𝜖0

∑

𝜆=±1
∫

𝑑3𝒌
𝑘

𝑓 ∗
𝜆 (𝒌) 𝑘 𝒆𝜆(−𝒌̂) 𝑒

𝑖(−𝒌)⋅𝒓𝑒−𝑖𝑘𝑐𝑡.

(179)

sing Eq. (6) one can straightforwardly check that
∗
𝜆(𝒌̂) = 𝒆𝜆(−𝒌̂), (180)

ence the plane waves transform as

𝜆(𝒌, 𝒓, 𝑡) ↦ 𝑸𝜆(−𝒌, 𝒓, 𝑡). (181)

hich corresponds to Eq. (20). The equivalent transformation of the
oefficients 𝑓𝜆(𝒌) involves complex-conjugation

𝜆(𝒌) ↦ 𝑓 ∗
𝜆 (−𝒌), (182)

hich reflects the fact that time reversal is represented anti-unitarily.

ppendix D. Parity and time reversal for |𝒌𝒋𝒎𝝀⟩

For completeness, we provide here the transformation laws of the
elevant angular momentum basis vector fields

𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) =
1

√

𝜖0ℏ𝑐
𝑘 𝑒−𝑖𝑘𝑐𝑡

√

𝜋
√

2𝑗 + 1

𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿𝑗𝐿(𝑘𝑟)𝐶
𝑗𝜆
𝐿0,1𝜆𝒀

𝐿
𝑗𝑚(𝒓̂)

(183)

𝑺out
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) =

1
2

1
√

𝜖0ℏ𝑐
𝑘 𝑒−𝑖𝑘𝑐𝑡

√

𝜋
√

2𝑗 + 1

𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿ℎout
𝐿 (𝑘𝑟)𝐶𝑗𝜆𝐿0,1𝜆𝒀

𝐿
𝑗𝑚(𝒓̂

(184)

𝑺 in
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) =

1
2

1
√

𝜖0ℏ𝑐
𝑘 𝑒−𝑖𝑘𝑐𝑡

√

𝜋
√

2𝑗 + 1

𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿ℎin
𝐿 (𝑘𝑟)𝐶

𝑗𝜆
𝐿0,1𝜆𝒀

𝐿
𝑗𝑚(𝒓̂)

(185)

under parity and time reversal. Here we additionally distinguish be-
tween incoming and outgoing fields which is crucial for time reversal
and important for the S-matrix formalism.

D.1. Parity

We follow the transformation rule mentioned in Appendix C.3
and first consider the transformation of the vector spherical harmonic
part [31]

𝐼𝑠𝒀 𝐿
𝑗𝑚(𝒓̂) = −(−1)𝐿𝒀 𝐿

𝑗𝑚(𝒓̂). (186)

Now, with

𝐶𝑗𝜆 = 𝐶𝑗−𝜆 (−1)𝐿+1−𝑗 (187)
15

𝐿0,1𝜆 𝐿0,1−𝜆
one gets from Eqs. (183)–(185)

𝐼𝑠𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) = (−1)𝑗𝑹𝑗𝑚,−𝜆(𝑘, 𝒓, 𝑡) (188)

𝐼𝑠𝑺
in/out
𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) = (−1)𝑗𝑺 in/out

𝑗𝑚,−𝜆 (𝑘, 𝒓, 𝑡). (189)

D.2. Time reversal

Now, considering the time reversal of the general electromagnetic
field discussed in Appendix C.4 we use [31]

𝒀 𝐿
𝑗𝑚(𝒓̂)

∗ = (−1)𝐿+1+𝑗+𝑚𝒀 𝐿
𝑗,−𝑚(𝒓̂) (190)

to write
[

𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿𝑗𝐿(𝑘𝑟)𝐶
𝑗𝜆
𝐿0,1𝜆𝒀

𝐿
𝑗𝑚(𝒓̂)

]∗
=

=
𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 (−1)𝐿𝑖𝐿𝑗𝐿(𝑘𝑟)𝐶
𝑗𝜆
𝐿0,1𝜆(−1)

𝐿+1+𝑗+𝑚𝒀 𝐿
𝑗𝑚(𝒓̂)

= −(−1)𝑗+𝑚
𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿𝑗𝐿(𝑘𝑟)𝐶
𝑗𝜆
𝐿0,1𝜆𝒀

𝐿
𝑗,−𝑚(𝒓̂) (191)

and similarly

[

𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿ℎin/out
𝐿 (𝑘𝑟)𝐶𝑗𝜆𝐿0,1𝜆𝒀

𝐿
𝑗𝑚(𝒓̂)

]∗
=

= −(−1)𝑗+𝑚
𝑗+1
∑

𝐿=𝑗−1

√

2𝐿 + 1 𝑖𝐿ℎout/in(𝑘𝑟)𝐶𝑗𝜆𝐿0,1𝜆𝒀
𝐿
𝑗,−𝑚(𝒓̂), (192)

hich for the basis states implies

𝑡𝑹𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) = −(−1)𝑗+𝑚𝑹𝑗,−𝑚.𝜆(𝑘, 𝒓, 𝑡) (193)

𝐼𝑡𝑺out
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) = −(−1)𝑗+𝑚𝑺 in

𝑗,−𝑚,𝜆(𝑘, 𝒓, 𝑡) (194)

𝐼𝑡𝑺 in
𝑗𝑚𝜆(𝑘, 𝒓, 𝑡) = −(−1)𝑗+𝑚𝑺out

𝑗,−𝑚,𝜆(𝑘, 𝒓, 𝑡). (195)

As discussed in Appendix C.4, one should also conjugate the coefficients
of the field 𝑓𝑗𝑚𝜆(𝑘) when performing time reversal of the total field.
We also note that transformations Eqs. (193)–(195) result in an extra
minus sign compared to the description with the vector potential in
Appendix A.
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