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Abstract
When light interacts with a material made from subwavelength periodically arranged constituents,
non-local effects can emerge. They occur because of either a complicated response of the
constituents or possible lattice interactions. In lowest-order approximations of a general non-local
response function, phenomena like an artificial magnetism and a bi-anisotropic response emerge.
However, investigations beyond these lowest-order descriptions of non-local effects are needed for
optical metamaterials (MMs) where a significant long-range interaction becomes evident. This
highlights the need for additional material parameters to account for spatial non-locality in an
effective medium description. These material parameters emerge from a Taylor expansion of the
general and exact non-local response function. Even though these non-local parameters improve
the effective description, their physical significance is yet to be understood. To improve the
situation, we consider a conceptional MM consisting of scatterers characterized by a prescribed
multipolar response arranged on a square lattice. Lorentzian polarizabilities describe the scatterers
in the electric dipolar, electric quadrupolar, and magnetic dipolar terms. A slab of such a MM is
homogenized while considering an increasing number of non-local terms in the constitutive
relations at the effective level. We show that the effective permittivity and permeability are linked to
the electric and magnetic dipole moments of the scatterers. The non-local material parameters are
related to the higher-order multipolar moments and their interaction with the dipolar terms.
Studying the effective material parameters with the knowledge of the induced multipolar moments
in the lattice facilitates our understanding of the significance of each material parameter. Our
insights aid in deciding on the order to truncate the Taylor expansion of the considered constitutive
relations for a given MM.

1. Introduction

Metamaterials (MMs) have a profound impact on our ability to control the propagation of light [1–6]. MMs
consist (mostly) of periodically arranged scatterers, also called meta-atoms. In a stricter sense, we require the
meta-atoms to be placed with a sufficiently sub-wavelength periodicity. This allows us to replace the
complicated mesoscopic MM with a homogeneous medium. The homogeneous medium is characterized by
effective material properties (EMPs) such that the electromagnetic fields propagate across macroscopic scales
in the same manner as they would in the mesoscopic MM. A prime challenge for theoretical research is to
develop an effective medium theory (EMT) that links the structured mesoscopic material to the macroscopic
homogeneous one [7–11].

Historically, the basic concept behind an effective medium description dates back decades, when
structured solid-state materials were described using an effective conductivity or permittivity [12–14]. These
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effective materials were characterized by the same material parameters at the qualitative level as their
constituents but with quantitatively vastly different values. With the advent of more modern MMs, a strong
focus has been dedicated to further developing EMTs that accommodate more exotic properties [9, 15–17].
Specifically, properties in the homogeneous material inaccessible with natural materials were at stake. An
artificial magnetism at optical frequencies is a prototypical example [18–22]. But many more properties are
relevant, e.g. bianisotropic, chiral, or, as we will see later, non-local properties.

By shifting our focus away from the general effective medium description, many attempts have been
undertaken to gain a deeper insight into non-local effects. Non-locality, in general, can occur because of a
higher-order multipolar response of the constituents that form the photonic material or from lattice
interactions. In the context of MMs, it is often discussed in the context of spatially extended collective
excitations characterized by a wave vector-dependent electromagnetic polarizability [23, 24].

In this context, zeroth-order spatial effects with k→ 0 represent the local response of a medium, where
long-wavelength approximations apply. Going further, it becomes apparent that bi-anisotropic responses
result from light interacting with constituents having no inversion symmetry. This results from light probing
spatial extents beyond a point-scatterer, thus identifying it as a non-local response. In essence, bianisotropy is
a first-order non-local effect [16, 25, 26]. Much prior research has also been dedicated to exploring
second-order non-local effects, such as artificial magnetism [27, 28]. In fact, a considerable body of literature
has delved into non-locality up to this level [29–31], encompassing both natural materials and MMs.
Moreover, when multiple scattering occurs among densely packed scatterers, it gives rise to complex
interference effects, including phenomena like electromagnetically induced transparency [32] and the
Brewster-like effect, where the absolute reflection coefficient reaches its minimum for a specific
polarization [33]. Furthermore, concerning controlled near-field coupling, Fano resonances in plasmonic
materials emerge from the interaction between superradiant and subradiant modes, introducing unique
extinction features with characteristic narrow and asymmetric line shapes [34–36]. These examples further
exemplify the diverse range of non-local effects within MMs. Notably, most of these effects fall within the
lower-order approximation of the spatially dependent polarizability, categorizing them as weak spatial
dispersion (WSD).

Besides the exotic MM properties, a strong spatial dispersion in the material properties motivated the
community to investigate strong interactions among the meta-atoms [37–41]. It requires lending the
meta-atoms a strong polarizability and packing them relatively densely. The emerging interactions among
adjacent meta-atoms are commonly referred to as lattice interactions. Such strong interactions lead to a
transfer of excitation across longer distances in the lattice, thus requiring a non-local description at the
effective level [16, 42–44].

To accommodate these effects of non-locality, a non-local response kernel R(r− r ′,k0) can be used to
express the constitutive relation in a homogenized MM as

D(r,k0) =

ˆ
v
R(r− r ′,k0)E(r ′,k0) d3r ′. (1)

Here, D(r,k0) is the electric displacement relating to E(r,k0) the electric field through the distributional
action over the whole MM volume v. Both depend on space. Moreover, the constitutive relation is written
here in the temporal frequency domain. Hence, all quantities depend on the frequency ω or, alternatively, on
the free space wavenumber k0 =

ω
c0
.

Please note that equation (1) considers a homogeneous medium that extends infinitely. Naturally, such
infinitely extended material does not exist. Nevertheless, it is a good starting point for a general theoretical
discussion. The strategy here is rather generic and consists of two steps. In the first step, we need to identify
the eigenmodes that can expand an arbitrary solution to Maxwell’s equations in that material. In the second
step, and when considering a space divided into finite domains occupied by different materials, interface
conditions can be enforced to couple the solutions in the different spatial domains and to determine their
exact amplitudes for a given illumination. Now, even though equation (1) is general and correct, it is
challenging to use it in practice as especially the question of how to evaluate the convolution close to
interfaces is hard to answer.

Therefore, to make practical use of such a constitutive relation, we approximate the general response
function in Fourier space R̂(k,k0) by a Taylor expansion and retain only a few lowest order terms:

D̂i =
(
δij + aij

)
Êj + ibijkkkÊj

− cijklkkklÊj − idijklmkkklkmÊj

+ eijklmnkkklkmknÊj + i fijklmnokkklkmknkoÊj

− gijklmnopkkklkmknkokpÊj +O
(
|k|7

)
.

(2)
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Figure 1. Pictorial representation of a non-local homogenization idea. Here, the periodic arrangement of the spherical scatterers
represents the actual inhomogeneous MM with a periodicity Λ. An optical excitation, illustrated by the blue-colored cloud,
emanates from the spheres but spreads across the entire MM. It is used to indicate a long-range interaction among the
constituting scatterers. Towards the right, we see a transition into a homogeneous slab occupying the same spatial domain as the
actual MM but hiding the inhomogeneity. This homogeneous slab shall be optically equivalent to the mesoscopic MM, and its
properties are encoded in the effective material parameter tensors: ε, µ, γ, τ , etc up to an arbitrary order.

Here, the frequency-dependent Taylor coefficients a . . .g are the tensor-space representations of the material
parameters in the spatial reciprocal space. A pictorial representation of the underlying idea is depicted
in figure 1.

In the following, we restrict ourselves to centrosymmetric materials where the odd-order terms of the
expansion vanish, i.e. bijk = dijklm = fijklmno = 0. Moreover, the expansion in figure 2 is unsuitable for general
purposes since even for that general formulation, interface conditions cannot be identified [45]. These
interface conditions, also known as additional boundary conditions, need to be known to study reflection
and transmission from an interface and not just to consider light propagation in a homogeneous space.
Possible additional interface conditions were only recently derived under the assumption that each term in
the expansion above corresponds to a term where a specific material parameter is sandwiched between an
equal number of k× operations [45]. In particular, we require that(

δij + aij
)
Êj = ε(k0) ,

cijklkkklÊj = k×
(
µ(k0)− 1

k20 µ(k0)

)
k×E(k,k0) ,

eijklmnkkklkmknÊj = k× k× γ (k0)k× k×E,

and

gijklmnopkkklkmknkokpÊj = k× k× k× τ (k0)k× k× k×E (3)

hold.
Under this assumption, we write the constitutive relation in spatial Fourier domain as [46]

D(k,k0) = ε(k0)E(k,k0)

− k×
(
µ(k0)− 1

k20 µ(k0)

)
k×E(k,k0)

+ k× k× γ (k0)k× k×E(k,k0)
− k× k× k× τ (k0)k× k× k×E(k,k0) . (4)

To ease the understanding of this equation, we have written each term in a dedicated line. The first term
captures the permittivity ε(k0). That corresponds to the local electric response. The second term expresses
the permeability µ(k0), being a consequence of a WSD or weak non-locality. That is because even though it is
a feature emerging from a higher-order term in a Taylor expansion of the response function for the electric
field, it can be reformulated to appear as a local term in the response function of the magnetic field.
Anticipating such a possible transformation, we have expressed the term in the electric response using the
permeability. Finally, we consider two higher-order non-local material parameters γ(k0) and τ(k0).

In the past decade, advanced applications have emerged that exploit such a strong non-locality [47–52].
These developments have created a demand for suitable modeling approaches but, particularly, for a physical
understanding of these terms. In other physical settings, an intuitive understanding of the effects of non-local
interactions has already been developed [53, 54]. For acoustic MMs, for example, a pronounced interaction
beyond the nearest neighbors, which can be deterministically controlled, gave rise to a roton-like dispersion
relation [55, 56] for the lowest order mode. For such a roton-like dispersion relation, multiple eigenmodes
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can propagate at the same frequency in the lattice with different wavenumbers, offering effects such as
negative refraction.

In this article, we attempt to draw an equivalent intuitive picture of the non-locality of electromagnetic
MMs. In contrast to mechanical systems, electromagnetic unit cells cannot be connected physically, but
rather, the lattice interaction has to be quantified. Herein, we study the emergence of higher-order non-local
material parameters upon systematically homogenizing MMs made from meta-atoms with increasing
complexity. To do so on phenomenological grounds, we need to control the multipolar contribution
(i.e. position and width of the associated multipolar resonance) of the individual scatterer of the prospective
infinite periodic array.

Based on [57], we describe the associated polarizabilities characterizing the scatterers with Lorentzian
resonances, and we suitably choose the degrees of freedom in such a model. For simplicity, we consider
isotropic scatterers arranged on a square lattice. This arrangement ensures inversion symmetry, leading to
the response function R̂αβ = R̂βα in the bulk so that the EMPs will be isotropic. By controlling the exact
multipolar contents with increasing complexity, we study the impact of the electric and magnetic dipolar and
the electric quadrupolar response on the effective properties.

To homogenize an MMmade from such scatterers, we map the optical response of the actual periodic
structure to that of the homogenized material characterized by a specific set of EMPs. For that, we rely on an
approach where we consider the frequency- and angle-dependent reflection and transmission coefficients
from a mesoscopic MM slab illuminated by a plane wave. The incident plane wave is TM-polarized, and the
incidence angle is characterized by the x-component of the wave vector kx. These reflection and transmission
coefficients are inverted in a least-squares sense to provide effective material parameters. We achieve this
through the gradient-based optimization procedure outlined in appendix A. We restrict ourselves to a single
MM layer, which should have no implication on the purpose of the manuscript. We evaluate the quality of
the homogenization by comparing the deviation of the predicted optical properties with the solution from a
full-wave solver. We refer to appendix B for a more detailed description of the retrieval.

To elucidate the impact of each material parameter, we distinguish three different models for the
constitutive relations with increasing complexity. These three models are: (i) the WSD, where the material is
characterized only by permittivity and permeability, (ii) a first model that captures the effects of strong
spatial dispersion (SSD), where the material is described additionally by the γ parameter, and we call it the γ
model (SSD-γ), and finally (iii) a second model that captures effects of SSD where the material is described
additionally by the τ parameter, and we call it the τ model (SSD-τ ).

By homogenizing an MMmade from scatterers with an increasingly more complicated multipolar
response using different local and non-local constitutive relations, we aim to explore multiple aspects. First,
by tracking the error we achieve for the different constitutive relations, we can quantify the advantage of
non-local constitutive relations to homogenize a given MM [58]. Second, we approach the critical question
of what these additional material parameters correspond to. Based on these insights, we can establish an idea
of the upper bound for the truncation order in the Taylor series expansion of the response function equation
(2) needed to homogenize a given MM. Finally, we also show that strong lattice effects impart higher-order
multipolar moments in the bulk, thereby prompting to retain non-local effective material parameters to
describe the considered MM at the effective level.

The manuscript is structured as follows. Section 2 provides technical details to describe the scatterers
from which the MM is made. Afterward, the homogenization results with increasing complexity in the
scatterers are discussed in section 3. We start with pure electric dipolar scatterers, continue with pure electric
quadrupolar scatterers, and consider afterward scatterers characterized by a combination of different
multipolar terms. We skip the consideration of a magnetic dipolar scatterer as it would duplicate insights
obtained from the electric dipolar case. Finally, we conclude our findings in section 4.

2. Analytical model

To demonstrate the applicability of our homogenization models, we consider an MMmade from a periodic
arrangement of spherical scatterers with a predetermined multipolar response. We analyze three MMs made
from meta-atoms with consecutively increasing complexities of supported multipole moments. We rely on
the transition matrix formalism (T-matrix) method to design a meta-atom and compute the electromagnetic
response of an MM. In this approach, the scattering properties of the meta-atoms are described by a matrix
called the T-matrix. The T-matrix linearly relates the expansion coefficient of the incident fields (qe and qm

for their respective electric and magnetic contributions) and the scattered fields (pe and pm for their
respective electric and magnetic contributions), expanded in a vector spherical harmonic basis. The relation
reads as:

4
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p= T q. (5)

The vectors p and q contain the expansion coefficients of scattered and incident fields, respectively,
corresponding to their electric and magnetic parts. As these coefficients are a fundamental solution of the
vector Helmholtz equations, access to the T-matrix guarantees the calculation of the scattered field of the
meta-atom for any given incident field [59–61]. Additionally, to compute the complete scattering response of
an MMmade from periodically arranged scatterers, the algorithm from [62] is used. In this approach, the
MM is assumed to be made by infinitely repeating identical copies of a meta-atom with a 2D periodicity. This
assumption guarantees the validity of the translational addition theorem to be applied to the T-matrix
describing the meta-atom, consequently allowing one to use the 2D Ewald summation, resulting in a rapidly
converging solution determining the scattering response of the MM [63]. The outcomes of the algorithm are
reflection and transmission coefficients from the MM for a given illumination.

Since the T-matrix can describe any unit cell irrespective of its shape and material, the choice of a
spherical scatterer in this article is purely out of convenience. By choosing a spherical shape, we can use a Mie
theory-based design strategy to describe the response from an individual scatterer [57]. Mie theory generally
expresses the ratio between the scattered and incident fields in the Mie coefficients an and bn for the electric
and magnetic contributions, respectively, where n refers to the multipolar order. This implies that the
T-matrix can also be defined by these Mie coefficients. This is a convenient design approach because the Mie
coefficients can be related to the polarizabilities of an isotropic particle [64] as

an =
k3

6πi
αe
n (ω) (6)

bn =
k3

6πi
αm
n (ω) . (7)

Here, αe
n(ω) and αm

n (ω) are the corresponding polarizabilities for the nth multipolar order. At this point, we
can define the scattering properties of our meta-atom with a Lorentzian-type oscillator in the polarizability

α
e/m
n that reads as

αe/m
n (ω) =

α0
e/m
n

(ω2
o)

e/m
n −ω2 − iωσ0

e/m
n

, (8)

where ω0 = k0c0 is the resonance frequency of the oscillator, α0
e/m
n is the oscillator strength that determines

the width of the resonance, and σ0
e/m
n is the associated Ohmic loss with the dimension of [T−1]. The labels

e/m refer to the electric and magnetic contribution and n= {d,q, . . .} to the multipolar order.
In this way, predetermined Lorentzian polarizabilities for the individual nanosphere can be directly

considered in the T-matrix that expresses the scattering response of one sphere. For example, below is the
T-matrix of size 6× 6 describing the pure electric and magnetic dipolar sphere at some frequency ω:

T=



a1 0 0 0 0 0
0 a1 0 0 0 0
0 0 a1 0 0 0
0 0 0 b1 0 0
0 0 0 0 b1 0
0 0 0 0 0 b1

 . (9)

The choice of spherical symmetry for the meta-atoms further simplifies the T-Matrix to have only diagonal
entries. This method can be adapted to include arbitrarily higher multipolar orders—limited only by the
available computational resources—by simply adding the corresponding Mie coefficients to the diagonal.

Relying on this T-matrix method, a freestanding square array of spherical scatterers is built with a
periodicity Λ. The associated reflection Rdata and transmission Tdata coefficients are calculated for all
considered frequencies ω upon plane wave illumination. The incident field is TM-polarized. The incidence
angle of the illuminating plane wave can be controlled by changing the x-component of the wave vector kx of
the incident field. This set of reflection and transmission coefficients is the referential data considered in the
subsequent parameter retrieval.

3. Results and discussion

This section is divided into three subsections. In these subsections, we discuss an MMmade from a purely
electric dipolar scatterer, a purely electric quadrupolar scatterer, and a scatterer that sustains an electric
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Figure 2. (a) Amplitude and phase of the electric dipolar polarizability of the sphere considered in the initial example. (b) Error
function plotted in logarithmic scale as a function of frequency k0 when homogenizing the MMmade from a periodic
arrangement of these electric dipolar spheres into a lattice with a period of Λ = 300 nm. The error function is shown when
homogenizing the MM using the WSD model (red), the SSD-γ model (yellow), and the SSD-τ model (blue). The gray shaded
area marks the frequency domain, where the homogenization is unreliable because of an emerging anisotropy. The black dashed
vertical line represents Lorentzian resonance at frequency (ke0d )iso = 6.823µm−1 for the isolated particle.

dipole and quadrupole moment and a magnetic dipole moment, respectively. First, we homogenize each
MM, considering the three different constitutive relations. One of them is local, and the other two are
non-local. Then, we will judge with a suitably chosen objective function how well these constitutive relations
can describe the MM at the effective level. The higher-order non-local constitutive relations perform,
naturally, better. We also discuss the dispersion in the effective material parameters. This analysis allows us to
judge in which order we can truncate the Taylor expansion of the constitutive relation to homogenize an MM
made from scatterers with an increasingly more complicated multipolar response.

3.1. Pure electric dipole scatterer
As our first example, we model the particle as a pure electric dipole surrounded by air. The polarizability
is characterized by a resonance frequency of (ke0d)iso = 6.823µm−1, oscillator strength of αe

0d =

0.5× (6π
√
2c0), and the absorption in the particle is given by the Ohmic loss factor σ0ed = 0.1THz. The

associated characteristic polarizability is shown in figure 2(a). We further assume a periodic arrangement of
such spheres along a square lattice with a periodicity of Λ = 300nm. To further ensure isotropy, particularly
along the normal direction, the thin film is simulated with a thickness matching the same periodicity Λ. We
move forward by homogenizing this MM along the lines described above. For the homogenization, we
consider the three different constitutive relations separately.

The starting point of our analysis is to judge the quality of the equivalent effective medium obtained by
each of the considered homogenization models. The quality is considered as the ability of the homogenized
material to provide the same optical response as the actual mesoscopic MM. To do so, we define the error
function

δ (k0) =
∑
kx

(
|Rdata (k0,kx)−Rpredicted (k0,kx) |2

+ |Tdata (k0,kx)−Tpredicted (k0,kx) |2
)

that compares the optical coefficients, i.e. reflection R and transmission T, of the actual MM with the
predictions from each model. Furthermore, we employ an optimization algorithm that formulates the error
function δ(k0) using our forward solver for a set of ranges of randomly chosen initial material parameters.
The effective material parameters are then iteratively determined through a least-squares minimization
procedure, such that δ(k0) is minimum appendix A.

Figure 2(b) shows the prediction error of all models in logarithmic scale as a function of frequency k0.
The shaded region corresponds to frequencies where the influence of symmetry breaking in the third
dimension is strong, making the system less isotropic and, hence unable to be homogenized. The breaking of
the symmetry results from considering only a single MM layer and not a stacked version. It causes the
component of the effective material parameters in the direction normal to the interface to be different from
the components in transverse directions.

To estimate any deviation from isotropy, we examine the T-matrix of the particle making up the
considered one-layer MM in the Cartesian basis. For the expected isotropic structure, we require that the Mie
coefficients in the {x,y,z} directions be identical across the considered frequency spectrum k0. In turn, we

6
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Figure 3. Effective material parameters retrieved within WSD-γ model (red), the SSD-γ model (yellow), and the SSD-τ model
(blue) as a function of the frequency k0. Here, an MM was considered made from a periodic arrangement of spheres characterized
by an electric dipolar response. The gray shaded area marks the frequency domain, where the homogenization is unreliable
because of an emerging strong anisotropy.

exclude those frequencies that fail to maintain isotropy (shaded region in figure 2(b)). While we can discuss
the results in this spectral domain, they must be taken carefully as they are influenced by the consideration of
just a single-layer MM.

From figure 2(b), it can be seen that the WSD model performs worse than both SSD models. The error is
larger across all frequencies where homogenization is reasonable. In particular, close to the resonance
frequency of the sphere from which the MM is made, the homogenization of the MM using the WSD is
worse. That is not surprising, given that the critical length scale of Λ

λ < 0.5 is only slightly smaller, not
significantly so. This results in the lattice behaving as if the scatterers were densely packed relative to the
wavelength, resulting in a robust long-range interaction. Consequently, the resonance causes a non-local
spread of excitation across the lattice that requires a non-local constitutive relation to capture it. This initial
insight shows the advantage of using a non-local constitutive relation over the conventional WSD model to
homogenize even such a basic MM.

In figure 3, we show the real and imaginary parts of the effective material parameters retrieved using the
WSD and the SSD models for the considered electric dipole example. To ensure passivity throughout the
article, we explicitly constrain the imaginary component of the electric permittivity to be positive (Imε > 0)
in the retrieval process. Firstly, we observe in figure 3 that all three homogenization models predict a
Lorentzian resonance in the electric permittivity ε. This is no surprise since we have considered an electric
dipolar meta-atom. We also observe the emergence of a weak anti-resonance in the permeability µ.
Qualitatively, the dispersion in these material parameters remains the same for all three constitutive
relations. Still, the magnitude slightly changes from the WSD to the SSD models.

Secondly, the difference between the values for the ε and µ parameters is relatively small for the SSD
models. The additional consideration of a first non-local term in the SSD-γ model is necessary to improve
our ability to homogenize the MM, but it has no substantial effect. Higher-order non-local terms are not
required to be considered. That complements observations in figure 2(b), where it is shown that the SSD-γ
model (yellow curve) and the SSD-τ model (blue curve) homogenize the MM equally well. The error
function is nearly identical when the MM is homogenized with both possible constitutive relations.
Moreover, using the SSD-τ model, the τ parameter takes negligible values and does not impact the optical
coefficients. The algorithmic procedure used in the retrieval causes some non-zero values in the τ -parameter,
but it has no notable impact on the optical coefficients. It implies that the additional τ parameter is
redundant, and the SSD-γ model is already sufficient to accommodate the lattice interactions arising among
the dipolar meta-atoms.
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Figure 4. (a) Amplitude and phase of the electric quadrupolar polarizability of the sphere considered in the second example. (b)
Error function plotted in logarithmic scale as a function of frequency k0 when homogenizing the MMmade from a periodic
arrangement of these electric quadrupolar spheres into a lattice with a period of Λ = 300nm. The error is shown when
homogenizing the MM using the WSD model (red), the SSD-γ model (yellow), and the SSD-τ model (blue). The gray shaded
area marks the frequency domain, where the homogenization is unreliable because of an emerging strong anisotropy. The black
dashed line represents Lorentzian resonance at frequency (ke0q )iso = 5.89µm−1 for the isolated particle.

Obviously, for such a basic system, the results might look intuitive. Therefore, we increase the complexity
of the lattice interaction by describing the individual scatterer with a higher multipolar order in the following.

3.2. Pure electric quadrupolar scatterer
In efforts to push the limits of the SSD-γ model, we now consider a pure electric quadrupolar (EQ) scatterer
from which the MM is made. Based on the theory of current multipoles, each EQ can be decomposed into
two copies of electric dipolar current with a phase shift of π between each pair [65]. Similarly, it is also
understood that a substantial increase in the quadrupolar excitation in any periodic system significantly
affects the magnetic permeability tensor [66–68]. Therefore, we assert that an EQ reflects the strength of a
certain configuration of point dipoles. Thus, prompting the need for higher-order spatial derivatives of the
electric field tensor for describing the full response of the periodic system.

Comparable to the previous subsection, we design the spherical scatterer to have a Lorentzian
polarizability (αe

q) with a resonant frequency at (k
e
0q)iso = 5.89µm−1, oscillator strength of

α0
e
q = 0.35× (6π

√
2c0), and the absorption in the particle is given by the Ohmic loss factor σ0eq = 0.1THz.

To describe this polarizability as an EQ, the T-matrix of the isolated particle is constructed in the angular
momentum basis. Then Mie coefficients (aq) corresponding to αe

q are contained in the angular momentum
j= 2 matrix components (for this example, the dipolar components (j= 1) are set to zero). The
corresponding MM has a periodicity set to Λ = 300nm.

Following the above procedure, we homogenize the MM using the three constitutive relations and study
the error function. Results are shown in figure 4(b), where the error function depending on the frequency on
a logarithmic scale is plotted. The curve corresponding to the WSD model performs poorly compared to the
SSD models and fails to show any significant features pointing toward a possible resonance. Furthermore,
when compared with the corresponding WSD results from the ED example (figure 2), the error increased by
one order of magnitude across the considered frequency spectrum. This can be attributed to the very high
amplitude of the pure EQ contribution to the overall response of the system compared to that of the induced
quadrupolar moments in the ED example. The WSD model is obviously unable to capture the response of
such MMs made from EQ scatterers at the homogeneous level.

In contrast, both SSD models predict the optical coefficients across the entirely considered spectral range
an order of magnitude more accurately than the WSD model. Furthermore, for frequencies k0 < k0iso
(corresponding to longer wavelengths, λ), the error function is consistently smaller when homogenizing the
MM with the SSD-τ model when compared to the SSD-γ model. It turns out that the long-range lattice
interactions in that specific example are captured better when using a higher-order non-local constitutive
relation such as the SSD-τ model.

Indeed, at this point, one further needs to examine the retrieved effective material parameters to judge
the impact of these additional material parameters quantitatively. In figure 5, we show the real and imaginary
parts of the effective material parameters as retrieved from both SSD models as a function of frequency. With
the WSD model, the optimizer finds no good solution for the Imε component. Moreover, the Imε saturates
close to zero, revealing a tendency to move into the negative quadrant, which was excluded from the
constraint imposed.
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Figure 5. Effective material parameters for an MMmade from a periodic arrangement of spheres characterized by an electric
quadrupolar response retrieved within the WSD-γ model (red), the SSD-γ model (yellow), and the SSD-τ model (blue) as a
function of the frequency k0. The gray shaded area marks the frequency domain, where the homogenization is unreliable because
of an emerging strong anisotropy.

Figure 6. (a) Amplitude and phase of the electric quadrupolar polarizability of the sphere considered in the second example but
with a modified oscillator strength αe

0q
. The black dashed vertical line represents Lorentzian resonance at frequency(

ke0d
)
iso

= 5.89µm−1 for the isolated particle (b) The absolute value of the effective material parameter τ from the retrieval as a
function of the oscillator strength αe

0q
in the considered frequency range.

On using the SSD-τ model, a significant re-normalization happens of the non-local parameter γ. In
contrast, the electric permittivity ε and magnetic permeability µ show minimal changes from their values
calculated using the SSD-γ model. This contrast in the value of γ changes the optical coefficients and,
therefore, improves the error function δ(k0).

An additional observation on the retrieved material parameters using the SSD-τ model is that, towards
the smaller frequencies in figure 5, the real part of the permittivity (Reε) approaches unity, while the
imaginary part (Imε) approaches zero. This behavior indicates that the permittivity is approaching the value
of vacuum permittivity, as expected in the absence of an electric dipole. Furthermore, the presence of the
electric quadrupolar scatterer in a lattice can significantly affect the overall magnetic response of the
medium, which is captured by the magnetic permeability µ within the effective medium theory. Thus, the
effective magnetic permeability µ(k0) does not display any decay to the value of vacuum permeability.
Finally, any long-range interactions among the scattering particles in the original MM are reflected in the
values of non-local parameters γ and τ at lower k0 values.

Next, we analyze the impact of the EQ on the non-local material parameter τ . For that purpose, we
modify the oscillator strength αe

0q as given in figure 6(a) and study its impact on the EMPs. Here, the
polarizability phase ϕ is maintained for all values of αe

0q . Therefore, the variation is purely in the amplitude

9
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Figure 7. (a) Amplitude and phase of the polarizabilities of the sphere considered in the third example. The sphere is
characterized by an electric dipole (αe

d), electric quadrupole (α
e
q), and magnetic dipole (αm

d ) moment. The polarizabilities share

the same resonance frequencies at k0 = 5.63µm−1 and differ only by their oscillator strength. (b) Error function plotted in
logarithmic scale as a function of frequency k0 when homogenizing the MMmade from a periodic arrangement of spheres
characterized by an electric dipolar, magnetic dipolar, and electric quadrupolar response into a lattice with a period of
Λ = 300nm. The error function is shown when homogenizing the MM using the WSD model(red), the SSD-γ model (yellow),
and the SSD-τ model (blue). (c) Absolute values of the reflection (R) and (d) absolute values of the transmission (T) as a function
of frequency (k0) and incidence angle (θ) of the actual MMmade from the periodic arrangement of these spheres. The period is
chosen to be, again, Λ = 300nm.

|αe
q| of the EQ. During this analysis, the parameters for the scatterers that compose the MM except αe

0q
in equation (8) have been maintained from the example shown in figure 4.

The results are shown in figure 6(b). Here, the absolute values of the effective τ as a function of frequency
are illustrated when considering a different strength of the electric quadrupole moment. Evidently, |τ | grows
with the increasing contribution from the EQ. As hypothesized, an increased EQ contribution requires at
least the SSD-τ model to describe its optical properties in the effective medium description.

From the previous two examples, we can safely generalize that the relevance of the choice for the
homogenization model depends on the multipolar order of the MM.

3.3. Spherical scatterer with a combination of multipoles
To study a more advanced example, we consider an MMmade from spherical scatterers described by a
combination of different resonant multipolar contributions. The Lorentzian polarizabilities describing the
isolated sphere are the electric dipole αe

d, magnetic dipole αm
d , and electric quadrupole α

e
q. They all share a

Lorentzian type resonance centered at the frequency (ke/m0d/q
)iso = 5.63µm−1. The associated oscillator

strength of αe/m
0d/q = {0.5,0.15,0.4}× (6π

√
2c0), given in the order electric dipole, magnetic dipole, electric

quadrupole, and the damping parameter is maintained at a constant value of σ0
e/m
d/q = 0.1THz for all the

considered moments.
Figure 7(a) shows the amplitude and shared phase of the respective multipolar polarizabilities. Since the

resonance frequency and the damping parameter are the same for all multipole moments, the polarizabilities
share the same phase and only differ in amplitude. In this setting, the combination of multipolar
contributions to the response sustained by each scatterer introduces strong interparticle coupling. This
coupling causes a strong non-local interaction among the scatterers across the considered frequency range.

10
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To visualize the strong interaction among the multipoles, we show the absolute reflection and
transmission in figures 7(c) and (d) as a function of frequency k0 and incidence angle θ calculated for the
actual MM using the full-wave Maxwell solver. We are specifically interested in capturing with the effective
description details such as |R| → 0 at lower frequencies (longer wavelengths) and angles beyond the paraxial
limit. In figure 7(c), spectral sharp features at some frequencies and some angles indicate the presence of
resonances, highlighting the signatures of a strong non-locality. Similarly, in figure 7(d), we notice that the
main resonant features of the infinite periodic array redshift from the resonance frequency of the isolated
particle (dashed line), showing strong lattice interactions. This configuration manifests a strong interaction
among the intrinsic multipole moments resonating at the same frequency [69]. Therefore, it is a great
example to probe for the limits of all three considered homogenization models.

We postulate that any prominent interactions among the scatterers coming from the ED contribution
should be captured by the SSD-γ model. We do so because, in the initial example, we already observed that
the additional consideration of the non-local τ parameter did not improve the description of a pure electric
dipolar lattice. With the additional presence of the intrinsic EQ and the MD, we posit that further
higher-order interactions among the multipoles have to be accounted for by the τ parameter.

We again start our discussion by judging the quality of the error function obtained from all three
homogenization models. Figure 7(b) carries the error function in the logarithmic scale depending on the
frequency. Immediately, we see the WSD model (red curve) performs poorly, especially toward higher
frequencies. On comparing with the results from the SSD models, both the SSD models outperform the
WSD model by at least two orders of magnitude. These observations conclusively dictate that as the
complexity of the multipolar moments describing the MM increases, the WSD model is unreliable and
should be disregarded for describing complex MMs within the homogeneous framework.

Having said that, we further quantify the improvements of non-locality offered by the SSD models
(yellow and blue curves). From these curves, we clearly see reduced values for the error function when using
the non-local constitutive laws for the effective description of the MM. Specifically, at very small frequencies
k0 < 5.63µm−1 (at longer wavelengths), the SSD-τ model surpasses the SSD-γ model. This observation
immediately reveals the necessity of the SSD-τ model in homogenizing the considered MM and, therefore,
predicting a more realistic effective medium description. One should, therefore, use the SSD-τ model to
retrieve the right effective material parameters and the associated optical coefficients.

In the following, we further discuss the retrieved effective material parameters and their prediction of the
reflection and transmission coefficients for each of the considered homogenization models.

We show in figure 8 the retrieved effective material parameters using the three different constitutive
relations. Please note, to see the fine features in the EMP, we normalized the non-local parameters by the
corresponding powers of k0 in the insets. Here, we first study the SSD models to incur their advantage over
the conventional WSD models. Both the SSD-γ and SSD-τ models predict similar trends for the electric
permittivity ε and magnetic permeability µ. A Lorentzian type resonance for both parameters indicates the
presence of the resonating electric (ED) and magnetic dipolar (MD) contribution at a frequency close to the
isolated resonant frequency k0iso = 5.63µm−1. The influence of the intrinsic electric quadrupolar moment
(EQ) and its interaction with the other multipolar moments significantly re-normalizes the electric
permittivity ε by imparting a redshift with respect to the prediction from the WSD model towards k0iso .
Furthermore, the γ, corresponding to the SSD-γ and the SSD-τ model, estimates the shift in the resonance
frequencies further away from k0iso , predicting the blue shift for the resonance frequency of the infinite
periodic array as given in figure 7(d). Additionally, the SSD-τ model also predicts few additional features at
frequencies beyond k0iso . By including τ in the constitutive relation, we see that other material parameters get
re-normalized, introducing some additional features towards the tail end of the Lorentzian for the magnetic
permeability µ and also for the γ. These additional features can be postulated as a consequence of some
long-range lattice interactions, additionally inducing a vague magnetic response to the material. This detail
goes missing if one restricts the constitutive relation to either WSD or the SSD-γ models.

Further, to appreciate the physical significance of the SSD models, we also comment on the predictions
obtained using the conventional long wavelength approximation of the constitutive relations (WSD models).
The Reϵ and Reµ from the WSD model rightly predict the expected Lorentzian signature showing the
presence of the electric and magnetic dipole but with an apparent shift in the resonance frequency away from
k0iso . On comparing the prediction from the SSD models, the effective ε and µ fail to incorporate effects from
the strong interactions among the meta-atoms. For instance, the Reµ from the WSD model only shows the
presence of the intrinsic magnetic dipole and does not account for the lattice-induced magnetic
contributions. Furthermore, the curves for Imϵ conclude that the long wavelength approximation once again
fails to predict any conclusive fit when we require a positive Imϵ. Judging by the values of Imϵ≈ 0, we
assume that the WSD model can find a slightly better fit when Imϵ < 0 would have been admitted.
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Figure 8. Effective material parameters retrieved within the WSD model (red), the SSD-γ model (yellow), and the SSD-τ model
(blue) as a function of the frequency k0. Here, an MM was considered made from a periodic arrangement of spheres characterized
by an electric dipolar, electric quadrupolar, and magnetic dipolar response as shown in figure 7(a). Additionally, to appreciate
some sharp features carried by the non-local material parameters, we include insets with the same data but where the y-axis of
both γ and τ parameters are scaled by powers of frequency k0 (i.e. γ× k40 and τ × k60).

So far, we have seen that the effective material parameters carry the signature of the underlying physical
effects that characterize the considered particle arrangement. Next, we use these retrieved effective material
parameters to predict the optical coefficients of the considered MM. The conclusions derived from the nature
of material parameters also hold for the optical coefficients given in the 2D plots of figure 9. This figure
shows the absolute values of the reflection coefficient as a function of frequency k0 and angle of incidence
θ ∈ (0,89◦] corresponding to the parameters retrieved in the WSD, SSD-γ, and SSD-τ model, respectively.
These predictions shall be compared to full-wave simulations already shown in figure 7(c).

Here, we concentrate on the discussion of features below the resonance frequency of the isolated particle
k0iso and at angles, θ from 30◦ to 75◦, to focus specifically on the beyond nearest-neighbor interactions. In the
reference reflection coefficient, figure 7(c), we observe two sharp curves in the reflection spectral values
across k0 < k0iso . Such prominent features remain missing in figures 9(a) and (b), indicating that both the
WSD and the SSD-γ model fail to account for some long-range effects and interactions. Nonetheless, as we
approach k0iso , a sharp dip in the reflection coefficient predicted by the SSD-γ model appears. The trend
conveniently overlays with the plot for SSD-τ in figure 9(c). We also see that the error plots, as given
in figure 7(b), show a small frequency interval where no particular advantage of using the SSD-τ model is
observed. Additionally, tracing back these observations to the material parameters in figure 8, explains this
feature as a dipole-like signature with ε values overlapping for both the SSD models. This observation
concludes that the γ model limits itself within the effects up to the first-order approximation of the effective
quadrupolar polarizability thereby predicting only the pure dipolar resonances found in figure 9(c) near k0iso .
Furthermore, in figure 9(c), as concluded above from the optimized material parameters, the non-local
parameter τ re-normalizes the other parameters, thereby accounting for the long-range interactions
observed as sharp features in the predicted reflection coefficient at frequencies below the isolated resonant
frequency capturing many prominent features as observed from the target reflection coefficient given
in figure 8(c). This, in turn, improves the quality of the predicted optical coefficients, reducing the error
function to a minimum.
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Figure 9. The absolute value of reflection as a function of frequency k0 and incidence angle θ shown in (a) for the WSD model, in
(b) for the SSD−γ model, and in (c) for the SSD−τ model. These predictions shall be compared to full-wave simulations already
shown in figure 7(c).

Figure 10. Absolute reflection coefficient |R| and the absolute value of absorption and transmission coefficient (|A+T| as a
function of incidence angle for a wavelength of λ= 1651nm).

Nevertheless, picking on the details reveals further very interesting observations. A closer look into the
predicted optical coefficients reveals the inadequacy of the SSD-τ model. Exemplarily, figure 10 depicts the
angular dependent reflection and absorption plus transmission for a selected free space wavelength of
λ= 1651nm. This wavelength is specifically highlighted because, here, the material shows a Brewster-like
effect where the absolute reflection coefficient goes to its minimum. Such an effect is caused by complex
interference effects among the multipolar moments [33] and hence a good representation of non-local
interaction. Given the prior understanding of the nature of the material parameters obtained, we infer
from figure 10(a) that, as expected, both the WSD and SSD-γ models are inferior to the SSD-τ model in
capturing the sharp Brewster-like effect. This is because the SSD-τ model captures relatively correctly the
sharp features at small angles of incidence. Furthermore, this trend remains consistent in moving closer to
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the frequency of the isolated particle resonance, as inferred from the error plot figure 8(b). Also,
from figure 10(a), it is revealed that the SSD-τ model underfits the Brewster angle and thereby falls behind in
predicting the right Brewster angle. Since this feature happens at a longer Λ

λ0
ratio, we proclaim that this

effect hails from a long-range interaction which the SSD-τ model falls insufficient to account for and
demands further higher-order material parameter to be considered to probe high-resolution field gradients.

4. Conclusion

In this article, we explore the necessity of non-local constitutive relations to homogenize MMs. Furthermore,
we explain the importance of each effective material parameter in describing strong lattice effects that
manifest as a non-local response. As described by scattering theory, non-localities result from lattice-induced
multipolar interactions. Therefore, a strong non-locality can be understood as strong lattice effects imparting
higher-order multipole moments in the bulk. By homogenizing these MMs, we implicitly study the impact of
these lattice-induced higher-order multipoles on the effective material parameters to describe the considered
MM at the effective level.

We broadly answer two major questions regarding non-local homogenization methods. Firstly, we show
that each of the material parameters considered in the system has a physical origin. By considering the
geometrical symmetry of the considered optical structure, we show here that each effective material
parameter has a signature of either the intrinsic multipolar moments or their strong interaction among the
multipoles along the lattice. This feature elevates the importance of these additional material parameters and
further opens a direction to explore this new degree of freedom sensibly. By choosing three examples with
increasing multipolar complexity, we systematically study the effective material parameters as an equivalent
representation of the induced multipolar moments and their interactions.

Along these lines, we see that the WSD model consistently underfits the optical response, thereby
retrieving effective material parameters that are insufficient to describe the complete wave properties of the
actual MM within the effective medium description. In contrast, the SSD models sufficiently capture many
long-range wave interactions. The reduced error on using the SSD-γ and the SSD-τ , especially for lower
frequencies, shows the reliability of using these models to homogenize non-local interactions for the
considered MM examples effectively. Moreover, for a fixed periodicity, the significance of the non-local
parameters strongly depends on the type of meta-atoms used to construct the MM. This statement is
validated by tracking the importance gained by τ in describing systems with at least an electric quadrupolar
moment.

Systematically considering each homogenization model separately reveals the re-normalization of the
lower-order material parameters when an additional (significant) higher-order parameter is introduced into
the constitutive relation. This observation is crucial for the examples with intrinsic EQ polarizabilities, as the
inclusion of τ in the constitutive relation reveals a vague magnetic effect in the corresponding µ, otherwise
hidden.

Secondly, we observe that the non-local parameter τ gains importance with the increasing complexity of
multipoles describing the meta-atom. This, in turn, suggests that a simple scattering analysis of the
meta-atom would assist in qualitatively judging the truncation order of the considered constitutive relation.
On exploring the polarizability model of the constitutive relation, a rule of thumb is to have at least the
SSD-γ model for a pure mesoscopic dipole system, and any signature of intrinsic quadrupole moment
requires at least the SSD-τ model. Therefore, with prior knowledge about the multipolar moments excited in
the meta-atom and a means to study the induced moments in the original MM, it is possible to have an
educated guess on the truncation order for the considered material system.

A plausible extension of the study would be to establish a direct connection with scattering theory and
formulate elegant expressions to express the non-local constitutive relation as a consequence of a complete
multipolar description in bulk. This might allow for the explicit expression of the effective properties as a
function of the scattering properties of the unit cell from which the MM is made and the consideration of the
renormalization due to the interaction with all the particles in the lattice. Such a more explicit expression of
the material properties would alleviate the need for a fitting procedure but would permit the direct
expression of the effective properties. Moreover, the current interface conditions are applicable for planar
interfaces only. It remains an open and interesting question to explore how they could be modified when
considering curved interfaces. Alternatively, one could explore up to which curvature the deviation from a
planar interface introduces only a minor error. This could open new perspectives in exploring the details of a
non-local material response in the MMs in the presence of edges, defects, or disordered structures, where the
effects of a non-locality should appear much more pronounced.
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Data availability statement

All code for the parameter retrieval is made freely available under https://github.com/tfp-photonics/
dinomat. All code for the optical simulations is made freely available under https://github.com/tfp-
photonics/treams. This includes the reflection and transmission data used for generating the effective
material parameters as shown in figures 3, 5, and 8.

The data that support the findings of this study are openly available at the following URL/DOI: https://
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Appendix A. Effective parameter retrieval method

Instead of calculating the optical response of a certain set of constitutive parameters, one is often interested
in the inverse problem, i.e. retrieving effective constitutive parameters given some optical response as can be
obtained by, e.g. ellipsometric measurements. In this work, we consider simple geometries with known
T-matrices from which we calculate reflectance and transmittance spectra over various incidence angles.
From this data, we now seek to obtain a set of effective material parameters using the models presented in
this work that yield a similar optical response. This means we are looking to minimize the difference between
a target spectrum and that of the spectrum obtained by our models, which essentially describes a (nonlinear)
least-squares problem.

Starting from a random (bounded) initial guess for the material parameters, we calculate the reflectance
and transmittance at a specific k0 for all angles of incidence. The residuals of these values with those of some
target reflectance and transmittance spectrum are then passed to a least-squares solver as implemented in
SciPy [70] with a smooth L1 loss function:

L(z) = 2
(√

1+ z− 1
)
, (A.1)

where z is the residual vector defined by our error function in equation (10).
The forward solver is implemented using JAX [71] to enable JIT-compilation and automatic

differentiation. The latter enables us to provide fast and accurate Jacobians to the optimization, which
significantly speeds up convergence and ensures high-quality results. We allow for multiple restarts, i.e. we
restart the fitting procedure from different initial guesses until a sufficiently small final error is reached. In
practice, however, we have found that for many problems, a single trial is enough, and no restarts are needed.

After a set of material parameters for a specific k0 is found, the optimization moves to the next closest k0
(depending on discretization). To ensure smoothness in the constitutive relation and speed up convergence,
the optimized material parameters of the previous iteration are taken as the initial guess for the current k0.
This procedure is then repeated for all k0, resulting in the final constitutive relation for all material
parameters under consideration (i.e. the procedure is the same for all models discussed herein).

Appendix B. Forward solver for the homogeneous medium

This section outlines the computations employed in assigning the optimized effective material parameters to
the homogeneous equivalent of the actual MM.
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We first introduce here the working of our in-house forward solver. The first step in using the solver is to
select the preferred homogenization model. Based on the nature of the terms in equation (4), we divide the
dispersion relations into three models using the general constitutive relations discussed in equation (4). The
weak spatial dispersion model (WSD) describes the homogeneous slab with only the local material
parameters: electric permittivity ε and the magnetic permeability µ. And then, the strong spatial dispersion
(SSD) models, SSD-γ and SSD-τ models, whose dispersion relation additionally includes the non-local
terms γ and τ respectively.

For convenience, we solve the dispersion relations assuming an incident TM−kx polarization. Since the
considered MMs are isotropic, it is safe to assume that the material parameters thus calculated are invariant
with the choice of polarization of the excitation field.

Then, the solver takes the relevant effective material parameters and the physical parameters:
periodicity, a, the angle of incidence, θ in degrees, operating wavelength, λ in nm, associated with
the equivalent homogeneous medium as input parameters to calculate the dispersion relation,[
k× k×+ k20R̂(k,k0)

]
Ê(k,k0) and the associated Bloch modes (kz). In the present context, we assume the

thickness of the homogeneous slab to be of one lattice period. With this knowledge about all the excited Bloch
modes inside the material domain and the associated interface conditions, as in [45], complex reflection and
transmission coefficients are also calculated as a function of k0 and angle of incidence kx = k0sin(θ).
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