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Abstract

The automotive industry has shifted from viewing cars as standalone products to
an all-encompassing ecosystem built around connected cars facilitating data-driven
business models. This evolution has led to a massive influx of data harvested from
connected cars, creating a distinctive driving experience while simultaneously al-
lowing automotive firms to foster cost efficiency and revenue growth. Even though
we witness several flourishing business models associated with connected cars, the
industry’s current comprehension falls short in addressing the challenges automotive
firms face when monetizing car data. At the same time, the boundaries between
automotive and software-oriented industries or the extended smart living sector
blur to create a superior customer experience through personalized entertainment
features and services. Incumbent automotive companies must forge partnerships
with IT giants or start-ups to co-create value within intricate ecosystems, as relying
solely on proprietary solutions and internal core competencies is no longer sufficient.
Consequently, this thesis aims to enrich the collective understanding of how compa-
nies conceptualize and design business models and harness platform ecosystems to
capture value from the connected car phenomenon.

To address this research objective, we first review the literature on data-driven
business models in the context of connected cars. Drawing upon those results, we
search for key characteristics in this nascent domain by additionally conducting case
surveys within an iterative taxonomy development process. Subsequently, cluster
analysis techniques are employed to empirically derive archetypal patterns that
describe essential configurations of the identified key characteristics. Moreover, a
design science research approach is used to build an artifact to utilize multi-brand
car data effectively. Finally, we conduct two embedded case studies to elaborate on
the ecosystem strategies of incumbent firms. All in all, our research encompasses 71
semi-structured interviews with industry experts and senior decision-makers and an
analysis of 154 real-world business models.

Within this thesis, we first clarify the conceptualization of data-driven business
models in the connected car domain by providing an empirically and theoretically
grounded taxonomy and corresponding archetypes. Second, we showcase the value-
creation potential of car data from car manufacturers’ backends shared by data
marketplaces. Thereby, design knowledge is provided in the form of tentative design
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principles and instantiated in a prototype artifact that has the potential to contribute
to economic and environmental sustainability, as well as maintaining vehicle health.
Finally, our case study research results shed light on two paths. One path describes
how incumbent firms involve digital platforms by tech players and join existing
ecosystems to reallocate uncertainties. Conversely, the other path illustrates how
incumbent firms can foster value co-creation to establish their platform ecosystems
and operate as orchestrators.

Given the novelty of the phenomenon, our research creates a foundation for in-
vestigating car data monetization, analyzing connected car business models, and
developing design theories in this emerging field. We further contribute to the body
of design knowledge on connected service development, specifically focusing on
connected car data and its effective use. The findings from this thesis explain digital
business strategies implemented by incumbent firms that transition toward value
co-creation within platform ecosystems, thereby contributing to theoretical advances
in the field of information systems research.
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Part I

Fundamentals





Introduction 1
„We are just at the very start of a major

transformation of what has been a very
consistent product for the past 100 years and has
looked and felt more or less the same way.
Yes, it went a bit faster. Yes, it went a bit more
clean over time. But I think now we will see that
it will change fundamentally. The reason why
that is is mainly because we are seeing the shift
from mechanical to software.

— Alex Koster (2023a)
(Senior Partner, Managing Director, and Global
Leader for Automotive Tech & Software at the

Boston Consulting Group)

1.1 Motivation

The proliferation of advanced digital technologies, such as cloud computing, artificial
intelligence (AI), and the Internet of Things (IoT), has sparked a digital transfor-
mation across industries. Despite its global presence and long history of innovation,
the automotive industry has been a relative latecomer to the ongoing digital bat-
tle. As consumers re-evaluate their driving expectations and increasingly prioritize
connected and data-driven experiences in their cars, the automotive industry is at
an inflection point, requiring fundamental strategic alignment to capture digital
business opportunities. Although digital transformation and the embrace of digital
business models rather marginally concerned the automotive industry in the past,
the increasing connectivity of cars elevates these areas’ significance. As frontrunners
in IoT technologies, automotive original equipment manufacturers (OEMs) began
equipping cars with telematic control units and multi-layered sensor technology
several years ago, which laid the groundwork for collecting highly monetizable
in-vehicle data.
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Today, a connected car already generates up to 25 GB of data per hour, including a
multitude of data signals such as driving behavior, charging profile, or high precision
sensor data, whereby big data and analytics have become new sources of value
creation (Heid et al., 2018). Data-driven business models (DDBMs) are one notable
approach to harness the opportunities of this development. Data from connected
cars, for instance, offers valuable insights into drivers’ attention, risk-taking behavior,
and mobility patterns—all of which hold considerable value for stakeholders within
the broader connected car ecosystem, among OEMs, insurers, and regulators (Cichy
et al., 2021; Kaiser et al., 2021; Stocker et al., 2021). As of 2030, the annual
incremental value from car data monetization is expected to reach $250 billion to
$400 billion (Martens & Schneiderbauer, 2021). However, the connected car is not
only vital for collecting car data as an essential source of future value creation but
also as a vital stepping stone toward autonomous driving and advanced infotainment
features (Sterk et al., 2023c). Against this backdrop, car connectivity provides a
glimpse into a potential future of broader consumer IoT applications (Cichy et al.,
2021).

Connected cars already offer a plethora of new features and services, such as
predictive maintenance, over-the-air updates, and range improvement of electric
vehicles (Dremel et al., 2017; Sterk et al., 2022a). Yet customer expectations change
rapidly, necessitating a continuous understanding of preferences and innovation from
automotive firms. Alongside traditional values like design, safety, and horsepower,
the importance of connectivity and app accessibility is increasingly emphasized
(Weiss et al., 2021). Drivers demand smartphone-like entertainment features, with
up to 40 % considering changing their favorite car brands for enhanced digital
services (Heineke et al., 2020). The concept of connected cars has evolved beyond
mere transportation, leading the industry to increasingly refer to them as the “3rd
living space,” a trend highlighted by the following three examples:

Tesla started integrating powerful onboard computers in their vehicles early, pri-
marily to enable semi-automated driving capabilities. However, they utilize these
computer resources to provide in-car entertainment options, including video games
typically found on dedicated gaming consoles (Lambert, 2022). Moreover, Huawei
pioneers home-to-car connectivity, allowing drivers to activate home functionali-
ties, like heating systems, through an integrated voice assistant (Huawei, 2021).
Additionally, the smart home detects the vehicle’s arrival, triggering actions like
raising shutters and unlocking doors. Another example is Mercedes’ cooperation
with Visa enabling direct in-car payments of digital services in the company’s app
store, with plans to expand this payment mode to cover parking fees or fuel costs
(Mercedes-Benz, 2023).
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The demonstrated examples show the current blurring of boundaries between the
automotive industry and other domains, such as smart home, financial technol-
ogy (FinTech), gaming, or other entertainment areas, meaning that automotive
incumbents can no longer rely solely on proprietary solutions and in-house expertise
(Kaiser et al., 2019; Riasanow et al., 2017). Similar to other sectors, economic value
creation in the automotive industry has shifted in recent years from production in
isolated companies to value co-creation in intricate ecosystems (Lusch & Nambisan,
2015; Marheine & Pauli, 2020; Peppard & Rylander, 2006). These ecosystems are
centered around digital platforms, serving as intermediaries matching complemen-
tors offering products or services and customers (Eisenmann et al., 2006; Rochet &
Tirole, 2003). Compared to conventional business structures, platform ecosystems
are praised for their capacity to foster generativity, scale rapidly, and adapt flexibly to
changing circumstances (Hein et al., 2020; Sterk et al., 2022b). Illustrative examples
of this phenomenon can be observed in mobile application platforms such as Google
Android with its Google Play Store or Apple’s iOS with its App Store, offering an
extensive range of applications generated by third-party developers (Eaton et al.,
2015; Karhu et al., 2018, 2020). Both platforms have already found their way into
the automotive industry, named Android Auto and Apple CarPlay, allowing drivers to
mirror their smartphones and associated apps onto the vehicle’s head unit (Bohnsack
et al., 2021; Bosler et al., 2017).

Following the widespread adoption of digital platforms in the mobile phone market,
companies in the automotive industry have begun incorporating platforms business
models, beginning with OEMs offering in-vehicle app stores (Bosler et al., 2017;
Schreieck et al., 2022). However, due to the remarkable development effort and
lack of standardization across multiple car brands, several service providers resisted
developing apps for OEM platforms, given the limited user base they could ultimately
access (Weiss et al., 2021). Consequently, the app availability was significantly
lower than the familiar smartphone ecosystems, which boasted 3.6 million apps
on the Google Play Store and 1.6 million apps on the Apple App Store (Statista,
2022). In response, technology companies began to capitalize on their smartphone
proficiency to conquer the digital interface between driver and vehicle (Schreieck
et al., 2022; Weiss et al., 2020). Whereas the previously mentioned Android Auto or
Apple CarPlay were limited to smartphone mirroring, Google introduced Android
Automotive OS (AAOS) to OEMs, directly embedded into the car and controlling
the entire user interface (Legenvre et al., 2022). It is premature to predict how
successful AAOS will be, although early indications are favorable due to several
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OEMs1 declaring its adoption. Industry experts fear a loss of control for OEMs
because once they have ceded sovereignty over the user interface to Google, they
increasingly risk being commoditized to mere hardware suppliers (Sterk et al.,
2023b). They expect AAOS to be a Trojan horse that could demand access to
the data in the entire vehicle in the future, handing the potential for profitable
data-driven business models to Google.

Access to valuable car data is not only of interest to OEMs and tech firms but also
to independent service providers such as suppliers, insurers, and fleet companies
(Kaiser et al., 2019; Sterk et al., 2023a). These independent entities are currently
forced to seek alternative technical gateways granting similar access options to the
data enjoyed exclusively by OEMs (Martens & Mueller-Langer, 2020). Aspiring car
data platforms like Caruso Dataplace or Otonomo exploit this business problem.
Inspired by successful transaction platforms such as eBay, Uber, or Airbnb, they
bring demand and supply sides together to exchange units of value. Thus, they act
as neutral intermediaries enabling OEMs to sell standardized data to independent
service providers (Martens & Mueller-Langer, 2020; Sterk et al., 2022a). The major
advantage lies in the fact that data from multiple OEMs can be accessed through
a single point of entry (Stocker et al., 2021). In practice, though, marketplaces
encounter difficulties in scaling as they rely on data access conditions determined
by OEMs, including data pricing, availability, and willingness to share their data
(Sterk et al., 2023a). It is worth noting that the role of such data marketplaces will
become increasingly significant in the digital era, where data emerges as a vital asset
to facilitate novel business models (Jung et al., 2021).

In sum, information systems (IS) research has established an initial understanding
of DDBMs in the connected car domain and associated platform ecosystems (e.g.,
Bergman et al., 2022; Bohnsack et al., 2021; Kaiser et al., 2021; Ketter et al., 2022).
Nevertheless, we observe that the current understanding does not go far enough to
address the challenges automotive firms encounter when monetizing car data and
moving to a digital platform strategy. On the one hand, we witness several thriving
connected car business models (Bohnsack et al., 2021; Dremel et al., 2017; Svahn
et al., 2017). On the other hand, it has been shown that automotive firms face
drawbacks in establishing connected services (Coppola & Morisio, 2016), in-vehicle
app stores (Weiss et al., 2021), or car data marketplaces (Martens & Mueller-Langer,
2020). Therefore, this thesis explores and enhances the general understanding of
how companies conceptualize and design business models and leverage platform

1OEMs that signed up for AAOS include Volvo, Polestar, Honda, General Motors, Renault-Nissan-
Mitsubishi, Ford, Volkswagen Group, BMW Group, and Stellantis
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ecosystems to capture value from connected cars. We identified three existing gaps
in the status quo of IS research, which we address in this thesis.

First, despite the growing importance of data in the contemporary digital economy,
IS research still lacks an understanding of emerging data-driven business models.
Initial research focuses on industry-agnostic classifications of data-driven business
models (Dehnert et al., 2021; Hartmann et al., 2016; Passlick et al., 2021) or delves
into the monetization of data from specific industries, such as logistics (Möller et al.,
2020), manufacturing (Müller & Buliga, 2019), or FinTech (Gimpel et al., 2018).
Yet, the impact of data-driven business models on various sectors, particularly in
traditional industries like the automotive industry, remains poorly researched (Bock
& Wiener, 2017). Hence, current research does not navigate firms and scholars
through the vastly uncharted territory of monetizing data derived from connected
cars (Sterk et al., 2022c).

Second, a significant research gap in design knowledge concerning data-driven
business models and services exists. While connected cars generate vast amounts
of data, including information regarding vehicle health, driving behavior, and road
conditions, there is little experience in using this data effectively to generate value
for consumers, businesses, and society. This highlights the need for design science
research, which “[. . . ] creates and evaluates IT artifacts intended to solve identified
organizational problems” (Hevner et al., 2004, p. 77). Moreover, the lack of
research in this area hinders the development of data-driven strategies that can
effectively unlock the full potential of car data, fostering opportunities for growth and
innovation. In addition, designing car-data-based user interfaces and visualization
techniques can aid industry experts and decision-makers in operational and strategic
management decisions.

Third, existing literature on digital platform ecosystems primarily concentrates on
native platform ecosystems (Hein et al., 2019a), providing limited insights into an
incumbent’s perspective on how to take advantage of platform economics (Marheine
& Petrik, 2021; Pauli et al., 2021; Sandberg et al., 2020). There is a lack of
knowledge about how incumbent firms, such as legacy OEMs or Tier-1 suppliers,
can establish platform ecosystems to transition from rigid supply chains to value
co-creation with autonomous complementors. Furthermore, it must be elucidated
how incumbent firms react to tech players like Google entering the automotive
industry and the collaboration strategies they can choose to incorporate the tech
firms’ external platform offerings (e.g., AAOS).

1.1 Motivation 7



1.2 Research Agenda and Research Questions

The overarching research objective of this dissertation is to explore and enhance the
general understanding of how companies conceptualize and design business models
and leverage platform ecosystems to capture value from connected cars. Specifically,
we focus on incumbent firms that undergo a strategy shift from production within
single firms to the co-creation of value within complex ecosystems, a challenge that
has been highlighted in recent literature (e.g., Marheine et al., 2021; Sebastian et al.,
2017) and has been observed in practical industry contexts (e.g., Horn et al., 2022;
Pidun et al., 2022). The connected car is an ideal IoT example for our purposes,
as it collects highly monetizable data from multiple sensors and gathers a growing
ecosystem around it, composed of stakeholders from various industries (Cichy et al.,
2021). Our primary research goal is divided into six research questions (RQs),
shedding light on the current state of IS research (RQ1), the conceptualization (RQ2
and RQ3), and the design (RQ4) of business models for connected cars. Furthermore,
we address the ecosystem strategies of incumbent firms operating in the connected
car area (RQ5 and RQ6). In the following, the individual research questions are
introduced.

Due to the novelty of the connected car phenomenon, research investigating cor-
responding business models is still at an early stage. However, the significance
of data-driven business models and associated platform ecosystems has gradually
gained momentum within the automotive industry. As scholars in IS research increas-
ingly explore these topics (e.g., Bergman et al., 2022; Cichy et al., 2021; Ketter et al.,
2022), our primary objective is to gain a deeper understanding of the extensive
discourse in the literature regarding business models with the potential to create
and capture value from the data collected by connected cars. To the best of our
knowledge, there is no comprehensive overview that provides a concise summary
of the existing state of IS research on this specific phenomenon, representing a
noteworthy research gap. Against this backdrop, we pose the following research
question that forms the basis for the subsequent research questions:

Research Question 1 (RQ1)
What is the state of the art in research covering data-driven business models in
the connected car domain?

Despite the increasing importance of car connectivity, there is little theoretical knowl-
edge and a lack of common language in both research and practice of connected car
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business models (Sterk et al., 2022a). In fact, the specifics of designing empirical
business model classifications are generally poorly researched (Groth & Nielsen,
2015; Lambert, 2015). The classification of digital business models in the automotive
industry is crucial, as cars themselves cannot be fully digitized (Piccinini et al., 2015),
and the impact of digital business models and ecosystems on large, complex products
like automobiles needs further exploration for a comprehensive understanding of
digital transformation (Hanelt et al., 2021). Thus, our research aims to specify key
characteristics of connected car business models addressing recent calls for better
understanding data-driven business models in the automotive industry (Ketter et al.,
2022) and providing valuable support to practitioners in leveraging vehicle data
for their entrepreneurial activities. Since existing classifications of the considered
phenomenon neither offer a holistic picture nor cover the essential perspective of
car data monetization, we ask the following research question:

Research Question 2 (RQ2)
What are the key characteristics of data-driven business models in the connected
car domain?

Current literature also lacks a systematic understanding of how companies operating
in the realm of connected cars might configure their business models (Sterk et al.,
2022c). In this context, applying stereotypical business model patterns or archetypes
(i.e., typical combinations of characteristics) has been repeatedly explored as a
promising approach for strategic decision-making (e.g., Gimpel et al., 2018; Hunke
et al., 2021; Weking et al., 2020). Indeed, 90 % of all business model innovations
can be characterized as re-combinations of pre-existing patterns (Gassmann et
al., 2014). As a next step, we want to contribute to systematizing superordinate
business model configurations for connected cars by empirically analyzing emerging
archetypes. These archetypes highlight established innovation paths executives can
follow to digitalize their legacy business models and advance car data monetization.
Accordingly, we approach the following research question:

Research Question 3 (RQ3)
What are the archetypal patterns of data-driven business models in the con-
nected car domain?

While the previous two research questions dealt with the overall conceptualization of
connected car business models, our intention now is to delve deeper and investigate
the design of a particular car-data-based service. For years, all representatives
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in the extended connected car ecosystem, among OEMs, suppliers, insurers, and
tech players, have attempted to design value-adding services for individuals, fleet
managers, and administrations (Kaiser et al., 2021). However, scholars have scarcely
touched on designing such services based on car data, as most studies are limited
to naming, listing, or explaining different related use cases (Sterk et al., 2022a).
Thus, we draw on design science, a research paradigm concerned with building
and evaluating innovative artifacts to meet identified business needs (Hevner et al.,
2004). Our research takes the viewpoint of an independent service provider that,
unlike OEMs, lacks exclusive access to car data. Hence, we incorporate the concept
of car data marketplaces as an alternative technical gateway offering similar data
access options (Martens & Mueller-Langer, 2020). Since car data marketplaces
remain in their early stages and currently provide limited data, fleet management
is perceived as a solid starting point for connected service development, as it is a
high-benefit and low-complexity use case (Arif et al., 2019). Hence, we pose the
following research question:

Research Question 4 (RQ4)
How to design a connected fleet management system in order to use car data
from data marketplaces effectively?

Besides harnessing in-vehicle data by designing connected services, incumbent firms
within the automotive industry must reassess their established business strategies to
remain competitive in the digital era dominated by tech players (Hermes et al., 2021;
Sebastian et al., 2017). Incumbents encounter difficulties expanding their traditional
value-creation logic onto digital platforms to co-create value in complex ecosystems
(Marheine et al., 2021; Van Alstyne et al., 2016). However, there is limited research
on incumbent firms’ transition to the platform economy and the changes required
to take advantage of platform economics (Sandberg et al., 2020; Sebastian et al.,
2017; Svahn et al., 2017). To date, research tends to assume incumbents face a
binary choice between building or joining platforms (Cusumano et al., 2019; Hein
et al., 2020), overlooking the potential for collaborating, assembling, configuring,
or contributing to platforms that may be open-source, white-label, or provided
by tech firms (Hermes et al., 2021). To address this gap and explore non-binary
considerations in platform strategy, including varying levels of tech firm involvement,
we raise the following research question:
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Research Question 5 (RQ5)
How and why do incumbent firms decide on a certain level of tech player
involvement in their digital strategy?

Besides joining existing ecosystems by tech firms, industry incumbents aim to
preserve or strengthen their competitive position by establishing ecosystems and
becoming keystone players to orchestrate a partner network (Metzler & Munter-
mann, 2020). Well-known pioneers from incumbent industries include General
Electric’s Predix and Siemens’ Mindsphere, where physical products are increasingly
connected and expanded into IoT platform ecosystems (Pauli et al., 2021). On the
contrary, automotive industry incumbents still struggle when initiating equivalent
platforms around the connected car (Sterk et al., 2023b; Weiss et al., 2021). Despite
the strategic challenges associated with establishing ecosystems, existing findings
primarily focus on a native platform provider’s viewpoint (Hein et al., 2019a).
Therefore, current research lacks empirical evidence on incumbents’ perspectives in
establishing and orchestrating IoT platform ecosystems (Marheine & Petrik, 2021;
Pauli et al., 2021). It is crucial to address this research gap, as it is essential for
understanding incumbent firms’ overall business transformation and strategic utiliza-
tion of platform technologies. Against this backdrop, the following research question
is proposed:

Research Question 6 (RQ6)
How can incumbent firms orchestrate their partner network toward value
co-creation to establish IoT ecosystems?

In the subsequent section, we introduce the structure employed in this thesis to
address the six research questions.

1.3 Structure of Dissertation

The thesis at hand comprises five main parts, encompassing (I) general foundations,
(II) studies on the conceptualization of connected car business models, (III) research
that sheds light on the potential design of connected car business models, and (IV)
investigations offering insights on ecosystem strategies of incumbent firms. Finally,
Part V concludes the thesis with implications, limitations, and a research outlook.
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Figure 1.1 provides an overview of the dissertation’s underlying structure, applied
methods, and corresponding research questions. In addition, Table 1.1 below lists
the six publications embedded in Part I-IV, assigns them to the RQs and provides an
overview of authors, titles, and outlets in which the publications were submitted or
published.

RQ3

RQ6

Figure 1.1.: Overview of thesis structure.

In Part I, we lay the foundations for the overall research endeavor of the thesis.
Thereby, Chapter 1 motivates the research field of connected car business models
and corresponding platform ecosystems, highlights the research gap based on six
research questions, and outlines the structure of the thesis. We then present the
conceptual background of this dissertation in the second chapter.

Chapter 2 sheds light on the current state of IS research on data-driven business
models for connected cars. To approach RQ1, we conduct a structured literature
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review following the guidelines of Vom Brocke et al. (2009) and Webster and Watson
(2002) to uncover common approaches, insights, and research foci, allowing us
to pinpoint remaining research gaps in that discourse. Therefore, we classify the
identified body of literature according to four business model dimensions proposed
by Al-Debei and Avison (2010): value proposition, value architecture, value network,
and value finance. As our main theoretical contribution, we extend this framework
to the context of connected cars, enabling IS scholars to benchmark their work
against our categorization, classify it to existing literature, and identify further
research gaps. Regarding practical contribution, we summarize key concepts on the
design of connected car business models and extract an overview of 38 connected car
services from the literature that hold the potential to monetize car data. Ultimately,
we derive issues for future research: (1) exploring digital business and platform
strategies of incumbent automotive firms beyond traditional OEMs, (2) investigating
privacy preservation in car data-enabled services, (3) designing services that build
on connected car data, and (4) researching suitable pricing strategies for car data
monetization.

In Part II, we contribute to a deepened conceptualization of connected car business
models, laying the foundations for a more profound comprehension and strategizing
attempts in both research and practice. Consequently, RQ2 and RQ3 are addressed.

Chapter 3 focuses on a first step towards developing a conceptual framework de-
scribing the key characteristics of data-driven business models for connected cars. In
response to RQ2, we develop a business model taxonomy for companies operating
in the connected car area. To do so, we follow the iterative taxonomy development
process by Nickerson et al. (2013). Thereby, the preceding literature review pre-
sented in Chapter 2 (RQ1) is used to conceptualize our taxonomy, and 70 real-life
examples of connected car companies are analyzed to revise it empirically. Finally,
we demonstrate our taxonomy’s applicability by classifying the business models of
all 70 selected companies. Next, the overall usefulness of the taxonomy is evaluated
with additional raters, who independently apply our taxonomy to a small subset of
exemplary companies and measure their inter-coder agreement (Fleiss, 1971; Landis
& Koch, 1977). From a research perspective, our study contributes to business model
literature and facilitates a common understanding of connected car business models.
Moreover, our taxonomy provides a foundation for exploring car data monetization,
analyzing connected car business models, and developing design theories in this
emerging field. For practice, our taxonomy serves as a strategic management tool,
facilitating the design of novel and benchmarking existing connected car business
models.
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In Chapter 4, we expand upon our conceptual framework, initially introduced
in Chapter 3, which elucidates the fundamental characteristics of connected car
business models. Subsequently, we seek to formalize archetypal patterns that
effectively depict and differentiate ideal configurations of connected car business
models. Hence, we further develop our business model taxonomy (RQ2) and
derive business model archetypes (RQ3) for connected cars. To this end, we follow
a sequential mixed methods design (Venkatesh et al., 2013, 2016). In the first
iteration, we evaluate and enhance the taxonomy by conducting twelve expert
interviews, applying it to 154 connected car business models, and measuring inter-
coder agreement from different raters. In the second iteration, we extract seven
distinct cluster groups using a cluster analysis technique (Kaufman & Rousseeuw,
1990) and subsequently translate them into business model archetypes: (A1) data
platforms, (A2) location-based services, (A3) fleet management, (A4) diagnostics
and maintenance, (A5) driving analytics, (A6) cyber-physical protection, and (A7)
connected infotainment. Our study theoretically contributes to the comprehension
of research concerning the impact of car connectivity on business models and serves
as a foundation for future investigations. For practice, we provide guidance on how
companies can leverage connected car technology for business model innovation.

In Part III, we contribute to the body of design knowledge for developing business
models and services based on car data. Thereby, we investigate the design of a
particular car-data-based service and delve into answering RQ4.

Chapter 5 addresses the lack of research in IS designing services based on connected
car data and investigating their benefits for businesses, consumers, or society. To
bridge this gap, we conduct a design science research (DSR) project (Kuechler &
Vaishnavi, 2008) focusing on two business model archetypes derived in Chapter 4
(RQ3): fleet management (A3) and data platforms (A1). Thus, we design a con-
nected fleet management system to utilize multi-brand car data traded by data
marketplaces effectively (RQ4). In doing so, we draw on findings from our previous
literature review (Chapter 2, RQ1), which we extend with a fleet management
perspective, and practical insights from interviews with domain experts. Building on
those insights and the theory of effective use (Burton-Jones & Grange, 2013) as our
theoretical lens, we propose tentative design principles and instantiate them into a
prototype artifact. Finally, our artifact is evaluated by means of a focus group work-
shop and further expert interviews. From a theoretical perspective, we contribute to
the body of design knowledge on connected service development, specifically focus-
ing on connected car data and its effective use. Our research informs practitioners
on how connected car data can be utilized and how to design an effective connected
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car service, improving economic performance, environmental sustainability, and
vehicle health.

In Part IV, we contribute to the research stream focused on ecosystem strategies
adopted by incumbent firms. We investigate incumbents’ transition to the platform
economy and business strategies to remain competitive in the digital age dominated
by tech players. Therefore, we deal with RQ5 and RQ6.

Chapter 6 sheds light on incumbent firms whose traditional industries are increas-
ingly disrupted by tech firms providing digital platforms. In response to RQ5, we
explore different levels of tech company involvement incumbents can choose in
their digital platform strategy beyond binary build or join decisions. To this end,
an embedded case study (Yin, 2014) was conducted, focusing on the adoption
of Google’s automotive platform offering by incumbent OEMs. The platform falls
under the connected infotainment archetype (A7) from Chapter 4 (RQ3). Through
semi-structured interviews with industry experts and senior decision-makers and
the analysis of publicly available information, we find three digital strategies for
incumbent OEMs to integrate Google’s offerings. Moreover, through grounded-
theory-based interpretive data analysis (Gioia et al., 2013), we identify uncertainty
reallocation as a core construct of our research. Finally, we derive five aggregate
dimensions that represent the building blocks of a grounded model: (1) external
digital platform by tech firm, (2) incumbent firm and its goals, (3) uncertainty
tradeoffs and affordance of reallocation, (4) strategic actions by incumbent firm, and
(5) short- and long-term outcomes. Our findings provide valuable insights into non-
binary platform strategy choices and the implications of different levels of tech firm
involvement, contributing to theoretical advances in the IS discipline and providing
practical guidance for incumbent firms navigating digital transformation.

In Chapter 7, we continue to examine the ecosystem strategies of incumbent
firms and address the research gap in how incumbent firms can foster value co-
creation to become ecosystem orchestrators (RQ6). In response, we present an
embedded case study within Robert Bosch GmbH, which draws a comprehensive
picture of the departments’ challenges in establishing eleven different IoT ecosystems
in various industry sectors. Particularly, our study uncovers twelve incumbent-
specific challenges within the realm of IoT ecosystems and offers effective design and
governance actions taken to overcome these challenges. To organize our findings, we
apply the tripartite service innovation framework proposed by (Lusch & Nambisan,
2015) to the IoT context. When discussing the qualitative insights of our study, we
tie them in with existing research by elaborating on four prevailing tensions: (1)
exploitation versus exploration, (2) commitment versus accessibility, (3) control
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versus openness, and (4) stability versus flexibility. In addition, actionable design and
governance recommendations to resolve them are provided. In practice, our findings
support managers of incumbent firms traditionally operating in linear value chains
to reshape their business design and governance mechanisms to become ecosystem
orchestrators and facilitate value co-creation. For research, our study emphasizes the
IS-specific balance between technical and socio-organizational aspects and provides
potential solutions to address challenges in ecosystem orchestration.

Finally, Part V encompassing Chapter 8, concludes the thesis with a concise summary
of the insights gained through answering the research questions, a discussion of
the limitations encountered during the work, and an outlook on potential future
research endeavors.

Table 1.1.: Overview of embedded publications.

16 Chapter 1 Introduction



Monetizing Car Data: A
Literature Review on
Data-Driven Business
Models in the Connected
Car Domain

2

This chapter comprises an article that was published as: Sterk, F., Dann, D.,
& Weinhardt, C. (2022). Monetizing Car Data: A Literature Review on Data-
Driven Business Models in the Connected Car Domain. Proceedings of the 55th
Hawaii International Conference on System Sciences (HICSS) (pp. 1975-1984).
Note: The abstract has been removed. Tables and figures were reformatted
and newly referenced to fit the structure of the thesis. Chapter, section, and
research question numbering and respective cross-references were modified.
Formatting and reference style was adapted, and references were integrated
into the overall references section of this thesis.

2.1 Introduction

Connectivity is a major trend in the global automotive industry, transforming modern
vehicles into highly intelligent computers on wheels (Häberle et al., 2015; Kaiser
et al., 2018). Equipped with multi-layered sensor technology, they already capture
and share a tremendously growing amount of data, including geolocation, fuel
consumption, vehicle performance, and driver condition (Hood et al., 2019; Soley
et al., 2018; Winkler et al., 2020). Even today, a connected vehicle generates 25
GB of data per hour, whereby big data and analytics become new sources of value
creation (Heid et al., 2018). As of 2030, McKinsey & Company expects the annual
incremental value from car data monetization to reach $250 billion to $400 billion
(Martens & Schneiderbauer, 2021). However, original equipment manufacturers
(OEMs) are still struggling with connectivity, so few are realizing the immense
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potential of connected cars, and even fewer are fully monetizing their car data
(Hood et al., 2019; Martens & Schneiderbauer, 2021; Stocker et al., 2017).

Although researchers are investigating big data for years, they have scarcely touched
on selling and monetizing data assets directly (Parvinen et al., 2020). However, while
the digital transformation and the embrace of data-driven business models (DDBMs)
rather marginally concerned the automotive industry in the past, these areas are
increasingly gaining relevance, both in research and practice. While OEMs are
launching digital services such as BMW ConnectedDrive and Mercedes me connect,
they are threatened by major tech companies such as Google, introducing its own car
operating system Android Automotive, or Apple, even planning its rumored electric
car (Bosler et al., 2017). At the same time, several scholars work on related topics,
such as novel connected services (Athanasopoulou et al., 2019; Stocker et al., 2017),
required collaboration (Kaiser et al., 2019; Zhao et al., 2020), technological enablers
(Coppola & Morisio, 2016; Martens & Mueller-Langer, 2020), or shifting revenue
pools (Mikusz et al., 2015, 2017). As our society is strongly driven by mobility,
Kaiser et al. state that “[...] it is almost our duty to examine the emergence of digital
services based on vehicle usage data more closely” (Kaiser et al., 2020, p. 40).

Against this backdrop, we follow Kaiser et al.’s plea by focusing on better under-
standing business models with the potential to create and capture value from the
data collected by modern vehicles. More specifically, we raise the following research
question: What is the state of the art in research covering data-driven business models
in the connected car domain? We approach this question by conducting a structured
review of the literature with the aim to discover common approaches, insights, and
research foci and—building on this—identify existing gaps and derive opportunities
for future research attention. Therefore, we classify the identified body of literature
regarding the business model framework proposed by Al-Debei and Avison (2010)
and extend their concept to the context of connected cars. To the best of our knowl-
edge, this work represents the first structured literature review on this topic, closing
a research gap in itself.

2.2 Methodology

Selection of Papers: Our literature search and selection process follow the method-
ological suggestions by Webster and Watson (2002) and Vom Brocke et al. (2009).
Following the classification by Paré et al. (2015), the overreaching goal of our
research synthesis is explanation building and belongs to the category of theoretical
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reviews. As the existing literature on DDBMs and connected cars is highly interdisci-
plinary, we queried several databases (i.e., AIS Electronic Library, Emerald Insight,
IEEEXplore Digital Library, ProQuest, ScienceDirect/Scopus, Web of Science) for
matching our search query1 in title, abstract, or keywords. We obtained a total of
787 studies (see Figure 2.1). After removing duplicates, this yielded 547 articles for
further review. We then analyzed each article’s title and abstract, resulting in 94
articles, and, subsequently, reviewed all full texts. Finally, we excluded articles that
do not explicitly fit within the scope of our literature review, applying four inclusion
criteria: (1) the study must examine at least one business model dimension, (2)
the study must focus on the connected car domain, (3) the paper must be available
in English, and (4) only peer-reviewed papers were considered. This resulted in a
set of 29 relevant articles. Subsequent forward and backward search with this set
of relevant papers yielded 16 additional relevant articles, resulting in a total of 45
papers for in-depth review.

Figure 2.1.: Literature search process.

Classification Procedure: The literature review follows a concept-centric approach
(Webster & Watson, 2002). Initially, we examined the identified articles for business
model dimensions using the business model framework proposed by Al-Debei and
Avison (2010). The framework fits our review endeavor for two reasons. First, it is
one of the few business model frameworks developed particularly for digital business
models. Second, this framework captures the multidimensionality of business
models, including the essential dimensions from previous conceptualizations. The
framework contains the four dimensions of value proposition, value architecture,
value network, and value finance. The authors outline the four dimensions as follows.
Value proposition deals with products and services that are offered to satisfy customer
needs. Value architecture includes the organization’s technological architecture
and organizational infrastructure. Value network describes the coordination and
collaboration among parties and multiple companies, and value finance concerns
information related to costing, pricing, and revenue breakdown.

1“business model*” AND (connected OR data* OR digital*) AND (car* OR vehicle* OR automotive*)

2.2 Methodology 19



Since the four dimensions according to Al-Debei and Avison (2010) are relatively
general, we need a more refined classification, specifically for the connected car
context. Consequently, in a second step, we derive key concepts for paper cate-
gorization based on their business model framework. Following the suggestions
of Vom Brocke et al. (2009), we screened an initial set of papers stemming from
recent peer-reviewed conference proceedings and journal papers, as we assumed
that these papers well reflect the contemporary state of literature. Next, the author
team independently identified a set of concepts for classification. The subsequent
discussion of all identified concepts resulted in the following breakdown of the
business model dimensions: value proposition (i.e., safety, convenience, cost reduc-
tion, traffic efficiency, infotainment), value architecture (i.e., resources, capabilities),
value network (i.e., actors & roles, strategic partnerships), and value finance (i.e.,
revenue streams, cost structure). Note that our categorization is not disjunctive and
each publication may be assigned to more than one category. Table 2.1 summarizes
the reviewed papers and specifies the assigned concepts. All reviewed articles have
been published within the last six years: 2021 (2), 2020 (7), 2019 (5), 2018 (6),
2017 (10), 2016 (8), and 2015 (7).

2.3 Results

With the rise of vehicle connectivity, the amount of data from vehicles will grow
exponentially (Soley et al., 2018), receiving a considerable amount of research
attention (Stocker et al., 2017). To provide some structure and overview, we use
the derived characteristics to discuss, summarize, and synthesize the identified
publications. First, we take a look at value propositions for individual drivers and
fleet managers, which fall into five broad categories (i.e., safety, convenience, cost
reduction, traffic efficiency, and infotainment). Next, we focus on data and associated
infrastructure as enabling resources for monetizing car data. In addition, we address
the challenge of many incumbents to develop specific capabilities either internally
or externally. We then examine actors in the connected car ecosystem, that will
naturally be forced to take on certain roles (e.g., service providers or platform
providers) and enter into strategic partnerships with multiple entities (Grieger &
Ludwig, 2019; Svahn et al., 2017; Zhao et al., 2020). Last, we elaborate on financial
aspects around connected car business models, including their revenue streams and
cost structure.
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Table 2.1.: Classification of literature on DDBMs in the connected car domain.

✖ ✖ ✖ ✖
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✖ ✖ ✖ ✖ ✖ ✖ ✖

✖ ✖ ✖ ✖ ✖ ✖ ✖

✖ ✖ ✖ ✖ ✖ ✖ ✖

✖ ✖ ✖ ✖ ✖ ✖

✖ ✖ ✖

✖ ✖ ✖

✖ ✖ ✖

✖ ✖ ✖ ✖

✖ ✖ ✖ ✖

✖ ✖ ✖ ✖ ✖

✖

✖ ✖

✖ ✖ ✖ ✖ ✖

✖ ✖

✖ ✖ ✖ ✖

✖ ✖ ✖ ✖ ✖ ✖

✖ ✖ ✖

✖ ✖ ✖ ✖ ✖

✖ ✖ ✖ ✖ ✖ ✖

✖ ✖

✖ ✖ ✖ ✖

✖ ✖

✖ ✖

Σ
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2.3.1 DDBM Dimension 1: Value Proposition

Ongoing digitalization and connectivity virtually force automotive companies to
change their business models from a goods-dominant towards a service-dominant
logic (Grieger & Ludwig, 2019; Hanelt et al., 2015; Kaiser et al., 2017a, 2019;
Riasanow et al., 2017). However, no matter which services car data makes possible,
monetizing them is not feasible if customers do not see their benefits (Chanias &
Hess, 2016; Piccinini et al., 2015). Accordingly, various scholars highlighted affected
services and their primary value propositions to customers. Specifically, we identified
in total 38 different connected car services in the literature corpus that may generate
added value for private car owners and fleet managers (see Table 2.2) in terms of
one or more aspects:

Safety: Connected car data enables a broad range of services to increase vehicle
and traffic safety. In this regard, various authors highlight driving style detection as
a means to encourage safer and eco-efficient driving behavior (Bosler et al., 2017;
De, 2018; Kaiser et al., 2020; Soley et al., 2018). In addition, automated pothole
detection could generate cost-efficient maintenance measures of road conditions,
which might attract the interest of city planners as further stakeholders (Kaiser et al.,
2018; Stocker et al., 2017). Another safety-enhancing service, which was most
frequently mentioned is the intelligent emergency call (eCall) (e.g., Athanasopoulou
et al., 2019; Martens and Mueller-Langer, 2020; Pütz et al., 2019). In case of
an accident, the eCall system automatically contacts an emergency call-center and
communicates the vehicle position, including relevant data (e.g., time of the accident,
vehicle type).

Convenience: Beyond traffic safety, car data can also improve the overall experience
of driving and vehicle usage. BMW, for instance, offers remote services for (un-)
locking vehicles, indicating the vehicle’s location within an app or activating the
vehicle’s climate control remotely (Kaiser et al., 2017a). The service tested by
Volvo in 2014 goes even one step further, using the remote keyless entry for digital
food delivery into the car (Andersson & Mattsson, 2015; Svahn et al., 2015, 2017).
This car delivery concept is an example of capitalizing on a continuously changing
product, increasing variety, and enabling multi-sided platform solutions to mediate
economic transactions (Svahn et al., 2015). Besides remote services, convenience
can be enhanced by concierge services, where the driver gets connected to call-center
agents to find and book nearby services (e.g., hotel booking), with addresses sent
directly to the navigation system (Kaiser et al., 2017a; Mikusz et al., 2015).
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Cost Reduction: Another customer value enabled by the increased use of car data
are monetary benefits stemming from, for instance, optimized fuel consumption,
automated payment schemes on road tolls, or usage-based insurance (UBI) (De,
2018; Stocker et al., 2017). Reviewing existing research shows that the latter,
involving data-based pricing models adapted towards users’ driving behavior, is the
most widespread and intensively studied connected car service hitherto (Conradi
et al., 2016; Marabelli et al., 2017; Peng et al., 2015; Pütz et al., 2019; Roth et al.,
2020). In this regard, Pütz et al. (2019) show that insurance companies have to
adapt their digital service offerings in light of vehicle ownership changing from
many individuals to fewer commercial fleet providers. In addition, Roth et al. (2020)
investigate privacy issues in UBI models. They observe the necessity for a transparent
UBI model that is comprehensible and controllable for users, including thorough
data protection.

Traffic Efficiency: Location-based services enable a wide range of smart navigation
use cases. Applications such as dynamic routing, real-time traffic information, and
parking assistance help reducing users’ travel time (Coppola & Morisio, 2016; De,
2018; Mikusz et al., 2017). One example of this is the Google Maps app. Users
share personal data via their smartphones while, at the same time, using other users’
aggregated real-time traffic information for navigation (Riasanow et al., 2017). Ana-
lyzing users’ evaluation of smart navigation’s value proposition, Mikusz and Herter
(2016) distinguish between three service components: (i) customization, including
a fully interactive screen, (ii) situational services, enabling reservation of parking
spaces or charging stations, and (iii) data co-creation, realizing accurate predictions
of traffic congestion. Using conjoint analysis, they show that the customization
feature is most valued.

Infotainment: According to Hanelt et al. (2015), preferences are shifting from
the pure driving experience or technical performance features to aspects such as
information and entertainment (i.e., infotainment), whereby the vehicle itself may
change its role from a status symbol to a device for digital experiences. To achieve
this, OEMs seek to improve end-user experience with digital technologies (Kaiser
et al., 2018; Svahn et al., 2017) such as augmented reality (Tian et al., 2016)
and human-machine interface (HMI) enabling seamless infotainment (Piccinini
et al., 2015). Infotainment systems in modern vehicles already contain numerous
applications, including music and video streaming, internet access via an in-car
hot spot, or in-car smartphone integration (Coppola & Morisio, 2016; De, 2018;
Soley et al., 2018). Examples for the latter are third-party offerings such as Google
Android Auto and Apple CarPlay, enabling the driver to use smartphone apps within
the car’s head unit (Bosler et al., 2017).
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Table 2.2.: Overview of distinct connected car services.

Σ
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2.3.2 DDBM Dimension 2: Value Architecture

Besides servitization and digital transformation of their value proposition, businesses
face the required evolution of their structural design, including its technological
architecture and organizational infrastructure that allows the provision of connected
services (Al-Debei & Avison, 2010; Athanasopoulou et al., 2016). We describe this
stream of research along the required resources and capabilities that existing actors
want and need to acquire.

Resources: Enabling resources for the monetization of connected car data refers
to the data itself as well as infrastructural technologies inside and outside the
vehicle, including high-performance computing, in-car HMI, 5G data towers, and
data platforms (Kaiser et al., 2019). Regarding these resources, we identified three
prevalent themes in the literature:

(1) Data Categories: Soley et al. (2018) provide a general overview of the data
categories relevant for connected car services and the monetary value assigned
to them by different actors. In line with other scholars (e.g., Bosler et al., 2017;
Coppola and Morisio, 2016; Mikusz and Herter, 2016; Peng et al., 2015; Swan,
2015), they distinguish between personally identifiable information data generated
outside the vehicle by the drivers (e.g., phone numbers or login data), geolocation
data generated either by the vehicles or by peripheral devices (e.g., smartphone),
application data generated by smartphones or infotainment systems (e.g., music
streaming), and vehicle-specific data generated by and for vehicles themselves (e.g.,
sensor or performance data). Surprisingly, Soley et al. (2018) reveal that connected
car data has a higher monetary value than businesses and individuals assumed,
which is why they recommend securing this data and establishing comprehensive
rules pertaining to data ownership and management.

(2) Data Access: While OEMs have exclusive access to the data a car generates (Kaiser
et al., 2017b, 2019; Martens & Mueller-Langer, 2020), independent service providers
have to identify other ways to capture this data. Martens and Mueller-Langer (2020)
explored four alternative technical gateways that could offer independent service
providers similar data access options. First, the on-board diagnostics (OBD) port
establishes a technical standard for data access. Drivers can plug a dongle into the
OBD port to allow remote access to the vehicle data (e.g., Coppola and Morisio,
2016; Pütz et al., 2019; Soley et al., 2018). The data is transmitted via USB or
mobile network to the driver’s smartphone or directly to an external service provider.
Second, the central server, controlled by OEMs, collects data directly from the car
internal data network. This monopoly for OEMs led to discussions on a neutral server,

2.3 Results 25



where data storage, processing, and customer interaction with service providers are
handled by a third-party platform (e.g., Caruso). However, transmitting data from
the central server to a third-party server requires driver’s consent (Coppola & Morisio,
2016; Martens & Mueller-Langer, 2020). Third, on-board platforms are in-car
operating systems on which service providers can install their application software to
extract data and run services for the driver, comparable to a smartphone operating
system (Martens & Mueller-Langer, 2020). Last, consumer media platforms enable
users to seamlessly integrate their favorite smartphone operating systems such as
Apple iOS and Google Android into cars (e.g., Bosler et al., 2017; Coppola and
Morisio, 2016; Rahman and Tadayoni, 2018). Eventually, all four gateways suffer
from shortcomings in data portability, switching costs, and network effects, as well as
economies of scale and scope in data analytics (Martens & Mueller-Langer, 2020).

(3) Data Sharing: In addition to the technical requirements necessary for monetizing
car data, we examined the articles in terms of incentives and measures encouraging
stakeholders to share their car data. Fundamental approaches regarding this issue
are monetary incentives (e.g., price discounts on existing services) and non-monetary
incentives (e.g., novel services only feasible by data sharing) (Brandt & Ahlemann,
2020). In addition, Brandt and Ahlemann (2020) consider including data collection
in the employment contract of professional drivers. Besides that, other studies
suggest that privacy concerns have to be mastered to support the emergence of
connected services with enough data (Soley et al., 2018; Stocker et al., 2017).
Accordingly, it is vital to process data in an anonymized form or increase trust in
the other party by being transparent about what kind of data cars generate, process,
store, and transmit (Coppola & Morisio, 2016; Roth et al., 2020). Last, several
authors point out that customers are willing to share personal and vehicle data if they
see a direct benefit from connected services for themselves (Brandt & Ahlemann,
2020; Mikusz & Herter, 2016; Soley et al., 2018; Stocker et al., 2017). Thus,
companies need to provide a clear and compelling value proposition to customers
to encourage data sharing (e.g., innovative products, driving recommendations, or
gamification aspects).

Capabilities: In the face of ongoing digitalization and increasing connectivity, it
comes to no surprise that incumbents such as traditional OEMs are struggling
to build the specific capabilities they need, either internally or externally (e.g.,
Athanasopoulou et al., 2016; Chanias and Hess, 2016; Mocker and Fonstad, 2017;
Tian et al., 2016). However, we found four approaches to obtain these required
competencies. The first is hiring new talents with technological skills such as app
programming or big data analytics (Grieger & Ludwig, 2019; Hanelt et al., 2015;
Piccinini et al., 2015). Next is the implementation of startup mentality (e.g., be agile,
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trial and error) (Piccinini et al., 2015) by founding internal startups or labs (Brandt
& Ahlemann, 2020) to foster creativity and allow their employees to propose and
experiment with new ideas. A prime example of this is Volvo Cars, which set up an
innovation hub in 2010. However, in their interview study, Svahn et al. (2015, 2017)
observed that Volvo could not realize their connected car vision through an external
subsidiary due to the potential risk of turning into a rival organization. Besides
these two internal approaches, there are open innovation hackathons (Brandt &
Ahlemann, 2020; Mikusz et al., 2015, 2017) and external partnerships (Brandt &
Ahlemann, 2020; Riasanow et al., 2017; Svahn et al., 2017) to capture the skills
needed.

2.3.3 DDBM Dimension 3: Value Network

Next, we take a closer look at existing actors and roles in the field of connected
car ecosystems, as well as how stakeholders within a value network may achieve
win-win situations by forming strategic partnerships.

Actors & Roles: Existing literature lists a variety of different stakeholders oper-
ating in the connected car ecosystem. Following Al-Debei and Avison (2010), we
distinguish between the actors of which a connected car ecosystem is composed
and the roles played by these actors. The group of actors capturing the car data
monetization opportunity primarily consists of drivers, OEMs, suppliers, startups,
tech companies, fleet operators, workshops, infrastructure players, retailers, insurers,
roadside assistance, and governments (e.g., Rahman and Tadayoni, 2018; Riasanow
et al., 2017; Zhao et al., 2020). One of the first decisions for these actors is what
role to play in the connected car ecosystem. Stocker et al. (2017) classification
distinguishes between four distinct roles:

(1) Primary End-Users are individual customers (e.g., drivers) who directly benefit
from connected services based on their shared car data (Stocker et al., 2017). Hence,
the user is not a passive actor but an active integrator of resources and, thereby, value
co-creator (Mikusz & Herter, 2016; Riasanow et al., 2017). This co-creation of value
is an integral aspect in the realization of a consumer-centric service portfolio (Grieger
& Ludwig, 2019). One example of this is sharing personal data via smartphone with
Google Maps while using other drivers’ aggregated real-time traffic information for
navigation (Riasanow et al., 2017). Besides data co-creation, OEMs may involve
their customers in the product design processes through digital interaction to rapidly
sense and respond to changing customer needs (Hanelt et al., 2015).
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(2) Secondary End-Users are organizational customers who indirectly benefit through
collected and assessed car data from multiple vehicles by consuming connected
services (Stocker et al., 2017). For instance, road traffic departments can make
informed decisions based on traffic data to increase road safety and reduce driving
emissions (Kaiser et al., 2017b), or city planners may use road condition data for
maintenance and repair (Kaiser et al., 2018; Stocker et al., 2017). Besides, organi-
zational customers such as driving schools may be assisted in supervising students
based on driving style monitoring, teaching them to drive safer and economically
(Kaiser et al., 2017b).

(3) Service Providers are organizations who provide connected services for various
end-users, thereby monetizing car data (Stocker et al., 2017). Obviously, OEMs are
seeking to exploit their supremacy position with exclusive data access to develop
data-based solutions such as mobility services, on-demand services, or infotainment
services (Kukkamalla et al., 2020). However, other ecosystem actors also slip into
the service provider’s role. Bosch, for instance, as a supplier for emergency call
management (Mikusz et al., 2015), or various insurers capitalizing on car data by
offering usage-based insurance contracts (Conradi et al., 2016; Marabelli et al.,
2017; Peng et al., 2015; Roth et al., 2020). Moreover, a large number of startups
entered the ecosystem, creating numerous digital services based on car data from the
OBD interface or the driver’s smartphone. An example is Zendrive.com, providing
smartphone-powered and gamified driving analytics (Kaiser et al., 2017a, 2017b;
Zhao et al., 2020).

(4) Platform Providers operate the required infrastructure for the connected car
ecosystem and allow service providers to establish their data-based services and
end-users to consume them in return for their car data (Stocker et al., 2017). Bosler
et al. (2017) identified three alternative platform concepts which currently dominate
connected car ecosystems. First, OEM platforms offering customers additional
services inside and outside vehicles (e.g., BMW ConnectedDrive, Mercedes me
connect). Next, platforms for smartphone integration enabling drivers to use their
smartphones and related apps via the built-in head unit (e.g., Google Android
Auto and Apple CarPlay). Last, “Platform as a Service”-approaches for connected
cars offered by third-party providers. These providers operate individual platform
concepts to deliver services across the OEM to the end-user and provide an alternative
to self-development.

Strategic Partnerships: In the fast-evolving connected car environment, companies
cannot succeed independently (Zhao et al., 2020). Thus, the collaboration between
multiple actors within the ecosystem is necessary to capture the full value from
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vehicle data for several reasons. First, strategic partnerships enable companies to
maximize their value proposition by operating complex services that they can not re-
alize on their own, such as usage-based insurance models or predictive maintenance
approaches (Grieger & Ludwig, 2019; Kukkamalla et al., 2020; Pütz et al., 2019).
Furthermore, collaborations facilitate the acquisition of external knowledge and new
competencies (Brandt & Ahlemann, 2020; Riasanow et al., 2017; Svahn et al., 2017)
and allow access to new revenue sources (De, 2018; Rahman & Tadayoni, 2018;
Svahn et al., 2017). While OEMs have incentives to partner with platforms to benefit
from the additional data sales (Martens & Mueller-Langer, 2020), platform providers
are expecting increasing platform growth through network effects (Bosler et al.,
2017). Service providers, in turn, benefit from the data access options offered by
these platforms (Martens & Mueller-Langer, 2020). Due to the importance of close
strategic partnerships, automotive companies must place the same importance on
these ecosystem partners as they do on vehicle owners (De, 2018). In addition to the
brand-dependent business approaches that have been most dominant so far, Kaiser
et al. (2017a) identified two collaborative approaches to provide connected services.
First, there are brand-independent services (e.g., driving behavior analytics) where
several organizations use the driving data. Second, strategic alliances being formed
between OEMs and technology companies (e.g., BMW, IBM) to establish DDBMs.
However, according to Piccinini et al. (2015), on the one hand, cooperation between
different actors is necessary to deliver digital products via standardized platforms.
On the other hand, however, the same digital players will also become competitors
concerning future mobility.

2.3.4 DDBM Dimension 4: Value Finance

Finally, this stream focuses on how players in the connected car ecosystem generate
revenue from their DDBMs and what costs are incurred in operating them. More
specifically, we refer to the elements revenue streams and cost structures.

Revenue Streams: Once automotive companies have collected or acquired the
connected car data, they seek to monetize them (Martens & Mueller-Langer, 2020).
This may be achieved following two different approaches:

(1) Selling Services: Creating novel data-based services leads to new business oppor-
tunities and new revenue streams (Andersson & Mattsson, 2015; Athanasopoulou
et al., 2016; Kaiser et al., 2018; Svahn et al., 2017). These include the currently
emerging subscription-based services that were most frequently mentioned in our
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literature corpus (e.g., BMW ConnectedDrive Kukkamalla et al., 2020, Audi con-
nect Mocker and Fonstad, 2017). In line with those, Hanelt et al. (2015) claim
that subscription fees are mostly charged for product-related services based on the
connection of cars with smartphones. Another way of capturing value is usage-based
pricing. So far, this approach was mainly applied in the area of vehicle insurance
(Marabelli et al., 2017; Pütz et al., 2019; Roth et al., 2020). However, this type
of revenue model is likely to gain relevance once cars are no longer owned as a
product but rented, leased, or shared (Athanasopoulou et al., 2016). For services
with no or low willingness to pay, the advertising-based revenue model is best suited
for indirect monetization, which does not charge users (De, 2018). Three further
revenue models are mentioned in the studies on business model patterns for the
connected car, namely add-on, freemium, and razor & blade (Mikusz et al., 2015,
2017). They have the composition of different pricing mechanisms (e.g., free basic
version, chargeable premium version) in common.

(2) Selling Data: Besides selling services, OEMs can also take the straightforward
approach to monetize data by selling it via third-party platforms (e.g., Caruso).
These marketplaces, however, are highly dependent on the OEMs’ data supply,
which leads to the latter having control over the pricing. From OEMs’ standpoint,
cooperating with marketplaces makes sense in order to profit from additional data
sales, but only to the extent that this does not affect their market shares (Martens &
Mueller-Langer, 2020).

Cost Structure: In contrast to traditional business models, the main costs in data-
driven services shift from R&D, production, sales, and marketing to service design,
technology acquisition costs, and knowledge management activities (Kukkamalla
et al., 2020). Consequently, automotive companies should carry out a substantial
investment in appropriate measures for adaption to the digital transformation to
increase their profits, productivity, and competitiveness (Llopis-Albert et al., 2021;
Tian et al., 2016). However, Llopis-Albert et al. (2021) observed that companies are
somehow reluctant to invest substantial capital in developing new services because
there is no immediate payoff, which entails capital risk, and the return on investment
is uncertain. Their statement contrasts with the findings of De (2018), who claims
that the recurring revenues from connected services will surpass the mainly one-time
costs. He adds that the increasing revenue from these services reduces OEMs’ costs
and leads to positive lifetime value for customers De (2018). Further examples
of cost reduction through digitalization include digital co-creation in the design
process (Athanasopoulou et al., 2016), or the transformation of existing products
and services into digital variants (Mikusz et al., 2017).
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2.4 Discussion and Conclusion

2.4.1 Implications and Limitations

Theoretical Implications: In terms of theoretical implications, our work contributes
to the body of knowledge on connected cars and related DDBMs, exploring a
research area still in its infancy (Kaiser et al., 2018; Marabelli et al., 2017). We
argue that studying this topic is a highly worthwhile endeavor, as we expect the
number of connected cars, their collected data, and customers’ willingness to pay for
connected services are proliferating. Thereby, our main contribution is a literature
review extending the business model framework by Al-Debei and Avison (2010) and
transferring it to the context of DDBMs and connected cars. We propose that scholars
publishing novel DDBM research in the connected car domain benchmark their work
against our categorization to classify it in the existing body of literature and identify
further research gaps. We also provide the following theoretical implications:

(1) Investigate Privacy & Ethics: As the amount of car data collected grows steadily,
privacy and ethics are considered vital by scholars, drivers, and businesses. Particu-
larly with behavioral data (e.g., speeding), companies must earn customers’ trust
by only using driving data to improve the end-user experience and not for other
purposes (e.g., tracking speeders for the police) (Kaiser et al., 2018). Accordingly,
raising society’s awareness of what kind of data vehicles generate and to whom it
is potentially transmitted is essential and may be encouraged by research (Stocker
et al., 2017). Moreover, the question arises: Who ultimately owns the data and how
can it be protected (Athanasopoulou et al., 2016)? Regarding ethical implications,
connected car services (e.g., usage-based insurance) may provide significant societal
benefits by improving driving styles, thereby reducing congestion, accident risks,
and fuel consumption (Kaiser et al., 2017b; Marabelli et al., 2017).

(2) Integrate Empirical Data: As this literature review has exposed, a large share
of work on connected car business models builds on empirical data such as white
papers, websites, and press releases. For such studies, we observe that the website
crunchbase.com is increasingly used as a viable resource, providing data on con-
nected car startups (e.g., founding year, funding rounds, and a description). Likely,
this will also be the case for much of the upcoming research. Future work could
go beyond the information provided on crunchbase.com and investigate certain
startups in-depth regarding customer benefits, data access, or pricing strategies.
Consequently, the question remains: How to combine the theoretical knowledge
from our literature review with empirical findings from practice?
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Practical Implications: Concerning the critical task of monetizing car data, our
findings have several practical implications for automotive executives. Specifically,
our literature review provides a detailed understanding of leveraging car data to
enable innovative services. We propose four implications to unlock the full potential
of car data successfully:

(1) Incentivize Data Sharing: For connected car business models, customers’ will-
ingness to share data is considered as crucial. We identified several incentives
and measures to reduce privacy concerns to overcome end-customers’ reservations
about allowing their data to be used. First, connected car service providers need to
increase transparency about what, how, and why data is used (Coppola & Morisio,
2016; Soley et al., 2018; Stocker et al., 2017) to increase trust in them (Roth et al.,
2020). Second, they should offer services based on anonymized data (Roth et al.,
2020) to encourage sharing of personalized data. Third, it is crucial to demonstrate
benefits from connected services (Brandt & Ahlemann, 2020; Mikusz & Herter,
2016; Soley et al., 2018; Stocker et al., 2017) with a clear value proposition (e.g.,
positive environmental impact). Last, monetary incentives and savings in connected
service use could encourage data sharing (Brandt & Ahlemann, 2020; Roth et al.,
2020). Nevertheless, it remains unclear how customers perceive these incentives
and whether they are willing to share data without monetary incentives.

(2) Enhance Customer-Centricity: Creating customer-specific services is an arduous
task, requiring automotive industry players to understand rapidly changing customer
needs comprehensively (Chanias & Hess, 2016; Piccinini et al., 2015). Scholars
have noted the importance of two imperatives that may help enhance customer-
centricity. First, establishing customer co-creation, where users are treated like
active resource integrators and essential value creators. Here, customers should be
involved in the product design process in order to satisfy their needs (Hanelt et al.,
2015) and, more importantly, be involved for data acquisition purposes (Kaiser et al.,
2017b; Mikusz & Herter, 2016; Riasanow et al., 2017) to realize DDBMs. Second,
leveraging user experience by combining digital service experience with emotions
of physical cars to increase customer satisfaction and incentivize data collection.
This might be accomplished through seamless user experience (Piccinini et al.,
2015), personalization (Bregant et al., 2017; Coppola & Morisio, 2016), or digital
technologies (e.g., augmented reality) (Tian et al., 2016). Both imperatives raise
the question: How to establish customer co-creation in a collaborative environment
to create service experiences that customers appreciate?

(3) Engage External Collaboration: Several reports have shown that in the rapidly
evolving automotive environment with rising competitor pressure (Chanias & Hess,
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2016; Mocker & Fonstad, 2017; Piccinini et al., 2015), companies should consider
which aspects of data monetization they want to tackle internally and which are
best addressed through external collaboration. Hence, companies need to open up
to strategic partnerships to operate complex data-based services (Grieger & Ludwig,
2019; Kukkamalla et al., 2020; Pütz et al., 2019) to acquire external knowledge and
competencies (e.g., big data analytics) (Brandt & Ahlemann, 2020; Riasanow et al.,
2017; Svahn et al., 2017), access new revenue sources (e.g., data sales) (De, 2018;
Rahman & Tadayoni, 2018; Svahn et al., 2017), and profit form network effects
(Bosler et al., 2017). In particular, the future role of OEMs is changing drastically. By
now, they must place the same importance on their ecosystem partners as they do
on car owners (De, 2018). The question for legacy OEMs remains: How to execute
the required transition from monopolist to orchestrator?

(4) Build Internal Capabilities: To exploit the value of car data fully, companies need
to build strong internal capabilities alongside an ecosystem of strategic partners.
Our results suggest that incumbent firms could do this by embracing the following
implications. First, they need to integrate digital technological competencies by
attracting new talents with the right skills and an agile mindset (Grieger & Ludwig,
2019; Hanelt et al., 2015; Piccinini et al., 2015), instead of filling prescribed jobs
again. Second, it is crucial to implement startup mentality (Piccinini et al., 2015) by
structuring the connected car business as a separate entity. Thereby, the question
of which approach (e.g., innovation hubs Svahn et al., 2017 or internal startups
Brandt and Ahlemann, 2020) is most appropriate is left open. However, practice has
witnessed that agile teams should be located outside the current line organization to
create an innovation culture and enable DDBMs at tech company speed (Piccinini
et al., 2015).

Limitations: As any study, ours is subject to limitations. While a systematic review
should ensure a relatively complete count of the relevant literature (Webster &
Watson, 2002), it is unlikely that we have identified every article that is potentially
relevant to our objective. Moreover, DDBMs and connected cars are two fast-evolving
research disciplines. Therefore, this review must be considered as a quick blink in
time. Furthermore, our work focuses on connectivity as a megatrend disrupting
the mobility industry and excludes all research that specifically addresses other
technological drivers such as electric, autonomous, and shared mobility.
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2.4.2 Agenda for Future Research

There are several research opportunities for future investigations. First, there is
no denying that incumbents are still struggling when it comes to monetizing car
data. It is surprising that research to date has predominantly focused on OEMs
and other traditional players in the supply chain have been largely overlooked. For
example, there are several studies that focus on specific car manufacturers, namely
Volvo (Andersson & Mattsson, 2015; Rahman & Tadayoni, 2018; Svahn et al., 2017),
Audi (Mocker & Fonstad, 2017), and BMW (Kukkamalla et al., 2020; Tian et al.,
2016), while the digital transformation of automotive suppliers has not yet been
analyzed. It is particularly important to address supplier challenges and explore
alternative distribution channels, new data platforms, and novel DDBM. In fact,
suppliers currently have no or only limited access to end-customers and their vehicle
data (Martens & Mueller-Langer, 2020). However, this will change with the growth
of online channels and data marketplaces. Second, since no theoretical evaluation of
car data privacy has been done in the existing literature, theory building is essential.
From a theoretical building perspective, an appropriate starting point would be
the privacy calculus model (Dinev & Hart, 2006), which proposes an individual’s
intention to disclose information based on a risk-benefit analysis. Accordingly,
one could apply the model to investigate how people preserve their privacy in car
data-enabled business models and test, adapt and extend corresponding theories.
Third, connected cars’ digital services have hardly been investigated in terms of their
benefits for businesses, consumers, or society. In addition, most studies are limited to
merely naming, listing, or explaining various services. Accordingly, studies designing
services and associated DDBMs for connected cars are needed. These could be carried
out, considering actual vehicle data (e.g., Caruso). Last, revenue models and pricing
strategies are rather unexplored outside the traditional automotive business models
and are at best mentioned or explained. Investigating how customers would like
to pay for connected services is vital to shaping pricing and sales models according
to customer preferences. Experimental studies may represent a suitable means
to investigate these. Another unresearched topic is the direct sale of vehicle data
by the OEM. In this context, it is crucial to consider suitable pricing strategies for
monetizing vehicle data that are attractive to OEMs, independent service providers,
and end-users.

In conclusion, the tremendously growing amount of car data has considerable
potential for the provision of DDBMs shaping future mobility. Researchers and
practitioners may find this review helpful for better understanding and developing
innovative DDBMs for the connected car and use it as a reference for further
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research endeavors. To conclude, although the monetization potential of car data is
immense, it is still at an early stage, leaving the question of how to monetize car
data unanswered. We encourage scholars to join us in our search for answers.
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This chapter comprises an article that was published as: Sterk, F., Peukert, C.,
& Weinhardt, C. (2022). Understanding Car Data Monetization: A Taxonomy
of Data-Driven Business Models in the Connected Car Domain. Proceedings of
the 17th International Conference on Wirtschaftsinformatik (WI) (pp. 1-16).
Note: The abstract has been removed. Tables and figures were reformatted
and newly referenced to fit the structure of the thesis. Chapter, section, and
research question numbering and respective cross-references were modified.
Formatting and reference style was adapted, and references were integrated
into the overall references section of this thesis.

3.1 Introduction

The connected car has become the next big thing for the automotive industry (Kilian
et al., 2017). There is no doubt that this megatrend will shape future mobility
shifting to high-value services for drivers and fleet owners (Bertoncello et al., 2016).
As of 2025, Accenture (Gissler et al., 2015) expects all newly sold passenger cars
to be connected, capturing and sharing a tremendously growing amount of data
(e.g., fuel consumption, vehicle health, and driver condition) with their embedded
sensors. This valuable car data eventually paves the way for novel types of data-
driven business models (DDBMs), forcing original equipment manufacturers (OEMs)
to wade more deeply into connectivity (Kaiser et al., 2021; Pütz et al., 2019).
However, although the opportunity is vast, most legacy companies still struggle
to harness connected cars’ potential and fully monetize the captured data (Hood
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et al., 2019; Martens & Schneiderbauer, 2021; Stocker et al., 2017). Ultimately,
the transition to DDBMs will be crucial to achieving connected car profitability and
making software-driven services the primary revenue driver in the long term.

Despite the increasing importance of vehicle connectivity, there is little theoretical
knowledge of connected cars and their associated business models. Broadly speaking,
the issue of directly selling and monetizing data assets has been little discussed in the
literature so far (Parvinen et al., 2020). As a result, we do not know in detail how to
use the valuable data generated by these “computers on wheels” (Häberle et al., 2015,
p. 11) to create a data-driven service ecosystem (Kaiser et al., 2018, 2019; Stocker
et al., 2017). Alongside drivers and OEMs, new players outside the automotive
sector are also entering this traditionally closed ecosystem, increasingly launching
data-driven services such as remote diagnostics or road condition monitoring (Kaiser
et al., 2021). While OEMs are seeking to exploit their supremacy position with
exclusive data access, independent service providers explore alternative gateways
to get access to vehicle data, for instance, through emerging data marketplaces
(Kaiser et al., 2017b, 2019; Martens & Mueller-Langer, 2020). Accordingly, the
current research addresses both the digital transformation of incumbents (Dremel
et al., 2017; Mocker & Fonstad, 2017; Svahn et al., 2017) and the penetration of
emerging startups (Kaiser et al., 2017a, 2017b; Stocker et al., 2017) competing or
collaborating in the connected car market.

Since existing classifications for companies operating in the connected car ecosystem
neither provide a holistic picture nor cover the essential perspective of car data mon-
etization, we pose the following research question: What are the key characteristics of
data-driven business models in the connected car domain? We address this question by
developing a taxonomy to help classify connected car companies and their respective
DDBMs. In general, taxonomies have proven to enable researchers and practitioners
to understand and analyze subject areas by structuring and organizing knowledge,
grouping similar objects from a domain based on common characteristics, and ex-
plaining the relationships between those characteristics (Cook et al., 1999; Nickerson
et al., 2013). As the connected car remains in its infancy, there is little knowledge
and guidance for analyzing existing and developing new DDBMs in this emerging
research field, which we aim to extend this knowledge with our taxonomy devel-
opment. To do so, we follow the iterative development process by Nickerson et al.
(2013). Thereby, we build on a preceding literature review to conceptualize our
taxonomy and analyze 70 real-life examples of connected car companies to revise
it empirically. Structured along the four business model perspectives by Al-Debei
and Avison (2010) (i.e., value proposition, value architecture, value network, and
value finance), we derive ten dimensions and 36 corresponding characteristics. We
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demonstrate the applicability and feasibility of our taxonomy by classifying the 70
selected companies and having three additional raters classify a small subset of
exemplary companies for evaluation. The results of our article contribute to business
model literature and facilitate a common understanding of connected cars’ DDBMs.
For researchers, our taxonomy forms the basis to investigate car data monetization,
analyze DDBMs of connected cars, and develop design theories in this area. For
practitioners, our taxonomy serves as a strategic management tool for designing
novel and benchmarking existing connected car companies and their DDBMs. In
general, the taxonomy provides a solid foundation for analyzing the connected car
market, identifying novel DDBMs, and paving the way for future research endeavors
on related topics.

The remainder of this paper is structured as follows: In Section 2, we lay the con-
ceptual foundations about connected cars and introduce existing DDBM taxonomies.
Following, Section 3 describes our methodological approach to develop the tax-
onomy. In Section 4, we introduce our comprehensive taxonomy and evaluate it
against real-life examples. Section 5 discusses implications, limitations, and future
research opportunities. Finally, Section 6 concludes the work.

3.2 Conceptual Foundations

3.2.1 Connected Cars and Their Emerging Service
Ecosystem

Within this work, we refer to the connected car as a vehicle capable of accessing
the internet, communicating with its ecosystem, and generating and transmitting
real-time data, which is in line with prior definitions (Bosler et al., 2017; Coppola
& Morisio, 2016). Equipped with multi-layered sensor technology, connected cars
already capture an enormously growing amount of data and send it to OEMs’ servers,
enabling, for instance, usage-based insurance schemes or predictive maintenance
(De, 2018; Soley et al., 2018; Stocker et al., 2017). Hence, an ecosystem for such
data-based services emerges, composed of incumbents (e.g., traditional OEMs) and
new players (e.g., startups) (Kaiser et al., 2021; Nischak & Hanelt, 2019).

In general, OEMs launch digital services such as BMW ConnectedDrive, Mercedes
me connect, and VW Car-Net, including remote services, vehicle monitoring, and
on-street parking information, among other benefits (Bosler et al., 2017; Kaiser et al.,
2017a). Consequently, incumbent automakers look for additional data-based profit
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pools as they face increased competition from young arrivals such as NIO or Tesla.
The latter offers on demand services to consumers through its Autopilot, including
features such as performance- and battery-boosting software (Heineke et al., 2020).
However, while OEMs have exclusive access to the generated car data, independent
service providers have to identify other approaches to capture this valuable data
(Kaiser et al., 2017b, 2019; Martens & Mueller-Langer, 2020). The majority of
startups, including Mojio, Vinli, and Zubie, utilize a telematics-equipped dongle
connected to the on-board diagnostics (OBD) interface to allow remote access to
the vehicle data (Coppola & Morisio, 2016; Kaiser et al., 2017a; Pütz et al., 2019;
Soley et al., 2018)). Whereas other startups such as Zendrive and Vialytics use
the sensors built into modern smartphones to capture data while driving (Kaiser
et al., 2017a, 2017b). Furthermore, emerging data marketplaces such as Caruso
Dataplace or Otonomo offer another alternative for getting access to vehicle data
(Martens & Mueller-Langer, 2020; Naab et al., 2018; Pillmann et al., 2017). Those
marketplaces are third-party platforms acting as neutral intermediaries and allowing
others to sell standardized data products (Spiekermann, 2019). The objective of
car data marketplaces is to make data collected from different car brands available
to independent service providers through a single point of access. From the OEMs’
perspective, cooperation with marketplaces is worthwhile in order to profit from
additional data sales (Martens & Mueller-Langer, 2020).

3.2.2 Taxonomies for DDBMs

The term taxonomy is often used synonymously with other classification concepts
such as framework or typology in the existing literature (Gimpel et al., 2018; Pauk-
stadt et al., 2019). Taxonomies help researchers and practitioners understand,
analyze, and structure knowledge in emerging research areas by identifying com-
mon characteristics within an unambiguous conceptual framework (Nickerson et al.,
2013).

Although DDBMs are still at an early stage (Möller et al., 2020), several taxonomies
already exist in the literature, which may be divided into generally applicable and
industry-specific taxonomies (Dehnert et al., 2021). One of the first and renowned
articles on industry-agnostic taxonomies proposed by Hartmann et al. (2016) is
based on a conceptual approach with dimensions deductively obtained from a
systematic literature review. In contrast, Engelbrecht et al. (2016) provide an
empirically developed, generally applicable DDBM taxonomy based on experts’
perceptions. Further publications adopt a combined conceptual-empirical approach
to characterizing DDBMs (e.g., Dehnert et al., 2021; Passlick et al., 2021; Schüritz
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et al., 2017). In addition to general taxonomies, various taxonomies exist in the
literature that focus on DDBMs in specific industries, for instance, logistics data
(Möller et al., 2020), manufacturing data (Müller & Buliga, 2019), and urban data
(McLoughlin et al., 2019). To the best of our knowledge, there is currently no
taxonomy dealing with DDBMs that spotlights connected car data, allowing this
work to represent the first industry-specific taxonomy on this subject, providing a
sound basis for researchers as well as practitioners.

3.3 Methodological Approach to Taxonomy
Development

Our taxonomy building process follows the methodological approach suggested
by Nickerson et al. (2013), which is based on the three-level indicator model of
Bailey (1984) and the design science research guidelines of Hevner et al. (2004). In
essence, the method seems appropriate for our research endeavor as it facilitates
the combination of theoretical knowledge from literature and empirical findings
from practice. Moreover, numerous IS scholars successfully adopted this research
approach to different contexts (e.g., taxonomy for carsharing business models (Re-
mane et al., 2016b), taxonomy for FinTech startups (Gimpel et al., 2018), taxonomy
for analytics-based services (Hunke et al., 2019)). Finally, to assess the applicability
of our taxonomy, we adopt central elements from previous studies (e.g., Gimpel
et al., 2018; Hunke et al., 2019; Passlick et al., 2021) and classify a selection of
use cases with our taxonomy and subsequently conduct an evaluation with three
individual raters.

3.3.1 Procedure

The proposed method by Nickerson et al. (2013) represents an iterative approach
that allows taxonomies to be created both conceptually grounded on the existing
body of literature and empirically based on real-world cases. Initially, the researcher
identifies meta-characteristics reflecting the purpose and basis of the taxonomy.
Next, ending conditions need to be determined that define when the development
process is terminated. Overall, eight objective (e.g., no new dimension added) and
five subjective (e.g., explanatory) ending conditions1 are proposed by Nickerson
et al. (2013), which we adopted for our research design. Subsequently, the actual

1A detailed list of all ending conditions can be found in the paper by Nickerson et al. (2013).
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taxonomy building process begins with one of two possible paths applied sequen-
tially in multiple iterations. First, the conceptual-to-empirical approach follows a
deductive procedure to derive dimensions and characteristics from theory. Second,
in the empirical-to-conceptual approach, the researcher develops dimensions and
characteristics inductively from a given sample of objects. Eventually, the procedure
is iterated until the ending conditions are met.

3.3.2 Iterations

Meta-characteristic. Initially, we defined the meta-characteristics as the components
of DDBMs for connected cars. As we consider the V4 business model framework
developed by Al-Debei and Avison (2010) to be compelling for guiding this process,
we derive our meta-characteristics from it. Hence, each dimension of the taxonomy
must relate to one of the V4 framework’s dimensions—value proposition, value archi-
tecture, value network, and value finance. The selected framework fits our research
endeavor for two reasons. First, it is one of the few business model frameworks
that particularly addresses digital business models. Second, the framework covers
the multi-dimensionality of business models, including the crucial dimensions from
prior conceptualizations.

1st Iteration. For the first iteration, we chose the conceptual-to-empirical approach,
allowing us to build upon the already existing body of literature. For this purpose,
we rely on a previously conducted structured literature review (SLR) (Sterk et al.,
2022a) focusing on DDBMs in the connected car domain, in which a total of 45
papers were analyzed in depth. Whereas the SLR provided a general overview of
this research area, we examined the identified articles to further use in developing
the taxonomy. Based on the concept-centric approach (Webster & Watson, 2002) of
the SLR, we identified twelve articles relevant to our research endeavor that address
four key topics related to DDBMs of the connected car. Adopting these topics, we
derived 16 characteristics and four initial taxonomy dimensions, namely value for
customer (Coppola & Morisio, 2016; De, 2018), data access, (Bosler et al., 2017;
Coppola & Morisio, 2016; Kaiser et al., 2017b; Martens & Mueller-Langer, 2020),
role in ecosystem (Kaiser et al., 2017b, 2021; Rahman & Tadayoni, 2018; Riasanow
et al., 2017; Stocker et al., 2017), and revenue model (De, 2018; Kukkamalla et al.,
2020; Mikusz et al., 2015, 2017) (references cited in this sentence stem from the
SLR).

2nd Iteration. For the second and all further iterations, we opted for the empirical-
to-conceptual approach and examined sample connected car companies from various
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sources. In order to efficiently build a large dataset and obtain a reasonably complete
picture of global connected car companies, we decided to query different sources
with each iteration. In Iteration 2, our source was the 45 articles from the previous
SLR (Sterk et al., 2022a), which we filtered for relevant articles analyzing connected
car companies. Here, we excluded duplicates and companies that are no longer
active2. Finally, we extracted 18 real-life examples (i.e., companies), from six
articles (i.e., (Bosler et al., 2017; Kaiser et al., 2017a, 2017b, 2021; Rahman &
Tadayoni, 2018; Stocker et al., 2017)). By analyzing the company websites of
real-life examples, we added 13 characteristics and three further dimensions to our
taxonomy, namely customer segment, vehicle ownership, and data monetization.

3rd Iteration. For the third iteration, we extended our sample with two practice
reports from leading consulting firms: the “Connected Vehicle Trend Radar” by Arif
et al. (2019) that includes 27 emerging connected car startups and the “Digital Auto
Report 2020” by PwC (2020), that contains 27 leading connected car companies.
After removing duplicates, this yielded 42 company websites for further review.
Finally, we excluded companies that do not explicitly focus on connected cars and
are no longer active2. This yielded 32 companies, from whose analysis we derived
seven characteristics and three further dimensions, namely data personalization,
influence of car data, and influence of autonomy.

4th Iteration. For the fourth iteration, we queried Crunchbase, the world’s largest
startup database, to gain a deeper understanding of connected car startups. Using
the search term “connected car” we obtained 147 companies, of which 144 remained
after duplicates were removed. Then, we skipped companies that are no longer
active2 (28), do not provide an English website (7), or do not explicitly focus
on connected cars (29; e.g., the music streaming service Deezer). Subsequently,
we screened the remaining 80 cases until we found a subset of 20 connected
car companies with sufficient website information (this number seemed adequate
to cover the startup view in the further taxonomy development). After having
analyzed these 20 companies, we felt to experience saturation (no further dimensions
or characteristics were identified) and decided to end the screening process at
this point, mainly because we do not want to over-represent the startup share
across all iterations. Since the additional sample confirmed our taxonomy’s existing
dimensions and characteristics, this iteration caused no changes. Finally, all objective
and subjective ending conditions were met after this iteration, leading us to agree
on the final set of dimensions and characteristics. Based on the aforementioned
sources yielding 70 connected car companies (see Table 3.1), we are confident that
we cover a fairly complete picture of the global connected car domain.

2Companies with any inactivity information (e.g., on crunchbase.com) or no active web presence.
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Table 3.1.: Connected car company sample for the 2nd to the 4th iteration of taxonomy
development.

3.4 Results

3.4.1 Taxonomy of Connected Car DDBMs

This section presents our taxonomy of DDBMs for connected car companies. Ta-
ble 3.2 provides an overview of the ten key dimensions with their 36 corresponding
characteristics. Following the recommendations of Nickerson et al. (2013), we
employed three dimensions with characteristics that are mutually exclusive. How-
ever, for the remaining seven dimensions, it was more reasonable to model the
characteristics as non-exclusive (Gimpel et al., 2018; Hunke et al., 2019; Möller
et al., 2020). This decision is due to the wide variety of services, data sources, and
stakeholders related to business models for connected cars, resulting in enormous
complexity. Accordingly, the right-hand column of Table 3.2 indicates whether a
dimension is exclusive (E) or non-exclusive (N). For exclusive dimensions, exactly
one characteristic is observable at a time. In contrast, for non-exclusive dimen-
sions, potentially multiple characteristics are observable at a time. In addition,
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the superscript numbers in Table 3.2 indicate the iteration in which dimensions or
characteristics were added or revised. In the following, we introduce the dimensions
and characteristics in detail.

Table 3.2.: Taxonomy of data-driven business models in the connected car domain.

Value Proposition. The first perspective deals with the compelling value propositions
delivered by connected car companies by operating complex services to satisfy
various customer needs. This perspective comprises three dimensions, namely value
for customers, influence of car data, and influence of autonomy.

1. Value for customers deals with the benefits to the distinct customers delivered by
the value proposition. Regardless of what services car data enables, monetizing
them is only viable if the customer experiences its value and the cost is worth
the benefit (Chanias & Hess, 2016; Piccinini et al., 2015). Consequently,
customers are only willing to share the required personal and vehicle data if
they see direct benefits from connected services (Brandt & Ahlemann, 2020;
Mikusz & Herter, 2016; Soley et al., 2018; Stocker et al., 2017). Overall,
connected car services typically fall into six broad categories, namely safety &
security (e.g., emergency call services), convenience (e.g., concierge services
(Riasanow et al., 2017)), cost reduction (e.g., usage-based insurance (Roth
et al., 2020)), traffic efficiency (e.g., dynamic route planning (Coppola &
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Morisio, 2016)), infotainment (e.g., smartphone integration (Bosler et al.,
2017)), and data accessibility (e.g., data access via marketplaces (Martens &
Mueller-Langer, 2020)).

2. Influence of car data captures the importance of car data to realize certain
business models. Finally, with the current rise of connected vehicles, their
generated data, including geolocation, fuel consumption, and driver condition,
can be exploited (Kaiser et al., 2021; Stocker et al., 2017). Nevertheless, vehi-
cle data is more important for some connected services than for others. First,
there are services (e.g., predictive maintenance) that are only implementable
through access to particular vehicle data (Bertoncello et al., 2016). Second,
there are services (e.g., workshop booking) that also operate without vehicle
data; however, the full potential is only unleashed by its use.

3. Influence of autonomy describes the impact of the vehicle’s autonomy on the
business model’s main or aggregate value proposition. Accordingly, the busi-
ness model changes considerably, as the driver no longer needs to fully concen-
trate on the critical task of driving (Athanasopoulou et al., 2016, 2019; Hanelt
et al., 2015). Consequently, preferences are shifting from driving experience
or technical performance to aspects such as information and entertainment.
For example, today’s infotainment systems, which deliver audio and primary
interactive content, may offer virtual reality movies or video games once the
driver takes on a passenger role (Bertoncello et al., 2016). Hence, full vehicle
autonomy may increase the value created through certain data-driven services
(e.g., networked parking services) while also decreasing the value of others
(e.g., driving style suggestions).

Value Architecture. The second perspective characterizes an organization’s archi-
tecture, including its technological architecture and organizational infrastructure,
which allows the provision of connected services. It comprises two dimensions,
namely data personalization and data access.

4. Data personalization refers to the collected vehicle data, which can be divided
into two main types. First, anonymized data, also commonly abbreviated as
aggregated data, does not contain personally identifiable information (PII)
that allows a specific car to be identified from the crowd (Martens & Mueller-
Langer, 2020; Soley et al., 2018). For instance, when providing data to a
smart city to improve road conditions through automatic pothole detection,
anonymized data is sufficient (Kaiser et al., 2018; Stöckel et al., 2021; Stocker
et al., 2017). Second, personal data contains PII generated either by vehicles
or by peripheral devices (e.g., smartphones) (Soley et al., 2018). For example,
it is necessary to identify the specific car for usage-based insurance systems, as
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the data-based pricing model adapts to the user’s driving behavior (Conradi
et al., 2016; Marabelli et al., 2017; Peng et al., 2015; Roth et al., 2020).

5. Data access distinguishes different technical gateways that enable connected
car actors to access the required data a car generates. While OEMs have
exclusive access, independent service providers must find alternative avenues
to capture this data (Kaiser et al., 2017b, 2019; Martens & Mueller-Langer,
2020). One option is the OBD port, into which the driver can plug a telematics-
equipped dongle to allow remote access to the vehicle data (e.g., Coppola
and Morisio, 2016; Pütz et al., 2019; Soley et al., 2018). Data access is
also possible through a central server, where data storage, processing, and
customer interaction is managed by a data marketplace (e.g., Caruso Dataplace,
Otonomo) providing standardized vehicle data by multiple OEMs (Coppola
& Morisio, 2016; Martens & Mueller-Langer, 2020). In addition to accessing
in-vehicle data, some startups are leveraging the potential of self-developed
retrofitted sensors (e.g., dash cams) or traditional smartphone sensors (e.g.,
GPS, accelerometer, or luminance) to collect driving data (Kaiser et al., 2017a,
2017b).

Value Network. The third perspective refers to the various stakeholders entering
the connected car ecosystem. Here, we also consider the customer, who under the
realm of connected car business models is often not a passive actor but co-creator
of value (e.g., data collection) (Mikusz & Herter, 2016; Riasanow et al., 2017).
The perspective comprises three dimensions, namely role in ecosystem, customer
segment, and vehicle ownership.

6. Role in ecosystem describes certain roles that actors must assume in the con-
nected ecosystem or value chain. For example, as service providers, they offer
end-customer solutions for specific use cases (e.g., usage-based insurance),
thereby monetizing car data (Kaiser et al., 2017a, 2017b; Stocker et al., 2017).
Other actors provide a cloud-based data exchange platform for sharing and
accessing data about connected cars across multi-sided marketplaces (Kaiser
et al., 2019, 2021; Martens & Mueller-Langer, 2020). In addition, technol-
ogy providers offer devices (e.g., dash cams) that make vehicles smart and
connected while monetizing the data they collect.

7. Customer segment defines the distinctive groups of people or organizations to
which a company aims to provide its offerings (Osterwalder & Pigneur, 2010).
The most generic classification distinguishes between business-to-business
(B2B) and business-to-consumer (B2C) (Hartmann et al., 2016; Lim et al.,
2018). We extend this dimension to include business-to-government (B2G)
(Dehnert et al., 2021; Passlick et al., 2021), as, for instance, city planners can
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use road condition data for maintenance and repair works (Kaiser et al., 2018;
Stocker et al., 2017).

8. Vehicle ownership is about who owns the vehicles for data collection to real-
ize the desired DDBM (Remane et al., 2016b). Consequently, the connected
cars are owned either by private drivers for personal use, fleet operators for
commercial use, or mobility service providers for rental or shared mobility.
For instance, private drives directly benefit from driving recommendations,
gamification aspects, or remote diagnostics based on assessing their shared
vehicle data (Grieger & Ludwig, 2019; Rahman & Tadayoni, 2018; Stocker
et al., 2017). Moreover, fleet operators and mobility service providers can
increase uptime by avoiding breakdowns or unplanned repairs by using predic-
tive maintenance to prevent accidents (Andersson & Mattsson, 2015; Brandt
& Ahlemann, 2020; Llopis-Albert et al., 2021).

Value Finance. The fourth perspective represents how stakeholders in the connected
car ecosystem generate revenue from their DDBMs. It comprises two dimensions,
namely data monetization and revenue model.

9. Data monetization refers to capturing the monetary value from data (Parvinen
et al., 2020; Teece & Linden, 2017). Here, a distinction can be made between
three approaches (Parvinen et al., 2020): First, the most straightforward
approach involves selling car data directly to another party, as OEMs do to
data marketplaces (e.g., Caruso Dataplace) (Thomas & Leiponen, 2016). In
particular, data marketplaces go one step further by selling harmonized multi-
brand data from different OEMs to independent service providers, giving them
a data access option. The second approach involves selling data-based analyses
but constraining access to the original data (Thomas & Leiponen, 2016). Third,
several companies develop and sell data-driven services such as driving style
suggestions or fleet management solutions.

10. Revenue model represents the structure of how a company generates revenue
or income from each customer segment (Osterwalder & Pigneur, 2010). Most
widely known is the direct sale, where the ownership of an asset (e.g., data)
is transferred in return for money (Hartmann et al., 2016; Osterwalder &
Pigneur, 2010; Schüritz et al., 2017). Another way to capture value is through
usage fees, which can be charged per kilometer (e.g., usage-based insurance)
(Marabelli et al., 2017; Pütz et al., 2019; Roth et al., 2020). Moreover,
subscription fees can generate revenue for continuous service access (Hanelt
et al., 2015; Kukkamalla et al., 2020; Mocker & Fonstad, 2017). Transaction
fees are charged for an intermediate service such as trading vehicle data
through marketplaces (Martens & Mueller-Langer, 2020). Licensing fees are
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generated by giving customers permission to use protected intellectual property
in exchange (Hartmann et al., 2016; Osterwalder & Pigneur, 2010; Schüritz et
al., 2017). Last, we have on demand pricing tailored to a customer’s individual
request (e.g., for additional data access).

3.4.2 Application and Evaluation of the Taxonomy

To get an impression of the applicability of our taxonomy, we classified the DDBMs
of all 70 connected car companies that we used to develop the taxonomy. Here, the
aforementioned definitions of characteristics and dimensions served as a guiding
codebook. Based on this common understanding, a single author classified the
70 companies. In summary, Table 3.3 shows the distribution of each dimension.
Concerning the relative frequencies presented in Table 3.3, we had to deal with
publicly unavailable information that resulted in missing values for seven companies
in the data access dimension and 22 companies in the revenue model dimension. Due
to this missing data, the proportions of the characteristics in the affected dimensions
may be even higher than obtained.

Table 3.3.: Distribution of characteristics based on the classification of the author.

By analyzing the statistics from Table 3.3, we made some noteworthy observations:
Looking at the value proposition to the customer, it is noticeable that the percentages
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of infotainment and data access are relatively low compared to the other charac-
teristics. This might change with the proliferation of self-driving cars, as vehicle
occupants focus on media and infotainment services rather than on the road (Hanelt
et al., 2015). In addition, the prevalence of intermediaries providing data access
will increase as connected vehicles become more widespread. Despite the difficulty
accessing car data, they form the core of 81% of the business models studied, which
would not be feasible without it. Further, half of the companies investigated de-
signed their business model to remain independent of increasing autonomy; around
a third would even be strengthened by autonomous driving. In the data personal-
ization dimension, only one-fifth of all companies build their business model on
anonymized data. The underlying reason could be that there are few ideas on how
to use anonymized data to establish profitable services (Stocker et al., 2017). For the
data access dimension, the different characteristics are relatively evenly distributed,
with the exception of exclusive access and central server. This observation may be
related to the fact that most connected car companies are independent startups
that want to avoid the tedious process of purchasing in-vehicle data from OEMs or
intermediaries and therefore rely on retrofitted dashcams, dongles, or smartphones
(Kaiser et al., 2017b). Most companies using retrofit solutions or dongles for data
acquisition also develop them, thus slipping into the role of technology providers.
However, the vast majority of companies participate in the ecosystem as service
providers. Concerning the customer segment, primarily consumers (B2C) and busi-
nesses (B2B) are addressed. One reason for the low number of B2G business models
could be the insufficient coverage of connected vehicles (Caruso Dataplace, 2021) to
realize services such as intelligent road condition monitoring or traffic management
systems based on aggregated data. In terms of vehicle ownership, we found that a
clear majority of private vehicles are used to collect the required data. Nevertheless,
the mobility landscape will change in the future as shared mobility becomes more
prevalent and new corporate fleet customers enter the market (Heid et al., 2018).
Finally, more than one-third of the examined companies rely on generating revenue
through subscription-based revenue models. Therefore, they might hope that recur-
ring revenues from subscription fees will exceed the predominantly one-time costs
incurred by connected services (De, 2018).

Further, to prove the feasibility of our taxonomy, a subset comprising eight of the 70
companies (see Table 3.1) was classified by independent raters. Here, we received
complete responses from three raters, on which our analysis is based. In selecting
the eight evaluation cases, we ensured that most of the required information was
available on the companies’ websites. The classification results were compared
using Fleiss’ kappa (Fleiss, 1971) to measure the level of agreement. Therefore,
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we calculated the average agreement of the raters for all 36 dimensions and the
eight selected cases. This yielded a value of 61% for Fleiss’ kappa (Fleiss, 1971),
which according to Landis and Koch (1977) corresponds to “substantial agreement”.
Additionally, the responses from the three individual raters were compared to the
initial classification by one of the paper’s authors. The results revealed a value of
62% for Fleiss’ kappa, which also indicates “substantial agreement”. Thus, it can
be assumed that our taxonomy is suitable for a consistent classification and concise
description of connected car companies’ DDBMs.

3.5 Discussion, Limitations and Future
Research

As for theoretical implications, our research ties in and contributes to the descriptive
knowledge on connected cars and associated DDBMs, exploring a domain that is
still in its early stages (Kaiser et al., 2018; Marabelli et al., 2017). Thereby, our main
contribution is a theoretically grounded and empirically validated taxonomy that
summarizes the key characteristics describing DDBMs of distinct connected car com-
panies in ten dimensions. The domain-specific view of our taxonomy complements
existing general, industry-agnostic DDBM classifications. Although generally applica-
ble taxonomies pose a good reference point and may help distinguish connected car
companies based on aforementioned dimensions such as value proposition, customer
segment, or revenue model, they are insufficient to fully understand the connected
car phenomenon and the configuration of underlying DDBMs. Accordingly, our tax-
onomy is the first to focus on the connected car domain, proposing novel dimensions
such as influence of autonomy, data access, or vehicle ownership. From a theoretical
perspective, our taxonomy serves as a basis for analyzing, designing, and configuring
DDBMs for connected cars, investigating connected car startups, and strategically
classifying incumbents’ offerings. Furthermore, our taxonomy provides a common
language and structure for the investigated research field, helping scholars position
their work therein. We also follow Parvinen et al. (2020) call for a better under-
standing of data monetization by examining different roles in the ecosystem and
their approaches to create and capture value from data. Summing up, our work
offers deeper insights into the structure of data-driven business models and will help
classify research in this area.

In terms of managerial implications, the taxonomy allows practitioners to navigate
the still largely unexplored field of DDBMs more effectively. Based on empirical
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development using 70 real cases, our taxonomy provides a comprehensive market
overview and status quo analysis of the connected car ecosystem. Practitioners, such
as traditional OEMs, will gain a detailed understanding of how startups leverage
vehicle data to enable innovative services and learn about different ways to monetize
their valuable data assets. Moreover, our taxonomy represents a strategic manage-
ment tool for developing novel and documenting existing business models in the
automotive industry. Therefore, current startups or incumbents can use the taxon-
omy to systematically analyze competitors or identify combinations of characteristics
that have not been employed so far. Thus, in systematically generating new ideas,
practitioners may benefit from our work using our taxonomy as a basis for applying
a morphological analysis (Geum et al., 2016; Hunke et al., 2019).

As any study, ours is not without limitations. First, with the field of connected
mobility and resulting business models constantly evolving, the taxonomy needs to
be constantly updated to remain useful in the future. Second, our sample of analyzed
connected car companies does not raise the claim to be exhaustive. Particularly in
the fourth iteration, we only analyzed 20 startups. Therefore, our work is limited by
the fact that since not all remaining startups have been analyzed in the last iteration,
there might be the chance that further dimensions may have been derived from the
companies that have not been analyzed. Nevertheless, in future research, we plan to
further evaluate the taxonomy by means of expert interviews with representatives
from research and practice for another confirmation or revision. Third, our results
stem only from publicly available information. However, the websites provided by
the connected car companies often contain limited information on their business
model, especially concerning revenue models. Hence, in future investigations, it can
be valuable to contact certain companies with missing data to obtain a complete
data set. Fourth, our reported results rely on the classification of one author (70
companies) and three individual raters (eight companies). To improve the validity
of the results, we believe that our taxonomy should be tested quantitatively for
completeness and applicability. Therefore, we intend to let further individuals rate
the whole set of companies. Finally, building on our research, a cluster analysis could
identify archetypes of DDBMs in the connected car domain, i.e., typical combinations
of characteristics across all ten dimensions included. These archetypes could help
provide a theoretically sound basis for developing connected car DDBMs.
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3.6 Conclusion

Against the backdrop of the increasing importance of car connectivity and data
monetization, we examined ten dimensions and 36 corresponding characteristics that
describe DDBMs for connected cars. In sum, we executed four iterations, one being
conceptually based on a SLR and three iterations being empirically grounded on a
data set of 70 connected car companies. By applying our taxonomy to the dataset,
we demonstrated the feasibility of the taxonomy to analyze and understand the
DDBMs of various connected car companies. Overall, our conceptually grounded and
empirically validated taxonomy contributes to the existing literature by extending
the descriptive body of knowledge on DDBMs and connected cars.
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Unlocking the Value from
Car Data: A Taxonomy and
Archetypes of Connected
Car Business Models

4

This chapter comprises a working paper that was submitted as: Sterk, F., Stocker,
A., Heinz, D., & Weinhardt, C. (2023). Unlocking the Value from Car Data:
A Taxonomy and Archetypes of Connected Car Business Models. Note: By
this thesis’s submission date, this study was in the second review round at the
Electronic Markets Journal. The abstract has been removed. Tables and figures
were reformatted and newly referenced to fit the structure of the thesis. Chapter,
section, and research question numbering and respective cross-references were
modified. Formatting and reference style was adapted, and references were
integrated into the overall references section of this thesis.

4.1 Introduction

The transition toward increased vehicle connectivity, autonomous driving, pow-
ertrain electrification, and shared mobility mutually reinforces advances in the
automotive landscape (Burkacky et al., 2023). Taken together, they not only reshape
the automotive value chain by attracting newcomers from various industries but
also critically drive business innovation in the mobility space (Kaiser et al., 2021;
Stocker et al., 2017). As pioneers of Internet of Things (IoT) technologies, automo-
tive original equipment manufacturers (OEMs) have invested heavily in equipping
vehicles with telematic control units and related capabilities to ensure connectivity
and facilitate additional service offerings (Cichy et al., 2021; Svahn et al., 2017).
Leading consultancies (i.e., Bertoncello et al., 2016; Gruendinger and Seiberth,
2018) argue that despite the long-term decline in car sales, monetizing car data will
compensate for this and even increase OEM’s revenues by leveraging data-based ser-
vices. However, many players in the connected car space struggle to capitalize on the
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potential of data monetization and connected services (Hood et al., 2019; Martens
& Schneiderbauer, 2021), leading to numerous companies ceasing operations (e.g.,
Automatic Labs or Dash Labs). Nonetheless, the industry is currently at an inflection
point that could create $250 billion to $400 billion in annual incremental value,
enabled using vehicle data by 2030 (Martens & Schneiderbauer, 2021).

The automotive sector is a technological frontrunner for IoT applications and con-
nected products (Cichy et al., 2021), as OEMs began equipping vehicles with con-
nectivity many years ago to establish vehicle-to-vehicle and vehicle-to-infrastructure
communications and to enable cooperative intelligent transportation systems (Ker-
ber & Gill, 2019; Sterk et al., 2022c)). Vehicle data is personal, high-volume,
high-velocity, and highly diverse data often combined with contextual data such as
weather or location data to develop new services (Kaiser et al., 2021; Soley et al.,
2018). Integrating digital technologies into physical products gradually changes the
dynamics of the automotive sector (Bohnsack et al., 2021) and drives the formation
of organizational and technological ecosystems aimed at sharing and leveraging
data (Heinz et al., 2022). Google, for example, enables smartphone-like in-vehicle
applications with its open-source “Android Automotive”1 operating system, to which
numerous OEMs have signed up, including Volvo, Renault, GM, and Ford (Legenvre
et al., 2022).

Connected cars offer a unique setting to examine and expand existing theories
and evidence on business models (Cichy et al., 2021). Equipped with telematic
control units and connected to OEMs’ data centers, they generate continuous streams
of data through multiple powerful sensors, making them a central component of
innovative data-driven business models (DDBMs) (Cichy et al., 2021; Kaiser et al.,
2021; Koester et al., 2022). Independent form makes and models, they already
generate massive amounts of valuable data, not only about the cars themselves, but
also about their surroundings via various sensors (e.g., to measure temperature,
humidity, or position), also of interest for multiple ecosystem representatives (e.g.,
suppliers, workshops, or insurers) (Sterk et al., 2023a). Although the research
directions linked to car data-sharing mechanisms and associated privacy concerns
have received attention lately (e.g., Cichy et al., 2021; Kaiser et al., 2021; Koester
et al., 2022), the information systems (IS) literature has not adequately explored
the topic of connected cars comprehensively. Particularly, the current literature lacks
a structural analysis that explicitly examines the anatomy, such as stereotypical
patterns (i.e., archetypes) of business models for connected car companies (Sterk et
al., 2022c). Indeed, the specifics of designing empirical business model classifications
require further research (Groth & Nielsen, 2015; Lambert, 2015). Classifying digital

1https://developers.google.com/cars/design
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business models in the automotive industry is pivotal as the car itself cannot be fully
digitized (Piccinini et al., 2015), and the emergence and impact of digital business
models and ecosystems in the non-digital context of large, complex products (e.g.,
automobiles) remain to be elucidated to fully understand digital transformation
(Hanelt et al., 2015). As a step towards operationalizing this issue, our research
responds to recent calls to better understand data-driven business models (DDBM)
in the mobility domain (Ketter et al., 2022) and specifies their key features better
to ultimately support decision-makers in their entrepreneurial activities to leverage
connected vehicle data. Therefore, we pose the following research questions:

Research Question 2: What are the key characteristics of data-driven business
models in the connected car domain?

Research Question 3: What are the archetypal patterns of data-driven business
models in the connected car domain?

To address both questions, we follow a sequential mixed methods design (Venkatesh
et al., 2013, 2016) comprising two iterations, each dedicated to addressing one
research question. In the first iteration, we follow the taxonomy development process
of Nickerson et al. (2013) by conducting a structured literature review (SLR) on
connected car business models and analyzing 70 real-world examples of connected
car companies to empirically verify and revise our findings, ensuring both theoretical
rigor and practical relevance. We evaluate the taxonomy by conducting twelve
expert interviews, applying it to 154 connected car business models, and having four
raters classify a subset of these cases to compare their ratings. Our final taxonomy is
structured along Al-Debei and Avison (2010) four business model perspectives (i.e.,
value proposition, value architecture, value network, and value finance) and includes
a total of ten dimensions and 48 corresponding characteristics. In the second
iteration, we use the taxonomy to re-classify the set of 154 real-world business
models and perform a cluster analysis (Kaufman & Rousseeuw, 1990) to derive
seven cluster groups of business models that share similar characteristics across the
taxonomy dimensions. By comparing the respective cases within each cluster, we
derive archetypes as qualitative interpretations that describe and distinguish ideal
configurations of connected car business models. Finally, we evaluate the structural
strength and quality of each cluster using silhouette width as a measure of cluster
validity (Rousseeuw, 1987).

The contribution of our work is threefold. First, we provide a systematically analyzed
dataset of connected car business models that overviews how companies use digital
technologies in the connected car domain. Second, our taxonomy and archetypes
complement the existing business model literature by providing a common language
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for analyzing, classifying, and configuring connected car business models, enabling
a better understanding of higher-level business model configurations. Taxonomies
structure a body of knowledge that constitutes a new field, such as DDBMs around
connected cars in IS research, and allow a systematic description of the domain
of interest (Glass & Vessey, 1995). Our initial literature review revealed a lack
of industry-specific taxonomies in the connected car domain (and the automotive
domain in general), which we see as a research gap to be addressed in our paper.
Finally, practitioners can use our taxonomy and archetypes as strategic management
tools for developing new connected car business models and benchmarking existing
ones. Both artifacts pave the way for future research, such as upcoming research in
this highly relevant domain.

This article is structured as follows: In the next section, we review related work on
business models, associated taxonomies and archetypes, and their application in
the connected car field. Subsequently, we describe our mixed methods approach.
Section 4 presents a business model taxonomy and corresponding archetypes for
the connected car domain. Section 5 discusses implications, limitations, and future
research opportunities. Finally, Section 6 provides a summary and conclusion of our
work.

4.2 Related Work

4.2.1 Taxonomies and Archetypes of Data-Driven
Business Models

In the prevailing literature, the term taxonomy is often used as a synonym for
other classification concepts, such as typology (Gimpel et al., 2018; Paukstadt et al.,
2019). However, while typologies are conceptually derived through a top-down
approach with predefined dimensions, taxonomies are obtained through an empirical
bottom-up approach by observing real-world objects, with categories being designed
retrospectively (Baden-Fuller & Morgan, 2010; Fiedler et al., 1996). The taxonomies
at the core of our research are intended to guide researchers and practitioners in
understanding, analyzing, and structuring knowledge in emerging research areas
(Nickerson et al., 2013).

Although data monetization is still a largely unexplored area in current research
(Parvinen et al., 2020), various taxonomies of data-driven business models exist in
the literature, which can be divided into generally applicable and industry-specific
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taxonomies (Dehnert et al., 2021). In total, we identified 28 DDBM-related tax-
onomies, which we categorized in Table 4.1. For example, Hartmann et al. (2016),
provided one of the first generally applicable DDBM taxonomies deductively derived
from a structured literature review. Conversely, Engelbrecht et al. (2016) designed
an industry-agnostic DDBM taxonomy based on questioning experts. Several publica-
tions combine both conceptual and empirical approaches in a conceptual-empirical
procedure to classify DDBMs (Passlick et al., 2021; Schüritz et al., 2017). In addi-
tion to generally applicable DDBM taxonomies, the body of existing literature also
contains several DDBM taxonomies that focus on specific industries and address
the monetization of more specific types of data, such as logistics data (Möller et al.,
2020), manufacturing data (Müller & Buliga, 2019), or FinTech data (Gimpel et al.,
2018).

Several articles (e.g., Gimpel et al., 2018; Müller and Buliga, 2019; Passlick et
al., 2021) go beyond merely designing taxonomies and develop so-called business
model archetypes by performing a cluster analysis and interpreting the findings to
identify typical combinations of characteristics across all included dimensions. These
archetypes serve as stereotypical patterns for business development and empirical
work in their respective research areas.

Despite the substantial progress in DDBM taxonomy development and archetype
generation, there exists a notable gap in the context of connected car business
models. Current taxonomies and archetypes, whether general or industry-specific,
do not adequately provide a clear analytical frame for understanding and developing
business models in the connected car domain, given its unique data characteristics
and specific industry dynamics. Recognizing this research gap, our article extends the
existing corpus by creating a taxonomy and corresponding archetypes specifically
designed for DDBMs in the connected car domain. In the next subsection, we
elaborate on the specifics of data-driven business models in the connected car
domain and link our research to related work in this area.

4.2.2 Data-Driven Business Models in the Connected Car
Domain

The term connected car, as used in this article, refers to a vehicle with the ability
to access the internet, communicate with its ecosystem, and generate and transmit
real-time data, which aligns with previous definitions (Bosler et al., 2017; Coppola &
Morisio, 2016). The combination of built-in cameras, radars, ultrasonic sensors, and
actuators of a connected car is causing the amount of data generated by modern cars
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Table 4.1.: Overview and categorization of existing DDBM-related taxonomies.

Industry Focus of the Developed Artifacts Authors Methodol.
Approach

Archetype
Development

Industry-
agnostic

IIoT platforms’ architectural features Arnold et al. (2022) C&E Yes

Digital business models Bock and Wiener (2017) C&E No

Data-based value creation in
companies

Baecker et al. (2021) C&E No

Smart product-service systems and
value proposition types in B2C

Dehnert and Bürkle (2020) C&E No

Data-driven business models Dehnert et al. (2021) C&E No

Data-driven business models Engelbrecht et al. (2016) E No

Data-driven business models
used by start-up firms

Hartmann et al. (2016) C Yes

Analytics-based services Hunke et al. (2021) C&E Yes

Data-based value creation in
information-intensive services

Lim et al. (2018) C&E No

Analytics as a Service Naous et al. (2017) C&E Yes

Predictive maintenance as an IoT
enabled business model

Passlick et al. (2021) C&E Yes

Smart services Paukstadt et al. (2019) C&E No

Proactive services Rau et al. (2020) C&E No

Data-driven services Rizk et al. (2018) C&E Yes

Big data business models Schroeder (2016) C&E No

Data-infused business model
innovation

Schüritz and Satzger (2016) C&E Yes

Revenue models for data-
driven services

Schüritz et al. (2017) C&E No

Smart interactive services Wünderlich et al. (2013) E No

Manu-
facturing

Data-driven services in
manufacturing industries

Azkan et al. (2020) C&E No

Industrial service systems
enabled by digital product
innovation

Herterich et al. (2016) C&E No

Data-driven business models
for manufacturing companies
in Industry 4.0

Müller and Buliga (2019) C&E Yes

Data-driven industrial services Schuh and Kloz (2017) C&E No

Smart machines in the mechanical
engineering industry

Scharfe and Wiener (2020) C&E No

FinTech Service offerings of consumer-
oriented FinTech startups

Gimpel et al. (2018) C&E Yes

Smart
living

Smart services for smart living Fischer et al. (2020) C&E Yes

Logistics Data-driven business models in
logistics

Möller et al. (2020) C&E No

Smart city Urban data business models McLoughlin et al. (2019) C&E No

Car data
market-
places

Data marketplaces in
the automotive industry

Bergman et al. (2022) C&E Yes

Methodological approach: C = conceptual, E = empirical, C&E = conceptual & empirical
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to increase exponentially (Karmanska, 2021). As a result, industry incumbents (e.g.,
legacy OEMs) and new entrants (e.g., startups) in the evolving automotive ecosystem
are seeking to transform the data generated by cars into valuable information and,
ultimately, to innovate products, services, and business models that leverage this
information (Kaiser et al., 2021; Nischak & Hanelt, 2019).

Accessing vehicle data is critical for implementing data-driven business models,
and researchers from different disciplines have recently begun to identify early
approaches to monetizing these valuable data assets. For example, Kaiser et al.
(2017b), investigate OEMs’ digital service strategies and the novel business models
established by connected car startups. OEMs offer services such as remote car
(un-)locking, real-time traffic information, and intelligent emergency calls, which
are integrated into digital service platforms such as BMW ConnectedDrive, Mercedes
me connect, and VW Car-Net. Since OEMs typically retain exclusive access to car
data, third-party service providers (e.g., startups, insurers, suppliers) are forced to
find alternative technical gateways that offer equal access options. To address this
issue, Martens and Mueller-Langer (2020) identified four alternative data access
options for independent service providers. A number of startups, including Mojio,
Vinli, and Zubie, have chosen to use telematics-equipped “dongles” that plug into
the on-board diagnostics (OBD) interface for remote data access (Coppola & Morisio,
2016; Pütz et al., 2019; Soley et al., 2018). However, because such OBD dongles
entail time-consuming installations, expensive hardware purchases, and limited
data quality, another option for third-party data access has recently emerged that
does not require additional hardware and is directly supported by OEMs (Sterk
et al., 2023a). Emerging data marketplaces, such as Caruso Dataplace or Otonomo,
serve as neutral intermediaries that enable OEMs to sell multi-brand vehicle data to
independent service providers (Kaiser et al., 2021; Martens & Mueller-Langer, 2020).
Bergman et al. (2022) explore business model archetypes of such data marketplaces,
ranging from private to independent ownership and from a hierarchical to a market
orientation.

Even though several aspects of the automotive data value chain have been inves-
tigated, we have observed through an initial literature review that a synthesis of
existing knowledge on DDBM in the connected car domain is lacking in existing
research. We aim to address this gap by developing a taxonomy and archetypes
to consolidate this knowledge and guide future research in this field. In this way,
we are responding to the recent calls for IS research to take a more active role in
the discussions on leveraging the emergence of connected, autonomous, shared,
electric (CASE) vehicles to design a smart, sustainable mobility ecosystem beneficial
to users, mobility providers, and the environment (Ketter et al., 2022). Our research
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contributes to the initial steps in IS research to develop and evaluate digitally en-
abled business models for smarter, more sustainable mobility, balancing profitability,
customer value, and sustainability (Ketter et al., 2022).

Lastly, the connected car is a key facilitator of DDBMs in general due to several rea-
sons: (1) the established data sharing mechanisms and data marketplaces facilitate
the rapid deployment of DDBMs, (2) the expected mass market entry of connected
cars points to significant scalability potential for new DDBMs, (3) connected cars
have a broader range of sensors and actuators compared to other mass-connected
products like smartphones or smart meters; and (4) within the mobility and trans-
portation sectors, connected cars are the focal point of most DDBMs. Therefore, a
better understanding of connected car business models could also serve as a leading
indicator of future DDBMs in other domains.

4.3 Research Design

Our research follows a sequential mixed methods design (Venkatesh et al., 2013,
2016) to provide a taxonomy and archetypes of business models in the connected
car domain. This procedure allows us to generate rich insights by combining
qualitative and quantitative methods in the same inquiry. Mixed methods research
is particularly well-suited to “provide a holistic understanding of a phenomenon for
which extant research is fragmented, inconclusive, and/or equivocal” (Venkatesh
et al., 2016, p. 36), which holds for the relatively unexplored area of classifying
connected car business models. Our research design comprises two major sequential
iterations (see Figure 4.1), each with three phases, adopting the structure of previous
studies (e.g., Weking et al., 2020). In the first iteration, we design and evaluate the
taxonomy by adapting Nickerson et al.’s (2013) taxonomy development method and
supplementary evaluation guidelines (Kundisch et al., 2022; Szopinski et al., 2020).
In the second iteration, we build on the results of the first iteration to develop and
evaluate archetypes by conducting a cluster analysis (Kaufman & Rousseeuw, 1990)
and interpreting the results.

4.3.1 Iteration 1: Taxonomy Development

The first iteration of our research design focuses on developing a taxonomy that
adopts the methodological approach Nickerson et al. (2013) suggested to guide our
design process. At the outset, we defined the meta-characteristics that reflect the
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Figure 4.1.: Research design of the mixed methods approach in two consecutive iterations
consisting of three phases.

taxonomy’s purpose and foundation as the components of connected car business
models. All dimensions must be a consequence of this meta-characteristic and help
to describe the structural differences observed in connected car business models.
As we found the “V4 business model framework” by Al-Debei and Avison (2010)
compelling or guiding this process, we embraced their framework and integrated
our meta-characteristic into it. Consequently, we choose the V4 concepts (i.e.,
value proposition, value architecture, value network, and value finance) as meta-
dimensions, ensuring that each dimension in the taxonomy corresponds to one of
these concepts. We also established ending conditions to define when the iterative
taxonomy development process is terminated, following Nickerson et al.’s (2013)
proposed conditions. With these foundations in place, we proceeded with the
taxonomy development and evaluation process in three phases.

Phase 1: Structured Literature Review (Conceptual)

In our initial phase, we adopt the conceptual-to-empirical approach of Nickerson
et al.’s (2013) taxonomy development method. Thereby, we build on the existing
literature by conducting a structured literature review, following the methodological
suggestions of Vom Brocke et al. (2009) and Webster and Watson (2002). The litera-
ture base is established by querying various interdisciplinary research databases2

to identify articles that match our search term3 in title, abstract, or keywords. Our
initial search yielded a total of 787 studies, of which 547 remained after removing

2AIS Electronic Library, Emerald Insight, IEEEXplore Digital Library, ProQuest, ScienceDirect/Scopus,
Web of Science

3“business model*” AND (connected OR data* OR digital*) AND (car* OR vehicle* OR automotive*)
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duplicates (see Figure 4.2). To assess their relevance to our study, we analyzed the
title and abstract of each article and chose 133 of them. Afterward, we reviewed
the article’s full text, applying four inclusion criteria: the study must (1) examine
at least one of the four business model dimensions represented by the taxonomy’s
meta-characteristics, (2) focus on the connected car domain, (3) be available in
English, and (4) be peer-reviewed. This process yielded 29 relevant articles, and 16
additional articles were included through forward and backward searching, resulting
in a total set of 45 articles.

Emeral 

Insight

Figure 4.2.: Literature search process.

Next, we used the 45 articles identified to derive an initial set of taxonomy dimen-
sions and characteristics. The selected articles were analyzed for recurring themes,
frameworks, or models to categorize the subject matter. This led us to twelve ar-
ticles that were most suitable to guide concrete concepts for our taxonomy, such
as dimensions, their definitions, and the associated characteristics. The remaining
articles helped throughout the work to contextualize the research field concerning
connected car business models and to situate our findings in the existing literature.
We uniformly summarized and named the identified taxonomy dimensions and
characteristics and mapped them to the superordinate dimensions of Al-Debei and
Avison (2010). Overall, we discovered a total of four primary taxonomy dimensions
during our analysis: value for customer (Coppola & Morisio, 2016; De, 2018), data
access (Bosler et al., 2017; Coppola & Morisio, 2016; Kaiser et al., 2017b; Martens
& Mueller-Langer, 2020), role in ecosystem (Kaiser et al., 2017b, 2021; Rahman &
Tadayoni, 2018; Riasanow et al., 2017; Stocker et al., 2017), and revenue model
(De, 2018; Kukkamalla et al., 2020; Mikusz & Herter, 2016; Mikusz et al., 2015).
These dimensions were supported by 16 corresponding characteristics represent-
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ing different manifestations within these dimensions for connected car business
models.

Phase 2: Analysis of Real-World Objects (Empirical)

In the next phase, we used an empirical-to-conceptual approach to examine real
business models in the connected car domain and aimed to link our conceptual
findings to real-world phenomena. To build a comprehensive and representative
dataset of connected car business models, we decided to query different sources
and examine the sample in a sequential analytical procedure. First, we extracted
18 real-world examples (i.e., companies) from six out of the 45 articles from the
previously conducted SLR (i.e., Bosler et al., 2017; Kaiser et al., 2017b, 2021;
Rahman and Tadayoni, 2018; Stocker et al., 2017). Next, we expanded our sample
using two practitioner-oriented business reports published by leading consulting
firms: Capgemini’s report (Arif et al., 2019) helped us identify 27 emerging startups,
and PwC’s report (PwC, 2020) added 27 leading companies. Finally, we also queried
Crunchbase, the world’s largest startup database, and obtained 147 companies using
the search term “connected car”. After removing duplicates, we were left with 204
companies for further review. Third, we reviewed the companies’ websites and
applied three inclusion criteria—the company must (1) still be active, (2) provide
an English website, and (3) focus on the connected car domain—resulting in a
set of 130 potentially relevant companies. However, we only included 70 of the
130 identified companies in the further taxonomy development process to avoid
overrepresenting the startup share within the sample. Thus, we excluded 60 of the
companies stemming from the Crunchbase source in a purposive sampling approach
(Bryman, 2016). Figure 4.3 gives a detailed overview of our company selection
approach, and Table A.1 in the Appendix shows the sample with the name and
references of each company.

We subsequently scanned the company websites for dimensions and characteris-
tics to add to the preliminary taxonomy artifact. By analyzing the companies that
emerged from the SLR, we identified three additional dimensions (i.e., customer
segment, vehicle ownership, and data monetization) and added 13 characteristics
to our taxonomy. We also examined the websites of the consulting sub-sample,
which revealed seven characteristics and three further dimensions, namely data
personalization, influence of car data, and influence of autonomy. Finally, we analyzed
the Crunchbase sub-sample but did not identify any further dimensions or character-
istics, confirming the existing dimensions and characteristics of the taxonomy and
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suggesting theoretical saturation. According to Nickerson et al. (2013), the ending
conditions were met, and the taxonomy development process was terminated.
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Phase 3: Expert Interviews and Applying Real-World Objects
(Evaluation)

We extended Nickerson et al.’s (2013) original taxonomy development process
considering recent suggestions (Kundisch et al., 2022; Szopinski et al., 2019).
Therefore, as the final phase of the first iteration, we evaluated the taxonomy by
applying Szopinski et al.’s (2019) taxonomy evaluation framework. We performed
two successive episodes using both qualitative and quantitative methods. In the
first episode, we conducted twelve expert interviews, six with practitioners and
six with academic researchers with extensive experience in data-driven business
models, connected cars, and/or taxonomy building (see Table 4.2). We used a semi-
structured approach based on the suggestions of (Myers & Newman, 2007) and asked
questions about the taxonomy’s adequacy, completeness, and relevance, encouraging
an open discussion. We also solicited suggestions to modify the taxonomy, such as
adding, renaming, or removing dimensions or characteristics based on Kundisch
et al.’s (2022) basic taxonomy operations on taxonomy elements. All interviews
were conducted by two authors using video-conferencing software, lasted on average
38 minutes, and were recorded, transcribed, and then analyzed using MAXQDA
software. With this process, we qualitatively evaluated the taxonomy on the criteria
of comprehensibility, completeness, perceived usefulness, and the level of abstraction
of characteristics and dimensions.

Table 4.2.: Overview of interviewees with background, role, institution, and expertise.

In the next step, we used Mayring’s (2000) qualitative content analysis as a flexible
research technique to analyze and interpret the qualitative interview data (Krippen-
dorff, 2019). In doing so, we conducted a deductive coding approach, employing
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the previously defined meta-characteristics and tentative taxonomy dimensions and
characteristics as our coding scheme to analyze the interview data in a structured
manner. Based on the resulting codes, we applied taxonomy operations such as
adding, renaming, swapping, splitting, or deleting dimensions or characteristics
(Kundisch et al., 2022). To ensure the validity and robustness of the coding process,
we independently analyzed the data with two authors and critically reviewed and
discussed it with a third author. Finally, we compared the identified codes with the
initial version of the taxonomy, incorporated them, and produced the final version
of the taxonomy artifact (see Table 4.3). More details on the taxonomy operations
on specific elements and the taxonomy’s changes after the evaluation can be found
in Table A.2 in the Appendix.

After redesigning the taxonomy, we conducted a second evaluation episode to assess
its practical applicability and usefulness in classifying, differentiating, and comparing
real-world objects, using the evaluation criteria robustness, utility, efficacy, stability,
and completeness. As we did not want to base the evaluation only on objects already
used in the previous taxonomy development process in Phase 2, we expanded our
sample (n = 70) to include more connected car companies that had not previously
been involved. However, nine companies were excluded from our initial sample
for changing their business focus or exiting the market. To find more established
companies in the connected car domain, we referred to practitioner-oriented reports
from consulting firms such as the Capgemini report (Arif et al., 2019), which listed
45 incumbent firms, and an Accenture report (Gruendinger & Seiberth, 2018), which
identified 50 additional incumbent firms. We also queried Crunchbase with an
extended search term4 and obtained 351 startups, of which we excluded 223 that
had not received funding. After removing duplicates and comparing the remaining
companies to those included in Phase 2, we were left with 188 companies. When
reviewing the companies’ websites, we applied the three inclusion criteria from the
previous phase, resulting in a set of 65 relevant companies. During this analysis,
we noticed that many of the selected companies offered multiple connected car
business models, which we separated into distinct objects of analysis (e.g., Google
split into Android Auto, Android Automotive OS, Google Automotive Services, and
Google Maps). We also returned to the 61 companies from Phase 1 to identify any
additional underlying business models that had not been adequately considered. In
total, we found 28 additional business models, leading to a final set of 154 objects.
Figure 4.3 depicts the overall selection process, and the final business model sample
is presented in Table A.1 in the Appendix.

4“connected car*” OR “connected vehicle*” OR “connected mobility” OR “car data” OR “vehicle data”
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The identified set of objects was then classified based on the dimensions and charac-
teristics of the taxonomy. Here, a single author classified the 154 business models
according to the definitions provided in Table 4.4, which served as a codebook for
provisional coding (Hunke et al., 2021; Saldaña, 2009). To verify the quality of
the classification, a random sample of 10 % of all business models (n = 15) was
coded individually by three independent raters. Fleiss’s (1971) Kappa was used to
measure the degree of agreement, which resulted in a value of 63 %, indicating
“substantial agreement” according to Landis and Koch (1977). Furthermore, the
responses of the three individual raters were compared to the original classification
by one of the authors, which yielded a Fleiss’ Kappa value of 64 %, also indicating
“substantial agreement.” Based on these results, it can be assumed that our taxonomy
meets our evaluation criteria and is suitable for a coherent classification and concise
description of connected car business models.

4.3.2 Iteration 2: Archetype Development

In the second iteration of our work, we developed a set of business model archetypes,
salient configurations of our taxonomy. To ensure rigor and relevance, we incor-
porated input from the existing literature and real-world objects throughout the
process. We performed two primary design activities: a quantitative cluster analysis
(Kaufman & Rousseeuw, 1990) to identify groups of similar real-world objects and
a qualitative cross-table analysis of the clustering solution (Hambrick, 1984) to
interpret the clusters and derive meaningful archetype descriptions. Finally, we
evaluated the results by determining the silhouette width (Kaufman & Rousseeuw,
1990), which provides a reference value for the structural strength of the clusters.

Phase 1: Structured Literature Review (Conceptual)

The initial stage of our second iteration builds upon the previous literature review,
using the set of 45 formerly identified academic articles. We systematically reviewed
the articles to obtain an initial set of 15 potential business model archetypes, primar-
ily based on four articles that focused on different application domains: in-vehicle
infotainment (n = 3) (Bosler et al., 2017), data trading (n = 4) (Bergman et al.,
2022), data access (n = 4) (Möller et al., 2020), and connected cars in general (n =
4) (Bohnsack et al., 2021). In the subsequent phases of this iteration, we incorporate
the findings of this step to interpret the quantitative results of the cluster analysis.
This allows us to develop appropriate labels, definitions, and descriptions for the
identified archetypes.
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Phase 2: Cluster Analysis and Interpretation (Empirical)

In the next phase, we conducted an initial agglomerative cluster analysis using the
R statistical analysis package to identify groups of similar objects in the sample
of 154 real-world business models (see Table A.1 in the Appendix). We created a
dataset of these objects using dichotomous variables representing the characteristics
within each dimension of the business model taxonomy. Each row in the dataset
represents an object (i.e., a connected car business model), and each column is a
taxonomy characteristic assigned a value of 1 if identified in the corresponding real-
world object and 0 if not. Due to publicly unavailable information for some objects
regarding the revenue model dimension, we excluded the related characteristics
to avoid skewing the results, leaving nine dimensions and 41 characteristics for
the cluster analysis. We measured the distance between all pairs of observations
using Gower’s (1971) distance measure and computed a dissimilarity matrix as a
mathematical expression of how different the observations in the dataset are. This
allowed us to group the closest observations or separate the most distant ones as a
basis to derive clusters.

We calculated the agglomerative coefficient (Rousseeuw, 1986) to measure the
quality of the clustering structure and compare the five most common hierarchical
clustering algorithms, single, complete, average, McQuitte, and Ward. This value
ranges from 0 to 1, with values closer to 1 indicating a more balanced and robust
clustering structure with a better dendrogram. Of the five algorithms used, Ward.D2,
also known as the minimum variance method, produced the most balanced clustering
structure and was clearly superior to the others. In addition, Ward’s (1963) method
is prevalent among researchers and is a commonly used method for determining
archetypes that are also used by many other researchers (Gimpel et al., 2018; Hunke
et al., 2021; Remane et al., 2016a; Weking et al., 2020).

Agglomerative hierarchical clustering merges clusters to generate a solution for
all possible numbers of clusters (Backhaus et al., 2011; Gimpel et al., 2018). The
partitioning into clusters within the dendrogram can be visually identified by moving
a horizontal cut-off line. However, determining the most appropriate number of
clusters is a known problem without clear recommendations (Wu, 2012). To address
this, we used a common set of 13 measures (Gimpel et al., 2018; Passlick et al.,
2021) to derive an appropriate number of clusters for our business model archetypes,
as listed in Table A.3 of the Appendix. However, each algorithm applied resulted in
a different number of suggested clusters, ranging from 1 to 14. Thus, we used an
interpretative approach to derive an appropriate number of cluster groups, following
recent suggestions (e.g., Nahr and Heikkilä, 2022). We ran several iterations,
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selecting different numbers of cluster groups, visually evaluating the dendrogram,
and comparing the interpretability and informative power of the results. In the
end, we chose a clustering output with seven cluster groups, which were the most
meaningful results given our previous research insights. The selected cluster groups
represented a compromise between the manageability of the overall cluster solution
and homogeneity within each cluster (Backhaus et al., 2011; Milligan & Cooper,
1985; Sneath & Sokal, 1973), resulting in easily distinguishable and explainable
archetypes. Figure 4.4 illustrates the dendrogram, highlighting the final set of seven
cluster groups.

Finally, we undertook two qualitative interpretive steps to label and describe the
business model archetypes based on the cluster analysis results. First, we per-
formed a within-cluster analysis by re-reading all the collected data on the business
models assigned to each cluster. Second, we conducted a cross-table analysis (see
Table 4.5), inspecting the frequency distributions of each cluster’s characteristics
to identify the most pronounced ones (Hambrick, 1984). Based on this bipartite
analysis, we derived archetype labels for the seven clusters: (A1) data platforms,
(A2) location-based services, (A3) fleet management, (A4) diagnostics and mainte-
nance, (A5) driving analytics, (A6) cyber-physical protection, and (A7) connected
infotainment.

Phase 3: Silhouette Coefficient (Evaluation)

In the final phase of the second iteration, we evaluated each cluster’s structural
strength using the average silhouette width as a measure of cluster validity, which
ranges from 1.00 (proper clustering) to -1.00 (incorrect clustering) (Rousseeuw,
1987). We applied a threshold of 0.25 as a minimum for the silhouette coefficient
to indicate a substantial structure in the data, as recommended by Kaufman and
Rousseeuw (1990). All seven clusters had an average silhouette width of 0.34 or
greater, indicating sufficiently strong cluster structures. Clusters A1 (s = 0.70), A2 (s
= 0.66), A3 (s = 0.57), A4 (s = 0.51), A6 (s = 0.64), and A7 (s = 0.56) had highly
positive average silhouette widths, which we interpret as reliable indicators of valid
clusters. Although cluster A5 (“Driving Analytics”) had a lower value of s = 0.34,
it still met the threshold (s ≥ 0.25) and was considered valid. Consequently, our
quantitative evaluation suggested that all seven clusters and archetypes constitute
a meaningful representation of the data sample and the phenomenon under study.
Figure A.1 in the Appendix shows the corresponding silhouette plot, with an average
width of 0.56 for the sample of n = 154.
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A1

A2

A3

A4

A5

A6

A7

Glympse
INRIX

HERE Marketplace
TomTom Marketplace

MotorQ
Smartcar
Otonomo

Wejo
High Mobility

Caruso Dataplace
Mojio Platform

Synaptiv
Telenav

Evopark
Arrive
Fensens

EasyPark
Parkopedia

Passport Parking
Bliq

Google Maps
Mercedes Live Traffic Information

Navigon / Garmin Automotive
Waze

Orange - Ocean Geostart
Phiar Technologies
HERE Navigation

TomTom Navigation
Koola

Motion-S - Fleet Optimization
Vinli - Fleet

SAP E-Mobility
Bridgestone Webfleet

KATSANA Holding Sdn Bhd
Automile

Continental Vehicle Data Services
FordPro - Fleet Management

VW We Connect Fleet
BMW Digital Fleet Solutions

Mercedes Connect Business
MAN Rio

Vimcar
dashroad

ALD ProFleet
Jooycar LLC

Ridecell
AXA UPTO Fleet Management

Mojio Force for Fleets
Geotab
Xee

Orange - Ocean fleet management
Arval FleetManagement

Zubie
Verizon Connect

Preteckt
ZF Smart Service App

Pitstop
Carmen

Aplicom
Teraki

Tesla OTA
BMW Remote Software Upgrade

Goodyear TPMS
Continental ContiConnect 2.0

Bosch FNOS
CARFIT

Caruso Repdate

DRUST
Bosch Predictive Maintenance

Airbiquity
T-Systems Over-the-air-Update

IMS (Insurance & Mobility Solutions)
Motion-S - Connected Insurance

Mojio Motion for Consumers
CarX

Koop Technologies
Koop Zendrive

Tantalum Corporation
Vinli - Insurance

Jedlix
KOBA Insurance

Toyota Insurance Services
Voyomotive

Michelin DDI Driving Score
CarIQ

Metromile
Allianz BonusDrive

Consenz
GoFar

Nonda
HUM

CaRPM
Harman SHIELD

Harman - AAOS Security Suite
Upstream Security
Karamba Security

Continental - Cyber Security
IBM Cyber Security Services

SecureThings
Bosch - Updates Over-the-Air

Perseus
Argus Cyber Security

Fescaro
C2A Security

Phantom Auto
Innovusion
MetaWave

Autotalks
Aeye
Derq

Autox
Innoviz Technologies

Momenta
Affectiva

Cortica
HAAS Alert
Sensetime

Generali JeniotMobility
Owlcam

Nauto
Nexar

Pony AI
Mobileye

Google Automotive Services
Harman Ignite Store

Faurecia Aptoide
Xevo

Wayray
Drivemode

INRIX OpenCar
Elektrobit EB Cockpit System

TomTom Indigo Digital Cockpit
Alibaba AliOS

BlackBerry QNX
Huawei Harmony OS 

Google Android Automotive OS
Huawei HiCar
Apple CarPlay

Google Android Auto
Audi Connect

VW Car-Net / We Connect
Ford SYNC

Porsche Connect
Tesla Connectivity

Toyota MyT connected service
GM OnStar

Volvo Sensus Connect
Faraday Future Infotainment

BMW ConnectedDrive
NIO OS / Aspen

Mercedes me connect
Lamborghini Connect

Viaduct
Sibros

Figure 4.4.: Results of Ward.D2 clustering visualized by a dendrogram with seven cluster
groups.
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4.4 Results

We now present the results of our research, an empirically and theoretically grounded
taxonomy of data-driven business models in the connected car domain, and seven
corresponding business model archetypes. Since we have already communicated
an intermediate state of the taxonomy in detail in a conference article (Sterk et
al., 2022c), our results section focuses on the second artifact, the business model
archetypes.

4.4.1 A Taxonomy of Connected Car Business Models

Our research’s first interim result is a taxonomy of connected car business models
comprising ten dimensions with 48 corresponding characteristics. Table 4.3 provides
an overview of the complete taxonomy in the form of a morphological box, and
Table 4.4 provides the respective definitions for each dimension and characteristic.
We employed two mutually exclusive dimensions and eight non-exclusive dimensions.
The right-hand column of Table 4.3 indicates whether a dimension is exclusive (E),
such as car autonomy impact on value, or non-exclusive (N), such as role in ecosystem.
Additionally, the superscript numbers in Table 4.3 indicate the phase in which
dimensions or characteristics were added or last revised.

Table 4.3.: Taxonomy of data-driven business models in the connected car domain.
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Table 4.4.: Definitions of taxonomy dimensions and characteristics.
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Table 4.4.: Definitions of taxonomy dimensions and characteristics (continued).

4.4.2 Archetypes of Connected Car Business Models

As a second research outcome, we present seven connected car business model
archetypes that are distinctive configurations of real-world business models. Each
archetype is associated with a cluster of twelve to 31 cases and has different centers
along the characteristics of the taxonomy. The cross-table results from the cluster
analysis provide an overview of the frequency distribution of the taxonomy char-
acteristics for each archetype (see Table 4.5). By analyzing the companies in the
seven different cluster groups and the corresponding cross-table results, we devel-
oped the following interpretive labels for the archetypes: (A1) data platforms, (A2)
location-based services, (A3) fleet management, (A4) diagnostics and maintenance,
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(A5) driving analytics, (A6) cyber-physical protection, and (A7) connected infotain-
ment. Table 4.6 summarizes the seven archetypes, highlights their distinguishing
characteristics, and provides examples of typical applications. The subsequent sec-
tion provides a more comprehensive explanation of the archetypes and illustrates
them using business models (BM) extracted from our sample (see Table A.1 in the
Appendix).

Archetype 1: Data Platforms

The first cluster comprises data platforms that operate marketplaces for trading vehi-
cle data between companies. These data marketplaces act as neutral intermediaries
that allow data owners, such as OEMs or fleet operators, to monetize collected
vehicle data by selling it to independent service providers, who use it to develop
data-driven services (Möller et al., 2020). The primary value proposition of this
business model archetype is to provide a single point of access for vehicle data
(Kaiser et al., 2021), along with necessary enabling functionalities such as consent
management and secure data exchange between parties.

Prominent examples of this archetype include Otonomo (BM22), Caruso Dataplace
(BM7), and High Mobility (BM13). Besides these traditional marketplaces for
vehicle data, navigation service providers like HERE (BM89) and TomTom (BM104)
distribute contextual data, including geospatial, weather, traffic, or map data, that
can be used for location-based services. Data platforms harmonize the received
vehicle data in a standardized format, so independent service providers only need
to integrate their technology stack with one application programming interface
(API) instead of dealing with multiple relationships with different data owners
and individual data formats (Stocker et al., 2021). Accordingly, standardized data
access provides indirect value for vehicle owners or drivers by incentivizing the
development of third-party services. At the same time, OEMs retain control over
what data is available and which services can access it.

Archetype 2: Location-Based Services

The second archetype involves location-based services that use GPS location data
enriched with traffic, weather, and parking data to enhance transportation efficiency
and minimize travel time, for instance, through route optimization or real-time
parking assistance. For example, navigation services like Google Maps (BM12),
HERE (BM90), and TomTom (BM105) collect granular map data from mobile
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Table 4.5.: Characteristics’ frequency distribution for each archetype.
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Table 4.6.: Summary of the identified archetypes.
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mapping vehicles equipped with remote sensing systems and leverage dynamic,
real-time geospatial information gathered by connected vehicles or devices. This
rich data and location technologies enable other location-based services such as
geo-fencing, hazard zone alerts, or traffic alerts. Beyond direct monetization of
vehicle data through third-party services, access to granular map data is a crucial
enabler for autonomous driving.
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Smart parking applications are another group of location-based services that locate
and navigate to available parking spaces, facilitate payment transactions, and enable
parking space management. Smartphone applications, such as EasyPark (BM34) or
Passport Parking (BM38), allow drivers to conveniently find available parking spaces
and manage parking processes. In addition, charging station advisors make it easy
to plan trips with electric vehicles. For example, Telenav (BM149) provides range
estimation and route planning tools based on artificial intelligence and machine
learning to ensure drivers are always close to the nearest charging station when
needed.

Archetype 3: Fleet Management

The third archetype comprises companies providing fleet management solutions to
corporate fleets, logistics and mobility service providers. Live data insights are
essential for successfully managing a company’s transportation activities related to a
vehicle fleet (Sterk et al., 2023a). The primary value proposition in this cluster is
to assist fleet managers in monitoring and reducing the total cost of ownership of
the fleet. However, some services also directly or indirectly improve vehicle safety,
transportation efficiency, and environmental sustainability.

Several of the business models in this cluster originate from the banking sector, such
as Arval (BM48) (owned by the BNP Paribas Group) and ALD Automotive (BM45)
(owned by Société Générale). These bank-backed companies offer a wide range
of data-driven services, such as comprehensive reporting tools, efficient workflow
management, invoice verification, and real-time insight into cost trends. Many
OEMs also provide similar services to manage homogeneous fleets of their own
brands, such as Ford Fleet Management (BM84) and BMW Digital Fleet (BM5).
Geotab (BM32) goes a step further by offering a holistic marketplace with hundreds
of in-house and third-party developed solutions in various categories, including
fuel management, routing and dispatching, or maintenance and diagnostics. Some
companies specialize in specific fleet software solutions for small and medium-sized
businesses, such as Vimcar (BM79), the market leader in providing a digital logbook
that uses an OBD2-device to collect driving data and store it in the cloud.

Archetype 4: Diagnostics and Maintenance

The fourth archetype comprises business models that use vehicle data to provide
diagnostics and maintenance by monitoring and improving vehicle health and man-
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aging vehicle-related maintenance activities between vehicle owners and related
businesses such as repair shops. The value proposition for customers is increased ve-
hicle uptime, convenience, and cost reduction through remote services and proactive
maintenance enabled by continuous vehicle monitoring. This is done by leveraging
vehicle usage and diagnostic data from multiple sources, such as neutral servers,
OBD2-dongles, or other retrofitted devices.

Proactive maintenance services include data-based alerts to repair shops, fleet man-
agers, or drivers. One example is a pilot project by Bosch and BMW to automatically
transmit data as part of a first notification of service (FNOS) (BM53). Based on live
vehicle data, drivers receive a notification that a service or repair is due. If they agree,
FNOS automatically transmits all relevant data to the preferred workshop, sends
an appointment with a proposed quote, and prepares for service or repair. More
advanced maintenance services go beyond reporting service needs, including remote
onboard diagnostics or predictive maintenance. For example, Preteckt (BM143)
offers cloud-based vehicle diagnostics to identify technical issues early before they
progress to expensive repairs. Similarly, Pitstop (BM142) provides fleet managers
with predictive insights to increase and balance fleet uptime and minimize mainte-
nance costs by anticipating vehicle issues in advance and recommending appropriate
actions. Other business models reduce the need for on-site vehicle service through
incremental updates using over-the-air (OTA) technology. For example, T-Systems
(BM100) offers network-based, OEM-independent solutions for OTA updates to
improve recall rates, which can be implemented virtually without disturbing the
driver.

Archetype 5: Driving Analytics

The fifth archetype covers driving analytics aiming to reduce usage costs incurred
by the end-customers by monitoring and profiling actual driving patterns. Insur-
ance companies have been early adopters of this archetype, offering usage-based
insurance (UBI) programs that utilize dynamic behavioral data collected via OBD2-
dongles, other retrofit devices (e.g., black boxes), or modern smartphones to calcu-
late premiums (Coppola & Morisio, 2016). For example, KOBA Insurance (BM133)
and Metromile (BM17) offer pay-as-you-drive insurance plans in which the vehicle
owner pays a monthly rate plus a set amount for each mile driven. Other companies,
including Allianz with its BonusDrive app (BM47), expand this approach to pay-how-
you-drive models by monitoring and analyzing not only mileage but also risk-related
data (such as braking, acceleration, or speeding) to assess driving behavior. These
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driving scores can be calculated for individual drivers, specific vehicles, or entire
fleets.

Insurance companies also use telematics data to obtain accident reports for better
claims processing. For example, IMS (BM129) provides “connected claims” that en-
able early detection of theft or accidents and reduce claims processing costs through
data-driven decision-making. In the future, with the possibility of autonomous
driving, even more comprehensive data-driven insurance tariffs can be offered. For
example, Koop (BM135) sells next-generation insurance products that focus on the
risks of autonomous vehicles, robotics, and automation. In addition to insurance
use cases, some companies are developing applications that monitor driver behavior
to provide driving assistance, such as Michelin’s Ideal Driver Pro app (BM69), which
allows drivers to access a continuous analysis of their driving behavior. The results
are reflected in an overall score and sub-scores (i.e., pace, adaptability, anticipation),
serving as a connected driving coach.

Archetype 6: Cyber-Physical Protection

The sixth archetype refers to cyber-physical protection aiming to improve the physical
safety of drivers and passengers, as well as the cybersecurity of the vehicle using
hardware and software solutions. These business models are mainly targeted at
OEMs, such as Innoviz Technologies (BM66), which provides them with hardware
technologies like advanced driver assistance systems (ADAS). In addition, some
startups like Nauto (BM21) offer retrofit solutions like dashcams directly to drivers
or fleet managers, while others like Owlcam (BM73) use existing smartphone sensors
(e.g., GPS, accelerometer, or luminance) to collect and analyze safety-related driving
data.

However, both retrofitted and built-in sensor technologies raise security concerns, as
decisions based on available driving data can become vulnerable targets for hackers.
For this reason, newly developed or upgraded software components undergo rigorous
testing procedures to ensure a high level of cybersecurity. For example, Fescaro
(BM125) offers cybersecurity testing to OEMs to detect and handle vulnerabilities.
Despite this, there is still a possibility that vulnerabilities could be exploited by
attackers. Therefore, the component vendor’s software must be integrated into the
vehicle’s central cybersecurity management system to be informed and able to be
fixed through OTA updates. Bosch (BM52), for example, provides regular software
and firmware OTA updates to ensure that connected vehicles are always up to date,
protected from hacker attacks, and vulnerabilities are resolved.
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Archetype 7: Connected Infotainment

The seventh archetype, connected infotainment, represents business models that
contribute to a personalized in-car experience through touchscreens or display-
equipped head units. These infotainment systems seamlessly integrate automotive
features, interfaces, and applications, and can go beyond displaying relevant vehicle
information to providing interactive content for increased safety, traffic efficiency
and convenience. Overall, infotainment systems consist of several layers (Sivakumar
et al., 2020) that should not be considered as isolated systems, but rather have
supporting, alternating, or substituting relationships.

The first two layers comprise the operating system (OS) and middleware, which
enable rapid development and deployment of data-based applications for the car. For
example, BlackBerry’s QNX (BM82) provides a comprehensive white-label service
package that can be customized by OEMs. However, the traditional proprietary
approach to development and functionality is increasingly being replaced by open
source models, such as Google’s Android Automotive OS (AAOS) (BM10). Second,
the human-machine interface and application layers encompass everything the driver
sees. To this end, automotive suppliers provide frameworks for OEMs to develop
digital cockpits, such as the TomTom Digital Cockpit (BM103), which supports the
development of highly integrated applications based on AAOS. These applications
can come from third-party vendors or directly from the OEM, although OEMs have
historically encapsulated infotainment features (e.g., remote vehicle access, real-
time traffic information) under their own sub-brands, such as BMW ConnectedDrive
(BM4). As vehicles become autonomous, passengers are likely to demand more
infotainment services that are currently more typical of smartphones, such as media
streaming and video games. As a result, the world of smartphones is already making
its way into the cockpit with mirroring capabilities that allow seamless projection
of smartphone interfaces into the digital cockpit. The most prominent example is
Apple CarPlay (BM1), where the operating system (i.e., iOS) and applications (e.g.,
the voice assistant) still run through the smartphone.

4.5 Discussion

Our study examines the generativity of connected cars for business model innovation,
leveraging vehicle data by providing two artifacts: a taxonomy and seven archetypes
for connected car business models. To the best of our knowledge, this work repre-
sents the first industry-specific taxonomy on the subject and complements existing
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industry-agnostic classifications (e.g., Passlick et al., 2021; Schüritz et al., 2017).
While generally applicable taxonomies help distinguish connected car companies
based on industry-agnostic dimensions such as role in ecosystem, data monetization
strategy, or revenue model, they are insufficient to fully comprehend the connected
car landscape and the configuration of underlying business models. Instead, our
proposed taxonomy captures the peculiarities of the connected car, which is highly
complex and not fully digitizable, by introducing novel dimensions such as value
for car owner or driver (e.g., infotainment), car autonomy impact on value (e.g.,
enhanced value by autonomy), or data access (e.g., OBD2-dongle).

In the second part of our study, we developed a systematic understanding of business
model configurations and derived seven archetypes from real use cases, summarized
in Figure 4.5. Fundamentally, our archetypes can be divided into three overarching
categories. Category 1 consists of context-related business models (A2-A5) provid-
ing direct value to drivers or vehicle owners through data-driven applications. In
contrast, categories 2 and 3 represent cross-contextual business models that enable
further business models through either in-vehicle (Category 2, A6-A7) or off-vehicle
(Category 3, A1) infrastructure solutions. Category 2 archetypes (A6-A7) rely on
in-vehicle software architecture (e.g., infotainment systems or ADAS) assembled by
OEMs from various software vendor components, creating enabler technologies and
valuable data sources for implementing the data-driven applications summarized
in Category 1 (A2-A5). Category 3 encompasses a single archetype (A1), which
operates entirely outside the vehicle and acts as a marketplace for data exchange be-
tween car manufacturers and third parties, facilitating independent service providers
to implement business models in the first category (A2-A5).

4.5.1 Theoretical Implications

Our research ties into the descriptive knowledge of connected cars and associated
business models, an emerging and still-developing domain (Kaiser et al., 2018).
Although vehicle connectivity is a major trend, the connected car is a relatively
new topic in IS research, with most of the available work focused on exploring
privacy concerns rather than business potentials (Cichy et al., 2021; Koester et al.,
2022; Lechte et al., 2023). The outcome of our study resulted in a theoretically
sound and empirically validated taxonomy summarizing the critical characteristics of
connected car business models, along with seven archetypes representing recurring
patterns across all characteristics. We contribute to comprehend this domain and
enrich future research with theoretical, empirical, and methodological implications.
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Figure 4.5.: Visualization of archetypes and their relationships.

Connected cars provide a unique setting to examine and expand existing theory and
evidence on business models for connected device data (Cichy et al., 2021).

First, our taxonomy provides theoretical insights in the form of a common language
and structure for analyzing, classifying, and configuring connected car business
models, paving the way for further research and helping scholars position their
work therein. The corresponding archetypes can serve as a starting point for under-
standing superordinate business model configurations in the connected car domain.
Moreover, our study’s empirical findings enhance the knowledge of data monetiza-
tion by presenting seven established configuration options for business models in the
connected car space. These archetypal patterns and the underlying taxonomy reveal
the technical prerequisites (i.e., value architecture) required by ecosystem actors,
their potential roles (i.e., value network), and the data-driven services they can offer
(i.e., value proposition) to successfully monetize vehicle data (i.e., value finance).
Hence, our research responds to recent calls for a better understanding of “the role
that data aggregators and refiners play in data monetization, how they create value,
and how different parties can capture it” (Parvinen et al., 2020, p. 44).

Second, empirically we provide a systematically analyzed dataset of connected car
business models that demonstrates how companies leverage digital technologies in
the mobility sector. Our data collection process primarily relied on publicly available
sources such as company websites and industry-specific business reports, making
the dataset easily reproducible and extendable to reflect future developments in
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the automotive industry. Therefore, this dataset serves as a valuable resource for
guiding further studies on digital innovation in the connected car domain.

Third, our research methodology illustrates how a technology-specific business
model taxonomy and business model archetypes can be derived by following a
mixed methods design (Venkatesh et al., 2013, 2016), ensuring both theoretical
rigor and practical relevance by using inputs from the existing literature corpus and
industry-specific real-world objects (i.e., 154 connected car business models). Our
taxonomy, evaluated quantitatively and qualitatively, represents an analytic theory
that classifies, according to (Gregor, 2006), the specific dimensions or character-
istics of individuals, groups, situations, or events by summarizing commonalities
in discrete observations. Thus, our research contributes to structuring a body of
knowledge that constitutes a new field in IS research (Glass & Vessey, 1995) and
enables a more systematic description.

Finally, the success of connected car business models, as represented by our devel-
oped taxonomy and archetypes, is increasingly tied to ensuring data privacy and
security (Wiener et al., 2020). Unlike other connected products, connected cars
have already become a mass IoT case, and data from connected cars is already
being shared with third parties through APIs. Of course, exchanging connected
car data raises a series of privacy-related concerns (Cichy et al., 2021) as both
the car users’ informational and physical spaces may be intruded (Koester et al.,
2022), which may result in an increased privacy risk. Sensitive information about
actual driving behavior or daily routines might be inferred from connected car data
(Lechte et al., 2023). To mitigate this privacy risk, in Europe, for example, the
data shared by connected products such as connected cars is being regulated by
the European Commission, forcing automakers to build data collection and sharing
systems that do not compromise individual privacy but also do not prohibit data
sharing. Applying a privacy-by-design approach (Schaar, 2010) and implementing
user consent procedures are two possible ways to address the privacy challenge.

4.5.2 Managerial Implications

Our research offers significant managerial implications by providing valuable tools
for navigating the vastly uncharted territory of data-driven business models in the
automotive industry. Thereby, our taxonomy goes beyond technical or economic
considerations, offering a differentiated view of business model design in the con-
nected car space. This enables automotive incumbents, startups, and non-industry
players to gain a detailed understanding of the interactions among car data-driven
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business models and learn about different ways to monetize connected car data.
In addition, our research provides a comprehensive market overview and analysis
of the connected car ecosystem and presents seven representative archetypes that
specify the relevant dimensions for business model innovation. Managers can use
these archetypes to identify business opportunities and potential market entry points
in the automotive ecosystem and assess their implementation in their company’s
specific context, as discussed by Kaiser et al. (2021). By employing archetypes,
practitioners can gain insights into potential configurations that have been widely
applied, serving as a reference point for further exploration and customization,
thus helping to develop unique business models tailored to their specific goals and
target markets. In doing so, our cross-table (see Table 4.5) is a valuable tool that
facilitates assessing how market participants typically structure their business models
concerning specific archetypes. While our work does not provide a one-size-fits-all
prescription, it does offer a prescriptive component in providing actionable insights
and guiding principles.

Practitioners can use the taxonomy and archetypes as strategic management tools to
explain their current business model to stakeholders, focus on improving specific
operational aspects, or develop new business models aligned with their corporate
strategy (Spieth et al., 2014). They may further use them to systematically analyze
competitors and identify unique combinations of features that have not yet been
used in the market. By conducting a morphological analysis, our work can help
practitioners systematically develop innovative ideas (Geum et al., 2016). The
archetypes and associated real-world business models highlight established inno-
vation paths that executives can follow to digitalize their legacy business models
and advance car data monetization. Overall, the taxonomy and archetypes provide
industry-specific support for business model innovation, enabling practitioners to
expand their market offerings and create value throughout the vehicle life cycle.

In addition, several policy initiatives are underway, such as the European Data Act
(European Commission, 2022b), to protect the privacy of individuals in the case of
connected products that will impact the implementation of DDBM. The European
Data Act regulates data generated by connected products and grants stakeholders
more control over their data through a strengthened right to data portability. The
directive is also expected to give users of connected vehicles more control over their
data and allow third parties fair and non-discriminatory access to and use of the data
in services. Due to the complexity of the connected car context and the reactions
of European automotive organizations, represented by the European Automobile
Manufacturers’ Association (ACEA) and the European Association of Automotive
Suppliers (CLEPA), we expect sector-specific legislation to be published shortly that
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will provide more detail on OEMs’ obligations regarding what connected car data
can be shared for use in DDBMs and how.

4.5.3 Limitations and Future Research

Like any study, ours is subject to limitations that also suggest potential avenues
for further research. Taxonomy-based research is never complete as it reflects a
snapshot in time (Nickerson et al., 2013), which is also true for our taxonomy and
archetypes that represent the current state of connected car business models. As the
field is still developing, future research could revisit and extend our findings to keep
them relevant and applicable. For example, legislation (e.g., European Commission,
2022a) mandating safety-related systems in cars (e.g., to monitor driver attention,
distraction, drowsiness, and even health) will likely drive future innovation and
potentially lead to further archetypes. However, our findings cannot represent such
future trends because they are empirically informed only by existing real-world
business models.

Because our research aimed to develop a taxonomy and associated archetypes for
the manifold connected car domain, our findings are still broad in scope. For
instance, our study covers business models with very different foci, including end-
user applications for navigation or driver assistance, technology provision in the
area of safety and security, or platform-based business models as enablers for
novel services. Future studies should explore specific archetypes in more depth by
developing more specific taxonomies and sub-archetypes for these business models,
similar to the study on vehicle data marketplaces by Bergman et al. (2022).

We built the taxonomy and performed the coding process based on publicly available
information, triangulating data from company websites, Crunchbase, and reports to
maximize the validity of our dataset. However, information on companies’ revenue
models was often limited, so we excluded this dimension from the cluster analysis.
Future research should fill these data gaps by contacting companies directly to
complete data sets and verify or extend our cluster analysis with new insights.
Furthermore, there was a notable lack of comprehensive information regarding
the techniques employed for data analysis or the sensors and additional systems
utilized to access in-vehicle data. We evaluated the taxonomy both quantitatively and
qualitatively but primarily evaluated the archetypes from a quantitative perspective
by calculating silhouette width as a measure of cluster validity (Rousseeuw, 1987).
Future research endeavors could complement our work by qualitatively evaluating
the archetypes through expert interviews. This could reveal dependencies between
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different business model archetypes and important strategic decision factors for
how companies consider the different archetypes in their business model innovation
processes.

4.6 Conclusion

Driven by the growing importance of connected cars, OEMs as technical pioneers in
the IoT and established technology players as experienced orchestrators of digital
ecosystems are competing to deliver a “smartphone on wheels.” Existing research
on business models in the connected car domain has mainly focused on topics such
as privacy concerns (Cichy et al., 2021), ecosystem conceptualization (Kaiser et al.,
2021), or path dependence (Bohnsack et al., 2021). While there have been efforts to
create taxonomies for data-driven business models and data monetization in general
(Bock & Wiener, 2017; Hartmann et al., 2016; Passlick et al., 2021), there is little
conceptual or empirical evidence on the specifics of the connected car phenomenon
(Sterk et al., 2022c). Consequently, research so far does not explain the potential
impact of vehicle data on automotive business models and lacks in-depth empirical
investigations. Moreover, in practice, there is a gap between the potential business
value of car data monetization and the actual value delivered.

The objective of this study is to bridge this gap trough two successive iterations.
First, following Nickerson et al.’s (2013) methodological guidance, we developed a
business model taxonomy based on a structured literature review and an analysis
of 154 connected car business models, which was evaluated both qualitatively and
quantitatively. In the second iteration, a cluster analysis (Kaufman & Rousseeuw,
1990) was performed to identify seven connected car business model archetypes
by interpreting and evaluating the corresponding clusters. This research extends
the existing body of knowledge on data-driven business models and connected
cars by providing a comprehensive examination of connected car business models.
These artifacts can serve as a common language for scholars to analyze, classify, and
configure connected car business models and as a basis for understanding higher-
level business model configurations. Decision-makers in the automotive industry can
use the findings as strategic management tools for developing new business models
and benchmarking existing ones. Ultimately, this work provides a foundation for
future research using the extensible taxonomy and archetypes as constructs to shed
more light on the proliferation of connected cars and related business models.
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Part III

Design of Connected Car Business Models





Utilizing Fleet Data:
Towards Designing a
Connected Fleet
Management System for the
Effective Use of Multi-Brand
Car Data

5

This chapter comprises an article that was published as: Sterk, F., Frank, S.,
Lauster, I., & Weinhardt, C. (2023). Utilizing Fleet Data: Towards Designing
a Connected Fleet Management System for the Effective Use of Multi-Brand
Car Data. Proceedings of the 56th Hawaii International Conference on System
Sciences (HICSS) (pp. 1489-1498). Note: The abstract has been removed.
Tables and figures were reformatted and newly referenced to fit the structure of
the thesis. Chapter, section, and research question numbering and respective
cross-references were modified. Formatting and reference style was adapted,
and references were integrated into the overall references section of this thesis.

5.1 Introduction

With the ongoing proliferation of connected cars, in-vehicle data has become a
key theme on the automotive industry agenda and, thus, an essential source of
value creation (Carter et al., 2018; Kaiser et al., 2021). To harness the game-
changing opportunities of this tremendously growing amount of data, not only
original equipment manufacturers (OEMs) but also insurers, rental companies, and
repair shops, among other players in the connected car ecosystem, seek to offer
data-driven services (Sterk et al., 2022a). In exploring car data monetizing, leading
consultancies identified data-based fleet management as one of the industry’s most
impactful use cases (Arif et al., 2019; Carter et al., 2018). In fact, the share of private

93



vehicles is declining, leading to a greater demand for professionally managed fleets
(Pütz et al., 2019). Consequently, it is not surprising that McKinsey & Company
forecasts the global connected fleet solutions market to grow at around 23% annually,
becoming a $75.79 billion industry by 2025 (Carter et al., 2018).

While numerous data-driven fleet management use cases, such as predictive mainte-
nance (Killeen et al., 2019) or driver monitoring (Walnum & Simonsen, 2015), are
being discussed in research and practice, effective implementation is hindered by the
problem of data access (Kaiser et al., 2019; Martens & Mueller-Langer, 2020). More
precisely, while OEMs exclusively access car data, independent service providers
must identify alternative access options, for instance, installing retrofit solutions
(e.g., dongles) (Kaiser et al., 2019). However, this is fraught with severe draw-
backs, such as expensive hardware, time-consuming installation, and limited data
quality (Martens & Mueller-Langer, 2020). Nonetheless, the emergence of data
marketplaces (e.g., Caruso Dataplace) offers another approach to accessing car data
without hardware and installation, directly from OEMs (Kaiser et al., 2021; Martens
& Mueller-Langer, 2020). Since car data marketplaces remain in their infancy and
currently provide limited data, fleet management is a solid starting point for con-
nected service design due to its high utility and manageable data requirements (Arif
et al., 2019). However, scholars have scarcely touched on designing connected car
or fleet services incorporating the concept of data marketplaces (Sterk et al., 2022a).
Hence, we pose the following research question: How to design a connected fleet
management system in order to use car data from data marketplaces effectively?

We address this question by conducting a design science research (DSR) project
(Kuechler & Vaishnavi, 2008), using knowledge from a preceding literature review
as well as practical insights from interviews with domain experts. Thereby, we derive
theory-grounded meta-requirements and tentative design principles justified by the
theory of effective use (Burton-Jones & Grange, 2013). We then instantiate them in
a connected fleet management system based on in-vehicle data collected in a field
test initiated by Caruso Dataplace (Mokeev et al., 2021). Finally, we evaluate our
artifact by means of a focus group workshop and further expert interviews. Overall,
we contribute to the body of design knowledge on connected service development,
specifically focusing on fleet management data and its effective use. Practically, our
research informs fleet managers on how connected car data can be utilized and how
to design an effective fleet management system.
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5.2 Related Work and Foundations

Connected Cars harbor the potential to deliver a unique customer experience while
bringing cost and revenue benefits to mobility enterprises (Coppola & Morisio,
2016). To date, OEMs have sought to monetize valuable car data by offering digital
services such as BMW ConnectedDrive or Mercedes me connect, enabling concierge
services, remote diagnostics, and on-street parking information, among others
(Kaiser et al., 2021). However, such data is not only of interest to OEMs but also to
independent service providers (e.g., suppliers, workshops, insurers) who are forced
to explore alternative technical gateways granting similar access options (Kaiser
et al., 2019). The most common solution is retrofitting a telematics-equipped dongle
into the on-board diagnostics (OBD) port to allow remote car data access (Coppola &
Morisio, 2016; Pütz et al., 2019). According to Martens and Mueller-Langer (2020),
despite initial optimistic forecasts for OBD dongle adoption, the market remains
fragmented, and scaling up is challenging for several reasons. First of all, OBD
dongles are characterized by time-consuming installations and expensive hardware
purchases. Moreover, they are limited in terms of car park coverage, data point
availability, as well as quality of the data collected. To counteract these drawbacks,
another opportunity for third-party data access has emerged—without hardware or
installation, directly from the OEMs. In fact, aspiring car data marketplaces such as
Caruso Dataplace or Otonomo act as neutral intermediaries allowing OEMs to sell
standardized data to independent service providers (Kaiser et al., 2021; Martens &
Mueller-Langer, 2020). The significant benefit is that data from multiple OEMs can
be made available via a single point of access (Martens & Mueller-Langer, 2020). In
practice, though, marketplaces remain dependent on data access conditions (e.g.,
pricing or data coverage) set by OEMs.

Fleet Management is an essential instrument in the successful administration of
a company’s transportation activities (Redmer, 2022). Especially when operating
diversified car fleets, managers can benefit from the multi-brand data accessed by
retrofit-dongles or third-party marketplaces (Martens & Mueller-Langer, 2020). In
general, fleet management systems (FMS) improve the efficiency and productivity
of cars and drivers by mitigating the risks associated with their fleet investments
(Salhieh et al., 2021), such as purchasing, placement, and maintenance of the fleet
(Arulraj et al., 2019). Accordingly, an FMS allows enterprises to keep track of their
fleet conveniently and cost-effectively (Karmanska, 2021). With the rapid prolifera-
tion of connected cars, the global FMS market witnesses tremendous growth (Carter
et al., 2018; Kerber & Gill, 2019), which also entails a higher academic relevance
in this area. Current research, for instance, addresses predictive maintenance by
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developing machine learning algorithms (Killeen et al., 2019) or dashboards (Arulraj
et al., 2019) for an existing FMS. Moreover, the driving behavior of fleets is analyzed
to reduce risky behavior through app notifications (Levi-Bliech et al., 2018). Simi-
larly, lowering fuel consumption is also studied by identifying environmentally and
economically beneficial driving modes (Walnum & Simonsen, 2015). In parallel, as
companies become more environmentally conscious, the issues of reducing air pollu-
tant emissions (Longo et al., 2016) and providing strategic decision support for fleet
electrification come to the forefront (Schmidt et al., 2021). However, the research
has not considered developing an FMS utilizing data from third-party marketplaces
to date.

Theory of Effective Use. Effective use is vital to achieving the benefits of an infor-
mation system. To this end, Burton-Jones and Grange (2013, p. 633) established the
effective use theory, in which they define “effective use as using a system in a way
that helps attain the goals for using the system.” Their conceptualization describes
effective use based on three dimensions forming a hierarchy, as every lower-level
dimension is necessary but not sufficient for the next higher-level dimension. Ini-
tially, (1) user access to the system’s representations must be unimpeded by the
surface and physical structures (transparent interaction). Thereby, (2) the ability to
obtain representations that faithfully reflect the domain represented by the system
is improved (representational fidelity). Eventually, (3) the latter increases the users’
ability to act on faithful representations they obtain from the system to improve their
state in the domain (informed action). In our case, for instance, fleet managers need
to access accurate vehicle information via comprehensive dashboards (transparent
interaction), providing a representative overview of the current fleet condition and
driving behavior (representational fidelity) that enables decision-making to opti-
mize fleet processes such as vehicle ordering, maintenance, or invoicing (informed
action).

5.3 Design Science Research Methodology

To provide a connected fleet management system (CFMS) based on vehicle data,
we conduct a DSR project as described by Kuechler and Vaishnavi (2008) as it
strongly emphasizes an iterative procedure in rapid iterating cycles, enabling flexible
artifact development. Overall, our DSR project comprises two consecutive design
cycles consisting of five phases each (see Figure 5.1). This paper reports the results
achieved during the first cycle, starting with the awareness of the problem perceived
in practice. We ensure both rigor and relevance by using inputs from the existing
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body of knowledge (rigor) and the practical problem domain (relevance) (Hevner,
2007).

Figure 5.1.: Design science research methodology based on Kuechler and Vaishnavi (2008).

Awareness of Problem. We rely on a previously conducted systematic literature
review (Sterk et al., 2022a) focusing on data-driven business models in the connected
car domain. To include recently published articles, we repeated the literature review
following the methodological suggestions by Webster and Watson (2002). Thereby,
we extended the search term1 by Sterk et al. (2022a) for the keyword fleet* to
shift focus to the fleet perspective and queried several databases2 in title, abstract,
or keywords. Our renewed search obtained 1121 studies, of which 779 remained
after duplicates were removed. We then analyzed each article’s title and abstract,
yielding 133 articles. Afterward, we reviewed all full texts applying three inclusion
criteria—the study must (1) address the fleet domain, (2) be available in English,
and (3) be peer-reviewed—resulting in 34 relevant articles. Subsequent forward and
backward search yielded 20 additional articles, resulting in a total of 54 papers.

To further refine and validate the awareness of the problem, we performed an
explorative study using qualitative interviews with 21 fleet domain experts operating
in five different areas: corporate fleet (n = 11), car subscription (n = 4), car sharing
(n = 2), ride pooling (n = 1), and fleet service provider (n = 3). An interview
overview including unique labels is provided in Table 5.1. The interviews were
conducted through open questions along predefined discussion points to gain a

1“business model*” AND (connected OR data* OR digital*) AND (fleet* OR car* OR vehicle* OR
automotive*)

2AIS Electronic Library, Emerald Insight, IEEEXplore Digital Library, ProQuest, ScienceDirect/Scopus,
Web of Science
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deeper understanding of the real-world phenomenon. Thereby, we adopted a semi-
structured approach to ensure similarity in the general structure of each interview.
All interviews were recorded and transcribed before being coded and analyzed
by two researchers using MAXQDA and Excel. When analyzing the transcribed
interviews, we opted for qualitative content analysis according to Mayring (2000),
as it is a flexible research technique that facilitates the analysis and interpretation
of qualitative data (Krippendorff, 2019). Finally, our data analysis enabled us to
justify the research gap regarding its practical relevance before artifact development
(Sonnenberg & Vom Brocke, 2012).

Table 5.1.: Overview of interviewees and focus group.

Suggestion & Development. Next, we reviewed the theory of effective use (Burton-
Jones & Grange, 2013) that should guide the design of the CFMS to improve overall
fleet management effectiveness. Based on the issues identified in the interviews and
literature and the adopted kernel theory, we then derived meta-requirements (MRs).
Drawing on the MRs, we formulated design principles (DPs) for artifact development
following the suggestions of Gregor et al. (2020). In the development phase, we
instantiated the proposed DPs based on in-vehicle data of 89 cars collected in a field
test initiated by Caruso Dataplace (Mokeev et al., 2021). Thereby, we developed a
prototypical CFMS in Microsoft Power BI, enabling fleet managers to utilize car data
effectively.

Evaluation & Conclusion. Finally, the CFMS was evaluated according to the human
risk and effectiveness strategy by Venable et al. (2016). We opted for this strategy
as the design risk (i.e., potential problems the design may face) of the proposed
artifact is user-oriented. First, we conducted a formative ex-ante evaluation using an
exploratory focus group workshop (Tremblay et al., 2010) with five decision-makers
from a leading connected car company (see Table 5.1). This allowed us to gather
feedback for further improvements by demonstrating our tentative DPs and artifact
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and discussing completeness, consistency, and applicability. After implementing the
changes, we applied a summative ex-post evaluation through seven semi-structured
interviews with twelve fleet experts (see Table 5.1). In this step, we demonstrated
the instantiated artifact to the participants by a click-through. Afterward, they gave
feedback on effectiveness, efficiency, and consistency with the real-world context
leading to inputs for the second cycle to deliver the final DPs and artifact.

5.4 The Design Science Research Project

5.4.1 Awareness of Problem

By analyzing the literature corpus and the interviews conducted, we identified
eight critical issues encountered by fleet experts that vehicle data could potentially
address. In doing so, we divide the identified issues into three dimensions—economic
sustainability (I1, I2), environmental sustainability (I3, I4, I5), and vehicle health
(I6, I7, I8)—and define them as follows. While the economic dimension covers the
fleet’s long-term financial viability, the environmental facet involves resilience to
climate change. Finally, vehicle health refers to keeping the fleet in optimal use
during its economic life by maintaining its condition.

Economic Sustainability. From a fleet manager’s perspective, the total cost of
ownership (TCO) is vital for identifying cost-saving opportunities and reducing
operating costs stemming from fuel, maintenance, tires, or repairs (Fatin Amirah
et al., 2013; López-Ibarra et al., 2020). Nevertheless, due to a lack of information
on current mileage and energy consumption (I1), the potential for transparently
managing and effectively optimizing costs is still little (Fatin Amirah et al., 2013).
In this regard, one of the experts interviewed (Beta 4) emphasized that “the topic
of cost transparency is still in its infancy. Even the big fleet management companies
still work with Excel.” Analyzing current fleet data would thereby help address the
poor predictability of TCO (I2) and provide a basis for future resource planning and
strategic decision-making (Redmer, 2022). Ultimately, monitoring fuel consumption
could help decide what portion of the fuel costs the company and the driver should
bear (Bätz et al., 2020).

Environmental Sustainability. With ongoing climate change, environmental sustain-
ability has become a crucial strategic pillar for fleet managers globally (Karmanska,
2021). Consequently, ambitious greenhouse gas reduction targets dominate current
discussions about fleet management. Thus, as electric mobility has proven to be
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a powerful technology for decarbonizing the transportation sector (Longo et al.,
2016; Schmidt et al., 2021), multiple fleets are changing their car policies from
internal combustion engines (ICEs) toward battery electric vehicles (BEVs) and
plug-in hybrid electric vehicles (PHEVs) (Karmanska, 2021). However, without
effectively accessing information (I3) about vehicle usage, sufficient calculation of a
fleet’s carbon footprint is limited (Bätz et al., 2020; Walnum & Simonsen, 2015).
Moreover, in setting up their strategy toward a low carbon economy, companies are
expected to establish reporting tools (Salhieh et al., 2021) faithfully reflecting the
fleet’s carbon footprint (Gonder & Simpson, 2007). Nevertheless, they still struggle
to implement such a CO2 reporting (I4). Ultimately, a sustainability strategy should
also include appropriate measures to raise drivers’ partially limited awareness of
sustainable driving (I5). To this end, one interviewee (Alpha 7) explicated that
“employees opted for PHEVs primarily because of the tax advantage, never drove electric,
and left the charging cable in its original packaging.”

Vehicle Health. Another prominent concern fleet managers face is maintaining
vehicle conditions to ensure long-lasting vehicle health and driver safety (Coppola &
Morisio, 2016). In some cases, however, fleet managers lack detailed information
about the current health of the fleet (I6). In particular, they cannot remotely check
vehicle conditions due to lacking access to relevant data such as error messages,
missing supplies, or illuminated indicator lights (Killeen et al., 2019). Hence, preven-
tive actions cannot be initiated to reduce maintenance calls and associated vehicle
downtime (I7) (Fatin Amirah et al., 2013). Regarding this, one interviewed expert
(Epsilon 3) mentioned that they “usually only find out too late when maintenance
intervals are not adhered to, or vehicles run without oil for weeks, causing enormous
costs.” This aspect is closely related to drivers’ decreasing responsibility for vehicle
care (I8), occurring primarily in shared fleets.

5.4.2 Suggestions

In general, adequate fleet management is essential for successfully governing an
enterprise’s transportation activities (Redmer, 2022). This requires effective use of
a fleet management system enabling the enterprise to improve vehicle and driver
efficiency (Karmanska, 2021; Salhieh et al., 2021). For this purpose, we structured
our MRs along the three dimensions of the effective use theory (Burton-Jones &
Grange, 2013)—transparent interaction (MR1, MR2), representational fidelity (MR3,
MR4), and informed action (MR5, MR6)—as it perfectly fits our research endeavor.
Finally, based on the six MRs, we continued our research by identifying DPs for the
CFMS following established guidelines (Gregor et al., 2020). We thereby divide our
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DPs into the two areas of fleet management—strategic (DP1-DP3) and operational
(DP4-DP6). The translation process from MRs to corresponding DPs is depicted in
Figure 5.2.

Strategic Fleet Management. To increase transparent interaction of strategic activi-
ties, fleet managers require to access detailed information regarding the overall fleet
operating cost (I1), usage (I3), and condition (I6). This means providing unimpeded
access to the vehicle data, as well as their transparent representation in the CFMS
(MR1). Thereby, the system should contain a comprehensive set of key performance
indicator (KPI) that keep management informed and track fleet progress (Schmidt
et al., 2021). However, to capture overall fleet sustainability, the KPIs need to
cover not only economic but also environmental performance and vehicle health.
Furthermore, to visually display the most important information on a single screen,
the CFMS requires graphical dashboards providing relevant information at a glance
(Few, 2006). Therefore, we propose the following design principle.

DP1: Provide the CFMS with essential KPIs and their visualization via compre-
hensive dashboards in order to access the current fleet status.

Intending to achieve representational fidelity, the CFMS is required to provide con-
solidated information regarding fleet status for reporting at an enterprise level
(MR3). Correspondingly, a single report template must support meaningful KPIs
and visualizations. Especially companies shifting toward a low-carbon economy
are expected to implement reporting tools faithfully reflecting the fleet’s CO2 emis-
sion (I4) (Karmanska, 2021). Another example is the reporting of PHEVs’ engine
utilization—the share of kilometers driven electrically—to determine the extent to
which the car’s potential is utilized (Gonder & Simpson, 2007). However, beyond
reporting environmental KPIs, cost-related data (e.g., fuel cost) is crucial (I1) for
leveraging strategic action (López-Ibarra et al., 2020). Therefore, we propose the
following design principle.

DP2: Provide the CFMS with a reporting tool including essential KPIs and
visualizations within a single template in order to reflect the current fleet status.

Finally, to increase fleet managers’ ability to take informed action, the CFMS should
help identify ways to improve fleet performance, for example, by estimating oper-
ational fleet cost (I2). Accordingly, as a sound basis for static strategic decision-
making, the system should permit calculating future costs, energy consumption,
or emissions (MR5). The aim is to compare the current KPIs from the faithful
representation of the reporting tool with target KPIs defined by a calculation tool,
thereby estimating potential savings. This could help fleet managers improve future
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fleet status by, for example, capping fuel costs and thus having the company pay
only a portion of the expenses to optimize fuel consumption and utility factor (Bätz
et al., 2020). Therefore, we propose the following design principle.

DP3: Provide the CFMS with a planning tool for calculating expected or desired
KPIs based on specific parameters in order to improve the future fleet status.

Operational Fleet Management. To increase transparent interaction of operational
activities, fleet managers require vehicle-specific information on operating cost (I1),
usage (I3), and condition (I6). Accordingly, the CFMS must provide a tabular
overview of all vehicles, including meaningful KPIs, which must be filterable by
specific cars, brands, models, or engine types (MR2). Hence, transparent and
unhindered interaction is enabled by only displaying data items that match the
defined criteria. For instance, comparing vehicles of the same models or powertrains
helps identify those with conspicuous driving behavior. Therefore, we propose the
following design principle.

DP4: Provide the CFMS with a fleet overview that can be filtered by vehicle
specifications in order to access vehicle condition and usage information.

Next, to obtain representational fidelity, the CFMS should ensure a detailed status
overview of each vehicle (MR4) including representations that faithfully reflect
driving behavior (I3), vehicle condition (I6), or warnings such as overdue services
(I7). Thereby, fleet managers can remotely check relevant data such as fuel con-
sumption, missing supplies, or illuminated indicator lights (Killeen et al., 2019).
Accordingly, the CFMS provides a detailed look at vehicles that became conspicuous
(informed action) to initiate maintenance measures if necessary and thus avoid
vehicle downtime (Levi-Bliech et al., 2018). Therefore, we propose the following
design principle.

DP5: Provide the CFMS with a vehicle-specific status overview in order to reflect
individual vehicle condition and usage information.

Finally, to improve fleet managers’ ability to take informed action at the operational
level, the CFMS should allow communication of the faithful representations of
individual vehicles to respective drivers. The latter should raise their awareness of
environmentally and cost-saving driving and ensure adequate vehicle care (I5, I8).
This means regular updates informing drivers (MR6) about their driving behavior
and proactive notifications with appropriate actions in case of warnings (I7). For
instance, the CFMS could alert drivers to their above-average fuel consumption
or unfriendly driving habits through monthly updates that compare their driving
behavior to the average driving behavior of similar vehicles in the fleet (Walnum &
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Simonsen, 2015). Furthermore, if the maintenance intervals are not adhered to, the
drivers of the affected cars should be informed that a service appointment must be
made. Therefore, we propose the following design principle.

DP6: Provide CFMS with frequent status updates and proactive notifications to
drivers in order to improve individual vehicle condition and usage.

5.4.3 Development

To instantiate our DPs into a prototypical CFMS, we used car data from a field test
initiated by Caruso Dataplace (Mokeev et al., 2021). The field test data set included
pseudonymized data in JSON format collected from 213 vehicles over five months in
2020. Initially, we transformed the JSON files into a tabular form and excluded files
that were either empty or had an error message. In our data preprocessing, we set
minimum data requirements for each vehicle due to the different data availability
among the five participating OEMs. Accordingly, we specified mileage as a mandatory
data point for all cars and energy resources depending on the powertrain: fuel level
for ICEs, state of charge for BEVs, and both for PHEVs. Ultimately, a total of 89
vehicles remained for artifact development consisting of 80 ICEs, eight PHEVs, and
one BEV. Following our data processing, we mapped our DPs to concrete features and
implemented them using Microsoft Power BI. Figure 5.3 depicts the DPs addressed
by the prototype, whereby a detailed representation of the artifact is shown in the
Appendix in Figure A.2.

Strategic Feature Implementation. Initially, we instantiated DP1 by defining a
comprehensive set of KPIs based on the available field test data (see Table 5.2). For
example, we determined fuel consumption by calculating the differences in fuel level
values from two consecutive data transmissions. Then, depending on the sign, we
knew whether the car consumed fuel (-) or was refueled (+), allowing us to calculate
fuel consumption in a given time. The procedure for electric vehicles was analogous.
To determine energy costs, CO2 emissions, and utility factors, we needed additional
information that did not come directly from the vehicle; we obtained it from the
sources listed in Table 5.2. Next, we implemented graphical dashboards visualizing
the previously calculated KPIs. Building on this, we integrated the reporting tool
described in DP2 by listing the KPIs in tabular form and displaying essential charts
on a single page. Next, we instantiated DP3 by implementing the calculation
tool. Here, we defined what-if parameters allowing users to simulate the impact
of changing individual KPIs (e.g., fuel consumption) on the remaining KPIs (e.g.,
fuel cost) using sliders. Additionally, we adopted the KPI visualization from the
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reporting tool with the actual values and added columns with the calculated values
and corresponding savings.
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Table 5.2.: Overview of KPIs and field test data points.

No. Key Performance Indicator Field Test Data Point

1 Mileage Mileage, timestamp

2 Total fuel consumption [l] fuel level, timestamp

3 Total electricity consumption [kWh] state of charge, timestamp

4 Average fuel consumption [l/100km] mileage, fuel level, timestamp

5 Average electricity consumption [kWh/100km] mileage, state of charge, timestamp

6 Fuel cost [C]1 fuel level, timestamp

7 Electricity cost [C]2 state of charge, timestamp

8 Total CO2 emission [g/km]3 fuel level, timestamp

9 Average CO2 emission [g/km]3 mileage, fuel level, timestamp

10 Engine utilization of PHEVs [%]4 mileage, fuel level, state of charge, timestamp

11 Service due based on days and distance [km] next service distance, next service date, timestamp
1 Constant fuel prices were assumed based on local German fuel prices in April 2022
2 Constant electricity prices were assumed based on an analysis of the BDEW e.V. (2022)
3 Constant CO2 emissions were assumed based on a report from Deutscher Bundestag (2019)
4 Necessary data on PHEV models were taken from test reports of the automobile club ADAC (2022)

Operational Feature Implementation. To instantiate DP4, we created a tabular
fleet overview of all vehicles containing information regarding vehicle identification
number, brand, model, and engine type. Moreover, we added additional columns
containing the previously defined KPIs for each vehicle. We then implemented
a filter function allowing users to find or compare specific vehicles by filtering
either by vehicle identification number, brand, model, or engine type. Next, we
deployed DP5 by allowing users to click on a specific vehicle in the fleet overview
to view a car’s detailed vehicle status. The overview contains further information
regarding missing supplies, illuminated indicator lights, or service information
obtained from the field test data. Ultimately, DP6 was realized by extending the
vehicle status overview and adding graphs displaying upcoming service needs and
fuel consumption compared to other fleet vehicles. Thereby, we added click-dummy
buttons to send drivers proactive notifications in case of an overdue service and
status updates comparing the driver’s fuel consumption with its peer group.

5.4.4 Evaluation and Conclusion

The first evaluation of our CFMS served as a formative ex-ante assessment to
ensure the artifact’s completeness, consistency, and applicability (Venable et al.,
2016). For this purpose, we conducted an explanatory focus group workshop
with five decision-makers from a leading connected car company operating as a
service provider (see Table 5.1). One author guided the focus group through our
tentative DPs and the prototype artifact and asked the participants to comment
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on the initial version. For instance, we collected feedback regarding the design,
order, or arrangement of individual features, buttons, and graphs. Afterward, we
incorporated their recommendations leading us to the DPs and artifact presented
previously.

We then performed a summative ex-post evaluation by conducting seven semi-
structured interviews with twelve fleet experts operating in two areas: corporate
fleet (n = 6) and service provider (n = 6) (see Table 5.1). In this course, we
demonstrated the improved artifact to the participants by having them assess each
DP and feature regarding effectiveness, efficiency, and consistency. Firstly, concerning
DP1, the experts praised the clear and transparent presentation of the graphical
dashboards. In particular, the visualizations of environmental KPIs, such as engine
utilization for PHEVs, were perceived as beneficial. In addition, it was suggested
by one expert (Eta 4) to use KPIs (i.e., mileage) for the plausibility check of fuel
invoices. When discussing DP2, the experts (Eta 1, Theta 3) indicated the respective
reporting tool as highly useful. Since the corporate controlling currently has to
report CO2 emissions to the management once a year, the CFMS could automate
this task. However, one participant (Theta 2) emphasized the need for holistic
TCO reporting (e.g., lease, tire, and maintenance costs) for different management
levels: Aggregated costs at strategic and detailed costs at operational levels. Notably,
DP3 and the respective calculation tool was evaluated as the most exciting and
innovative. The participants (Eta 1, Eta 3, Theta 3) liked the parameters variable
by sliders that could replace the current less comfortable calculations via Microsoft
Excel. Thus, the tool would be helpful improve transparency and justification of
decisions and strategies. However, the experts desired to consider the investment in
the in-house charging infrastructure depending on the number of BEVs. Concerning
DP4, one expert (Eta 2) noted that the fleet overview is a vital feature, but it
is already the status quo for common fleet management systems. Nevertheless,
the participants (Eta 4, Theta 1) highlighted the need for an additional driving
behavior analysis per vehicle that would provide added value, for instance, to ensure
optimal and route-related vehicle deployment. Regarding DP5, the experts (Eta 2,
Eta 3) argued that the vehicle status overview is particularly suitable for cars with
no permanently assigned driver due to lacking responsibility for occurring issues.
Thus, pool vehicles needing maintenance could be predictively taken out of service
until the required repair is made. They further recommended introducing color
differentiation in the visualization of vehicle supplies and indicator lights (e.g.,
green=good, red=bad). Finally, concerning DP6, one expert (Eta 1) noted that
proactive notifications and status updates should be directed either to drivers
(e.g., for leasing) or fleet managers (e.g., for sharing), depending on the periods of
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vehicle use. Overall, the feature was perceived as saving time and resources and
would add significant value, mainly through automated service reminders.

5.5 Discussion and Conclusion

Building on the completion of cycle 1, our work reports on identifying issues, MRs,
and tentative DPs, as well as developing and evaluating a prototypical CFMS. Initially,
we identified issues in three dimensions (i.e., economic sustainability, environmental
sustainability, and vehicle health) confirmed by both methodological approaches,
a literature review and expert interviews. However, while the existing body of
knowledge provided us with relatively high-level insights (e.g., transparency on TCO,
CO2 emission, or vehicle condition), the practical problem domain yielded in-depth
insights that could be addressed explicitly through vehicle data usage (e.g., cost
prediction, engine utilization, or service reminders). Building on that and drawing
on the effective use theory (Burton-Jones & Grange, 2013), we developed MRs
and DPs and instantiated them in a prototype artifact. Finally, we evaluated the
artifact using a focus group workshop and expert interviews, highlighting additional
functions we plan to incorporate in the second cycle.

From a theoretical perspective, our work contributes to the body of design knowledge
for data-driven car service development in general and fleet management systems
in particular. We thereby implemented an artifact in the form of a prototypical
fleet management system (level 1 contribution (Gregor & Hevner, 2013)) and
evaluated it using a human risk and effectiveness strategy (Venable et al., 2016). In
this regard, we took the first steps toward developing a nascent design theory by
formulating tentative DPs. Building on this, we aim to contribute to the prescriptive
knowledge base (potential level 2 contribution (Gregor & Hevner, 2013)) in the
second cycle. Generally, we consider our work as an “improvement” in the DSR
knowledge contribution framework (Gregor & Hevner, 2013), as it represents an
efficient and effective solution for a known problem. More specifically, our evaluation
results indicate that fleet management systems’ effective use can be increased by
offering a calculation tool (DP3) for planning expected or desired KPIs, leading to
improved transparency and justification of strategic decision-making. Furthermore,
the system creates awareness among drivers regarding vehicle health and usage
through proactive notifications and status updates (DP6), increasing environmentally
friendly and cost-efficient driving, as well as process efficiency.
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In terms of practical contribution, our proposed artifact provides a user-centric
solution to help enterprises effectively manage their carpools, thereby improving
economic performance, environmental sustainability, and vehicle health. From a
strategic perspective, the CFMS provides users with the required fleet information
via comprehensive dashboards and KPIs (DP1) that can be displayed in aggregate
form for internal reporting (DP2). In addition, strategic decisions can be prepared
transparently by simulating different scenarios (DP3). Next, from an operational
standpoint, the CFMS provides an overview of all vehicles and essential metrics
(DP4). It also enables a detailed display of specific vehicles that stand out (DP5).
Based on this, status updates regarding energy consumption and service notifications
help improve drivers’ environmental awareness and maintenance responsibility
(DP6). Finally, our DPs provide practical guidance for automotive companies to
develop novel data-driven services beyond fleet management.

As with any study, ours is subject to limitations. First, it is unlikely to have identified
all potentially relevant articles in our literature review. Second, our sample of
participating experts does not claim to be exhaustive, as we only spoke to represen-
tatives of corporate mobility, car subscription, car sharing, ride pooling, and fleet
service providers. Unfortunately, experts active in logistics or leasing companies
have not been taken into account yet. Nevertheless, due to our approach consisting
of both literature and expert interviews, we are confident that we have ensured both
rigor and relevance, thus creating a solid foundation for problem awareness. In
addition, we plan to involve a broader range of experts in the second design cycle.
Third, while we believe that focusing on the theory of effective use (Burton-Jones &
Grange, 2013) and evaluating human risk and effectiveness (Venable et al., 2016) is
most appropriate for developing design knowledge for a CFMS, the consideration of
another theoretical lens may have led to a different set of DPs. Within the second
cycle, we will therefore refine our tentative DPs based on our evaluation results
before implementing them into a software artifact.
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Ecosystem Strategies of Incumbent Firms





Reallocating Uncertainty in
Incumbent Firms through
Digital Platforms: The Case
of Google’s Automotive
Ecosystem Involvement

6

This chapter comprises a working paper that was submitted as: Sterk, F., Heinz,
D., Hengstler, P. & Weinhardt, C. (2023). Reallocating Uncertainty in Incumbent
Firms through Digital Platforms: The Case of Google’s Automotive Ecosystem
Involvement. Note: By this thesis’s submission date, this study was under
review at the 44th International Conference on Information Systems (ICIS). The
abstract has been removed. Tables and figures were reformatted, and newly
referenced to fit the structure of the thesis. Chapter, section, and research
question numbering and respective cross-references were modified. Formatting
and reference style was adapted and references were integrated into the overall
references section of this thesis.

6.1 Introduction

The automotive industry has a long history of innovation, and the emergence
of sophisticated digital technologies presents disruptive opportunities for original
equipment manufacturers (OEMs) (Bohnsack et al., 2021; Svahn et al., 2017).
Today’s OEMs must reinvent themselves to meet the goal of generating up to 50 %
of their profits from recurring digital revenue streams by 2030 (Römer et al., 2022).
However, to date, established OEMs have struggled to adopt a digital mindset and
strategic management techniques to realize the vision of software-defined vehicles
(Dremel et al., 2017; Svahn et al., 2017). As cars evolve from status symbols to
“smartphones on wheels” (Hanelt et al., 2015; Kaiser et al., 2018), infotainment
systems play an increasingly important role (Weiss et al., 2021). Drivers demand
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integrated navigation and entertainment features, with up to 40 % considering
switching vehicle brands for superior digital services (Heineke et al., 2020). This
shift favors tech players that can capitalize on their smartphone proficiency by using
the infotainment system as a gateway to occupy the digital interface between driver
and vehicle (Schreieck et al., 2022; Weiss et al., 2021). Google, for instance, lures
with its navigation solution Google Maps—but also offers an operating system (OS)
for the entire infotainment system (Legenvre et al., 2022). The growing automotive
competence of tech players could lead to a significant shift in the value chain,
threatening legacy OEMs with commoditization into mere hardware suppliers.

Incumbent firms in various industries must rethink their business strategies to remain
competitive in the digital age dominated by tech players (Hermes et al., 2021;
Sebastian et al., 2017). With decades of experience in incrementally improving their
pipeline business models, incumbents can now extend traditional value-creation
logic through digital platforms (Marheine et al., 2021; Van Alstyne et al., 2016).
However, pursuing digital innovation presents unique challenges, including a lack
of expertise, surging costs, and changing customer expectations (Gao et al., 2022;
Oberländer et al., 2021; Sterk et al., 2022b). There is limited research on incumbent
firms’ transition to the platform economy and the changes required to take advantage
of platform economics (Sandberg et al., 2020; Sebastian et al., 2017; Svahn et al.,
2017). However, existing research typically assumes incumbents face a binary
build or join decision regarding platform strategies (Cusumano et al., 2019; Hein
et al., 2020), neglecting the possibility of collaborating, assembling, configuring,
or contributing to platforms that may be open-source, white-label, or provided by
tech firms (Hermes et al., 2021). To explore non-binary considerations in platform
strategy and the outcomes of varying levels of tech firm involvement, we pose the
research question: How and why do incumbent firms decide on a certain level of
tech player involvement in their digital strategy?

We conduct an embedded case study (Yin, 2014) focusing on Google’s Android
Automotive OS (AAOS) and its underlying Google Automotive Services (GAS) as the
sole locus of our research. Our research is based on semi-structured interviews with
industry experts and senior decision-makers knowledgeable about Google’s digital
platforms and their adoption by incumbent OEMs, as well as publicly available
information published from the AAOS inception in May 2017 through April 2023.
In the process, we find three distinct digital strategies that incumbent OEMs can
adopt to integrate Google’s offerings. Through grounded-theory-based interpretive
data analysis (Gioia et al., 2013), we identified uncertainty reallocation as a core
construct and derived five aggregate dimensions that represent the building blocks
of a grounded model—(1) external digital platform by tech firm, (2) incumbent firm
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and its goals, (3) uncertainty tradeoffs and affordance of reallocation, (4) strategic
actions by incumbent firm, and (5) short- and long-term outcomes.

The remainder of this paper is organized as follows: First, we review the theoretical
foundations of uncertainty in digital innovation processes and boundary resources
in digital platforms. Next, we outline the research method of our case study, fol-
lowed by our analytical results. Finally, we discuss our findings by presenting a
grounded model of uncertainty reallocation through digital platforms, the implica-
tions of our research, and a brief conclusion on its limitations and further research
opportunities.

6.2 Theoretical Foundations

6.2.1 Uncertainty in Digital Innovation Processes

The digital era introduces numerous uncertainties for incumbent firms (Salmela
et al., 2022; Svahn et al., 2017) as they navigate a volatile, uncertain, complex,
and ambiguous (VUCA) environment while redefining their organizational identity
and purpose (Wessel et al., 2021). Uncertainty, defined as “a potential deficiency
in any phase or activity of the process, which can be characterized as not definite,
not known, or not reliable” (Kreye et al., 2012, p. 683), or simply, a “lack of
understanding” (Kreye et al., 2012; Ramirez Hernandez & Kreye, 2021), leads
decision makers to have low confidence in predicting future outcomes resulting from
their decisions (Erkoyuncu et al., 2013; Ramirez Hernandez & Kreye, 2021). Unlike
risk, which is defined as a measurable unknown, uncertainty cannot be assigned a
probability (Jalonen, 2012).

Uncertainty management throughout the innovation process has been studied in
service management and new product development (Ramirez Hernandez & Kreye,
2021). However, recent research emphasizes its importance also in digital innovation
processes in the context of Information Systems (IS) (Poeppelbuss et al., 2022).
These processes involve decisions under highly variable and uncertain future states,
influencing perceptions of strategic options for structuring, developing, using, and
deploying IT artifacts (Kohli & Melville, 2019; Nambisan, 2017; Nylén & Holmström,
2015). Factors contributing to increased uncertainty include rapid technological
developments, evolving customer demands, internal challenges in understanding
the affordances of digital technologies, determining the level of collaboration with
suppliers and partners, and assessing whether investments in digital innovation will
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yield the required returns for all actors involved in the ecosystem (Nambisan, 2017;
Poeppelbuss et al., 2022; Svahn et al., 2017).

We adopt a multidimensional conceptualization of uncertainty (Poeppelbuss et al.,
2022; Ramirez Hernandez & Kreye, 2021), while recognizing the interrelated nature
of these dimensions (O’Connor & Rice, 2013). Ramirez Hernandez and Kreye (2021)
distinguish between the unpredictability of the external environment (environmental
uncertainty), the lack of experience with the technologies the organization intends to
adopt and employ (technical uncertainty), the organizational dynamics throughout
the change process (organizational uncertainty), the adequacy of financial, technical,
and human resources (resource uncertainty), and the inability to predict and explain
the actions of external related actors (relational uncertainty). This distinction allows
us to delineate the different sources of uncertainty in our study.

Existing research suggests strategies for managing uncertainty by reducing it at its
source or coping with it by minimizing its impact (Poeppelbuss et al., 2022; Siman-
gunsong et al., 2012). Organizations may also engage in uncertainty reallocation
by shifting criticality between uncertainty types (Poeppelbuss et al., 2022; Ramirez
Hernandez & Kreye, 2021). For instance, Poeppelbuss et al. (2022) empirically
show how participation in multi-actor innovation settings can reduce technical and
resource uncertainty while increasing relational uncertainty. In this context, our
study explores how external digital platforms, such as Google’s automotive plat-
forms AAOS and GAS, enable incumbents to reallocate uncertainties and how they
determine strategic actions to actualize and exploit these affordances.

6.2.2 Affordances of Boundary Resources in Digital
Platforms

We define a digital platform as “a set of digital resources—including services and
content—that enable value-creating interactions between external producers and
consumers” (Constantinides et al., 2018, p. 381). Digital platforms can provide
technological affordances, which refer to “what one individual or organization with
particular capabilities and purposes can or cannot do with a technology” (Majchrzak
& Markus, 2013, p. 381). To provide new affordances, digital platforms must possess
inherent flexibility, enabling them to be reconfigured as needed (Hein et al., 2019b;
Yoo et al., 2010). In addition, the architecture of digital platforms is characterized
by a high degree of modularity, facilitating the integration of new modules without
jeopardizing the entire system (Tiwana et al., 2010).
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To design for such affordances, platform owners use boundary resources that enable
complementors to develop products or services on the digital platform (Eaton
et al., 2015; Ghazawneh & Henfridsson, 2013; Hein et al., 2019b). Boundary
resources can be software tools or rules that “serve as the interface for the arm’s-
length relationship between the platform owner and the application developer”
(Ghazawneh & Henfridsson, 2013, p. 174). The concept of boundary resources can
be understood as a theoretical device (Ghazawneh & Henfridsson, 2013) for digital
platform owners to balance the tension between retaining platform control and
stimulating the generativity of third-party developers (Tilson et al., 2010). These
resources include technical and social elements, such as application programming
interfaces (APIs), and regulations, incentives, and guidelines, respectively (Aanestad
et al., 2019).

Prior research has mainly focused on boundary resources in digital smartphone
platforms (Eaton et al., 2015; Karhu et al., 2018, 2020). For instance, Eaton et al.
(2015) studied how boundary resources in Apple’s iOS platform undergo change
through distributed tuning, a process that leads to a cascade of adaptations and
rejections in a network of heterogeneous actors and artifacts. Karhu et al. (2018)
study Google’s Android mobile platform and assign boundary resources to four
functions: defining openness, facilitating, loosening couplings, and capturing value.
Besides research on purely digital ecosystems, research has addressed boundary
resources in digital platforms under the Internet of Things (IoT) paradigm (Hein
et al., 2019c; Petrik & Herzwurm, 2020; Petrik et al., 2021). Our study integrates
these research directions through a case study on Google’s automotive platforms,
AAOS and GAS, focusing on software-defined vehicles as complex IoT devices.
Specifically, we examine the affordances of boundary resources within AAOS and
GAS to understand how platform owners facilitate generativity for OEMs and third-
party developers while retaining control.

6.3 Research Method

We use an embedded single-case study approach (Yin, 2014) to examine how
incumbent firms adapt their digital strategies in terms of engaging with technology
firms in response to them introducing digital platforms to the market. In this section,
we describe our case selection, data collection, and data analysis.

Case Selection. We employ a revelatory single case strategy (Yin, 2014) to examine
previously inaccessible dynamics of a phenomenon. Our embedded case study
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includes multiple subunits of analysis and allows for variation across these subunits
(Yin, 2014). We chose the automotive industry and Google’s AAOS and underlying
GAS (i.e., Google Maps, Google Assistant, and Google Play Store) for several reasons.
First, the automotive industry is currently facing significant IT-driven innovation
efforts from incumbents and external tech firms. Second, Google has achieved
a central market position with its deeply integrated AAOS. Third, unlike other
automotive solutions, such as Android Auto or Apple CarPlay, AAOS is purpose-built
for direct in-vehicle integration, offering greater ability to interact with the car’s
internal systems to deliver innovative features. Finally, with the recent increase
in OEM collaboration with Google, the question has shifted from whether Google
will be in the car to the extent of Google’s access to individual vehicle functions
and data (e.g., AAOS with/without GAS). As embedded subunits within Google’s
involvement in the automotive ecosystem, we examine the strategic positioning of
different incumbent firms with respect to Google’s AAOS and GAS offerings over
time. Following a sampling logic that emphasizes subunit diversity (Yin, 2014), we
identified three distinct OEM actualization strategies by comparing their strategic
actions from 2017 to 2023. We used the diversified strategic directions of traditional
OEMs as a basis for abstracting knowledge across multiple embedded units of
analysis. In Figure 6.1, we present a timeline of the evolution of Google’s AAOS and
GAS offerings and the strategic positioning of different OEMs.

Data Collection. We used interviews and archival documents as primary data
sources, allowing us to combine different perspectives on our case (Yin, 2014). From
June 2021 to April 2023, we conducted 17 semi-structured interviews with industry
experts and senior decision-makers familiar with Google’s automotive offerings
(i.e., AAOS and GAS) and their adoption by automotive OEMs (see Table 6.1).
We applied a mix of convenience and theoretical sampling, first relying on our
personal network within the automotive industry and then acquiring additional
interviewees after initial data analysis to deepen specific emergent aspects (Bryman,
2016). We encouraged informants to share their specific insights by asking open-
ended questions along predefined discussion points (e.g., value-capturing strategy,
data sovereignty, or scalability). All interviews were conducted by two authors via
video-conferencing software, averaging 53 minutes in length, and were recorded,
transcribed, and then analyzed using MAXQDA software. Our second data source
consisted of publicly available archival documents, such as website and news articles,
strategy update reports, and press releases published from May 2017 to April 2023.
We focused on OEM’s strategic activities related to Google’s AAOS and GAS, resulting
in 67 relevant documents, and identified 19 strategic activities by Google or OEMs
(see Figure 6.1). OEMs that planned to incorporate AAOS or GAS in any way
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include Volvo, Polestar, Honda, General Motors, Renault-Nissan-Mitsubishi, Ford,
Mercedes-Benz, Volkswagen Group, BMW Group, and Stellantis.

Data Analysis. We used established procedures to analyze our data inductively
(Gioia et al., 2013; Gioia, 2021). In a first-order analysis, two authors individually
reviewed interview transcripts and documents and assigned descriptive open and
in-vivo codes to relevant passages. Supported by initial memoing (e.g., through
preliminary diagrams), we collaboratively identified similarities and differences
among the codes, reached a consensual understanding, and reduced the codes
to 46 informant-centered first-order concepts. In the second-order analysis, we
further condensed related first-order concepts into 17 researcher-centered second-
order themes. Finally, we distilled the second-order themes into five aggregated
dimensions and developed a grounded model. In the latter analytical steps, we the
applied affordance-actualization theory (Strong et al., 2014) as a theoretical lens to
explain the conceptual relationships among constructs.

Table 6.1.: Overview of interviewees.
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6.4 Insights from Google’s Automotive
Ecosystem Involvement

In this section, we present analytical insights into how and why incumbent firms
reallocate uncertainty by deciding on the level of tech player involvement in their
digital strategy. The focus of our embedded case is Google’s automotive platform
offering (i.e., AAOS and GAS), as Google currently holds the predominant position
in infotainment and operating systems, forcing traditional OEMs to reconsider their
digital strategy. We first describe the affordances of uncertainty reallocation by
incumbent firms (i.e., carmakers) via the utilization of a tech firm’s (i.e., Google)
external platform and then present findings regarding the actualization strategies
taken by incumbent firms.

6.4.1 Affordance of Uncertainty Reallocation

External Digital Platform by Tech Firm

The influx of tech players into the automotive industry has resulted in a more frag-
mented competitive landscape. They provide external digital platforms to penetrate
the market for certain areas of the technology stack, as observed with Google’s
operating system (AAOS) and the accompanying service offerings (GAS). Boundary
resources play a crucial role and are an indispensable tool for platform owners to
implement digital platform strategies. In the context of Google’s digital in-vehicle
platform, we identified boundary resources used to pursue four strategies—scale,
capture value, standardize, and facilitate. In the following, we elaborate on the
boundary resources associated with Google’s AAOS or GAS (see Figure 6.2).
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Figure 6.2.: Data structure for “external digital platform by tech firm.”
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Accelerating scalability via open-source license. Analogous to its smartphone OS,
Google has released AAOS under an open-source license so that OEMs can install
AAOS in their cars without involving Google and without entering into a contractual
relationship with Google to make their derivatives of the OS. The Product Lead
of SupplierCorp2’s software-defined vehicle program pointed out the distinction
between a “true” open-source approach like Linux and having “a commercially
interested firm like Google as the shepherd of the open-source project.” In the end, AAOS
itself is always “just an enabler for Google, but it does not generate any monetary gains,”
as ResearchCorp’s Senior Software Architect added. From a strategic perspective,
the open-source license encourages as many OEMs as possible to integrate AAOS to
scale the ecosystem quickly. ConsultingCorp1’s Strategy Consultant summarized this
aspect as follows:

“Android Automotive open-source is Google’s brilliant idea to make carmakers
dependent without directly charging licensing fees. [...] Some OEMs are afraid to
work directly with Google due to the licensing costs and dependency. However,
some of them are being convinced because it is possible to use AAOS open-source,
which seems like Linux. This is the Trojan horse that OEMs fall for because they
don’t have to pay licensing fees.” (Strategy Consultant, ConsultingCorp1).

Capturing value via Google Automotive Services. While AAOS itself is open-source,
Google has developed value-adding software artifacts called Google Automotive
Services (GAS) that interact with the OS, including Google Maps, Google Assistant,
and the Google Play Store. To use GAS, implementing OEMs must enter into a
licensing agreement and share proprietary data with Google. According to Research-
Corp’s Software Architect, “Google’s focus is not on acquiring in-vehicle data. From
a marketing standpoint, the user is a more appealing target than the vehicle itself.”
Thus, Google’s primary scaling mechanism depends on gaining access to user data in
order to extract patterns to develop customized online advertising, and improve the
quality of applications such as Google Maps. Google’s third monetization mechanism
is its Play Store, which is mandatory for OEMs using GAS and charges a commission
fee for third-party applications hosted there. The Product Owner of OEMCorp1’s
app store stressed the analogy to the smartphone world:

“The most exciting thing, from my point of view, is the business model. Who will
earn money with digital products in the vehicle in the future? If you look at how
things have worked in the mobile phone world, third-party app developers are
the only ones earning money directly from digital products. But who is the only
one who gets a revenue share? It’s the two big stores, Apple and Google. The Play
Store is one of three apps that come with GAS. And that means that the likelihood
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that you as an automotive OEM can still earn money with digital products in the
car afterwards will be diminished.”(Product Owner App Store, OEMCorp1).

Enforcing standardization via vehicle hardware abstraction layer. Regardless
of whether an OEM chooses the open-source option or licenses AAOS, the most
important requirement for integrating Android into their cars is the implementation
of the vehicle hardware abstraction layer (VHAL). The VHAL extends the original
Android framework for the automotive context and defines properties, such as
powertrain-related data, that must be supported by all OEMs implementing AAOS.
Google enables OEMs to extend the VHAL and integrate custom, manufacturer-
specific properties, giving them control and data sovereignty over the vehicle data
sent to Google. However, according to analysis by ConsultingCorp1’s Strategy
Consultant, the authority ultimately remains with Google, as market demand for
advanced applications will force OEMs to share specific vehicle data items with
Google and third-party developers:

“The belief that the OEM has full control over the VHAL and data is a widespread
misconception. In reality, the OEM can only define supported data, and this
poses a challenge as developers are hesitant to build applications for a platform
that is not based on a common foundation of supported data and functionality.
The platform business operates within a merciless economy of scale, and without
external developer support, the OEM’s capacity to build customer relationships
is severely limited. [. . . ] This lack of scale and content will cause the standard
to fail, as it will not be able to secure a customer base.”(Strategy Consultant,
ConsultingCorp1).

Facilitating generativity via APIs, SKD, and client library. The success of Google’s
expansive digital ecosystem can be attributed to its robust third-party developer
community, which delivers a diverse set of third-party apps available to end users.
Implementing GAS comes with APIs and a software development kit (SDK) that
facilitates app development while guaranteeing a robust payment infrastructure for
all platform transactions through the Google Play Store. GAS provides extensive
support for app developers, including various resources such as tools, test suits,
documentation, and collaborative events (e.g., developer conferences). In addition,
AAOS provides a client library called Google Play Services, which facilitates frequent
updates to developer APIs independently of OEMs. Finally, with its established
control mechanisms, Google takes responsibility for excluding undesirable or mali-
cious apps, relieving the OEM of the burden of ensuring the app quality in the store.
SupplierCorp1’s AAOS Business Owner summarized the similarities and differences
to a Linux-based OS for developers as follows:

6.4 Insights from Google’s Automotive Ecosystem Involvement 123



“The bottom part of Android and the Linux system is similar because it’s a Linux
kernel with certain similarities, but the architecture of Android is different, for
example, because of the virtual machine and the high-level APIs, which are mainly
for third-party developers to develop apps in their ecosystem. They just promote it
as an app development environment. The documentation for Android Automotive
is not extensive for OEMs; it’s mostly for app development. So, from that
perspective, the whole architecture and the setup for Android is just to promote
third-party apps.”(Business Owner Android Automotive, SupplierCorp1).

Incumbent Firm and Its Goals

The ongoing digital transformation is turning cars from status symbols into rolling
computing platforms. This paradigm shift has pushed OEM to re-evaluate their
strategic goals, forcing them to make crucial decisions about their future service
offering and digital business models to remain their competitive edge in the market.
By implementing an appropriate digital strategy, OEMs can retain control of their
businesses, avoid commoditization by tech players, continue providing high-quality
services to end customers, and tap into recurring digital revenue streams. We found
that OEMs have formulated four overarching goals concerning their infotainment
offering, which we discuss below (see Figure 6.3).
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Figure 6.3.: Data structure for “incumbent firm and its goals.”

Transforming into an ecosystem orchestrator. OEMs want to move from selling
physical cars within a linear value chain to orchestrating service-oriented business
ecosystems. Due to the complex nature of software-defined vehicles, they rely
on third-party developers to expand their application offerings while maintaining
quality standards and managing costs efficiently. Implementing in-vehicle app stores
not only enhances the driving experience but also provides an opportunity to earn a
significant revenue share from third-party apps. The ecosystem orchestrator takes on
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the role of a gatekeeper, controlling the selection of third-party apps and determining
which are ultimately offered in the app store. The Product Owner of OEMCorp1’s
app store emphasized the difference between the OEMs’ existing business models
and the coveted role of an ecosystem orchestrator:

“Today, we don’t have a platform business model, which means we don’t build a
two-sided marketplace but sell products in the pipeline value creation, where we
end up enriching the product more and more through suppliers and sell it once
to the customers. In the future, we want to build a platform ecosystem where
third-party developers develop apps for us. As a store provider, we can set certain
rules, such as what is allowed and what is prohibited. We can also ensure that
these rules are adhered to, and we can earn money with [the app store]. But as
of today, no one makes money with apps in cars.”(Product Owner App Store,
OEMCorp1).

Providing technology-driven service portfolio. An additional goal of incumbent
firms is to provide a value-adding digital app portfolio to meet increasing end user
expectations. This includes the integration of the user’s other digital ecosystems,
such as music streaming, into the vehicle, which has become standard practice.
Moreover, OEMs try to improve the performance of other in-vehicle services and
reduce the dependencies on smartphone mirroring, with navigation systems and
voice assistants being the most prominent. For instance, map application providers
have the power to influence the driver with targeted and prominently placed points
of interest. With the vast amounts of in-vehicle data generated by sensors and
software, OEMs are looking to create analytical insights about the vehicle, the
driver, and their environment, enabling data-driven business models in areas such
as insurance, after-sales, and fleet management. Appropriately, the Product Owner
of OEMCorp1’s app store drew an analogy to the smartphone and confirmed the
significant potential underlying digital in-vehicle services:

“Is there even a market for digital products in cars or not? Nobody can say, but I
believe there is. [...] But in 2005, very few people would have said that many
billions of Euros would be turned over in a quarter via an app store that runs
on a mobile phone. And if you look at the possibilities, a smartphone offers
only a fraction of the interfaces and sensors or data that a car theoretically
has. If you take that as a measure of the potential for innovation, the business
potential for digital automotive products is enormous.”(Product Owner App
Store, OEMCorp1).

Differentiating via customer intimacy. As a third goal, OEMs seek to differentiate
themselves through unique brand identity and direct interaction with the end user
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via the digital cockpit. Control of the digital interface, and therefore customer
interaction, allows for a differentiated user experience and improved customer value.
In particular, premium carmakers strive to deliver rich digital experiences seamlessly
integrated with their overall brand identity and familiar aesthetics, such as intuitive
touchscreens. However, OEMs must retain control over the user touchpoint and
central data to generate and capitalize on increased satisfaction via brand-exclusive
onboard experience. SupplierCorp2’s Director Navigation Software affirmed:

“Today, it’s all about software and the experience you create for your customers,
but also the relationship you build with them. If the big screen in your car belongs
to a third party [...] and they own the direct relationship with the consumer, what
is left for the OEM? How can they differentiate themselves? How are they going
to create and monetize value-added services on that platform in the future? [. . . ]
This is not about the operating system, but what they build on top of it, like their
own applications or ecosystem to keep that direct relationship with the consumer
and collect and use data to improve and monetize their products.”(Director
Navigation Software, SupplierCorp2)

Controlling critical software architecture.Finally, OEMs aim to strengthen their
control over key architectures and standards by expanding capabilities in OS and
middleware. Both serve as critical vehicle components that enable carmakers
to integrate essential software-defined features into the vehicles rapidly. These
functionalities include remotely integrating additional battery power or activating
seat heating features through over-the-air updates. However, while OEMs are eager
to expand their in-house software stack development to avoid external dependencies,
lack of expertise, escalating costs, and lack of economies of scale are putting pressure
on them to partner with large tech companies. ResearchCorp’s Automotive Software
Architect added specific reasons for the strong emphasis on in-house development
by OEMs:

“It can be more efficient and cost-effective for the OEM to develop a custom propri-
etary operating system. For example, AAOS requires a lot of heavy hardware. [...]
Additionally, allowing external tech players to take responsibility for the further
development of the operating system poses significant risks for the OEM. [...]
Utilizing a third-party operating system entails a potential loss of control over
data, as the vendor may try to get as deep into the vehicle as possible.”(Senior
Automotive Software Architect, ResearchCorp)
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Uncertainty Tradeoffs and Affordance of Reallocation

The rise of digital platforms such as AAOS and GAS presents a significant potential
to reduce uncertainty for legacy carmakers. However, these also increase uncertainty
compared to established pre-digital strategies. In sum, external platforms may not
necessarily reduce uncertainties but offer the potential to reallocate them, requiring
incumbents to balance multiple tradeoffs, as illustrated below (see Figure 6.4).

•

•

•

•

•

•

•

•

Figure 6.4.: Data structure for “uncertainty tradeoffs and affordance of reallocation.”

Uncertainty tradeoff on the operating system. Whether to implement AAOS
or build a proprietary OS is a key consideration for OEMs. Using an external
platform such as AAOS provides significant financial benefits by reducing the need
for continuous system updates with each new generation of hardware. Developing
and maintaining in-house technology stacks requires a large financial investment,
including the cost of hiring software developers with the necessary skills. Also,
integrating mature off-the-shelf solutions such as AAOS can improve time-to-market
and scalability, especially in the low-volume luxury segment. On the other hand,
Google’s control over the AAOS system raises uncertainties, even without the use
of GAS. Since AAOS is likely to become a standard feature in many cars, Google’s
role as the provider of AAOS would give them considerable power. They could
cease releasing open-source versions of AAOS and offer new versions under license
agreements that require GAS or let the VHAL specifications force OEMs to share
critical vehicle data. A Company Builder from OEMCorp5 commented on this
tradeoff as follows:

“Implementing AAOS entails considerable uncertainty to OEMs, as it may result
in a loss of control over user data, user behavior, and system usage information.
On the other hand, it must be acknowledged that the automotive industry has yet
failed to develop a stable operating system. In this regard, I believe it is necessary
to strike a balance. While this approach may present challenges, I believe that the
benefits of integrating a trusted and well-established operating system outweigh
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the potential drawbacks associated with data business, information loss, and
usage profiling.”(Company Builder Automotive, OEMCorp5).

Uncertainty tradeoff on the core application offering. The next critical strategic
decision for OEMs is whether to use GAS or develop and integrate comparable
solutions. Google’s advantage lies in its vast training data from widespread smart-
phone use, which makes it difficult to develop navigation services with comparable
real-time geo-information as Google Maps or similar voice recognition capabilities
as Google Assistant. Moreover, many drivers currently use Google Maps via their
smartphone’s projection mode and may demand a built-in version, exposing OEMs
with alternative solutions to the threat of losing customers. Despite the potential
benefits, there are downsides to implementing GAS for OEMs, including losing their
digital customer touchpoints and user interactions to Google or limited visibility
into data exchange. Finally, GAS offers limited customization of the infotainment
system’s user interface, resulting in a reduced impact on brand identity and customer
experience. The impact of this uncertainty factor varies depending on the OEM’s
target audience, as explained by OEMCorp1’s Product Owner App Store:

“An important aspect that OEMs must weigh up is the issue of user experience,
user interface, and differentiation. When using GAS, they have limited control
over the user interface and experience compared to building on plain Android
open-source. However, this is not a general argument for or against GAS; not all
OEMs see differentiation in user experience and interface design as a competitive
differentiator, especially volume OEMs with lower-priced vehicles who place less
emphasis on these aspects.”(Product Owner App Store, OEMCorp1).

Uncertainty tradeoff on the app store business model. When deciding on GAS,
carmakers must consider that it includes the integration of the Google Play Store as
the in-car app store. Using GAS reduces OEMs’ technical uncertainty by ensuring
robust payment mechanisms for all transactions and quality control for third-party
apps. Also, adherence to established standards can reduce the OEM’s potential threat
of limited app developer engagement and failure to achieve economies of scale.
As a result, experts suggest that the Google Play Store could outpace proprietary
alternatives in terms of app quantity, as it facilitates third-party app development
through specific boundary resources (i.e., SDK, APIs, and client library). However,
embedding the Play Store increases OEMs’ uncertainty about its business model,
as it prevents them from pursuing the goal of becoming an ecosystem orchestrator
by delegating control over third-party app selection, user engagement, app sales
tracking, and revenue sharing to Google. SupplierCorp1’s Business Owner AAOS
stressed the strategic options OEMs have regarding in-car app stores:
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“There was a time when every major manufacturer was trying to develop their
own app store. [...] And how many apps did they have in there? Negligible.
That approach has failed. In the second wave, a few manufacturers started using
the Google Play Store instead. However, what are the others doing? They are
looking for third-party app stores, ideally working with other OEMs to hopefully
reach a critical mass of customers and ensure the marketplace’s sustainability
and profitability.”(Business Owner Android Automotive, SupplierCorp1).

6.4.2 Strategic Actualization Process

Strategic Actions by Incumbent Firm

When integrating Google into an OEM’s in-vehicle offering, three actualization strate-
gies have emerged that involve the uncertainty tradeoffs discussed (see Figure 6.5).
To illustrate the actions taken for each strategy, we supplement the description of
each type with a corresponding real-world example in the form of a case vignette,
also visualizing which architecture components come from Google (grey) and which
come from the OEM (white) (see Figures 6.6 to 6.8).
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Figure 6.5.: Data structure for “strategic actions by incumbent firm.”

Actions of holistic tech integration strategy. This strategy involves the compre-
hensive integration of the tech firm’s digital platform offerings, in our case both the
AAOS and GAS platforms (see Figure 6.6). OEMs that adopt this strategy benefit
from a rapid go-to-market, allowing them to focus on their existing core compe-
tencies. Regular over-the-air updates of the AAOS base architecture provided by
Google ensure a continuous update of the OS and the pre-installed GAS provide the
OEM with an attractive service offering in exchange for licensing fees and dedicated
vehicle data, reducing the OEM’s software development effort to a minimum. With
this strategy, OEMs offer their end-users a seamless experience that they are familiar
with from their smartphones, including Google ID login, the established Android
look and feel, and popular Google applications. Google takes care of the app store,
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security, and support for app developers, while the OEM takes the role of a com-
plementor, allowing the tech firm to orchestrate the digital ecosystem, including
shaping ecosystem policies and receiving revenue shares from third-party apps.

Figure 6.6.: Illustrating “holistic tech integration” via Volvo’s Google built-in approach.

Actions of isolated tech integration strategy. The second strategy adopted by OEMs
is to integrate the open-source versions of a digital platform (e.g., AAOS), but not to
use proprietary platforms and services (e.g., GAS) in order to avoid becoming too
dependent on the external platform providers (e.g., through contractual agreements
or payment obligations with Google) (see Figure 6.7). In pursuing this strategy,
OEMs need to find alternatives to proprietary services. For example, for in-car
navigation systems and voice assistants, OEMs can either rely on their existing service
offerings or choose between the traditional make or buy binary. For the app store,
most OEMs adopting this strategy procure an Android-based white-label app store
from a software vendor to retain the benefits for app developers while outsourcing
the app store development effort and retaining platform control. Compared to the
first strategy, the OEM replaces Google as the orchestrator, gaining the authority
to set app store rules and earn revenue share from third-party applications. The
look and feel of the infotainment system and data sovereignty remain with the OEM
using open-source and white-label solutions.

Figure 6.7.: Illustrating “isolate tech integration” via BMW’s open-source approach.
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Actions of custom tech integration strategy. Apart from the two strategies of
using open-source platforms such as AAOS with or without proprietary platforms
and services (here: GAS), Mercedes-Benz has exemplified in our case a so far unique
third strategy (see Figure 6.8), which relies on a proprietary OS without the tech
firm’s involvement to retain full control over the base-layer of software architecture
and overall integration. Although GAS is not involved, this strategy includes the
integration of certain Google services in exchange for licensing fees. For example,
the OEM integrates Google Maps, which includes rich location details and real-
time and predictive traffic information. Under this strategy, the OEM integrates
specific Google services while maintaining its own brand and design, and retaining
sovereignty over user data. For the app store, the OEM also takes on the role of
the platform owner and uses a white-label solution for the app store. In the case of
Mercedes, in order to provide a functional app store despite the absence of AAOS, a
container API is integrated to run Android apps.

Figure 6.8.: Illustrating “custom tech integration” via Mercedes’ exclusive approach.

Short- and Long-Term Outcomes

The commitment of incumbent OEMs to an actualization strategy, characterized
by their degree of tech firm integration, ultimately leads to different short- and
long-term outcomes. In this subsection, we analyze the (anticipated) outcomes for
each of the specified strategies (see Figure 6.9 6).

Anticipated outcomes of holistic strategy. The holistic tech integration strategy
offers early adopters in the short term a state-of-the-art infotainment system with
high recognition value (e.g., due to the popularity of Android in the smartphone
sector) and a time advantage over other OEMs, since white-label app store providers
have to follow Google’s Android development. This time advantage is reinforced
by close collaboration with the tech partner, allowing the OEM to be the first to
release new services, such as in our case the next-level navigation feature “HD Maps”.
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Figure 6.9.: Data structure for “short- and long-term outcomes.”

However, OEMs cede the direct touchpoint with the end user, along with valuable
insights into user engagement with the infotainment system and specific vehicle
data, to Google. In the long run, this approach results in the OEM losing critical
infotainment capabilities and the ability to provide data-driven aftermarket services
to various end users (consumer, business, and government), including the domains
of fleet management, driving analytics, and location-based services. OEMCorp3’s
Automotive Software Project Manager highlighted this aspect as follows:

“Google’s data capabilities enable it to offer unique vehicle data-based services that
OEMs currently lack the competence to provide. As a result, OEMs may transform
into pure chassis suppliers, leaving Google to derive services and business models
from the data. In the past, car ownership was a simple process with limited
customer interaction. Now, customers can pay for additional vehicle functions
and personalize their vehicles. Aftersales, for example, is the absolute cash cow
of the automotive industry and involves continuous customer support and the
exploration of new sales channels. By handling this over to tech players, OEMs
will lose vital monetization channels.”(Project Manager Automotive Software,
OEMCorp3).

Anticipated outcomes of isolated strategy. The OEM’s short-term outcome of
pursuing the isolated tech integration strategy is to initiate a stable and scalable OS
based on the established open-source standards (here: AAOS), which, due to its
open-source nature, is constantly being supplemented by a vast developer community.
In addition, this approach allows for the creation of a proprietary ecosystem that is
mostly independent of the tech firm and gives OEMs control over key differentiators
and business model elements, including data ownership, user interface, and app
store orchestration. However, OEMs must find competitive alternative solutions with
equivalent performance to the tech firm’s service suite (here: GAS) to avoid customer
churn due to a potentially inferior user experience compared to the tech firm’s mature
digital offerings. Moreover, the long-term viability of working with white-label app
store providers as a genuine alternative to the Google Play Store remains unclear.
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This approach can only succeed if the adaptation effort for third-party developers
to place their apps in multiple Android-based app stores remains manageable, and
the tech firm continues to provide the necessary boundary resources (e.g., Google’s
APIs). Finally, a Company Builder Automotive from OEMCorp5 stressed that a
possible long-term outcome could be Google using its position of power to gain more
access to vehicle data in the future:

“In the future, Google may try to get access to as much car sensor data as possible.
For years I’ve been discussing using all powers of persuasion that we as an OEM
can tap into insanely cool data, whether it’s from the camera, temperature, or
light sensors. Conversely, Google has seen through this potential of moving sensor
stations [i.e., cars] for years because they collect everything that isn’t nailed
down with their smartphones. Google may exploit this lock-in effect to get access
to more vehicle sensor data. I have no idea how the OEMs are going to fight
this.”(Company Builder Automotive, OEMCorp5).

Anticipated outcomes of custom strategy. OEMs that negotiate individual deals
with a tech firm reap the immediate benefits of both strategies discussed so far:
leveraging powerful services like Google Maps, while retaining customer touchpoints,
including brand, design, and data sovereignty. The app store-related outcomes are
similar to the second strategy because of the same white-label approach. However,
the peculiarity of this strategy of not using open-source standards such as AAOS
and instead developing a proprietary system result in a high short-term financial
expenditure, but also has two critical long-term consequences. On the one hand,
this approach is primarily characterized by the fact that a significant part of the base
system is programmed in-house, thus retaining important software competencies
and central control (e.g., over vehicle data) over the OS. On the other hand, the OEM
is responsible for maintaining and evolving the system, including performance and
security updates, over multiple generations of vehicles. Because of the latter, industry
experts, including the Senior Project Manager Vehicle Platform from OEMCorp3, are
skeptical about the long-term viability of a proprietary OS:

“No [OEM] can avoid Android in the long run. Simply for one reason: it has
proven itself! There are two big options when it comes to touchscreen devices,
user interface frameworks, operating systems, and development environments:
iOS and Android. Show me another framework, another SDK that I can use
today, where I can get a good look and feel and user experience. [...] It’s not
an option anymore to develop it in-house.”(Senior Project Manager Vehicle
Platform, OEMCorp3).
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6.5 Discussion and Conclusion

6.5.1 A Grounded Model of Uncertainty Reallocation in
Incumbent Firms

We set out to explore how and why incumbent firms decide on a certain level of
tech player involvement in their digital strategy. We apply affordance-actualization
theory as a theoretical lens to develop a grounded model of uncertainty reallocation
in incumbent firms (see Figure 6.10). In doing so, we combine the insights gained
so far using the five inductively derived aggregate dimensions as building blocks of
the model—(1) external digital platform by tech firm, (2) incumbent firm and its
goals, (3) uncertainty tradeoffs and affordance of reallocation, (4) strategic actions
by incumbent firm, and (5) short- and long-term outcomes.

Figure 6.10.: Grounded model of uncertainty reallocation in incumbent rirms.

By offering a digital platform, tech firms aim to dominate and control specific
technology areas in traditional markets, creating an attractive platform offering
for incumbent manufacturers and third-party service providers while maintaining
platform control through boundary resources (Ghazawneh & Henfridsson, 2013).
At the same time, incumbent firms are reevaluating their strategic goals in the
face of ongoing digital transformation, forcing them to make critical decisions
about investments in technology development and their intended digital portfolio
in the future. The combination of these two aspects, leads to uncertainty tradeoffs
between different dimensions (e.g., technical, resource, and relational uncertainty),
but the means offered by the external platform also provide the affordance to
reallocate uncertainty between these dimensions. Given these different sources of
uncertainty, incumbent firms must critically weigh their strategic goals, capabilities,
and constraints to decide whether to engage with a tech firm’s digital platforms.
With the construct of “uncertainty reallocation” at the center of our model, we
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emphasize that external digital platforms do not necessarily reduce uncertainty but
provide the potential to reallocate it, requiring incumbents to make a variety of
tradeoffs.

On the right side, we illustrate how incumbent firms choose specific strategic actions
after perceiving the affordance of uncertainty reallocation. Their chosen strategy
influences their role in the ecosystem and their future business model. For example,
incumbents that opt for holistic integration of the external digital platform typically
adopt rather a contributor role, giving up customer touchpoints and access to user
data. Conversely, the openness of a digital platform may allow incumbents to create
platform derivatives and act as orchestrators. Depending on the strategy, short-
and long-term outcomes will result, allowing incumbent firms to immediately and
iteratively evaluate and adjust their actions and, in the long run, also adjust their
strategic goals based on the fit between intended goals and the feedback from
actions and outcomes. Finally, although outside the scope of our empirical study,
the entire process is also subject to external factors such as political, economic, or
technological changes in the incumbent’s environment.

6.5.2 Implications, Limitations, and Future Research

Our analytical findings contribute empirical insights into the growing involvement
of tech firms in established industries, such as the automotive sector. Further, our
grounded model provides theoretical insights into how and why incumbent firms
decide on a certain level of tech player involvement in their digital strategy. In
doing so, our findings offer several theoretical implications. First, our research
complements existing knowledge on digital platform affordances (e.g., Beverungen
et al., 2020; Hein et al., 2019b, 2020) by presenting the affordance of uncertainty
reallocation as a core construct in the context of incumbent firms responding to
external digital platform offerings. We empirically show that incumbent automotive
firms share certain goals and contextual factors, but resource availability, targeted
customer segments, and organizational structures shape the way external platform
providers enable goal-directed uncertainty reallocation. This also has implications
for recent adaptations of the uncertainty construct in multi-actor digital innovation
settings (e.g., Poeppelbuss et al., 2022), as applying the affordance lens highlights
the socio-technical nature of uncertainty reallocation processes in a digital innovation
context and the heterogeneity of affordances for uncertainty reallocation when firms
face similar external offers. Finally, the case of the automotive industry pinpoints
that the high level of uncertainty in dealing with digital transformation in incumbent
firms acts as a negative socio-technical antecedent that serves as a constraint for
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organizations to realize shared and collective affordances of leveraging the material
properties of increasingly smart products in multi-actor settings (Herterich et al.,
2023).

Our study also has managerial implications. Our findings provide a benchmarking
opportunity to evaluate strategies relative to the embedded subunits in our case
study, illustrating the variety of strategic options automotive OEMs can pursue with
Google’s digital offerings. We show that incumbents must compromise on their
ambitious goals to remain competitive, and that there is no one-size-fits-all strategy
for engaging tech players. Instead, incumbents should carefully consider which
technology and business control points in the ecosystem they need to own, based on
their internal capabilities and goals. Decision-makers in other industries can also
learn from the advanced car industry about the larger phenomenon of industrial IoT
frameworks, clarify their role in the ecosystem, and assess the capabilities they need.
Being a contributor to a business ecosystem can be just as appealing as being an
orchestrator, which requires careful consideration of which aspects of the business
and technology should be developed in-house, through collaboration with traditional
suppliers, or by partnering with dominant tech companies.

Our research design comes with limitations that provide avenues for future re-
search. First, the study is limited by the lack of information on this novel phe-
nomenon and the methodological constraints of expert interviews. Despite our
extensive exchange with industry experts within and beyond OEMs, we faced con-
straints in finding interview participants due to incumbent OEMs’ ongoing strategic
discovery phase. Future investigations could use in-depth case studies of a small set
of organizations with multiple informants to unveil more granular organizational
dynamics influencing the sensemaking process touched upon with our theoretical
model. Such a setting could also allow to observe organizations over a more ex-
tended period, which was unfeasible as some OEMs only recently disclosed their
Google involvement strategy. Nevertheless, we remain confident that studying the
phenomenon of our case in its early stages of development provides preliminary
but unique insights. Second, our single case study focusing on one firm’s digital
platforms, Google’s AAOS and GAS, limiting the generalizability and external validity
of our findings (Yin, 2014). Consequently, our findings do not claim to be exhaustive
or applicable to every incumbent firm striving to involve digital platforms in every
study context. Looking ahead, we see great potential in transferring our theoretical
model to through in-depth studies that specifically emphasize other industry contexts
beyond automotive (e.g., manufacturing, agriculture, or smart home platforms) to
complement this research to improve the results’ applicability. Finally, the inherent
emphasis of our study on the Western market, due to the investigation of Google’s
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service system, may not be directly applicable to markets with restricted access
to Google services. Future case studies could address collaboration models with
for example Chinese tech players, as established Western OEMs recently forfeited
market shares due to the country’s high technology affinity and demand for a holistic
software experience.
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Fostering Value
Co-Creation in Incumbent
Firms: The Case of Bosch’s
IoT Ecosystem Landscape
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This chapter comprises an article that was published as: Sterk, F., Heinz, D.,
Peukert, C., Fleuchaus, F., Kölbel, T., & Weinhardt, C. (2022). Fostering Value
Co-Creation in Incumbent Firms: The Case of Bosch’s IoT Ecosystem Landscape.
Proceedings of the 43rd International Conference on Information Systems (ICIS)
(pp. 1-17). Note: The abstract has been removed. Tables and figures were
reformatted and newly referenced to fit the structure of the thesis. Chapter,
section, and research question numbering and respective cross-references were
modified. Formatting and reference style was adapted, and references were
integrated into the overall references section of this thesis.

7.1 Introduction

The proliferation of the Internet of Things (IoT) paradigm, interconnecting the
physical and digital world, is moving organizations’ value creation from selling
physical products to exchanging connected products with integrated digital services
(Marheine et al., 2021). To harness the transformative opportunities of the IoT,
leading enterprises worldwide are increasingly driving the evolution of their partner
networks from product-oriented supply chains to service-oriented business ecosys-
tems (Marheine & Pauli, 2020). Compared with more conventionally organized
business structures, such ecosystems are praised for fostering generativity, scaling
rapidly, and adapting flexibly to changing circumstances (Hein et al., 2020). Conse-
quently, the emergence of IoT platforms and ecosystems surrounding the platform
and keystone players is widespread. This phenomenon creates a highly competitive
environment in multiple industries, such as mobility, manufacturing, and agricul-
ture (Lingens et al., 2021). Besides many startups and established tech companies
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(e.g., Microsoft Azure, Amazon Web Services), industry incumbents also aim to
preserve or strengthen their competitive position by becoming keystone players in
emerging IoT ecosystems and fostering value co-creation among partners (Metzler &
Muntermann, 2020). Prominent pioneers from traditional industries include General
Electric’s Predix and Siemens’ Mindsphere, where physical products are increasingly
connected and extended into IoT platform ecosystems (Pauli et al., 2021).

Even though incumbent firms re-evaluate existing organizational and IT strategies,
most of their established platform ecosystems have not been successful in the long
run (Pauli et al., 2020). Indeed, a recent study by the BCG Henderson Institute
found that approximately 85 per cent of observed failures are related to weaknesses
in ecosystem design, including wrong ecosystem configuration or governance choices
(Pidun et al., 2020). Furthermore, despite numerous strategic challenges associated
with ecosystem establishment, such as solving the “chicken-and-egg” problem (Stum-
mer et al., 2018), existing findings often stem from a native platform provider’s
perspective, which solely deals with offering the digital platform (Hein et al., 2019c).
Hence, current literature lacks empirical insights into incumbents’ perspectives on
establishing and orchestrating IoT platform ecosystems (Marheine & Petrik, 2021;
Pauli et al., 2021). However, such research has a pivotal role in the academic dis-
course of platform ecosystems as it scrutinizes both incumbent firms’ overall business
transformation and strategic use of platform technologies. Against this backdrop,
we pose the following research question: How can incumbent firms orchestrate their
partner network toward value co-creation to establish IoT ecosystems? By exploring
this question, we take a holistic view of ecosystem orchestration that considers
different phases (i.e., initiation, scaling, and control) and levels of orchestration
(i.e., technological, economic, institutional, and behavioral) (Autio, 2022).

We contribute to this question by conducting a single case study (Yin, 2014) within
the conglomerate of Robert Bosch GmbH (hereafter abbreviated as “Bosch”), a
leading IoT company offering innovative solutions for smart homes, smart cities,
connected mobility, and connected manufacturing. Our analysis draws a compre-
hensive picture of Bosch’s departments’ challenges in establishing eleven different
IoT ecosystems in various industry sectors. Particularly, our study reveals twelve
incumbentspecific challenges related to IoT ecosystems and offers successful de-
sign and governance actions taken to approach these challenges. We structure our
findings by applying the tripartite service innovation framework proposed by Lusch
and Nambisan (2015) to the IoT context, deriving the dimensions of IoT ecosystem,
IoT platform, and value co-creation. After presenting the results of our single case
study, we discuss these qualitative insights and tie them in with existing research by
elaborating on four prevailing tensions—exploitation versus exploration, commitment
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versus accessibility, control versus openness, and stability versus flexibility. Further,
we provide actionable recommendations on how Bosch’s IoT ecosystems reconciled
the tensions to guide other incumbents towards fostering value co-creation and
establishing IoT ecosystems.

The remainder of this article is structured as follows: The following section elaborates
on the theoretical foundations of IoT ecosystems. Subsequently, we describe the
methodological approach of our case study. In the fourth section, we present key
challenges Bosch’s departments encountered in ecosystem design and governance
and their actions to overcome them before discussing our findings and linking them
to existing research. Finally, we draw a brief conclusion on the article’s limitations
and further research opportunities.

7.2 Theoretical Foundations

Incumbent firms that have been successful with product manufacturing recently be-
gan to adopt IoT-related technologies to expand their value creation capabilities and
to bring forth many new smart products and services (Marheine et al., 2021). The
IoT combines the potential of recent technological advancements to remotely access
physical products and interact and create value during product usage (Wünderlich
et al., 2015). However, adopting IoT-related technologies increases the complexity
of technical and organizational requirements, forcing firms to build service-oriented
ecosystems (Marheine & Pauli, 2020). This trend is closely related to a changing
perspective on value creation processes from a goods-dominant logic, which focuses
on the material goods created in an organization toward a service-dominant (S-D)
logic emphasizing the importance of collaborative resource integration, value co-
creation, and service-for-service exchange (Vargo & Lusch, 2017). This change in
perspective is also closely related to technological advancements that change our
discipline’s perception of information systems: for example, unlike the pre-IoT era,
where information systems were designed and built for a specific purpose at a given
time, purposefully designing IoT platforms and governing IoT ecosystems needs
to reflect that data analysis and data output are ex-ante unknown (Ikävalko et al.,
2018).

Compared to startups and digitally native tech companies, incumbent firms face
unique challenges when adopting this perspective. While embarking on their dig-
italization journey, they need to maintain the profitability of their legacy-based
business activities while reaping the full potential in radically new business fields
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(Frankenberger et al., 2021). However, not only these internal specifics of an in-
cumbent impact their success but also the overall service ecosystem in which it
orchestrates the co-creation of value (Hein et al., 2019c; Marheine et al., 2021).
This actor-to-actor perspective is required as large-sized incumbent firms often act
as facilitators and major drivers of value-creating processes, thus becoming platform
providers (Hein et al., 2019c) and keystone actors that can “significantly influence
ecosystem well-being” (Frow et al., 2019, p. 2666). To structure our research, we
adapt the tripartite S-D framework of Lusch and Nambisan (2015) for the context of
IoT, similar to previous research (Hein et al., 2019c; Marheine et al., 2021). The
framework particularity suits our research endeavor, as each dimension elaborates
issues and concepts related to value co-creation via platform ecosystems, which
closely aligns with our research question.

IoT ecosystem. A service ecosystem refers to an emergent actor-to-actor network
created and recreated by actors through their effectual actions and offers an organiz-
ing logic to exchange service and co-create value (Lusch & Nambisan, 2015). Lusch
and Nambisan (2015) consider three underlying critical aspects: First, the service
ecosystem needs to enhance both structural flexibility and integrity. Second, it must
develop and maintain a shared worldview among a set of cognitively distant actors.
Third, it needs to devise and implement an architecture of participation to coordinate
actors and their service exchanges. Considering the proliferation of IoT and its un-
derlying organizational and technological complexity (Pauli et al., 2021), industrial
companies need to shift their perspective toward collaborating in IoT ecosystems
by opening new avenues of co-creating value for a wide range of participants (Ja-
cobides et al., 2018). Unlike purely digital ecosystems, keystone actors in the IoT
cannot rely solely on third-party application providers but must also encourage
sensor, software, and application providers (Hein et al., 2019c). While incumbents
are well-experienced in managing contractually defined supply chains to create
incrementally improved products, they now must learn to form less-hierarchical net-
works to connect and orchestrate their actors for mutual value creation (Marheine
& Pauli, 2020). Ecosystem orchestration also poses unique strategic challenges to
the scalability of a business model, such as solving the chicken-and-egg problem of
whether to start building the demand side or the supply side to reach a critical user
mass (Stummer et al., 2018).

IoT platform. A service platform provides a modular structure consisting of tangible
and intangible components, facilitating the interaction of actors and resources
(Lusch & Nambisan, 2015). The main purpose of service platforms is leveraging
resource liquefaction and increasing resource density. Resource liquefaction refers to
decoupling information from its related physical form or device (Normann, 2001),
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whereas resource density describes whether resources can be quickly mobilized for
an actor (Lusch et al., 2010; Normann, 2001). Overall, two platform concepts are
predominant: innovation platforms as a technological foundation of innovation
mechanisms and transaction platforms as market intermediaries (Cusumano et al.,
2019; Pauli et al., 2021). Both concepts need to define and implement rules for
the exchange of service (Lusch & Nambisan, 2015). Innovation platforms enable
the creation of complementary solutions by providing boundary resources such as
application programming interfaces (APIs) or software development kits (SDKs) to
third-party developers (Ghazawneh & Henfridsson, 2013). In contrast, transaction
platforms facilitate the interaction between the supply and demand side by offering
marketplaces for specific resources (Parker et al., 2016). IoT platforms represent an
instantiation of innovation platforms or hybrid forms combining both transaction
and innovation platforms (Marheine & Petrik, 2021). The overall complexity of
operating IoT platforms is determined by device management, compatibility with
sensors and machines, and communication protocols. (Hein et al., 2019c).

Value co-creation. Value co-creation is defined as the processes and activities that
underlie resource integration and incorporate different actors in the ecosystem
(Lusch & Nambisan, 2015). The adopted framework distinguishes three key roles
to analyze value co-creation mechanisms: the ideator, designer, and intermediary.
First, the ideator disseminates knowledge about specific customer needs in a unique
context. Second, the designer combines and adapts existing resources or knowledge
to develop new services. Third, the intermediary distributes and shares knowledge
across multiple ecosystems. Ultimately, diverse actor roles must create a supportive
resource integration environment. This requires promoting generativity through
consistent processes and boundary resources while ensuring sufficient transparency
of resource integration activities (Lusch & Nambisan, 2015). The complexity, espe-
cially in an IoT context, arises from the need to bring the various stakeholders (e.g.,
sensor, software, and application providers) together with the customer in order to
co-create value (Marheine et al., 2021). Accounting for these three dimensions, we
further incorporate a sociotechnical perspective elaborating on the areas of design
and governance as primary factors affecting the establishment of IoT ecosystems.
Within this work, we refer to the design of IoT ecosystems as a conceptual blueprint
describing how the ecosystem is divided into a stable platform, highly variable yet
easily exchangeable components, and the design rules binding on both (Tiwana
et al., 2010). Further, we refer to governance of IoT ecosystems as the establishment
of effective ecosystem-wide mechanisms that uniformly regulate how and under
what conditions complementors gain access to the platform owner’s resources and
assets, therefore serving as guiding principles for value co-creation (Tiwana et al.,
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2010; Wareham et al., 2014). However, although scholars have been investigating
IoT and platform ecosystems for years, they have scarcely touched on designing and
governing IoT ecosystems from the viewpoint of incumbents.

7.3 Case Study Methodology

Our case study provides early but unique insights into the journey of Bosch’s IoT
initiatives across several departments, transforming their structure and roles from
directional value chains to IoT ecosystem orchestrators. Therefore, the case deals
with the fundamental challenges of strategic use, governance, and technology imple-
mentation and how they were overcome in three dimensions (i.e., IoT ecosystem,
IoT platform, and value co-creation). Thus, our study is well suited to shed light on
what design and governance choices bear in incumbent IoT ecosystems.

Case description. Our exploratory research follows a revelatory single case strategy
as this is particularly suitable to analyze a phenomenon previously inaccessible to
scientific investigation (Yin, 2014). Even though our case study focuses on a single
organization, Bosch’s IoT ecosystem landscape, our analysis includes outcomes of
the different IoT ecosystem initiatives within Bosch with varying maturity levels
(i.e., planned, development, live, failed). In total, we cover eleven IoT ecosystem
initiatives representing the embedded units of our single case by interviewing in
total 14 informants (see Table 7.1). The embedded units are sampled from different
application contexts to incorporate the perspectives of five different industries:
connected mobility (Alpha, Beta, Gamma, Delta), connected manufacturing (Epsilon,
Zeta, Eta), smart building and home (Theta, Iota), smart agriculture (Kappa) and
renewable energy (Lambda). In doing so, we leverage the company’s diversified
corporate structure to analyze existing approaches to ecosystem establishment within
the company. The applied sampling approach seems to provide a reasonable basis for
our purpose of abstracting knowledge across multiple embedded units of analysis.

Data collection. We collected data between May 2021 and June 2021 by conduct-
ing 14 interviews with experts and senior decision-makers with broad experience
building and orchestrating IoT-enabled ecosystems (see Table 7.1). We employed
a generic purposive sampling approach to identify suitable interviewees for each
ecosystem initiative (Bryman, 2016). In this process, we applied our previously
developed understanding of IoT ecosystems as pre-defined criteria to evaluate suf-
ficient exposure to our research problem. While carrying out the interviews, we
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Table 7.1.: Overview of IoT ecosystem initiatives and interviewees.

followed a semi-structured interview guideline that ensured a similar overall struc-
ture of the interviews so that we could compare individual findings across the entire
data set. Throughout the interview, we encouraged the informants to share their
specific insights by asking open questions along pre-defined discussion points (e.g.,
ecosystem control, scaling, or monetization) about the challenges they encountered
in establishing IoT ecosystems and how they overcame them. In doing so, we probed
for clarification and further insights where appropriate. Using video-conference
software, a single author performed all interviews ranging between 45 and 90
minutes. All interviews were recorded and transcribed before being coded and
analyzed using MAXQDA software. In addition to conducting interviews, publicly
available information such as websites or articles and internal documents related to
the ecosystem initiatives served as secondary data sources.

Data analysis. Throughout the data analysis, we applied a qualitative content anal-
ysis approach (Hsieh & Shannon, 2005; Mayring, 2000), performing two iterations.
In the first iteration (conventional content analysis), we performed an inductive
open coding approach to grasp organizational success factors and challenges for
building and orchestrating an ecosystem, focusing on the unique characteristics of
the examined company and case. Thereby, the resulting codes related to different
aspects of Bosch’s challenges and actions taken to address them (e.g., “standardiza-
tion,” “monetarization,” or “incentivization”). However, to ensure a consistent level
of abstraction, we focused on findings transferable to a broader range of application
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scenarios and used the coding to abstract individual perceptions towards a rather
holistic perspective. Furthermore, we ensured the validity and robustness of our
analysis conducted by a single researcher by critically examining and discussing
the progress of coding and the conclusions drawn from the analysis with a second
researcher. In the second iteration (directed content analysis), we performed a
deductive approach and defined a coding scheme based on the previously obtained
theoretical knowledge and preliminary insights obtained from the first iteration.
Finally, we arranged the identified codes with the theoretical coding scheme to
synthesize our results into twelve separable yet related challenges. In this process,
we linked and structured the identified challenges and managing actions with the
three dimensions—IoT ecosystem, IoT platform, and value co-creation (Lusch &
Nambisan, 2015) and the areas of design and governance (Tiwana et al., 2010).

7.4 Insights from Bosch’s IoT Ecosystem
Landscape

To harness the disruptive opportunities of the IoT, Bosch’s Corporate Strategy De-
velopment defined an overreaching corporate IoT strategy. In this regard, IoT
ecosystems represented a crucial strategic pillar while obsoleting the design of
directional value chains to some extent, forcing Bosch to reshape its stakeholder
relationships and value creation. Nonetheless, this audacious vision starkly con-
trasted existing innovation practices and presented complex strategic design and
governance challenges. In response, we present the key challenges Bosch’s depart-
ments encountered in establishing and orchestrating IoT ecosystems and the actions
taken to overcome them in three dimensions—IoT ecosystem, IoT platform, and
value co-creation.

7.4.1 Dimension 1: IoT Ecosystem

Pursuing the corporate IoT ecosystem strategy, Bosch’s departments had to shake up
their pipeline business model to attract stakeholders for joint value creation. Con-
sequently, they had to rethink their deep hierarchies and slow but well-established
internal processes to establish themselves as a flexible and trustworthy orches-
trator. This change raised different challenges in configuring and maintaining
inter-organizational relationships and governance mechanisms (see Table 7.2).
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Table 7.2.: IoT Ecosystem-related challenges and actions to address them.

Ecosystem Design: Challenges and Actions Taken

Standardized onboarding processes. The first challenge Bosch’s ecosystem initia-
tives faced was overcoming traditional legal and risk management processes to enable
fast and simple onboarding of all partners. Hence, Eta, Epsilon, and Kappa focused
on standardizing their onboarding process to accelerate collaboration and avoid seri-
ous setbacks. For instance, Eta designed a streamlined ten-step onboarding process
revealing exactly how far ahead the partner is and what steps are yet to be fulfilled
to move forward. “It creates trust when partners realize they are not dependent on
any goodwill,” Eta’s Managing Director concluded. In the Kappa initiative, partners
first signed general terms and conditions of collaboration in a memorandum of
understanding to ensure at least a minimum of contractual assurance. As a result,
however, “the risk of partners jumping off increases, requiring the orchestrator to
fill the different ecosystem roles multiple times.”, Kappa’s Business Model Manager
emphasized. Another challenge the ecosystem initiative Epsilon encountered was
the establishment of non-disclosure agreements (NDAs) between the ecosystem
participants. For that reason, the collaboration was massively slowed, although
there was no initial need to exchange critical information. Finally, the collaborating
research campus solved this issue by standardizing NDAs, as a Business Developer
of Epsilon concluded:

“It is very challenging to cooperate with new partners because you also need an
NDA. That is extremely difficult, especially if you are totally motivated and want
to start immediately, and then you hit the brakes completely with the NDA. [...]
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So thanks to [the research campus], all the partners involved have a standard
NDA with each other, which is enormously practical. [...] Especially, in the
beginning, it is not yet about complex issues, and there is not so much that needs
to be protected. ” (Business Developer, Epsilon)

Supportive ecosystem environment. Another critical challenge in initiating an
ecosystem was convincing and incentivizing all required partners through a supportive
environment to join the ecosystem. One example is Theta, which addressed this
concern by having no participation restrictions on the supply side, thus keeping the
entrance barriers low. Accordingly, Theta charged no access fees or required specific
co-investments from partners to enter the ecosystem. Instead, Theta invested in
the partners’ compatibility, reducing the financial risk of participating. To further
ease partners’ fears of being tied down for an extended period, Theta has set a
notice period of only six months. Besides contractual fairness, Theta’s Managing
Director emphasized the trust placed in incumbents like Bosch as an essential success
factor in encouraging companies to participate in their ecosystem. Trust was also
highlighted as a vital incentive mechanism in the ecosystem initiative Delta. The
required level of trust was achieved by transparent and traceable processes that
ensured all partners felt they were treated appropriately and equally. In this way, an
atmosphere of trust and reliability was created, as noted by a Business Consultant of
Delta:

“Trust, transparency and clear rules are the success factors of an ecosystem.
However, this does not necessarily mean that [the orchestrator] has to deal
with everyone in the same way, and everyone has the same conditions. [. . . ]
Nevertheless, everyone must theoretically have the chance and the offer to switch
to the other status, and it must be clear under what conditions this happens. This
atmosphere of transparency and comprehensibility, which ensures that everyone
feels treated fairly in some way, is essential.” (Business Consultant, Delta)

Ecosystem Governance: Challenges and Actions Taken

Adequate ecosystem openness. In designing the governance model, Bosch’s ecosys-
tem initiatives encountered the challenge of deciding on the right level of openness to
encourage growth and diversity while ensuring quality and control. In the initiative
of Eta, this balance was achieved through explicit partnership guidelines that pre-
scribe who is allowed to offer services in which areas. Accordingly, there are areas
in the ecosystem where only Bosch offers its services, areas reserved exclusively
for partners, and areas open to both. In the latter case, Bosch services compete
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with partner services, leaving it up to customers to choose which one they like
best. In this regard, Eta’s Managing Director stated, “In some cases, it makes sense
to deliberately allow things to be left to partners to demonstrate openness.” Unlike
Eta, Theta’s ecosystem initiative has no exclusivity for offering services, allowing
partners to provide any service themselves. However, despite its open approach,
the ecosystem is governed by contracts, rules, and precise distribution of roles.
Accordingly, when a partner tried to bypass Theta’s control points (e.g., the user
interface), Theta intervened and threatened to dismiss them from the alliance to
defend the ecosystem. However, the Managing Director of Theta illustrated their
approach to non-exclusivity as follows:

“It is vital that we do not do this exclusively. If the partner wants to offer the
same service under its flag, we see which service sells better. Thus, it is allowed to
compete with us. The data belongs to the end-user, who must first agree to its
use and then pay for the service. Therefore, the best service should simply prevail.
It is all fair game within the ecosystem. We do not care because our margin on
partner service is often higher than if we have to offer it ourselves. Accordingly,
we win in both cases.” (Managing Director, Theta)

Flexible ecosystem strategy. Another challenge Bosch’s ecosystem initiatives faced
was establishing strategic flexibility to adapt to changing circumstances and emerging
obstacles. To permit rapid innovation detached from traditional corporate structures,
Bosch chose the path of spinning off several ecosystems into separate subsidiaries.
One example is Iota, which was spun off from Bosch as a wholly owned startup
aiming to attract more investors and accelerate the expansion of its global ecosystem
through external partners. In the beginning, however, Iota struggled to hire employ-
ees with the desired technical skills and startup mentality. The latter was reflected
in applicants from Bosch, who demanded to keep their existing contracts and a
guarantee to return to their parent company in the event of failure. As a result, Iota
hired many external employees bringing in the required agile mindset. Ultimately,
flexibility and risk tolerance were incorporated into the strategy by not anticipating
everything in detail and creating room for adjustments through only one year of
planning. This emergent strategy gave room for experimentation and fostered agility
to realize rapid minimal viable products (MVPs), as Iota’s Vice President Strategy
emphasized:

“The success factors here are the strategy of continuous adaptation and the firm
focus on MVPs. In other words, no overengineering, but always customer-oriented
and tested. That also applies to the strategy. We do not have a 10-year strategy
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but an emergent strategy. That means we plan for one year.” (Vice President
Strategy, Iota)

7.4.2 Dimension 2: IoT Platform

From a technical perspective, Bosch’s departments each had to create an intercon-
nected and coherent solution from various products or services provided by a group
of largely independent economic players. Hence, they faced the challenge of design-
ing and managing an IoT platform that attracts developers for joint service creation
through a modular design, highly variable components, and a scalable architecture
(see Table 7.3).

Table 7.3.: IoT platform-related challenges and actions to address them.

Platform Design: Challenges and Actions Taken

Modular platform architecture. Unlike hierarchical supply chains, the service
enabling resources of IoT ecosystems are developed independently but function as
an integrated whole. Hence, Bosch’s ecosystem initiatives faced the challenge of
enabling standalone solutions that complement each other and operate on the same
database in order to leverage holistic use cases. An example is Kappa, which “[...] did
not discard everything, but continued to use existing norms and established standards,”
as its Senior Manager stressed. Thus, Kappa relied on reusing existing interfaces
whenever possible to significantly save time and resources in designing their data
architecture. They also provided APIs and secure end-to-end infrastructure to
orchestrate the flow of data from data generation to import into application providers’
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cloud systems. As a result, the entire system is comparable to the operating system
of mobile devices. On the hardware side, the applications run on a standardized
control unit that ensures cross-manufacturer compatibility. In addition, an authorized
partner can quickly and easily retrofit the control unit or pre-install it on future
machines. In conclusion, Kappa’s Business Model Manager resumed their approach
as follows:

“The idea of [Kappa] is to create a first-level support hotline where all partners
work and communicate to provide the [customer] with a holistic solution. In
practice, an operating system for agriculture runs on a control unit, onto which a
wide variety of manufacturers can upload their applications. Moreover, everything
takes place on standardized interfaces so that the end-user no longer has all these
compatibility problems.” (Business Model Manager, Kappa)

Attractive platform environment. Another challenge was convincing app devel-
opers to join the platform and unleash their generativity to deliver complementary
applications. Commonly, most ecosystems provide SDKs that contain development
tools and standard code, allowing third-party developers to create plug-and-play
solutions for the platform. One example is Kappa, which offers an easy-to-use and
flexible SDK, allowing developers to freely choose between common programming
languages. Besides offering a free SDK, Iota launched a developer challenge to
attract software developers to join the platform. Further, to avoid stifling the growth
of their ecosystem, Iota does not charge an access fee for developers but a transaction
fee for purchasing applications. To conclude, Iota’s Vice President described the
status of partner acquisition:

“More and more integrators are joining in themselves, which applies to all
stakeholder groups. It is a mixture of joining in because you believe in it and
out of fear that you will somehow miss out on something. This effect is created
because we do a lot of marketing and have formed our own brand. We are
present at trade shows and ecosystem conferences. We organize app challenges
and give out innovation awards. We have a lot of activities in the classic partner
management.” (Vice President, Iota)

Platform Governance: Challenges and Actions Taken

Neutral platform governance. In ramping up their platform-based ecosystem,
some of the investigated ecosystems faced the challenge of controlling the platform’s
accessibility while mitigating partners’ concerns about overly dominant platforms.
Although some of the examined ecosystems show parallels to Android for mobile
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devices, there are significant differences in control and openness. For example,
while almost anyone can start programming an Android app, developers at Kappa
must first achieve partner status before accessing the APIs and SDKs. Moreover,
to guarantee the functionality and compatibility of the applications, a precisely
documented certification process first takes place before applications are launched
on the marketplace. Furthermore, unlike Android, Kappa retains control over the
business relationship between the application provider and the end-user to preserve
complete neutrality. In parallel, Kappa allowed individual branding of partner
applications. Thus, the end-user only saw Kappa’s branding when opening the
primary user interface and had the look and feel of the respective app providers
within the individual applications. The objective was to emphasize neutrality even
more, as Kappa’s Business Model Manager of Kappa explained:

“We have allowed individual branding. That means our [partners] could brand
their solution, screen, or interface with their company. In this way, we made it
possible in the platform for the competitors to distinguish themselves externally
and still access each other’s customer base to a certain extent.” (Business Model
Manager, Kappa)

Rapid platform realization. Several investigated ecosystem initiatives highlighted
the challenge of quickly realizing the first working version of the ecosystem to prevent
partners from bailing out due to trust issues. In this context, Lambda and Kappa
addressed this challenge by launching a basic but demonstrably successful version of
the ecosystem, despite building an ambitious long-term vision. According to Kappa’s
Business Model Manager, intensive partner management was undertaken to fill each
role in the ecosystem at least once in order to realize an initial MVP right from
kick-off. Lambda’s formerly appointed Managing Director noted that ecosystems
“[. . . ] need an initial set of partners and must not think too big because otherwise
high coordination costs occur, and the ecosystem becomes sluggish.” Consequently,
Lambda took a similar approach to Kappa and joined forces with a limited number of
partners to present a simplified version of their joint value proposition at a trade fair.
Thereby, they showcased an initial low-complexity prototype consisting of a solar-
powered washing machine and a simple representation of demand-side management
to demonstrate the technical feasibility of the ecosystem. Not surprisingly, the first
joint success and subsequent communication strengthened the existing partnerships
and helped convince skeptical companies to join. Once the investigated ecosystems
proved their commercial viability, they extended their initial value proposition to
scale by quickly reaching a critical mass of additional players. Although Lambda’s
ecosystem failed due to internal conflicts, the Managing Director at the time aptly
summarized:
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“You can certainly develop a shared vision in your ecosystem [...], but then
you need a concrete implementation step, which should not be too complex—a
showcase project. That is actually what we did. We developed prototypes for
the trade fairs. [...] The first joint successes then brought us closer together.
My conclusion is that you should start small, achieve initial successes, and then
communicate them. These shared success stories also help to get critics on board.
[...] And then you go step by step into the future.” (Managing Director, Lambda)

7.4.3 Dimension 3: Value Co-Creation

Bosch’s departments had to move forward from contributing as a supplier to orches-
trating value co-creation by incorporating and governing different actor roles in the
IoT ecosystem. To further keep the system running, it was crucial implementing
both mechanisms, increasing the overall co-created value while at the same time
ensuring each stakeholder is appropriately rewarded for their continued co-creation
of value. In the following, we describe these value co-creation-related challenges
Bosch’s departments faced in designing and governing for value co-creation (see
Table 7.4).

Table 7.4.: Value co-creation-related challenges and actions to address them.

Design for Value Co-Creation: Challenges and Actions Taken

Scalable monetization strategy. With most traditional businesses selling wellde-
fined, incrementally improved products directly to an existing customer base, Bosch’s
ecosystem initiatives struggled to find an appropriate monetization strategy that
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avoids stifling ecosystem growth. According to Beta’s Product Owner, resistance to
the initiative was exceptionally high among mid-level managers, who saw the risk of
already changing their position by the time the ecosystem’s return on investment
materialized. Consequently, they were reluctant to invest substantial capital in the
ecosystem initiative and pushed for immediate and direct monetization. This reser-
vation clashed with Beta’s monetization strategy, which sought indirect monetization
through end-users in addition to the previous direct sale of hardware products to
OEMs. Due to the risk of jeopardizing ecosystem growth, Beta initially tried to foster
network effects to scale the ecosystem quickly. Therefore, they decided not to charge
its platform users, as they were the primary scaling lever of their ecosystem. As the
number of users increases, the number of connected sensors and, ultimately, the
value of the service increases. Beta’s Product Owner further stressed building up
the required level of trust and awaiting user lock-in before considering asking for
money:

“[We] make the mistake of selling something and wanting money for it immedi-
ately. [...] The point at which you can monetize an ecosystem is exactly when the
pain of switching is high enough. You have quite a few foundational elements
that you need to build beforehand to make that happen, and trust is the key, not
hard binding. [...] It is better to earn nothing than to lose trust. That is why it
is also important not to put your monetization points where you want to scale.
If you want more users, forget about asking the user to pay.” (Product Owner,
Beta)

Sustainable win-win situations. Another challenge was allocating the generated
revenue fairly, enabling all essential ecosystem participants to earn a decent profit.
Kappa focused on establishing multiple win-win situations among partner roles
to achieve this objective. For example, while digital service providers benefited
from extending and locking in their customer base through standardized interfaces,
manufacturers could more easily develop functionalities for their machines through
an SDK, thus decreasing development effort. Naturally, the most substantial driver
for participation was tapping into additional revenue streams. Here, Kappa faced
the challenge of defining a fair revenue-sharing mechanism. According to the
Business Model Manager, the fundamental approach was to break down revenue
from value creation to the end of the value chain. Hence, the service providers are
paid directly by the end customers, and Bosch as the platform provider, receives a
commission for each sale in return for market access. Following the value chain, the
manufacturers received a commission share for providing their machines. Eventually,
Kappa communicated its revenue-sharing approach transparently to strengthen
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the partners’ trust. Finally, a Senior Manager of Kappa stressed the importance of
fairness in their actions:

“The success factor is creating multiple win-win situations so that everyone plays
along because they feel they are treated fairly and can make money from it, which
is simply the strongest driver for any business. Only if that is given and they see
business opportunities for themselves will they invest something. [. . . ] The basic
approach was to consider where added value is created and then try to charge
money there. [...] Coming from the customer, you break it down further and
further until you get to the end of the value chain.” (Senior Manager, Kappa)

Governance for Value Co-Creation: Challenges and Actions Taken

Unbiased collaboration model. Connecting stakeholders for value co-creation
often results in various constellations of collaboration when small and medium-sized
or even competing companies work together with incumbent firms. Accordingly,
Bosch’s ecosystems were challenged to establish rules and processes that define how
partnerships with competitors or much smaller firms are managed. For example,
direct competitors participated in Zeta’s ecosystem. In this respect, Zeta’s Business
Model Manager pointed out that “[...] the old enemy image of the competitor no
longer exists.” Nevertheless, the rival companies were clustered and evaluated in
competitive analysis. Ultimately, the analysis indicates which competitors have the
potential for partnering. In the case of cooperation, extensive contracts ensure that
business is conducted under fair conditions and that competition still takes place
without monopolies. In contrast, Beta collaborated with newly established startups,
facing the challenge of not exploiting its role as an incumbent firm and giving the
partners enough room to flourish. A critical success factor of such an asymmetrical
partnership is not to hinder the collaborating startups in their strategic alignment. A
Senior Manager of Beta further explained:

“It is not always about the orchestrator dictating what to do [...] but about
listening and being open. Thereby, we can learn from successful startups [...]. It is
vital not to hinder their strategic orientation and what they are doing successfully
today. As Bosch, we also must be very sensitive to this. When dealing with
partners, it is essential to give them as much space as they need and offer them
as much collaboration as possible. They should not be restricted and legitimized
but listened to and understood.” (Senior Manager, Beta)

Timely supply-side scaling. Another challenge Bosch’s ecosystem initiatives faced
during the launch was solving the chicken-and-egg problem to secure enough partic-
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ipation from both market sides. Notably, most ecosystem initiatives we observed
focused first on partner acquisition to provide a compelling value proposition for
the demand side of the market from the outset. For example, Eta launched its
innovation platform and built a dense network of twelve partners. These partners
ranged from startups to larger companies, but according to Eta’s Managing Director,
bringing in one or two household names was vital to gaining traction. Finally, the
app store went live with a comprehensive range of partner apps. Another example is
Beta, which also focused on building supply first by partnering with app providers.
Instead of acquiring nascent startups, Beta targeted highly scaled and established
app providers to access their existing customer base. According to Beta’s Senior
Manager, this strategic decision was justified as follows:

“We partner with skilled, highly scaled, and successful app providers because we
can also deliver added value to them with data, and the partner sort of takes over
the interface to the end customer for us. [...] You can start with the app partners
with very few users, but it takes a correspondingly long time for the ecosystem
to become lucrative, or you can go directly to the big players. And we chose the
latter because we also want to secure our ecosystem.” (Senior Manager, Beta)

7.5 Discussion

Our single case study derives empirical insights into the challenges of designing
and governing platform-based IoT ecosystems. We provide actionable design and
governance recommendations based on how Bosch’s IoT ecosystem initiatives man-
aged and overcame these challenges. After all, other incumbents running traditional
pipeline businesses and seeking to become IoT ecosystem orchestrators face simi-
lar challenges even though they might operate in different industries. Hence, the
recommendations derived from our analysis of Bosch’s IoT ecosystem landscape
can therefore also apply to other industry incumbents. Adding to these empirical
findings, we synthesize four overreaching tensions that emerged across all three
dimensions analyzed—exploitation versus exploration, commitment versus accessibility,
control versus openness, and stability versus flexibility (see Figure 7.1). While these
tensions are generally seen as incompatible and mutually exclusive, we present how
they can be reconciled using our recommendations in the following section.
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Figure 7.1.: Summary of case study findings.

7.5.1 Organizational Ambidexterity: Exploitation versus
Exploration

When shifting from conventional business processes to IoT ecosystems, incumbents
must achieve organizational ambidexterity to foster both exploitation and exploration
(O’Reilly & Tushman, 2013). Especially when designing processes seeking to connect
partners for value co-creation, regulatory requirements collide with the desired
speed of ecosystem establishment. On the one hand, time delays due to lengthy
contracts and coordination between legal departments should be prevented. On
the other hand, no compromises should be made in legal and risk management.
Accordingly, it is vital to reshape existing practices by standardizing processes and
contracts. A high degree of standardization leads to efficiency (Farjoun, 2010) and
reduces the need for coordination due to the low diversity of activities, ultimately
cutting onboarding time and costs.

Furthermore, when designing IoT platforms, stability is required to leverage joint
investments in standard components and variability to meet changing market de-
mand (Wareham et al., 2014). Consequently, a modular setup with a stable core and
interchangeable components has become the dominant platform design (Tiwana,
2014). An alternative approach to developing everything from scratch is to exploit
existing or proprietary standards such as standardized communication systems or
APIs. This results in significant time and resource savings in platform design. Apart
from this, the stability of platforms and boundary resources such as APIs ensures
that complementary modules are developed and integrated, while the modular
architecture enables the scalability of new modules (Hein et al., 2020; Tiwana et al.,
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2010). However, due to the hardware component and user heterogeneity, scaling
and network effects tend to be weaker for IoT platforms than purely digital ones
(Jung et al., 2021)

Since it is not enough for companies to build and run an ecosystem, they also need to
monetize it sustainably. Therefore, it is critical to design monetization mechanisms
so that revenue grows with the ecosystem without burdening it with high fixed costs
when it is still in its infancy (Williamson & De Meyer, 2019). Therefore, incumbents
must defer monetization and finally charge the right side of the market to avoid
stifling ecosystem growth. Apart from that, in IoT ecosystems, compatibility is often
made possible by selling physical connection units in the first place. Hence, a duality
of traditional one-time revenue and scalable platform monetization emerges. In
summary, a well-designed IoT ecosystem is a prime example of an ambidextrous
organization resolving the tension between exploitation and exploration.

7.5.2 Architecture of Participation: Commitment versus
Accessibility

Building IoT ecosystems is mainly about creating an architecture of participation
(Lusch & Nambisan, 2015) that balances commitment and accessibility by encouraging
potential partners to join and specifying the level of engagement they must bring
in. Transparent partner management processes and clear rules of exchange must be
established to create an atmosphere of trust between partners and prevent abuse of
the orchestrator’s power (Moore, 2006). However, this does not necessarily mean
that the orchestrator grants access to all aspirants and collaborates with every partner
on the same terms. Nevertheless, everyone must theoretically have the chance to
participate and improve their conditions. Especially in IoT ecosystems, access control
can be helpful since the enormous complexity places a significant demand on the
collaborating technology providers (Hein et al., 2019c). However, we also found
IoT ecosystems without participation restrictions, incentivizing participation via
contractual fairness and covering partners’ ecosystem-specific costs (Perscheid et al.,
2020).

In addition, an accessible platform design encourages stakeholders in their intent to
participate and service contribution, ultimately increasing their level of engagement
(Storbacka et al., 2016). To reinforce this effect, platform owners provide boundary
resources stimulating the partners’ generativity (Ghazawneh & Henfridsson, 2013).
While technical boundary resources such as APIs and SDKs govern access to core
modules of the platform, social boundary resources such as developer communities
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and hackathons promote creativity and community building (Marheine et al., 2021;
Pauli et al., 2020).

Last, the architecture of participation also defines how participants benefit from the
exchange and are rewarded for their engagement (Lusch & Nambisan, 2015). While
value co-creation is one of the main drivers of forming an ecosystem, a profitable
overall business model is crucial to its sustainability and resilience (Beverungen et al.,
2020). Especially in the IoT context, the ecosystem design must reflect win-win
situations among all roles, including sensor, software, application, and platform
providers (Heinz et al., 2022). Therefore, fair revenue allocation among all value-
adding parties is essential for a healthy ecosystem (Pauli et al., 2021). In summary,
the architecture of participation is built on the pillars of fairness, transparency, and
incentivization that balance commitment and accessibility.

7.5.3 Trustworthy Governance: Control versus Openness

As incumbent firms establish IoT ecosystems, they must face the central question of
managing the tension between control and openness (Tilson et al., 2010; Wareham et
al., 2014). A decisive issue involves input control—the extent to which orchestrators
define rules and guidelines to judge whether a partner’s offering should be allowed
to be placed on the platform (Cardinal et al., 2004; Tilson et al., 2010). Hence,
explicit and transparent partnership guidelines must enable third-party developers
to fully understand how to create and distribute their solutions on the platform
(Benlian et al., 2015). In this context, it is promising to either have no exclusivity in
approving partner solutions or grant full transparency on the areas in which partners
can offer solutions.

Further, to balance this tension, the orchestrator must control critical points such
as boundary resources to ensure the complementors’ generativity (e.g., designing
apps). Fundamentally, boundary resources (e.g., API, SDK, or marketplace) provide
practical governance means by which digital platforms are exploited and defended
(Karhu et al., 2018). Interestingly, fundamental differences in the governance of
business-to-consumer (B2C) and business-to-business (B2B) platforms are noted.
For example, B2B platforms are used only by legal organizations for mainly business-
critical processes and are characterized by significantly higher complexity (Hein et
al., 2019c). In the case of industrial IoT platforms, partners must enter contractual
commitments, and platform owners must provide quality-assuring certification
processes for apps before they are listed on the marketplace. In addition, partners
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should be able to differentiate themselves from competitor solutions and the platform
interface through custom branding and unique application design.

Finally, the orchestrating incumbent must also determine the degree of openness
to value co-creation with competitors or startups. Fostering the ecosystem’s trans-
parency could lead to dynamic co-opetition (Bengtsson et al., 2010), increasing the
capacity to innovate and thus exploit generative potential (Pauli et al., 2020). In the
case of asymmetric partnerships (Schleef et al., 2020), the incumbent’s adoption of
a restrained position of the incumbent could have a similarly positive effect, as the
startups are given sufficient space to develop and rapidly build on their strengths. In
summary, a coexistence of openness and control is best achieved with transparent
governance regulated by boundary resources.

7.5.4 Minimum Viable Ecosystem: Stability versus
Flexibility

IoT ecosystems require incumbents to balance stability and flexibility demands
through configuring digital infrastructure and governance mechanisms (Tilson et
al., 2010). Due to well-established internal processes, a vast customer set, and
incrementally improved core products, ensuring long-term stability is not the central
issue for incumbents. Instead, they have to overcome slow decision-making processes
and deep hierarchies, as partner companies are aware of their interdependencies
and are likely to lose trust in the orchestrator if things develop too slowly (Lingens,
2021). Ultimately, incumbents can achieve the required flexibility, for example, by
outsourcing the department responsible for orchestrating the ecosystem, thereby
replicating startup-like structures and cultures (Lange et al., 2021; Svahn et al.,
2017).

In addition, it is critical to start with a minimal viable ecosystem and offer basic
but unique value to increase the chances of a quick time to market. (Adner, 2012).
Furthermore, the associated governance model should be as less complex as pos-
sible and thus easy for partners to understand. In order to respond to changing
circumstances, the platform governance strategy must be regularly monitored and
adjusted (Jain & Ramesh, 2015). Finally, the platform’s scalability and flexibility
leverage extraordinary growth in scale and scope (Tilson et al., 2010). However, the
chicken-and-egg problem must be solved in advance to reach a critical user mass
that generates network effects.

160 Chapter 7 Fostering Value Co-Creation in Incumbent Firms: The Case of
Bosch’s IoT Ecosystem Landscape



Building an appropriate IoT ecosystem network goes beyond including third-party de-
velopers as fully digital ecosystems since sensor, software, and application providers,
such as consumers, must also be involved (Hein et al., 2019c). Nevertheless, we
found that a stable supply side must first be established in order to be able to offer
industrial customers a compelling range of services. Finally, an initial set of partners
(“minimum viable ecosystem”) is required, with each role filled at least once, to
enable a stable platform core and agile value co-creation.

7.6 Conclusion

In this article, we investigated the business departments of Robert Bosch GmbH,
an IoT incumbent, on their transformative journey from acting in hierarchical sup-
ply chains to orchestrating IoT ecosystems. Our work contributes to the existing
literature on IoT ecosystems by describing twelve interrelated challenges and cor-
responding design and governance decisions to bridge them. We demonstrate that
the tripartite S-D framework (Lusch & Nambisan, 2015) and the areas of ecosystem
design and governance (Tiwana et al., 2010) complement each other in describ-
ing value co-creation practices. Finally, based on our findings, we synthesize four
overarching tensions that have emerged in all three dimensions and provide action-
able empirically based recommendations on how to reconcile them. We argue that
decision-makers operating in business ecosystems must deliberately address these
challenges cohesively to foster value co-creation.

Theoretical implications. As a first theoretical implication of our research, we
introduce the perspective of incumbents to the discussion of IoT ecosystems by
deriving a general framework of service innovation consisting of three dimensions
and two areas that can be applied by further research on the topic. Our framework
adopts a holistic, long-term view that crosses and connects the boundaries of the
different phases of ecosystem orchestration (Autio, 2022)—initiation, scaling, and
control. For instance, governance aspects such as a neutral platform environment,
flexible strategic alignment, or appropriate openness are essential throughout the
lifecycle of an ecosystem.

Second, we elaborate on the IoT incumbent’s perspective and emphasize the IS-
specific balance between technical and socio-organizational aspects. More specif-
ically, our results include possible solutions to address challenges regarding both
aspects arising in ecosystem orchestration. For example, in terms of scalability, the
framework we propose helps to combine both perspectives by considering a solution
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to the chicken-and-egg problem and the realization of modular platform architecture.
Eventually, this study supports the idea that an IoT ecosystem is an inseparable
socio-technical system whose technical and socio-organizational challenges underlie
strong interactions (Alter, 2013). On the one hand, the socio-organizational re-
quirements for managing platform access determine the technological requirements.
On the other hand, the technological possibilities determine the solution space for
managing the platform.

Third, we identify four tensions across the three dimensions: exploitation versus
exploration, commitment versus accessibility, control versus openness, and stability
versus flexibility (see Figure 1). These tensions can serve as a starting point for
further research to assist incumbents’ managers in leading their company’s transition
to become an IoT ecosystem orchestrator. Such research could be of different
nature: further empirical research could, for example, focus on one of the identified
tensions and provide more in-depth insights on resolving the tensions in the context
of IoT-ecosystem design and governance. Another approach could be to derive
design-oriented knowledge on management assistant tools or define well-suited key
performance indicators to assist the managers’ decision process.

Practical implications. Up to this point, current research lacks empirical findings
with practical applicability for establishing IoT ecosystems from the perspective of
incumbent companies. Therefore, our findings may help business leaders previously
operating in linear value chains to reshape enterprise design and governance mecha-
nisms to facilitate value co-creation. To this end, we present the empirical results of a
single case study covering eleven IoT ecosystems from various industries and provide
insights into strategic decision-making to coordinate monetization, scalability, or
incentivization. In this regard, we provide twelve design and governance-related
challenges and corresponding actions to overcome them.

Although we selected an IoT incumbent and its embedded ecosystem initiatives as
our unit of analysis, our focus was also to draw a comprehensive picture of the
challenges and actions taken. Accordingly, our research also contains insights into
the overarching topic of establishing and orchestrating ecosystems that are not
only inherent to incumbents or IoT (e.g., modular architecture, strategic flexibility).
Nevertheless, we have drawn specific insights for IoT incumbents from these general
themes. For example, all types of platform ecosystems are usually characterized
by a modular architecture, but in the field of IoT, additional hardware components
need to be standardized, ensuring cross-manufacturer compatibility. Moreover, IoT
ecosystems are usually long-term initiatives that require a resilient governance model
that can adapt to changing circumstances. In the case of incumbents, this challenge
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is even more difficult to overcome, as they usually pursue an overarching long-
term strategy. Consequently, they must maintain profitability in their legacy-based
business while at the same time exploiting the full potential of disruptive ecosystem
businesses.

Finally, the explorative findings can help managers of incumbent firms address
the identified tensions. Thereby, we recommend focusing on four concepts for IoT
ecosystem establishment—organizational ambidexterity, architecture of participation,
trustworthy governance, and minimum viable ecosystem—to reach the audacious
vision of becoming an incumbent orchestrator.

Limitations and future research. Like any study, ours is subject to limitations
which are, at the same time, potential avenues for future research. First, within a
single case study, we investigated challenges and recommendations for action among
eleven Bosch ecosystems with various focuses and degrees of maturity. Therefore,
we took on a rather exploratory high-level perspective trying to capture as many
different facets as possible to form an initial big picture. Instead, we could have
zoomed in on one of these specific ecosystem initiatives for in-depth investigation
within a longitudinal case study or zoomed out to examine Bosch’s IoT journey from
a holistic company perspective.

Second, despite the successful provision of our case study overview with its cor-
responding challenges and tensions, we cannot yet make a statement about the
interdependence of the individual challenges and tensions. In addition, our analysis
did not include the classification regarding suitability and significance of the indi-
vidual challenges and tensions among all eleven initiatives studied or compare the
investigated initiatives and associated industries. Instead, our research provides a
comprehensive overview of challenges in establishing IoT ecosystems across initia-
tives and industries. In future research, we might re-engage with the interviewees
and other informants familiar with our case to validate our findings and gain further
industry-specific and industry-agnostic insights into the design and governance of
IoT ecosystems (e.g., through a Delphi study, workshops, further interviews, or focus
groups).

Finally, despite carefully selecting multiple units of analysis, specifying a general
roadmap for the incumbent’s IoT ecosystem establishment is challenging to assess.
Therefore, the generalizability and, thus, the external validity (Yin, 2014) of our
results are subject to certain limitations and must be further verified. For instance,
our findings do not claim to be exhaustive or applicable to every incumbent operating
in the IoT. Looking ahead, we see great potential in using the case of Bosch’s IoT
ecosystem landscape to explore one of the four theoretical concepts we elaborated on
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in the previous section in more depth to gain further insights into the phenomenon of
IoT ecosystems. However, in-depth studies with a stronger focus on other incumbent
forms in the IoT sector beyond Bosch should complement this research to improve
the results in terms of applicability to other companies.
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Finale





Conclusion 8
The motivation for this work emerges from the increasing proliferation of connected
cars and the rapidly growing amount of car data enabling enterprises to exploit
novel business opportunities. Additionally, with new players entering the automotive
industry and evolving customer expectations, economic value creation shifts away
from product-oriented supply chains to service-oriented ecosystems. In this regard,
the connected car perfectly illustrates the Internet of Things, as it acquires valu-
able data from numerous sensors and cultivates an expanding ecosystem involving
stakeholders from diverse industries (Cichy et al., 2021). Furthermore, platform
ecosystems are increasingly emerging around the connected car, such as infotain-
ment platforms offered by tech players leveraging their smartphone expertise in
the automotive sector (Schreieck et al., 2022) or car data marketplaces that act as
neutral intermediaries facilitating OEMs to sell data to independent service providers
(Stocker et al., 2021). Despite research and practice recognizing the potential of
data-driven business models around the connected car, most incumbent firms still
struggle with connectivity and seizing the immense business opportunities of car
data monetization (Kaiser et al., 2021).

In pursuit of our overarching research objective to explore and enhance the general
understanding of how companies conceptualize and design business models and
leverage platform ecosystems to capture value from connected cars, we contribute to
various thematic areas. First, we shed light on the key characteristics and archetypal
patterns observed in business models related to connected cars. Subsequently, design
knowledge is generated and instantiated into a prototype artifact that deals with
the realization of a concrete car-data-based service, showcasing the value-creation
potential of car data marketplaces. Lastly, our case study research contributes to the
current body of knowledge regarding digital business strategies employed by incum-
bent firms that transition toward value co-creation within platform ecosystems.

The remainder of this chapter concludes the research presented in this thesis. First,
we summarize the findings of our work and point out its contributions to the
research field. Afterward, we delve into managerial implications and then point out
limitations regarding our work’s generalizability. Finally, possible avenues for future
research are outlined.
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8.1 Summary and Theoretical Contributions

This section summarizes the different research studies conducted as part of this
thesis based on four research questions. RQ1 explores the existing state of research
on business models for connected cars, whereas RQ2 and RQ3 specifically emphasize
their conceptualization. Subsequently, RQ4 deals with developing a specific business
model based on connected car data. Finally, RQ5 and RQ6 address the ecosystem
strategies of incumbent firms operating in the connected car domain. To organize our
findings, we revisit the research questions and highlight the theoretical contributions
of each study.

Research Question 1 (RQ1)
What is the state of the art in research covering data-driven business models in
the connected car domain?

As discussed in Chapter 2, there have been some initial research efforts exploring
connected cars and their associated business models (Kaiser et al., 2018; Marabelli et
al., 2017). However, the significance of data-driven business models and associated
platform ecosystems has gained momentum both in the automotive industry and
in academic discourse (e.g., Bergman et al., 2022; Cichy et al., 2021; Ketter et al.,
2022). Moreover, we argue that studying connected cars is a highly worthwhile
endeavor, as technologies such as high-performance computing, in-car HMI, car
OS, 5G, data storage, and data platforms disrupt the automotive industry and
increasingly impact how people live. Addressing RQ1, our primary objective is to
enhance our understanding of the literature corpus on business models capable of
creating and capturing value from data collected by connected cars.

We conduct a structured literature review to uncover common approaches, insights,
and research foci, allowing us to pinpoint remaining research gaps in that particular
domain. In this process, our findings are organized along the four dimensions of the
V4 business model framework by Al-Debei and Avison (2010): value proposition,
value architecture, value network, and value finance. As our primary theoretical
contribution, we extend this framework to the context of connected cars and discuss,
summarize, and synthesize the identified publications, aligning them with the V4

dimensions. We propose that scholars publishing novel business model research in
the connected car context utilize our framework to benchmark their work against the
existing body of literature and identify additional research gaps. Ultimately, the re-
sults of our literature review reveal a research agenda comprising four opportunities
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that have been hardly addressed: (1) examining the digital business and platform
strategies of established automotive companies, (2) investigating methods for pre-
serving privacy in car data-enabled services, (3) designing services that leverage
connected car data effectively, and (4) researching suitable pricing strategies for the
monetization of car data. Our dissertation thoroughly addresses the first research
gap by comprehensively exploring RQ5 and RQ6, while RQ4 explicitly targets the
third research gap.

Research Question 2 (RQ2)
What are the key characteristics of data-driven business models in the connected
car domain?

By addressing this question in Chapters 3 and 4, our research contributes to the
descriptive understanding of connected cars and their corresponding business mod-
els, representing an emerging and continuously evolving field (Kaiser et al., 2018).
Connected cars provide a unique setting to review and extend established theories
and evidence on business models for connected device data (Cichy et al., 2021).
To this end, the outcome of our study resulted in a theoretically sound and empiri-
cally validated taxonomy summarizing the critical dimensions and characteristics
of connected car business models. Through an iterative process (Nickerson et al.,
2013), we develop our taxonomy by incorporating insights from the existing body of
knowledge and empirical analysis of 70 real-life examples of connected car compa-
nies. The taxonomy design is finalized by a quantitative and qualitative evaluation,
including twelve expert interviews and its application to 154 connected car business
models. We identify ten key dimensions with 48 corresponding characteristics to
describe connected car business models holistically.

Our taxonomy offers theoretical insights by introducing a shared language and frame-
work to analyze, categorize, and arrange connected car business models, paving
the way for future research and assisting scholars in situating their work within
this domain. Following Gregor (2006), our taxonomy represents a Type I theory
contribution (“theory for analyzing”). As the most basic type of theory, “they describe
or classify specific dimensions or characteristics of individuals, groups, situations,
or events by summarizing commonalities in discrete observations” (Gregor, 2006,
p. 623). Hence, our research contributes to structuring a body of knowledge that
constitutes a novel field in IS research (Glass & Vessey, 1995) and facilitates a more
systematic description.
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Research Question 3 (RQ3)
What are the archetypal patterns of data-driven business models in the con-
nected car domain?

Chapter 4 explores RQ3 using the previously developed taxonomy to identify
archetypes that serve as qualitative interpretations to describe and distinguish
the optimal configurations of connected car business models. We apply the set of
154 real-world business models to our taxonomy and perform a cluster analysis
(Kaufman & Rousseeuw, 1990) to reveal seven distinct groups of business models
that exhibit similar characteristics across the taxonomy dimensions. By comparing
the respective cases within each cluster, we derive seven generic archetypes of con-
nected car business models: (A1) data platforms, (A2) location-based services, (A3)
fleet management, (A4) diagnostics and maintenance, (A5) driving analytics, (A6)
cyber-physical protection, and (A7) connected infotainment. Finally, we assess each
cluster’s structural strength and quality using silhouette width to measure cluster
validity (Rousseeuw, 1986).

In contrast to the purely descriptive nature of taxonomy research, our archetypes
offer insights into wildly applied configurations, acting as a reference point for
further research and adaptation. They aid the development of unique business
models tailored to specific goals and target markets. Although our work does not
offer a universally applicable solution, it contains a prescriptive component that
provides actionable insights and guiding principles. Our archetypes contribute to
a conceptual understanding of how and why different types of car data might be
monetized within data-driven business models, representing a Type II mid-range
theory (“theory for explaining”) according to Gregor (2006). By offering insights into
the complex dynamics and potential directions of the emerging field of connected
car business models (Cichy et al., 2021; Kaiser et al., 2021; Koester et al., 2022),
our research meets the requirement of being “new and interesting, or [explaining]
something that was poorly or imperfectly understood beforehand” (Gregor, 2006, p.
625).

Research Question 4 (RQ4)
How to design a connected fleet management system in order to use car data
from data marketplaces effectively?

This next question, discussed in Chapter 5, tackles the IS research gap in design-
ing services based on data from connected cars and examining their benefits for
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businesses, consumers, and society. To accomplish this, we conduct a design sci-
ence research project (Kuechler & Vaishnavi, 2008), centered around developing
a connected fleet management system that incorporates the concept of car data
marketplaces. We integrate inputs from the existing body of literature and interviews
with domain experts to ensure both theoretical rigor and practical relevance (Hevner,
2007). Building on that and drawing on the theory of effective use (Burton-Jones &
Grange, 2013) as our kernel theory, we derive theory-grounded meta-requirements
and tentative design principles. After instantiating them into a prototypical fleet
management system using Microsoft Power BI, we demonstrate the artifact’s effec-
tiveness through a risk and effectiveness strategy (Venable et al., 2016) employing a
focus group workshop and further expert interviews.

The primary contribution of this work is the situated implementation of our artifact,
which can be considered a level 1 contribution, as stated by Gregor and Hevner
(2013). Moreover, by formulating six tentative design principles, we take initial
steps towards developing a nascent design theory that aims to contribute to the
prescriptive knowledge base. We thereby provide a potential level 2 contribution
according to Gregor and Hevner’s categorization. Broadly speaking, we perceive our
work as an “improvement” in the DSR knowledge contribution framework (Gregor
& Hevner, 2013), representing a new but more efficient and effective solution
for a known problem. Overall, our research adds to the existing body of design
knowledge for data-driven car services in general, specifically within the realm of
fleet management.

Research Question 5 (RQ5)
How and why do incumbent firms decide on a certain level of tech player
involvement in their digital strategy?

By answering this question raised in Chapter 6, we explore the necessity for incum-
bent OEMs to rethink their business strategies to remain competitive in the digital
age, which tech players primarily control. In an embedded case study (Yin, 2014),
we explore what options automotive OEMs have to collaborate with Google and in-
tegrate its comprehensive digital platform offering consisting of Android Automotive
OS (AAOS) and the underlying Google Automotive Services (GAS) in their digital
strategy. Our main contribution is a grounded model of uncertainty reallocation
in incumbent firms, which we developed based on semi-structured interviews and
publicly available data, guided by the affordance-actualization theory (Strong et al.,
2014) as a theoretical lens. In doing so, we combine the insights gained so far using
the five inductively derived aggregate dimensions that represent the building blocks
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of a grounded model: (1) external digital platform by tech firm, (2) incumbent firm
and its goals, (3) uncertainty tradeoffs and affordance of reallocation, (4) strategic
actions by incumbent firm, and (5) short- and long-term outcomes. Through our
grounded model, we offer theoretical insights into the decision-making process of
incumbent firms regarding their level of involvement with tech players in their digital
strategies. Furthermore, we offer evidence on how external digital platforms by tech
firms have the potential to redistribute incumbent firms’ uncertainty, which requires
them to make several trade-offs. Finally, our analytical findings offer empirical
insights into the growing involvement of tech firms in established industries, such as
the automotive sector.

The associated study carries additionally various theoretical implications. First, our
research enhances the existing understanding of digital platform affordances (e.g.,
Beverungen et al., 2020; Hein et al., 2019b, 2020). We achieve this by introducing
the concept of uncertainty reallocation in the context of incumbent firms responding
to external digital platforms offered by tech firms. Our study empirically shows
that incumbent OEMs in the automotive industry share common goals in their
digital strategy. However, we also demonstrate that incumbent OEMs are forced to
partner with technology players to benefit from their external digital platforms (e.g.,
Android Automotive OS), leading to an uncertainty trade-off and reallocation of
uncertainty. For instance, incumbent OEMs must weigh whether integrating a tech
firm’s trusted and well-established operating system outweighs the associated loss of
control over user data, user behavior, and system usage information. This also has
implications for understanding uncertainty in multi-actor digital innovation settings
(e.g., Poeppelbuss et al., 2022). By applying the affordance lens, we highlight the
socio-technical nature of reallocating uncertainty in a digital innovation context,
particularly when firms face similar external platform offers.

Research Question 6 (RQ6)
How can incumbent firms orchestrate their partner network toward value
co-creation to establish IoT ecosystems?

In order to address RQ6 posed in Chapter 7, we delve into the ecosystem strategies
employed by incumbent firms. By presenting an embedded case study (Yin, 2014)
within Robert Bosch GmbH, we draw a comprehensive picture of the challenges,
departments face in designing and governing platform-based IoT ecosystems. Our
single case study provides actionable recommendations based on the strategies
employed by Bosch’s IoT ecosystem initiatives. To structure our findings, we apply
the tripartite service innovation framework by Lusch and Nambisan (2015) to the
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IoT context. Particularly, our study uncovers twelve incumbent-specific challenges
within the realm of IoT ecosystems and offers effective design and governance
actions taken to overcome these challenges. Despite operating in different industries,
other incumbents aiming to transition from traditional pipeline businesses to IoT
ecosystems encounter similar challenges. The recommendations derived from our
analysis of Bosch’s IoT ecosystem landscape also apply to these industry incum-
bents to some extent. In addition to these empirical findings, we consolidate four
overarching tensions that have surfaced across all three dimensions of the service
innovation framework: (1) exploitation versus exploration, (2) commitment versus
accessibility, (3) control versus openness, and (4) stability versus flexibility. Although
these tensions are commonly perceived as incompatible and mutually exclusive, our
study presents how they can be reconciled using four concepts for IoT ecosystem
establishment: (1) organizational ambidexterity, (2) architecture of participation,
(3) trustworthy governance, and (4) minimum viable ecosystem.

In terms of theoretical implications, we contribute to the discourse on IoT ecosystems
by incorporating the perspective of incumbents by introducing a general framework
that can be applied by further research on the topic. Our framework takes on a
holistic, long-term view that crosses and connects the boundaries of the different
stages of ecosystem orchestration, such as initiation, scaling, and control (Autio,
2022). For example, throughout the entire lifecycle of an ecosystem, governance
aspects such as a neutral platform environment, flexible strategic alignment, or
appropriate openness are crucial. Moreover, the study emphasizes the IS-specific
balance between technical and socio-organizational aspects and delivers potential
solutions to address challenges in ecosystem orchestration. Our findings support the
idea that an IoT ecosystem is an inseparable socio-technical system where technical
and socio-organizational challenges underlie strong interdependencies (Alter, 2013).
Finally, the tensions identified can serve as a starting point for further research
to assist managers of incumbents in guiding their company’s transition towards
becoming an orchestrator of an IoT ecosystem. Further empirical research could
focus on one of the four identified tensions and provide more in-depth insights
on resolving the tensions in the context of IoT ecosystem design and governance.
Alternatively, a design-oriented approach could be adopted to develop a management
assistant tool or define suitable key performance indicators to assist the decision
process of managers.
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8.2 Managerial Implications

Apart from the theoretical contributions outlined earlier, this dissertation also holds
direct implications for practice. The automotive industry witnesses a growing trend
of connected cars, requiring proactive measures to capitalize on this emerging
opportunity. As previously mentioned in Chapter 1, McKinsey & Company projected
that the annual added value generated from monetizing car data could range from
$250 billion to $400 billion by the year 2030 (Martens & Schneiderbauer, 2021).
Our findings contribute to a better understanding of conceptualizing and designing
data-driven design business models and leveraging platform ecosystems to capture
value from connected cars.

First, our structured literature review in Part I sheds light on the crucial task of
monetizing car connectivity. To offer actionable guidance for automotive execu-
tives, we propose four key implications derived from our in-depth analysis of the
current body of knowledge to assist practitioners in leveraging car data: (1) Foster
drivers’ willingness to share car data and facilitate data sharing between OEMs
and independent service providers to counteract the monopolization of data by
OEMs. (2) Enhance customer-centricity to design connected services that meet
customers’ increasing demand for digital experiences. (3) Engage collaboration
between vehicle-specific players (e.g., OEMs, suppliers) and the wider ecosystem
(e.g., tech players, insurance firms). (4) Build strong internal capabilities, including
software development, cybersecurity, and data analytics. Beyond these implications,
our literature review yields further managerial contributions. On the one hand, it
consolidates essential concepts for developing connected car business models. On
the other hand, it provides an overview of 38 connected car services documented in
the literature, highlighting their potential to generate revenue by monetizing vehicle
data.

Second, our taxonomy and archetype-building activities highlighted in Part II carry
noteworthy managerial implications by providing valuable tools to navigate the
unexplored realm of connected car business models. They provide a differentiated
perspective on business model design in the connected car space, enabling industry
players to comprehend the interplay between car data-driven business models and
explore various options for monetizing connected car data. Our taxonomy and
archetypes can serve as strategic management tools for managers across various
purposes. They can identify business opportunities and potential market entry points
in the automotive ecosystem and evaluate our archetypes’ applicability within their
company’s specific context. Furthermore, the provided artifacts can help explain
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their current business model to stakeholders, focus on improving specific operational
aspects, or develop new business models aligned with their corporate strategy (Spieth
et al., 2014). By conducting a morphological analysis (Geum et al., 2016), our
work can finally assist in systematically developing innovative ideas. The archetypes
and underpinning real-world business models highlight proven innovation paths
for executives to digitalize their existing business models. In general, the taxonomy
and archetypes deliver industry-specific support for innovating business models,
empowering practitioners to broaden their market offerings and create value across
the vehicle life cycle.

Third, the DSR project presented in Part III provides insights to practitioners regard-
ing the utilization of connected car data and the design of efficient connected car
services. We offer design recommendations to promote improved economic and
environmental performance, and vehicle health, positively impacting consumers,
businesses, and society. Moreover, by adopting the design science research paradigm,
we systematically tackle the desirability and feasibility aspects of potential connected
car business models, providing insights into the observed areas of fleet management
and data marketplaces. On the one hand, the in-depth analysis of our interview
study involving fleet stakeholders reveals a holistic understanding of the present
obstacles and prospects that can be tackled by utilizing vehicle data. On the other
hand, instantiating the design principles based on in-vehicle data collected in a
field test initiated by a car data marketplace shows which fleet management use
cases are already feasible via this approach and, therefore, for companies in the
automotive industry without exclusive data access. Furthermore, we illuminate the
highly complex fleet domain by offering design principles for an information system
that takes into account both strategic (DP1-DP3) and operational (DP4-DP6) fleet
management activities.

Finally, the case studies introduced in Part IV carry strategic implications for man-
agers in incumbent firms who aim to transition their organizational structures
toward platform ecosystems. We investigate two aspects in one embedded case
study each: incumbent firms seeking to collaborate with tech players and become
part of an existing platform ecosystem and incumbent firms aiming to establish and
orchestrate a new platform ecosystem. Regarding the latter, we demonstrate that
incumbents can adopt various strategies concerning the involvement of technol-
ogy companies. These strategies include utilizing solely the open-source version
of the technology company’s platform offering, integrating it comprehensively, or
opting for a customized approach. Moreover, our findings indicate that there is
no one-size-fits-all strategy for engaging tech players. Instead, incumbents must
carefully consider which technology and business control points in the ecosystem
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they need to possess based on their internal capabilities and goals. However, even
though being a contributor to an ecosystem can be equally appealing as being a
platform provider, our second case study contains managerial insights into establish-
ing and orchestrating platform ecosystems. Our findings may help business leaders
traditionally operating in linear value chains to reshape their enterprise design and
governance mechanisms to foster value co-creation. In this regard, we offer twelve
design and governance-related challenges and corresponding actions to overcome
them effectively.

8.3 Limitations

The studies embedded in this work bear several limitations. While each publication
covers a detailed discussion of its limitations, we will now reflect on the major
shortcomings of the research endeavors that should be considered regarding the
findings’ generalizability.

First, the primary constraint of literature reviews (RQ1-RQ4) lies in their dependency
on the search process (e.g., selected databases or search terms) and the papers
identified through it. Even when employing forward and backward search techniques
(Webster & Watson, 2002), it is unlikely that the search process captures every single
article relevant to the objective. Additionally, the investigation of connected cars
and associated business models is a rapidly evolving field of research. Therefore,
our work reflects only a brief glimpse of the literature in this area, and future
investigations may yield different outcomes.

Second, the iterative taxonomy development process that we employ to address RQ2
also entails certain limitations. While it is essential to acknowledge that taxonomies
may not be flawless, their value lies in their usefulness rather than in achieving
perfection and full comprehensiveness (Nickerson et al., 2013). Taxonomy-based
research is never complete as it only reflects a snapshot in time and needs to be
constantly updated to remain helpful in the future (Nickerson et al., 2013). Nonethe-
less, the taxonomy presented in this thesis has been designed to be extendable with
further dimensions or characteristics, serving as a robust framework for identifying
forthcoming business model patterns. Moreover, classifying real-world objects and
applying them to taxonomies (RQ2 and RQ3) is prone to coding biases. Coding, for
example, depends on the authors’ interpretations of the taxonomy dimensions and
features. To counteract this, we employed multiple coders and assessed intercoder
reliability. In addition, the coding process was only based on publicly available
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information. We triangulate data from company websites, press releases, startup
databases, and company reports to maximize the validity of our dataset.

Third, another limitation emerges from following the design science research
paradigm when investigating RQ4. The DSR approach is characterized by its iterative
nature, aiming to achieve “learning through the act of building” (Kuechler & Vaish-
navi, 2008, p. 489) rather than following a linear research path. The kernel theory
we draw on during our DSR study to underpin the design of artifacts represents just
one possible approach to achieving our objectives. While we consider the effective
use theory (Burton-Jones & Grange, 2013) the most suitable for developing design
knowledge to address RQ4, alternative kernel theories could have resulted in a dis-
tinct set of design principles. The same applies to the sample of interviewed experts,
which does not claim to be exhaustive. Nevertheless, through our comprehensive
approach that integrates both literature review and expert interviews, we ensured
both rigor and relevance, establishing a robust foundation for problem awareness.

Last, despite the extensive and detailed information that case studies offer, they also
have certain limitations that we acknowledge when examining RQ5 and RQ6. The
generalizability and, thus, the external validity (Yin, 2014) of case studies are subject
to limitations and require further verification. Hence, our findings do not claim to
be exhaustive or universally applicable to every incumbent firm in developing their
platform ecosystem strategy across all industries. Furthermore, the primary data
source of both case studies consists of interviews, which may include biases. On the
one hand, researchers are mainly responsible for data collection during interviews,
relying on their skills and instincts. On the other hand, interviewees themselves
may introduce biases in the information provided. To mitigate this limitation, a
diverse group of experts and senior decision-makers were interviewed (Eisenhardt &
Graebner, 2007). Additionally, we complement the interviews with secondary data
sources, including websites, news articles, press releases, and internal documents.

8.4 Opportunities for Future Research

By 2030, approximately 95 % of newly sold vehicles worldwide will be connected
(Martens & Schneiderbauer, 2021). This indicates that automotive companies
continuously seek opportunities to leverage car data in innovative business models
while developing associated platform ecosystems. Hence, we see encouraging future
research opportunities to occupy this field.
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First, investigating privacy and ethical considerations within data-driven connected
car business models and ecosystems presents a promising avenue for future re-
search. Unlike other connected products, connected cars have already emerged as
a prominent example of IoT implementation on a large scale, and the generated
data is already being shared with third parties through APIs. Sharing connected car
data raises a series of privacy-related concerns (Cichy et al., 2021) as the car users’
informational and physical spaces may be intruded (Koester et al., 2022), which
can elevate privacy risks. Particularly sensitive information about actual driving
behavior or daily routines may be inferred from connected car data (Lechte et al.,
2023). To advance research in this area, it is important to address the issue of
data ownership and the measures required to safeguard it. Moreover, the current
literature lacks a theoretical evaluation of car data privacy, emphasizing the need
for theory building (Sterk et al., 2022a). From a theoretical standpoint, a suitable
initial reference would be the privacy calculus model (Dinev & Hart, 2006), which
proposes that individuals assess their willingness to share information through a
risk-benefit analysis. In light of this, further research could apply the model to
investigate how drivers preserve their privacy in car-data-based business models and
test, adapt, and extend corresponding theories.

Second, to keep our taxonomy and archetypes in the developing field of connected
car business models relevant and applicable future research could revisit and ex-
tend our findings. Moreover, as our research aimed to construct a taxonomy and
associated archetypes encompassing the diverse connected car domain, our findings
are still broad in scope, covering diverse foci, including data marketplaces, fleet
management systems, and infotainment systems. To gain a deeper understanding of
the seven archetypes we derived in our work, future studies could delve into them
more comprehensively by crafting more specific taxonomies and sub-archetypes for
these business models within the connected car domain. Our proposed approach
is similar to the study conducted by Bergman et al. (2022), wherein a taxonomy
and associated archetypes for data marketplaces were developed. In this context,
further taxonomy research is needed, particularly in the domain of two specific
archetypes we identified: At first, the domain of fleet management (A3) needs
more consideration due to the growing proportion of professionally managed fleet
vehicles (Pütz et al., 2019) and its significant heterogeneity, encompassing diverse
fleet types (e.g., logistics service providers or mobility service providers) and vehicle
categories (e.g., cars, light commercial vehicles, or trucks). The second business
model archetype that lends itself to in-depth investigation is connected infotainment
(A7) due to the ongoing smartphonization of connected cars and the complex layer
architecture of infotainment systems provided by multiple ecosystem actors.
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Third, there is abundant room for advancing research and development efforts to
escape the data monopoly of automotive OEMs. Other market participants (e.g.,
suppliers, repair shops, insurance companies) heavily rely on the OEMs’ data supply
and are, therefore, in a disadvantageous position (Martens & Mueller-Langer, 2020).
As a countermeasure, car data marketplaces tap into the cloud systems of OEMs,
harmonize the data, and resell it to independent service providers. Nevertheless,
Otonomo and Wejo, renowned car data marketplaces, are currently facing challeng-
ing financial circumstances, as certain OEMs are reluctant to share extensive data or
only offer data that may not be inherently valuable to external buyers unless shared
across multiple brands (Bloomberg, 2023). Hence, there is a significant need for
examining how to establish fair competition between OEMs and alternative service
providers. A promising foundation for research endeavors could be the European
Commission’s regulations for fair data access and utilization, commonly referred
to as the Data Act (European Commission, 2022b). Scholars may explore different
data governance models and frameworks that can be used to implement the Data
Act effectively. Another approach would be to assess the potential impact of the
Data Act on the value co-creation between OEMs, independent service providers,
and data marketplaces.

Fourth, there are also promising prospects for expanding case study research in the
investigated field of ecosystem strategies employed by incumbent firms. Looking
ahead, we see great potential in transferring our theoretical models to in-depth
studies that specifically emphasize industry contexts other than automotive or other
incumbent firms beyond the investigated ones to strengthen our results in terms
of general applicability to other contexts. In addition, our work and the majority
of other IS research (e.g., Bohnsack et al., 2021; Dremel et al., 2017; Svahn et
al., 2017) have emphasized platform ecosystems introduced by Western market
companies such as Google and Bosch. Hence, it is essential to acknowledge that the
findings may not be directly applicable to other markets due to differences in cultural
value, market structure, or consumer behavior. To address this limitation, future
case studies could explore cooperation models, notably with Chinese automotive
and tech firms that exhibit a prominent global presence and influence. This holds
particular relevance due to the necessity for regionalized solutions, exemplified
by the governmental restrictions on Google services. Moreover, the country’s high
affinity for technology and demand for a holistic software experience has resulted in
established Western OEMs experiencing a decline in their market share.

Finally, this thesis thoroughly investigates the connected car and its remarkable
ability to exchange real-time data with its ecosystem. However, the next revolu-
tionary leap in the automotive industry is already around the corner, known as
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the “software-defined vehicle,” wherein the vehicle’s software takes precedence over
the mechanical hardware and mainly controls and executes vehicle functions (c.f.,
Ohlsen, 2022; Windpassinger, 2022). The research opportunity comes from the
ability of car owners to select the features and services they want and thus tailor
their driving experience to their individual needs. This provides a valuable oppor-
tunity to study user preferences, analyze usage patterns and develop personalized
features that improve user satisfaction and engagement. Additionally, researchers
and innovators have the distinctive chance to shape this future by exploring new
approaches and technologies that improve safety, efficiency, and the overall user
experience. However, it is evident that neither incumbent OEMs nor suppliers are
really prepared for this paradigm shift and can successfully navigate it in isolation.
Notably, significant components of vehicle operating systems or cloud environments
increasingly rely on frameworks from major hyperscalers like Amazon, Google, or Mi-
crosoft. This circumstance calls for further exploration of collaborative approaches
and cooperation to enable incumbents to fill their knowledge gaps and actively
contribute to the value creation of software-defined vehicles beyond commodity
products. All in all, we encourage scholars to join us in exploring the almost endless
possibility of the connected and shortly software-defined dream car.

8.5 The End

In summary, this dissertation paves the way for research and practice to harness
the potential of connected car data and co-create value within platform ecosystems.
Innovative constructs are introduced, offering a unified perspective on conceptualiz-
ing this emerging type of business model. Additionally, we offer design knowledge
showcasing the value-creation potential of car data and its instantiation into a
prototype artifact. This work also provides strategic guidance to incumbent firms
operating in the automotive industry and beyond, assisting them in transitioning
their organizational structure toward platform ecosystems. With the number of
connected car use cases and corresponding ecosystems growing, we believe that
organizations will facilitate the proliferation of automotive data resulting in benefits
for both businesses and individuals while also contributing to the broader societal
context.

In alignment with the introduction of this thesis, I want to close my work with the
words of a visionary in the field of future mobility. The transformative landscape for
the next two decades encompasses the evolution from fossil fuels to clean energy,
the shift from mechanical to software-centric mobility, and the seamless integration
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of AI to facilitate smooth transitions between human and machine operators. “When
this software dream car will come to the real world, it will be a bit like a white sheet of
paper. It’s not good or bad in itself, but it is the largest real-life experiment of AI and
humans interacting on a daily basis” (Koster, 2023b, 10:58). By embracing these
paradigm shifts, we can actively contribute to creating a future where environmental
sustainability, personalized experience, and road safety go hand in hand, both
digitally and physically. Let us drive this innovation in a way that benefits humanity
as a whole.
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Table A.1.: Sample of connected car business models.
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Table A.1.: Sample of connected car business models (continued).

BM82 BlackBerry QNX BM96 MAN Rio 
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Table A.2.: Change of taxonomy due to evaluation, including operations on specific ele-
ments.
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Table A.2.: Change of taxonomy due to evaluation, including operations on specific ele-
ments (continued).

Table A.3.: Recommended number of clusters of 154 connected car business models.

Measure suggested by Suggested number of clusters (Ward.D2)
Ball and Hall (1965) 3
Caliński and Harabasz (1974) 7
Davies and Bouldin (1979) 14
Dunn (1974) 5
Frey and Van Groenewoud (1972) 1
Halkidi et al. (2000) 5
Hartigan (1975) 6
Hubert and Levin (1976) 14
Krzanowski and Lai (1988) 9
McClain and Rao (1975) 2
Milligan (1981) 5
Rousseeuw (1987) 7
Tibshirani et al. (2001) 2
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Figure A.1.: Silhouette plot of Ward.D2 partitioning for k = 7. Average silhouette width:
0.56.
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A.2 Supplementary Material Chapter 5
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