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1. Introduction

X-ray diffraction (XRD) has long been
regarded as an indispensable tool for the
characterization of material samples,
which is capable of analyzing a wide array
of substances, ranging from metals,
ceramics, polymers, to thin films and nano-
structured materials.[1] One of the key fac-
tors behind the prevalent use of XRD is its
ability to provide a comprehensive analysis
of various distinct properties. For instance,
the XRD technique allows for determining
the material’s phase composition, crystal
structure, lattice parameters, texture, and
strain, among other characteristics.[2]

Moreover, the diffraction analysis is a non-
destructive technique, safeguarding the
integrity of the material for further studies.
Given these advantages, XRD instruments
are ubiquitously present and essential for
materials research workflows.

In the field of materials discovery, the pri-
mary goal is to develop materials with
enhanced or unique properties that can out-
perform existing materials. Due to the inher-
ent limitations of existing materials in

aspects such as performance, cost, and sustainability, the develop-
ment of new substances is imperative for propelling technological
advancements and elevating living standards. A prevalent approach
to discovering these novel materials includes the intentional addi-
tion of foreign atoms or ions to existing components. This can lead
to enhanced properties, such as thermal stability or electrical con-
ductivity, or it can serve to replace scarce or environmentally harm-
ful substances. One of the most effective methods for identifying
such novel materials is the combinatorial approach, in which amul-
titude of different substances are systematically combined in vary-
ing proportions and configurations for rapid screening of vast
material composition spaces.[3] Nevertheless, a large fraction of
these configurations unfortunately results in materials that exhibit
inconsistent and inhomogeneous properties that are not desirable.[4]

Here, XRD is an essential tool for the identification of amorphous,
phase-pure, and multi-phase samples, as well as further characteri-
zation of the crystalline properties for the produced materials.

The analysis of the data generated from the XRD technique,
however, poses a considerable challenge. In the traditional
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New materials are frequently synthesized and optimized with the explicit
intention to improve their properties to meet the ever-increasing societal
requirements for high-performance and energy-efficient electronics, new battery
concepts, better recyclability, and low-energy manufacturing processes. This
often involves exploring vast combinations of stoichiometries and compositions,
a process made more efficient by high-throughput robotic platforms.
Nonetheless, subsequent analytical methods are essential to screen the
numerous samples and identify promising material candidates. X-ray diffraction
is a commonly used analysis method available in most laboratories which gives
insight into the crystalline structure and reveals the presence of phases in a
powder sample. Herein, a method for automating the analysis of XRD patterns,
which uses a neural network model to classify samples into nondiffracting,
single-phase, and multi-phase structures, is presented. To train neural networks
for identifying materials with compositions not matching known crystallographic
structures, a synthetic data generation approach is developed. The application of
the neural networks on high-entropy oxides experimental data is demonstrated,
where materials frequently deviate from anticipated structures. Our approach,
not limited to these materials, seamlessly integrates into high-throughput data
analysis pipelines, either filtering acquired patterns or serving as a standalone
method for automated material exploration workflows.
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analysis of powder XRD patterns, similarity metrics such as the
figure-of-merit (FOM) are typically used to compare measured
signals with reference phases, as obtained from databases such
as the ICSD or the COD.[5,6] However, the presence of experi-
mental artifacts, such as measurement noise and background
signals, complicates the analysis process and necessitates man-
ual preprocessing steps.[2] Additionally, the incorporation of mul-
tiple elements into a single-crystal structure in newly developed
multicomponent materials can lead to significant lattice distor-
tions and reflection shifts, posing a challenge due to crucial devi-
ations from the reference phases. Given the exponential surge in
data volume generated by newly developed high-throughput
systems,[7,8] manual analysis of powder XRD data using the tra-
ditional FOMmethod becomes highly time-consuming and prac-
tically unfeasible. Consequently, the automation of XRD analysis
becomes a necessity, enabling researchers to efficiently process
and interpret large datasets, accelerating the pace of material
discovery.

As an alternative to the manual data analysis, artificial neural
networks have demonstrated promising results in the accurate
and fast interpretation of unprocessed powder XRD data.
Neural networks are trainable mathematical models that use
interconnected neurons, layers, weights, and activation functions
to map input data to output predictions. During training, the net-
work adjusts the weights to minimize the difference between its
predictions and the desired output, gradually learning to recog-
nize complex patterns and make accurate predictions for new
data. Within the domain of XRD analysis, Park et al. first devel-
oped a neural network to determine the crystal system, extinction
group, and space group for scans of phase-pure samples.[9] Since
then, multiple publications have demonstrated the successful
application of network models for the classification of single-
phase[10] or multi-phase samples.[11–13] Beyond phase identifica-
tion tasks, neural networks have shown promising performance
in other applications, such as the determination of scale param-
eters or lattice constants from the XRD scans.[14]

Expanding upon the foundational research, the application of
neural networks to XRD data has extended to include their
use for novel material discovery in experimental settings. For
instance, Velasco et al. used a neural network to determine
the crystal structure of unique compositions in complex multi-
component systems.[7] Furthermore, Massuyeau et al. introduced
a neural network capable of differentiating between perovskite
and non-perovskite materials through their XRD patterns.[15]

Similarly, various studies have leveraged neural networks in
XRD analysis for the identification of diverse novel materials, such
as A15-type phases and quasicrystals.[16–18] Additionally, Szymanski
et al. deployed a neural network to identify target and intermediate
phases in material synthesis experiments, enabling their optimiza-
tion algorithm to determine themost suitable precursors and exper-
imental parameters for the effective synthesis of the target phase.[19]

To effectively train neural networks for phase identification in
XRD datasets, previous research has predominantly utilized sim-
ulated training data.[9–19] This approach involves generating syn-
thetic diffraction patterns from crystallographic database entries,
incorporating variations and experimental artifacts characteristic
of actual experimental patterns, to ensure that models trained on
simulated data effectively transfer their performance to actual
experimental scans. The primary aim of this methodology is

to address the difficulty of obtaining a sufficiently large dataset
containing high-quality XRD scans with their specific phase iden-
tification results, crucial for training the neural network. As an
alternative to simulating the training data, Velasco et al. acquired
phase-pure signals of the essential structures in their study and
systematically altered these signals to enlarge the data basis.[7]

Nonetheless, the existing studies on applying neural networks
for the analysis of powder XRD patterns present some limita-
tions. First, the exemplary data needed to train the network mod-
els is typically not at hand for novel materials. While databases
provide reference materials from past studies, they are not typi-
cally equipped with information on newly synthesized materials.
Alternatively, the method of altering measured patterns from
phase-pure samples, as introduced by Velasco et al.,[7] requires
the synthesis of pristine samples, which is not a trivial task
for complex materials. Second, an appropriate network structure
is required to handle the peculiarities of the diffraction patterns.
For instance, we evaluated commonly used neural network struc-
tures for the analysis of XRD in a recent study and identified
deficiencies in detecting minor peaks in the diffraction pat-
terns,[20] which extend to the recognition of multi-phase samples
in the material discovery data. Additionally, amorphous phases
have not been considered in prior works, so modifications to the
architecture of established networks are necessary to handle such
components.

Therefore, we present a universal approach for the rapid iden-
tification of prospects from XRD data using a neural network
structure. The model categorizes the samples into nondiffracting
(including amorphous) and crystalline samples and accurately
distinguishes between referenced and highly distorted structures
that exhibit nonideal properties, such as the formation of multi-
phase compounds. Training data is generated by simulating dif-
fraction patterns based on a theoretical description of the desired
structure in the form of a crystallographic information file (cif ),
eliminating the need for an initial production of pristine refer-
ence samples. The simulation of XRD patterns and training of
the neural network takes less than 5min on consumer-level
hardware, so models are readily available for use cases at hand.
In this work, we demonstrate the application of our approach on
distinct material structures: multimetallic spinels and doped
copper oxides.

2. Results

To train a neural network for the automated analysis of the
acquired powder XRD patterns, we present a universal data gen-
eration pipeline that simulates realistic signals. Accordingly,
Figure 1 provides an overview of our presented method. First,
synthetic patterns are generated based on variations of a descrip-
tion of a structure in the form of cif. Our model generates real-
istic variations of the base structure without the requirement of
modeling the exact lattice and occupancy changes, providing a
general approach to represent altered structures. Generally, for
each variation, the position of the peaks, the ratio of peak heights,
and the shape of the peaks are varied to account for naturally
occurring variations. Prior research demonstrated that such var-
iations are crucial to generate adequate training data for the
application of neural networks to measured XRD patterns.[12]
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In the context of doping experiments, for instance, the struc-
ture variations are depicted by lattice contractions and expan-
sions that are reflected in the synthetic diffraction patterns
without specifying the exact type and concentrations of the dop-
ing material. Furthermore, altered scattering factors of the incor-
porated species are reflected by varying the intensity ratios of the
peaks in the pattern, and the width of the peaks is randomly cho-
sen to mirror the varying crystallite sizes and defects. To depict
multi-phase samples, the simulated patterns of the varied struc-
tures are complemented with arbitrary, additional diffraction
peaks placed randomly. Finally, samples that lack a periodic
atomic arrangement, including amorphous materials, are repre-
sented by patterns that only contain a diffuse background inten-
sity without characteristic reflections.

Utilizing the simulated data, a specialized neural network is
trained for automated classification of the XRD patterns. While
this model is developed to categorize the three distinct classes
encountered in fast screening experiments, we have elected to
divide the classification task into two separate predictions. The
initial model output discerns between nondiffracting and crystal-
line samples, while the second output differentiates between
single-phase and multi-phase patterns. Both outputs use a sig-
moid activation function (scaled between 0 and 1), allowing the
predicted values to be interpreted as probability estimates for
their respective classification tasks. In this context, the initial
output predicts the sample’s crystallinity, while the secondary
probability estimate quantifies the likelihood of a multi-phase
compound’s presence. Should the initial output’s predicted value
fall below 0.5, the sample is designated as non-diffracting (amor-
phous), irrespective of the secondary output.

In the following sections, the adaptability of our approach is
presented by applying trained neural network models to experi-
mental data. Therefore, the doping of copper oxides and compo-
sition variations to form a spinel-type structure are tested in fast
screening experiments, which enable the compilation of large
and diverse datasets for the evaluation of our method. The net-
works have been trained using our generalized data generation
pipeline with reference structures obtained from the ICSD,[5] and

no modifications are required to apply the presented approach
for the different datasets.

2.1. Spinel Structures

First, the described method is applied to identify spinel-type
MgAl2O4 structures that incorporate a multitude of different ele-
ments. The respective materials class is called “high-entropy
oxides”, related to a high configurational entropy that is formed
when many different elements are incorporated into a single-
phase structure. Between the different elements, interactions
arise, called cocktail effects, which can give these materials
unique properties that can differ completely compared to the par-
ent materials. In this study, the parent structure Fe3O4 (Fe(II)
Fe(III)2O4) was used and the divalent and trivalent Fe replaced
by other elements, forming, for example, (CuMg)(FeMnCr)2O4.
The samples are produced and characterized on a high-throughput
platform, which allows for parallel synthesis and analysis of 99
specimens (11� 9 grid) using a robotic synthesis platform and
a high-throughput sample holder for a Ga-Jet X-ray source.[7]

Accordingly, a cif (ICSD code 13 859), representing the spinel
structure of MgAl2O4, is used to generate the synthetic
training data.

A brief, manual screening of the acquired data reveals the dif-
ferent outcomes of the unique precursor combinations, which
include amorphous or multi-phase compounds instead of the
intended, phase-pure spinel structure. Figure 2a illustrates exem-
plary XRD patterns of the three classes, which have been shifted
on the intensity axis for clarity of presentation. In the case of the
amorphous/nondiffracting class (gray), the XRD patterns mainly
exhibit a background signal, with minor diffraction peaks
observed in a few cases. Here, the 9� 11 grid contained posi-
tions that were unoccupied, producing diffraction signals devoid
of reflections, which were grouped with the amorphous class
during analysis to simplify the process. In contrast, the single-
phase XRD pattern (blue) shows diffraction peaks that stand
out from the noise and background, with the major peak being
located at 29° 2θ. Likewise, the multi-phase samples (red) exhibit

Figure 1. Concept of the presented method for training and application of a neural network to automatically categorize XRD patterns in materials
discovery experiments. The neural network is trained with simulated signals that depict the range of variation in the experimental data.
Subsequently, the model classifies measured XRD patterns into the amorphous, single-phase, and multi-phase categories. The spinel structure was
obtained from the materials project.[27]
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the same peaks as the single-phase structure in addition to other
unassociated diffraction peaks.

While manual screening of the patterns is only feasible for
limited sizes, the developed neural network analysis approach
was applied to categorize the patterns within seconds. Figure 2b
shows XRD patterns for identified crystalline samples and the
corresponding multi-phase probability estimates (blue: low,
red: high), as predicted by the model (second output). A visual
assessment of the measured patterns alongside the predicted
confidence scores demonstrates that the network has learned
to detect multi-phase samples based on the presence and promi-
nence of additional peaks. Signals that align precisely with the
diffraction pattern of the identified structure are categorized
as single phase (represented in blue), whereas irregular intensity
baselines yield heightened multi-phase confidence predictions
(muted blue to red colors). Regarding the light-blue pattern in
Figure 2b, the marginally elevated background between 27
and 28° is ambiguous and could be due to noise or minor impu-
rity peaks. Consistently, the corresponding pattern is classified as
single-phase, since the multi-phase confidence lies below the
detection threshold. In comparison, the light-red pattern exhibits
even higher intensities in this range and is assigned to the multi-
phase class by the model. Following this trend, patterns with
even more distinct impurity peaks yield higher multi-phase prob-
ability estimates. Similarly, the model accurately identified the
amorphous samples, as well as patterns that resulted from the
empty grid positions.

2.2. Doped Copper Oxides

Using the identical robotic platform for sample preparation and
subsequent characterization via XRD, the doping of copper oxide
(CuO) is examined in a second experimental series. While the
first experiment examined the unique precursor combinations
to form the spinel structure, we additionally show how our
approach can be used for automatic determination of the dopant
concentration thresholds, thus avoiding the formation of multi-
phase compounds and preserving the material’s desired proper-
ties. Doped copper oxides have been produced and analyzed in
various studies,[21–24] but typically, only a few compositions are

tested. Depending on the concentration, the dopant material is
either fully incorporated or forms an impurity phase, but diverg-
ing results have been reported with respect to the critical dopant
concentration for synthesizing phase-pure samples. For example,
Al-Amri and colleagues reported phase-pure oxides with Ni dop-
ing concentrations ranging from 1 to 7%,[23] while Meneses et al.
detected impurity phases for the same Ni-doped CuO nanopar-
ticles, even for low concentrations of the dopant.[21] While both
studies analyzed the structures of the identical nanoparticles, the
differing groups used distinct experimental routes and configu-
rations to produce the doped structures (i.e., differing tempera-
tures for the synthesis).

Doped copper oxides in the form of Cu1�x(Zn,Ni,Mn)xO were
produced with systematically incremented doping concentra-
tions ranging between 0% and 25%. Moreover, the materials
were generated and examined within three discrete experimental
conditions, with samples being calcined at temperatures of either
500, 600, or 700 °C.

Figure 3a shows several XRD patterns from the fast-screening
experiments with varying dopants and compositions. While the
ideal CuO sample exhibits two major diffraction peaks at about
28° and 30° 2θ (for the Ga-jet radiation source) and further, minor
reflections at 25° and 39°, the doped copper oxides show addi-
tional reflections due to impurity phases, as highlighted by the
black triangles on top of the respective patterns. High concentra-
tions of the dopants (here 25%) cause the sample to form multi-
phase compounds with ZnO, NiO, or MnO2 being present, in
addition to the intended CuO phase.[21,22,24] The detection of those
additional phases, however, remains a challenging task due to
overlapping diffraction peaks of the doped copper oxide structure
and the impurity phase. For example, the additional ZnO phase
peaks are almost overlapping with one of the major peaks from the
CuO structure (around 28°). In this series, all materials exhibit
clear reflections in the XRD signal, so there are no amorphous
samples produced for the doped copper oxides.

We applied our novel method for the doped copper oxides by
generating varied structures from the CuO ICSD entry (code
16 025) and training a neural network for the classification
of the respective XRD patterns. Using our trained network,
we were able to analyze the 225 synthesized samples (75 unique

Figure 2. Experimental XRD patterns from the MgAl2O4 spinel-type structure experimental series. a) The diffraction patterns show examples of amor-
phous/nondiffracting (gray), single-phase (blue), and multi-phase (red) structures. b) Predicted confidences (blue: low; red, high) by our model grouping
the exemplary XRD patterns into single- and multi-phase. The patterns with muted colors are close to the multi-phase detection threshold (0.5). The
predicted value corresponds with the prominence of those extra peaks.
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compositions and 3 distinct temperatures) within milliseconds.
In addition to the outstanding speed of the automated analysis,
the model proved to be sensitive to those additional reflections,
even if the extra peak positions aligned almost perfectly with the
diffraction patterns of the doped copper oxides. The additional
peaks display as shoulders of the diffraction peaks, and the neu-
ral network was able to identify those nonsymmetric peaks for
the accurate detection of multi-phase compounds. Notably, our
presentedmethod does not require detailed information regarding
occurring impurities or the possibility of overlapping peaks and is
even applicable to further dopants without the need for retraining,
highlighting the versatility and adaptability of our approach.

The fast-screening experiment and analysis of the XRD pat-
terns revealed interesting properties of the copper oxide with
respect to incorporating dopants, especially while considering
the temperature during the synthesis process. Figure 3b shows
the diffraction patterns for the sample with 5% Ni dopant (in
shades of brown), together with the signal obtained for the pure
CuO specimen (green). While the XRD pattern of the sample
synthesized at 500 °C concurs with the signal of the phase-pure
material, the patterns of the samples synthesized with higher
temperatures exhibit minor, additional diffraction peaks at 29°
and 33° 2θ. Despite the relatively indistinguishable peaks
submerged within the noise, the trained network demonstrated
proficiency in accurately classifying these patterns. This simulta-
neously confirms both results from Al-Amri et al. and Meneses
et al. which observed the presence and absence of additional
phases for Ni-doped copper oxides that have been produced at
similar temperatures.[21,23]

Accordingly, Figure 4 shows the classification of our network
for the XRD patterns with respect to synthesis temperature and
dopant. The colors correspond to the output of the network,
which ranges between 0 (single-phase, blue) and 1 (multi-phase,
red), with the impurity classification threshold at 0.5 (white). For
Cu1�x(Zn,Ni, or Mn)xO and 500 °C, about 7% dopant can be
incorporated into the copper oxide, while still forming a phase-
pure material (blue region). The output of the network correlates
with the significance of the additional peaks, so there’s an initial
dopant concentration region with only minor additional peaks
(white, multi-phase threshold), before the impurity phases are
distinctly detectable (red). The lighter shades of blue correspond
to single-phase predictions with elevated multi-phase probabili-
ties, that we identified as patterns with higher noise levels or
minor irregularities of the baseline intensities. For higher tem-
peratures, the detected multi-phase threshold decreased for all
three dopants, so, presumably, lower concentrations can be
incorporated without forming multi-phase compounds.

To verify the predictions of the neural network, some XRD
scans have been analyzed manually. Using the Rietveld refine-
ment method, the weight percentages of the primary and impu-
rity phases were determined to identify those samples that
contain multi-phase structures. Instead of performing the refine-
ment for all scans, the model’s prediction allowed for the selec-
tion of a subset of the patterns. Therefore, only the samples
calcined at 500 and 700 °C have been evaluated, as it was deter-
mined that multi-phase thresholds in the 600 and 700 °C test
series exhibited substantial similarities. Moreover, according
to the prediction of the model, only the dopant concentration

Figure 3. Experimental XRD patterns of pure and doped copper oxides (CuO). a) The dopants Zn, Ni, andMn have been tested with concentrations up to
25% and cause additional peaks in the diffraction signal due to forming multi-phase compounds, as highlighted by the black triangles. b) Depending on
the synthesis temperature, the XRD signals show either single-phase or multi-phase patterns for identical compositions. Here, the XRD patterns for the
CuO samples with 5% Ni doping show signs of additional diffraction peaks at about 29° and 33° 2θ (as indicated by the black arrows and dashed lines),
only if the material was synthesized with temperatures higher than 500 °C.

Figure 4. The predictions of our neural network separating the XRD patterns of dopants for CuO into single-phase samples (blue) and multi-phase
compounds (red) are here visualized for all temperatures. The intensity of the color corresponds to the confidence of the neural network. For
500 °C, about 7% dopant can be incorporated and the thresholds shift for higher temperatures.
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range of 1–10% held crucial significance for the formation of
multi-phase structures (1–8% for the 700 °C samples). This
model-driven insight notably reduced the number of samples
necessitating manual analysis, streamlining our focus to the
most pertinent data subsets. Manual analysis showed agreement
with the results predicted by the model. Detailed information
for the Rietveld refinement can be found in the Supporting
Information.

An unexpected observation of our tests is that the threshold for
dopant concentrations that yield multi-phase compounds
declines with increased synthesis temperatures. Concurrently,
samples synthesized at these higher temperatures display nar-
rower peak shapes attributable to larger crystallite sizes. While
narrow peaks stand out from the noise, broader diffraction peaks
can merge indistinguishably with noise and background. This
indicates that at lower synthesis temperatures, it is not that
higher dopant concentrations were incorporated, but rather the
resulting impurity phases became undetectable due to the broad
peak shapes. However, neither the neural network model nor the
manual Rietveld refinement identified suspected impurity
phases at lower dopant concentrations in the 500 °C samples.
Such a limitation underscores the requirement for extended
acquisition times, which enhance signal-to-noise ratios and could
consequently facilitate the detection of impurity phases.

3. Conclusion

To facilitate material discovery experiments, we present a
method for the automatic analysis of XRD patterns in fast screen-
ing experiments. The XRD technique provides information
about the crystalline structure of the analyzed sample and allows
the distinction between single-phase and multi-phase structures.
Single-phasematerials are of particular interest because they pos-
sess uniform properties and behavior, which can be critical for
certain applications. The neural network we developed automati-
cally separates the produced samples into three categories: non-
diffracting/amorphous, single-phase, and multi-phase.

We demonstrate the fitness of our approach on two distinct
experimental series: spinels (Fd-3m) and doped copper oxides
(C2/c). Using our unified data generation approach and a cif-file
of the desired structure, models were trained for automated anal-
ysis of the XRD scans. The accuracy of the predicted classifica-
tions was validated manually through Rietveld refinement and
visual examination of XRD patterns. While a quantitative
Rietveld refinement analysis necessitates the identification of
precise phases to ascertain weight percentages and detect impu-
rities, our method operates at a more general level, bypassing the
need to explicitly define impurity phases. Consequently, the
speed of materials discovery experiments can be significantly
enhanced using our universal approach. This method swiftly fil-
ters out unsuitable materials, ensuring that only prospective
materials advance to subsequent stages of analysis or are consid-
ered for future experimental series.

Moreover, our methodology lessens the burden of manual
analysis in expedited screening experiments. Given that the mod-
el’s output aligns with the significance of additional reflections,
experts can cherry-pick samples with high multi-phase probabil-
ity estimates, which exhibit distinct diffraction peaks, thereby

facilitating the phase identification process. Alternatively, man-
ual examination of dopant concentration thresholds can be stra-
tegically limited to samples near the predicted multi-phase
detection boundary, rather than analyzing the entire spectrum.
Therefore, our method not only paves the way for full automation
of the analysis process but can also effectively complement
human expertise and promotes a synergistic relationship
between AI and human experts for more nuanced and efficient
investigations.

4. Experimental Section

Generation of Training Data: To train neural networks for identifying pro-
spective material samples, it is essential to have reference data. As the
materials synthesized in our experiments were novel, experimental data
for these materials did not exist and, therefore, must be simulated.
Crystalline materials are characterized by their structure, as described
by the lattice, and the atoms that constitute the crystal. Databases such
as the ICSD or the COD store this information and provide it in the form of
text files or database entries,[5,6] which are parsed from the database in
commercial software for the analysis of the experimental data. One exam-
ple for such text files is the crystallographic information file (cif ) format,
which contains information about the crystals, including lattice parame-
ters, space group, and coordinates for each atom in the unit cell. In
the materials discovery experiments described here, the reference material
and its structure are known, which serves as a starting point for generating
training data.

A variety of software packages and libraries are available for handling
crystallographic information, including parsers for cifs. We chose to build
on the well-established Python library pymatgen for generating synthetic
data.[25] While it is possible to accurately describe the resulting structures
of the synthesis (regardless of stability) given exact information about
experimental parameters like doping material and size of substituting
atoms, we decided to take a more general approach. When foreign atoms
or ions substitute positions within the structure, or when they are incor-
porated, the lattice is influenced by factors like the atom size of elements
present in the precursors. These factors can either compress or extend the
lattice, thereby impacting its overall structure. Thus, we introduced ran-
dom variation (up to 1%) to the lattice parameters, while maintaining
restrictions defined by the crystal system of the reference structure.

In addition to parsing crystallographic information, the pymatgen pack-
age also provides tools to simulate X-ray powder diffraction patterns using
the XRDCalculator object. This tool is designed to calculate the positions
and intensities of diffraction peaks, using the specified structure and wave-
length as input. While the variation in lattice dimensions accounts for the
shift in peak positions, it is equally essential to represent the changes in
relative intensities that arise due to differences in form factors introduced
by foreign species. Given the uncertainty in the variance range of form
factors, we chose to model peak intensity variations with a separate effect,
preferred orientation, which occurs when certain particle orientations are
overrepresented, thus altering the XRD pattern’s relative intensities.
Accordingly, preferred orientation is introduced to the training set to
account for these variations in relative intensities.

Finally, the width and shape of the diffraction peaks in the recorded
signal depend on the sizes of the crystals in the powder sample. The rela-
tion between crystallite size and full width at half maximum of the peaks is
described by the Scherrer equation,[26] so we generated synthetic powder
diffraction patterns with varied peak shapes related to grain sizes between
10 and 100 nm. In consideration of the diverse instrumental broadening
effects arising from the use of different equipment, our data simulation
pipeline used a pseudo-Voigt diffraction peak profile to encapsulate the
distinct optical characteristics inherent to each instrument, thereby
accounting for the diverse appearances of peaks observed in the acquired
signals. Additionally, Gaussian and Poisson noise were added to the sim-
ulated patterns to accurately represent the variation of the measured
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signals. Moreover, the baseline of the measured XRD patterns was simu-
lated using Chebyshev polynomials, as is common practice to replicate
XRD data.[12]

Accordingly, Figure 5 provides an overview of our simulation approach.
The presented data generation pipeline takes a cif-file as input (either from
a database or a description of an arbitrary structure) and generates multi-
ple variants by varying the lattice parameters, texture, and crystallite sizes.
Additionally, artificial noise and a baseline intensity were added to account
for experimental artifacts. By comparison of the simulated and measured
patterns, it is shown that the simulation approach depicts the realistic var-
iation that occurs in such fast-screening experiments.

In addition to generating single-phase XRD pattern training data, the
automatic discrimination system must be capable of handling multi-phase
and amorphous XRD patterns. Generating amorphous XRD patterns is
straightforward; instead of adding a baseline intensity to the simulated
pattern, the background function alone can act as an example of an amor-
phous structure. Multi-phase structures, on the other hand, are based on
single-phase patterns that are complemented with additional, random
peaks. We added a few diffraction peaks at random positions to generate
multi-phase examples while ensuring that those positions do not overlap
completely with the peak positions of the single-phase pattern. As a result,
our simulated dataset represents the three classes to identify: amorphous
phases, single-phase patterns, and multi-phase patterns.

Network Architecture: Several neural network architectures were pro-
posed for the analysis of XRD data, with many utilizing a convolutional
neural network (CNN) structure.[9–14] These CNNs use convolutional
layers to apply a kernel that slides linearly across the input, identifying
position-independent features, such as diffraction peaks, that stand out
from background noise. By doing so, the CNNs can suppress baseline
intensity and noise while matching varying shapes of diffraction peaks.
Pooling operations often follow the convolutional layers to reduce input
dimensionality, thereby minimizing peak position variations.

However, we conducted a recent study that revealed the lack of sensi-
tivity with respect to identifying minor peaks in patterns for established
network structures.[20] The detection of multi-phase peaks is of great
importance for this work, necessitating modifications to the network archi-
tecture to improve performance in minor peak identification. Although
single-phase structure peaks regularly occur in the training data, multi-
phase peaks are inserted at random positions, making them outliers from
the expected results. To identify minor outliers, a common strategy
involves scaling data points according to mean and standard deviation,
resulting in an amplification of irregular peak intensities. Nevertheless,
scaling cannot be applied to the raw input, which includes noise, back-
ground, and peak position shifts.

Thus, we present a modified network which is illustrated in Figure 6.
This network takes Min-Max scaled XRD patterns as input, so the first layer

Figure 5. Pattern simulation approach. Based on a provided cif (here: MgAl2O4, ICSD Code 13 859), artificial patterns are generated that depict the typical
variation that occurs in experiments that test the doping of base materials. To account for variations and experimental artifacts, the lattice, the simulated
peak heights, and the crystallite sizes are varied, and a baseline intensity and noise are added.

Figure 6. Network architecture for the model presented in this work. The normalized XRD patterns are fed into the network and multiple pairs of
convolutional layers and max-pooling operations condense the input to fewer data points. Subsequently, the relevant features are compressed in
the global-positional feature extractor (GPFE), which simultaneously identifies peaks with respect to the positions in the signal and globally relevant
features, such as exceptional peak shapes. By concatenating the two separate types of features, the network conditions the information for the following
classification. The first output (1) classifies nondiffracting versus crystallite structures based on the activations of the extracted features. To amplify the
anomalies of multi-phase samples, a normalization and subsequent ReLU layer are used for rescaling of the intensities before the second output (2), that
distinguishes between single-phase and multi-phase signals.
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of the network matches the dimensionality of the signals. For instance,
XRD signals collected from our robotic platform were measured from
10° to 60° 2θ with a step width of 0.015, resulting in 3334 data points.
The input then passes through the convolutional stage, which contains
multiple convolutional layers and pooling operations to identify peaks
and reduce the dimensionality of the input. The exact configuration of
weights in the respective layers depends on the properties of the data.
Here, we used a kernel size of 17 in 4 convolutional layers and 32 filters
to identify the relevant features, but different parameters could be neces-
sary for other instrument configurations (e.g., larger kernels for patterns
with smaller step sizes).

Following the convolutional stage of the network is our custom global-
positional feature extractor (GPFE) that combines positional features and
unique textures that appear globally in the patterns. The position of the
peaks is crucial for identifying crystalline structures; therefore, it’s essential
to maintain the integrity of positional information to differentiate between
various patterns. Additionally, the detection of exceptional features, such
as the almost-overlapping peaks of the ZnxCu1�xO structures, necessitates
additional paths in the network that are not related to the positions.
Hence, our GPFE extracts both types of features simultaneously and com-
bines the diverse information for the following layers. Utilizing
GlobalMaxPooling layers, we identified the largest activation both across
the channel dimension (thereby preserving positional information) and
within each channel (thus pinpointing unique features). The resultant
information was then condensed, serving as a compressed input for
the subsequent layers. A more detailed explanation of the GPFE’s function-
ality can be found in the Supporting Information.

The network splits the three-class categorization task into two separate
outputs. First, the model distinguished between nondiffracting (amor-
phous, empty sample holders) and crystalline structures depending on
the extracted activations of the positional and global features. For signals
without relevant reflections, the feature maps should be mostly zero, as
noise and the baseline intensity were filtered from the inputs. Therefore,
the model identifies patterns that match the defined reference structure
based on the positions of the extracted diffraction peaks.

Multi-phase samples, on the other hand, exhibit XRD signals with addi-
tional reflections, which are an anomaly from the typical phase-pure pat-
tern. Thus, the normalization layer that scales the respective features
according to the mean and standard deviation is placed right before
the second output that classifies single-phase and multi-phase samples.
By amplifying the exceptional activations, the network facilitates the detec-
tion of anomalies, hence, crucially improving the accuracies of analyzing
XRD patterns in fast-screening experiments. Additionally, a rectified linear
unit (ReLU) is used to clip intensities below the learned means that are not
relevant for the identification of additional reflections, which stabilizes the
training process.

While our neural network architecture presents a significant deviation
from established structures, the adaptations were necessary for robust
classification of those subtle multi-phase peaks. In Table S3, Supporting
Information, we compared our developed network to a similar network
presented by Szymanski et al. for the identification of XRD patterns.[13,19]

Our model performed better on both presented datasets. While the per-
formance of their model nearly matches ours on the spinels dataset, the
network by Szymanski and colleagues fails to successfully extract the
almost overlapping peaks that appear in the doped copper oxides dataset,
resulting in considerably worse performance metrics. Even for the spinel
dataset, the reference model mostly detected the patterns with clear multi-
phase peaks, while failing to correctly classify those signals with only minor
impurity reflections. This highlights the application of our GPFE and the
subsequent normalization, which allows for the detection of unique tex-
tures and subtle peaks.

Details: Spinel-type oxide synthesis: Water-based nitrate salt precursor
solutions (0.2 mol L�1 in distilled water) of Cu(NO3)3·2.5H2O (Sigma-
Aldrich, 98%), Cr(NO3)3·9H2O (Sigma-Aldrich, 99.99%), Fe(NO3)3·9H2O
(Sigma-Aldrich, 98%), Mg(NO3)3·6H2O (Sigma-Aldrich, 99.99%),
Mn(NO3)3·4H2O (Sigma-Aldrich, 98%), and Zn(NO3)2·6H2O (Sigma-
Aldrich, 98%) were used for the synthesis of the respective spinel oxide
compounds.

Cu doping study: Water-based nitrate salt precursor solutions
(0.2mol L�1 in distilled water) of Cu(NO3)3·2.5H2O (Sigma-Aldrich, 98%),
Zn(NO3)3·6H2O (Sigma-Aldrich, 98%), Ni(NO3)3·6H2O(Sigma-Aldrich,
99.99%), and Mn(NO3)2·6H2O (Sigma-Aldrich, 99.99%) were used for
the respective Cu doping study.

For both studies, the nitrate salt solutions were mixed in different com-
binations in a standard 360 μL 96-well plate using an automated pipetting
robot (Opentrons OT-2). To initiate coprecipitation, the respective precur-
sor solutions were mixed with ammonia (Sigma Aldrich, 28–30%) at a
ratio of 1:2 on a carrier substrate (two-sided polished (100) Si wafers) suit-
able for calcination and further XRD analysis. The spinel-type oxides were
calcined at 700 °C for 5 h in air and the Cu doping study materials were
calcined at 500, 600, and 700 °C in air for 3 h. For both studies, a constant
heating rate of 300 °C h�1 and naturally cooling down to room temperature
inside the oven were used.

Automated X-ray Diffraction (XRD): Automated XRD measurements
were performed at a STOE Stadi P diffractometer, equipped with a
Ga-jet X-ray source (Ga-Kβ radiation, 1.2079Å) and a custom-built XY stage
for automated sample measurement. XRD patterns were obtained in
transmission mode. Patterns were collected between 10° and 60° 2θ
with a step size of 0.015°. The powder samples on the (100) Si wafer were
fixed with Kapton film, and the Si wafer was held by an in-house designed
holder.
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