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Abstract— The article proposes an approach to 
complete-type and related Lyapunov-Krasovskii 
functionals that neither requires knowledge of the delay-
Lyapunov matrix function nor does it involve linear matrix 
inequalities. The approach is based on ordinary differential 
equations (ODEs) that approximate the time-delay system. 
The ODEs are derived via spectral methods, e.g., the 
Chebyshev collocation method (also called pseudospectral 
discretization) or the Legendre tau method. A core insight 
is that the Lyapunov-Krasovskii theorem resembles a 
theorem for Lyapunov-Rumyantsev partial stability in 
ODEs. For the linear approximating ODE, only a Lyapunov 
equation has to be solved to obtain a partial Lyapunov 
function. The latter approximates the Lyapunov-Krasovskii 
functional. Results are validated by applying Clenshaw-
Curtis and Gauss quadrature to a semi-analytical result of 
the functional, yielding a comparable finite-dimensional 
approximation. In particular, the article provides a formula 
for a tight quadratic lower bound, which is important in 
applications. Examples confirm t hat t his n ew b ound is 
significantly less conservative than known results.

Index Terms— delay systems, Lyapunov-Krasovskii func-
tional, operator-valued Lyapunov equation, spectral meth-
ods, pseudospectral discretization, Gauss quadrature

I. INTRODUCTION

Whenever a control law u = γ(x) is constructed for a
system ẋ = f(x, u), the closed loop description ẋ (t) =
f(x(t), γ(x(t)) hinges on the availability of the instantaneous
x(t). In practice, however, measurements, network commu-
nication, computation times, or the actuator response cause
a delay. The resulting ẋ (t) = f(x(t), γ(x(t − h))), with
a time delay h > 0, is a retarded functional differential
equation (RFDE) and can no longer be tackled by the well-
known stability theory of finite-dimensional ordinary differen-
tial equations (ODEs). What changes?

A. Motivation: Delay-free versus Time-Delay System

For delay-free nonlinear time-invariant ODEs we could
consider the linearization about the equilibrium (provided it is
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hyperbolic and the right-hand side is differentiable) and simply
conclude exponential stability from the eigenvalues of A in the
resulting ẋ = Ax, A ∈ Rn×n. We might be interested in the
domain of attraction of the equilibrium. To this end, we could
calculate a quadratic Lyapunov function V (x) = x⊤Px for the
linearized system by prescribing a desired Lyapunov function
derivative D+

(ẋ=Ax)V (x) = −x⊤Qx. Solving the associated
Lyapunov equation PA+A⊤P = −Q for the matrix P with
a standard algorithm is accomplished in one line of Matlab
code. The obtained Lyapunov function also gives a negative
Lyapunov function derivative in the nonlinear system – at least
in a certain domain around the equilibrium [1]. Let this domain
be estimated by a norm ball with radius r > 0. Then the
probably most basic estimation of the domain of attraction,
cf. [1, Sec. 8.2], is provided by the set of points x ∈ Rn
such that V (x) < k1r

2, where k1 is the coefficient of the
positive-definiteness bound k1∥x∥22 ≤ V (x). Thus, having a
non-conservative result for k1 is important. It is simply the
minimum eigenvalue of P that provides the largest possible
coefficient k1.

In time-delay systems, analogous steps become more elab-
orate. Given a nonlinear system, the principle of linearized
stability still holds [2], and we are led to the linear RFDE

ẋ(t) = A0x(t) +A1x(t− h), (1)

A0, A1 ∈ Rn×n, with a discrete delay h > 0. The charac-
teristic equation has, generically, an infinite number of roots.
Still, to determine stability for a given delay h, we can resort
to numerical eigenvalue calculations [3]–[7] or we use other
characteristic-equation-based criteria that can prove stability
for all delays or all delays smaller than a first critical one
[8], [9]. The initial state x0 is in fact an initial function, the
domain of attraction is a set of initial functions, the state xt
at time t ≥ 0 represents the solution segment on the past
delay interval [t − h, t], and instead of a Lyapunov function,
a Lyapunov-Krasovskii (LK) functional V (xt) is required.
Analogously to the delay-free case discussed above, we can
explicitly prescribe the desired LK functional derivative and
determine the corresponding LK functional. The LK functional
derivative along trajectories of (1) is commonly [10] set as

D+
(1)V (xt) = −x⊤(t)Q0x(t)− x⊤(t− h)Q1x(t− h)

−
∫ 0

−h
x⊤(t+ θ)Q2x(t+ θ) dθ, (2)



with freely chosen Q0, Q1 ≻ 0n×n, Q2 ⪰ 0n×n. This deriva-
tive is accomplished by so-called complete-type (if Q0,1,2 ≻
0n×n) or related LK functionals [11], [10, Thm. 2.11]. Their
determination is far more elaborate than the simple Lyapunov
equation for ODEs: the known formula for the solution of (2)

V (xt) =

x⊤(t)Ψ(0; Q̃)x(t) + 2

∫ 0

−h
x⊤(t)Ψ(−h− η; Q̃)A1x(t+ η) dη

+

∫ 0

−h

∫ 0

−h
x⊤(t+ ξ)A⊤

1 Ψ(ξ − η; Q̃)A1x(t+ η) dη dξ

+

∫ 0

−h
x⊤(t+ η)

[
Q1 + (h+ η)Q2

]
x(t+ η) dη (3)

requires the so-called delay Lyapunov matrix function1

Ψ( · ; Q̃) : [−h, h] → Rn×n associated with Q̃ = Q0 + Q1 +
hQ2. This matrix-valued function Ψ is defined via a matrix-
valued time-delayed boundary-value problem [10, Def. 2.5]
that first has to be solved semi-analytically or numerically. The
lower bound of interest on V (xt), e.g., needed in an estimation
of the domain of attraction [12, Thm. 1], is described by

k1∥x(t)∥2 ≤ V (xt). (4)

In contrast to the ODE case, where the minimum eigenvalue
of P gives the best possible coefficient k1, nothing is reported
about the conservativity of known formulae [10], [12] for (4).

B. Objectives and Related Results
In light of the previous section, we intend to benefit from the

enormous simplification that comes along with the treatment
of ODEs in contrast to RFDEs. To this end, we use schemes of
ODEs that approximate the RFDE. Based on these, the paper
aims to provide a new numerical approach to complete-type
or related LK functionals which only requires to solve (a se-
quence of) Lyapunov equations. Moreover, a main objective is
to get an improved coefficient k1 in (4). Additionally, we hope
to make the Lyapunov-Krasovskii theory more transparent,
by interpreting the results in terms of Lyapunov-Rumyantsev
partial stability of the approximating ODE.

Numerical approaches to complete-type and related LK
functionals are a recent field of research. However, existing
results either rely on the knowledge of the delay Lyapunov
matrix function1 Ψ, [13]–[20], or they aim to determine Ψ,
[21]–[24]. In contrast, the procedure in the present paper
directly leads to an approximation of the overall LK functional
(3). Our main focus is not to provide a stability criterion, but,
as outlined in Section I-A, we are interested in the functional
itself and, in particular, in its lower bound (4).

We are going to use so-called discretization of the infinites-
imal generator approaches, which are well-established for nu-
merical eigenvalue calculations [3]. These approaches provide
an ODE approximation of the RFDE. To analyze that ODE is
also the core idea, e.g., in [25]–[27]. The involved ODE can
be obtained by various methods. We resort exemplarily to the
Chebyshev collocation method, also known as pseudospectral
discretization [28], and to the Legendre tau method [29].

1Ψ(s; Q̃) is commonly denoted by U(s) in the literature

Even in the context of more general LK functionals, a
discretization of the RFDE in whatever form seems to be
rarely considered in the literature. An early existence proof for
quadratic LK functionals [30], as well as a recent approach to
so-called safety functionals [31], also employ discretizations.
These, however, do not lead to ODEs, but to difference
equations (so-called discretization of the solution operator
approaches [32]). Moreover, in [33], a discretization occurs
in a proof of a linear-matrix-inequality stability criterion.

The core of the approach in the present paper is a Lyapunov
equation from the ODE system matrix. The system matrices
from both used discretization schemes are already known to
give applicable Lyapunov, or, more generally, Riccati equation
solutions. Concerning Chebyshev collocation, the resulting
system matrix has successfully been employed for Lyapunov
equations in the context of H2-norm computations [22], [34],
[35], where the delay Lyapunov matrix Ψ(0; Q̃) at s = 0
is of interest. Further calculations are mentioned in [22] to
obtain, at least under the assumption of an exponentially stable
RFDE equilibrium, the matrix-valued function Ψ for the LK
functional formula (3). The Lyapunov equation is a common
element with the present paper, but only a submatrix of the
Lyapunov equation solution is used in [22, Prop. 2.1], the
product with a matrix exponential is required for any value of s
in Ψ(s; Q̃), and the integral expressions in (3) still would have
to be evaluated to obtain a LK functional value. Concerning
Legendre tau, the system matrix (respectively a similar ma-
trix) has already successfully been used for algebraic Riccati
equations in the context of optimal control [36].

Structure. The paper is organized as follows. Sec. II de-
scribes the numerical approach, and Sec. III gives the formula
for the quadratic lower bound, which is applied to an example
in Sec. IV. In Sec. V, we interpret the approach in terms of
partial stability of the approximating ODE. Finally, Sec. VI
addresses convergence, before Sec. VII concludes the paper.

Notation. The space of continuous Rn-valued functions on
the interval [a, b] is denoted by C([a, b],Rn), in short C, and
square integrable functions by L2([a, b],Rn) or L2. We write
(wk)k∈I for a vector with entries wk, e.g., (wk)k∈{0,...,N} =
[w0, . . . , wN ]⊤, or (wk)k if the index set is clear from the
context. Similar holds for matrices. The set of eigenvalues
of A ∈ Rn×n is σ(A), and A is said to be Hurwitz if all
eigenvalues have negative real parts. Moreover, Q ≻ 0n×n
(Q ⪰ 0n×n) denotes positive (semi)definiteness of Q ∈ Rn×n,
implicitly requiring that Q = Q⊤. The zero vector in Rn
is 0n, the vector-valued zero function on [a, b] is 0n[a,b]

, the
m × n zero matrix 0m×n, and the identity matrix in Rn×n
is In. Given x ∈ Rn, we write ∥x∥2 for the Euclidean norm,
whereas ∥x∥ can be any arbitrary norm in Rn. The Kronecker
product of two matrices A and B is A⊗B, and A− denotes
a generalized inverse. To emphasize the structure of a block
matrix, e.g., A = [A1 A2], with differently sized submatrices,
A1 ∈ Rn×nN , A2 ∈ Rn×n, we write A = [ A1 A2 ].

We use !
= to mark a requirement, and

(...)
= if the relation is

explained by (. . .). The set of class-K functions is defined by
K = {κ ∈ C([0,∞),R≥0) : κ(0) = 0, strictly increasing}.
For the formal definition of D+

(eq)V , see, e.g., [37, Sec. 5.2].



II. THE NUMERICAL APPROACH

A. ODE-Approximation Schemes of RFDEs
Given a continuous initial function x0 ∈ C([−h, 0],Rn),

the state xt ∈ C([−h, 0],Rn) of the RFDE at time t ≥ 0 is
defined by xt(θ) = x(t + θ), θ ∈ [−h, 0]. Thus, it represents
the solution segment on [t − h, t], cf. Fig. 1a/1b. An ODE
approximation has to address a finite-dimensional state vector
instead. In the simplest case, this state vector y(t) at time t
approximates the values of the segment xt in N+1 ordered
points θ̃0 = −h, . . . , θ̃N = 0,

x(t− h)

x(t+ θ̃1)
...

x(t+ θ̃N−1)
x(t)

 =


xt(−h)
xt(θ̃1)

...
xt(θ̃N−1)
xt(0)

 ≈


y0(t)
y1(t)

...
yN−1(t)
yN (t)


︸ ︷︷ ︸
y(t)∈Rn(N+1)

=:


z0(t)
z1(t)

...
zN−1(t)

x̂(t)

.

(5)

Henceforth, upper indices k ∈ {0, . . . , N} address vector-
valued components yk(t)∈ Rn. Whenever the special interest
in yN shall be emphasized, we use the indicated decomposi-
tion y = [z⊤, x̂⊤]⊤. For θ̃k in (5), a non-equidistant grid

θ̃k = h
2 (ϑ̃k − 1), with ϑ̃k = − cos( kN π), (6)

k ∈ {0, . . . , N}, built from shifting and scaling classical
Chebyshev nodes2 ϑ̃k ∈ [−1, 1] to θ̃k ∈ [−h, 0], has proven to
be advantageous [38]. The latter is also at the core of the open-
source Matlab toolbox Chebfun by Trefethen and co-workers
[39], from which we can benefit in the implementations.

It remains to find the ODE

ẏ(t) = Ay y(t), (7)

Ay ∈ Rn(N+1)×n(N+1), that describes the dynamics of y.
To this end, we use exemplarily the Chebyshev collocation
method and the Legendre tau method combined with a change
of basis. The resulting system matrices Ay are given by (63)
and (68) in the appendix. Fig. 1c shows how a solution of
(7) looks like, provided the initial condition y(0), given by
the blue points, is a discretization of the initial function x0 ∈
C([−h, 0],Rn), cf. (12) with ϕ = x0.

B. An Approximation Scheme for the LK Functional
We are going to set up a Lyapunov function

Vy : Rn(N+1) → R for the approximating ODE (7) (in
fact, a partial Lyapunov function, see Sec. V). To this end,
we make the quadratic ansatz

Vy(y) = y⊤Py y, (8)

with Py = P⊤
y ∈ Rn(N+1)×n(N+1) to be determined. The

derivative of Vy along solutions shall be −y⊤Qyy with a
prescribed symmetric matrix Qy

D+
(7)Vy(y) = y⊤(PyAy +A⊤

y Py)y
!
= −y⊤Qyy, (9)

2also called Gauss–Lobatto Chebyshev nodes (cf. Table II) or Chebyshev
points of the second kind (despite of referring to extrema of the ‘Chebyshev
polynomials of the first kind’) or endpoints-and-extrema Chebyshev nodes.

t

xt
x(t)

(a) RFDE solution, state xt as solution segment

xt

xt(0)

= x(t)

θ

t

xt(θ)

(b) evolution of the RFDE state xt

t

k

y(t)

yN (t)

= x̂(t)

yk(t)

(c) components yk(t) of the ODE
solution (N = 16, Ay from (63))

Fig. 1: Solution of ẋ (t) = −0.5x(t)−x(t−2.2) for the initial 
function x0(θ) ≡ 1.

∀y ∈ Rn(N+1). Thus, the unknown matrix Py is obtained by 
solving the Lyapunov equation

PyAy +A⊤
y Py = −Qy. (10)

See Appendix A.3.a for a description in Legendre coordinates
(indicated by a subscript ζ at the matrices). We construct the
right-hand side of (9) according to a discretization of the right-
hand side of (2) with freely chosen matrices Q0, Q1 ≻ 0n×n,
Q2 ⪰ 0n×n. Hence, a straightforward choice of Qy in (10)
becomes visible from

D+
(7)Vy(y)

!
= −(yN )⊤Q0y

N− (y0)⊤Q1y
0 −

N∑
k=0

(yk)⊤Q2y
kwk

= −y⊤




Q1

0n×n
. . .

0n×n
Q0

+


w0Q2

w1Q2

. . .

wNQ2



 y

=: −y⊤Qyy , (11)

where wk ∈ R are integration weights, see Appendix B.
Sec. VI-B will present discretization-scheme-dependent mod-
ifications of Qy that aim at improved convergence properties.

Altogether, we solve a discretization of the original problem
(2), and thus Vy(y) in (8) is intended to be an approximation
of the LK functional V (ϕ). Convergence aspects will be
addressed in Sec. VI. Hence, given a prescribed argument
ϕ ∈ C([−h, 0],Rn), which might be ϕ = xt for some t ≥ 0,
or, without loss of generality, ϕ = x0 at t = 0, we can obtain
a numerical approximation for the evaluation V (ϕ). To this
end, the argument y in Vy(y) must be chosen correspondingly.
Such a discretization y of ϕ can be obtained by evaluating the



vector-valued function ϕ at the gridpoints (6) and stacking
these (N + 1) vectors in

y =


|
z
|

x̂

 =


ϕ(−h)
ϕ(θ̃1)

...
ϕ(θ̃N−1)
ϕ(0)

 . (12)

Strictly speaking, (12) is the interpolatory discretization pre-
supposed in the Chebyshev collocation method. If ϕ is a 
polynomial of order N or less, (12) also agrees with the 
coordinate transform (67) of the discretization in the Legendre 
tau method (73), but otherwise the latter might give a slightly 
deviating vector y (pointwise evaluations of the approximating 
polynomial).

To sum up, we only have to solve the Lyapunov equation 
(10), to obtain the approximation V (ϕ) ≈ Vy(y).

C. Existence, Uniqueness, and Non-Negativity
Note that Qy in (11) is a positive semidefinite, b ut not 

necessarily positive definite matrix. Let us r evisit some prop-
erties of the Lyapunov equation (10) in this rather uncommon 
semidefinite case, without further assumptions on the involved 
matrices. See [40, p. 284], and [41, Thm. 1] for Lemma 2.1c.

Lemma 2.1: Consider PA+A⊤P = −Q, A,Q ∈ Rν×ν .
(a) If σ(A) ∩ (−σ(A)) = ∅, then a unique solution P exists.
(b) If Q = Q⊤ and P is a solution, then P⊤ is also a solution.
If, additionally, (a) holds, then P = P⊤.
(c) If Q ⪰ 0ν×ν , P = P⊤, and i0(A) = 0, then i+(P ) ≤
i−(A) and i−(P ) ≤ i+(A), where i−,0,+ are the numbers of
eigenvalues with negative, zero, and positive real parts. ◀

Remark 2.1: Existence of the LK functional V in (2) is
analogously ensured by the time-delay counterpart of Lemma
2.1a, the so-called Lyapunov condition [10, Def. 2.6]. ◀

Proposition 2.1: Let Qy ⪰ 0n(N+1)×n(N+1) be given. If
Ay is Hurwitz, then there exists a unique solution Py in (10).
Moreover, Py = P⊤

y is positive semidefinite. ◀
Proof: Lemma 2.1a with σ(A) ⊂ C−, Lemma 2.1b, and

Lemma 2.1c with i0(A) = i+(A) = 0.
Consequently, if the zero equilibrium of the ODE approxi-
mation (7) is asymptotically stable, and D+

(7)Vy(y) is chosen
according to (11) and thus nonpositive, then existence, unique-
ness, and nonnegativity of Vy(y) in Sec. II-B are ensured.

D. Structure of the Result
To get an impression of how the Lyapunov equation solution

Py looks like, we consider an example with n = 1. As will
be demonstrated, only little implementation effort is required.

Example 2.1: Let ẋ(t) = −0.5x(t)− x(t− 2.2) and Q0 =
Q1 = 1, Q2 = 0 in (11). We get the solution Py of (10) via3

Q=blkdiag(Q1,zeros(n*(N-1)),Q0); P=lyap(A’,Q);

in Matlab, provided Ay is assigned to A (see Rem. 1.1 or
Rem. 1.3 in the appendix). The structure of Py for N = 40
is depicted in Fig. 2. It stems from the Legendre tau method,

3If Q2 ≠ 0n×n and Ay = AL
y , then Tcy’*Qc2*Tcy from (37) is added

to Q, with Qc2=kron(delay*diag([1./(2*(0:N-1)+1),1]),Q2).

P jk
y =

PNN
y =: Py,xx

k

0

N

j

N

0

Fig. 2: Entries of the matrix Py in Example 2.1 (N = 40).

i.e., Ay = AyL from (68) is used in the Lyapunov equation (or,
equivalently, Aζ = AζL from (66) in the Lyapunov equation 
from Appendix A.3.a). However, Chebyshev collocation with
Ay = AyC from (63) gives almost the same picture of Py . ◀

In Fig. 2, the combs on the last column, the last row, and
the diagonal as well as the striking right lower element of the
matrix Py are also existent with a refined grid. Thus, Vy(y) =
y⊤Py y =

∑N
j=0

∑N
k=0(y

j)⊤P jky yk is not the discretized ver-
sion of a Lebesque integral

∫ 0

−h
∫ 0

−h ϕ
⊤(ξ)P (ξ, θ)ϕ(θ) dθdξ.

Instead, the combs suggest that

Vy(y) = y⊤Pyy =

z
x̂


⊤  Py,zz P⊤

y,xz

Py,xz Py,xx


z
x̂

 (13)

= x̂⊤Py,xxx̂+ 2
N−1∑
k=0

x̂⊤P ky,xzz
k +

N−1∑
j=0

N−1∑
k=0
k ̸=j

(zj)⊤P jky,zzz
k

+
N−1∑
k=0

(zk)⊤P kky,zzz
k (14)

describes, through the (discrete ↪→ continuous) correspon-
dences indicated by (12) and by k vs. θ in Fig. 1

zk = ϕ(θ̃k), k∈{0, . . . , N−1} ↪→ ϕ(θ), θ ∈ [−h, 0),
zj = ϕ(θ̃j), j ∈{0, . . . , N−1} ↪→ ϕ(ξ), ξ ∈ [−h, 0),
x̂ = ϕ(0) ↪→ ϕ(0),

the discrete version of some

V (ϕ) = ϕ⊤(0)Pxxϕ(0) + 2

∫ 0

−h
ϕ⊤(0)Pxz(θ)ϕ(θ) dθ

+

∫ 0

−h

∫ 0

−h
ϕ⊤(ξ)Pzz(ξ, θ)ϕ(θ) dθ dξ

+

∫ 0

−h
ϕ⊤(θ)Pzz,diag(θ)ϕ(θ) dθ. (15a)

Note that the latter exactly reflects the known structure of
complete-type and related LK functionals given in (3).

E. Validation via Numerical Integration
To be more precise, the structure of complete-type and

related LK functionals is the one in (15a), and the kernel
functions can be identified in (3) as

Pzz(ξ, θ) = A⊤
1 Ψ(ξ − θ; Q̃)A1, Pxz(θ) = Ψ(−h− θ; Q̃)A1,

Pzz,diag(θ) = Q1 + (h+ θ)Q2, Pxx = Ψ(0; Q̃). (15b)



For the sake of validation, we also go the other way around
and discretize the known formula of V (ϕ) by interpolatory
quadrature rules (cf. Table II). That is, replacing the integrals
in (15a) by weighted sums from evaluations at the grid points.
In Appendix B, we write the result as a quadratic form

V (ϕ) ≈ y⊤P quad
y y (16)

like (13). Taking for Ψ in (15b) the semi-analytical solution
approach from [23], the picture of the resulting P quad

y for
Example 2.1 is indeed hardly distinguishable from Fig. 2. See
Sec. IV for further numerical comparisons.

Remark 2.2: Both the ODE-based approach from Sec. II-B
and the numerical-integration-based approach from Sec. II-E
provide an approximation Vy(y) = y⊤Pyy. The former seeks
for an approximative solution of the defining equation (2).
In contrast, the latter already starts with the exact knowledge
of the LK functional (3), presupposing knowledge of Ψ, and
only has to describe a discretization thereof. In so far, the
numerical-integration-based approach is related to discretiza-
tions of the known V (ϕ) already proposed in the literature –
be it based on piecewise cubic polynomials that approximate
ϕ [16], [17] or, recently, on a Legendre series truncation of ϕ
[19] (also used in [42], [43]), or a certain fundamental-matrix-
dependent discontinuous approximation of ϕ [13], [14], [20]. 
With the exception of the latter approach (which addresses zero 
Q0 and Q2), integral terms with Ψ must still be evaluated. To 
our best knowledge, applying interpolatory quadrature rules (cf. 
Table II) to (15) has not yet been considered. ◀

III. THE QUADRATIC LOWER BOUND

As a result of the preceding section, we have an approxima-
tion of the LK functional. However, in applications, we also
need the quadratic lower bound (4). If Q0, Q1 ≻ 0n×n, Q2 ⪰
0n×n, existence of a non-zero4 coefficient k1 > 0 is proven in
[10, Lem. 2.10], given the RFDE equilibrium is exponentially5

stable. In a discrete version for the approximation Vy , the
bound (4) becomes ∀y = [z⊤, x̂⊤]⊤, z ∈ RnN , x̂ ∈ Rn :

k1∥x̂∥22 ≤ Vy(y). (17)

Since solely x̂ = yN is considered, (17) does not refer
to the common λmin(Py)∥y∥22 ≤ Vy(y) mentioned in the
introduction. Why this discrete version of (4) still also makes
sense in a Lyapunov analysis of the approximating ODE, will
be explained in Sec. V.

The main contribution of the present section, Lemma 3.1,
immediately leads to the searched bound (17) in Thm. 3.1.
For the sake of readability, we consider a general positive
semidefinite matrix P with a left upper submatrix Z, instead
of Py and Py,zz introduced in (13). The lemma is based on
the generalized Schur complement (19), cf. [44], where Z−

is a generalized matrix inverse of Z, e.g., the Moore-Penrose
inverse. If Z is nonsingular, then Z− = Z−1.

4In contrast to quadratic forms from finite-dimensional matrices, in infinite
dimensions coercivity of the associated bilinear form (existence of a quadratic
lower bound) is a stronger concept than positive definiteness (positivity for
any nonzero element). The same holds for the partial concepts. Consequently,
despite of Vy being partially positive definite w.r.t. x̂ (Def. 5.3), the largest
possible coefficient in (17) as N → ∞ could become k1 → 0, cf. Rem. 4.2.

Lemma 3.1: Let P = [ Z B
B⊤ X

] with Z = Z⊤ ∈ Rp×p, B ∈
Rp×n, X = X⊤ ∈ Rn×n. If P is positive semidefinite, then

min
z∈Rp

x∈Rn\{0n}

1

∥x∥22

[
z
x

]⊤[
Z B
B⊤ X

] [
z
x

]
= λmin(P/Z), (18)

where P/Z = X −B⊤Z−B. (19)

The minimum is attained by [ zx ] = [−Z−Bv
v

], with v being an
eigenvector in (P/Z) v = v λmin(P/Z). ◀

Proof: Let us replace z by w := z + Z−B x, which
amounts to the coordinate transformation[

z
x

]
=

[
Ip −Z−B

0n×p In

] [
w
x

]
=: Tyq

[
w
x

]
. (20)

We arrive at the so-called generalized Aitken block-
diagonalization of P in[
z
x

]⊤ [
Z B
B⊤ X

] [
z
x

]
=

[
w
x

]⊤
T⊤
yq

[
Z B
B⊤ X

]
Tyq

[
w
x

]
=

[
w
x

]⊤[
Z −ZZ−B +B

−B⊤Z−Z +B⊤ X −B⊤Z−B

] [
w
x

]
= w⊤Zw + x⊤(P/Z)x, (21)

with the last step being based on −ZZ−B + B = 0p×n,
which holds if P is positive semidefinite [44, Thm. 1.19]. The
submatrix Z of P is also positive semidefinite due to Cauchy’s
Interlacing Theorem, and thus (21) is lower bounded by

w⊤Z w + x⊤(P/Z)x ≥ x⊤(P/Z)x ≥ λmin(P/Z)∥x∥22.
The bound is attained for w = 0p and x = v.
The following theorem is not only useful for the ODE-based
approach from Sec. II-B. It is as well applicable to the
numerical-integration-based results from Sec. II-E.

Theorem 3.1: If Py in Vy(y) = y⊤Pyy is positive semidef-
inite, then the largest possible coefficient in (17) is

k1 = λmin(Py/Py,zz), (22)

2
2

where Py,zz denotes the left upper nN ×nN submatrix of Py 

and (·/·) is the generalized Schur complement (19). ◀
Proof: Lemma 3.1 applied to P = Py with Z = Py,zz 

as in (13).
Testing whether Py is positive semidefinite is not even required 
if Vy originates from the ODE-based approach in Sec. II-B. If 
Ay is Hurwitz, the only thing to do is to evaluate (22).

Corollary 3.1: Let Vy(y) = y⊤Pyy, where Py is a solution 
of (10) for a given positive semidefinite m atrix Q y . I f A y is 
Hurwitz, then (17) holds with k1 from (22). ◀

Proof: By Prop. 2.1, Py is positive semidefinite. Conse-
quently, Thm. 3.1 applies.
See Appendix A.3.d for an evaluation in other coordinates.

IV. EXAMPLE AND COMPARISON

We compare the thus obtained bound with known quadratic 
lower bounds (4) on the LK functional (15). These known 
formulae for the coefficient i n k 1∥x(t)∥ ≤ V (xt) are
k1 = maxα [10, Lem. 2.10]

s.t.
[

Q0 0n×n

0n×n Q1

]
+ α

[
A⊤

0 +A0 A1

A⊤
1 0n×n

]
⪰ 02n×2n,

k1 = min
{

λmin(Q0)
2∥A0∥2+∥A1∥2

, λmin(Q1)
∥A1∥2

}
, [12, Prop. 1]



provided the equilibrium is exponentially5 stable and
Q0, Q1 ≻ 0n×n, Q2 ⪰ 0n×n. Two issues should be noted.

Firstly, since the LK functional satisfies by construction
the monotonicity condition of the common LK theorem, cf.
(29), the existence of a quadratic lower bound with k1 >
0 (or actually even k1 ≥ 0, cf. Thm. 5.4) is also the
crucial missing step that proves asymptotic stability via the
LK functional. However, the above formulae are only valid
if exponential (equivalently, asymptotic) stability has been
proven beforehand. Hence, the stability analysis must already
be done by other means in a separate step. For instance, this
can be achieved via frequency-domain based methods, e.g., via
the eigenvalues of Ay . Having thus Ay already at hand, the
approach in the present paper becomes even more convenient.

Remark 4.1: As a consequence of the above issue, how at
all to conclude stability from the LK functional (15) or the
involved delay Lyapunov matrix function Ψ has long been an
open question. It has only recently been resolved by Egorov
et al. [14] and Gomez et al. [13]. The criterion is equivalent
to requiring that, for some Q̃ ≻ 0n×n,

P̃zz(ξ, η) := Ψ(ξ − η; Q̃) (23)

is a positive definite kernel, in the sense that the block matrix
(P̃zz(θj , θk))jk must be positive semidefinite, with an a priori
bound on the discretization resolution of the grid (ξ, η) ∈
{θj , θk}jk ⊂ [−h, 0] × [−h, 0]. Despite of a completely
different framework, the result can be brought in relation to
Sec. II-E by rewriting the matrix in (16) as

P quad
y = S⊤(P̃zz(θ̃j , θ̃k))jkS +D, (24)

with S = diag((wk)k) ⊗ A1 +
[

0n×nN In
0nN×nN 0nN×n

]
and D =

blkdiag((wk(Q1 + (h + θ̃k)Q2))k), cf. (79) with (15b). The
first term in (24) clearly preserves the positive semidefiniteness
of (P̃zz(θ̃j , θ̃k))jk, and D is only an added block diagonal
matrix that inherits positive semidefiniteness from Q1, Q2. ◀

Secondly, of course the LK functional changes as the delay
changes. Note that, however, the above stated formulae for k1
do not depend on the value of the delay.

Example 4.1: For all delay values h that are smaller than
hc := arccos(−0.9)/

√
1− 0.92 ≈ 6.17, the equilibrium of

ẋ(t) =

[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h) (25)

is asymptotically stable [9, Example 3.2]. Let Q0 = Q1 =
I2, Q2 = 02×2. For any given h > 0 (affecting Ay),
the Lyapunov equation solution Py can be computed as in
Example 2.1. We get k1 in (22) via the additional lines
p=mat2cell(P,n*[N,1],n*[N,1]);
k1=min(eig(p{2,2}-p{2,1}*(p{1,1}\p{1,2})))

in Matlab (as Py,zz is nonsingular). We also consider the
numerical-integration-based P quad

y from (79) and (80). Fig. 3a
shows the convergence of k1 for all approaches. ◀

5 equivalently, asymptotically since (1) is a linear autonomous RFDE. In
linear RFDEs with bounded delays, uniform asymptotic stability and uniform
exponential stability are equivalent [37, Thm. 5.3 in Ch. 6]. Moreover, in
autonomous or periodic RFDEs (in contrast to neutral FDEs), asymptotic
stability is always uniform [37, Lemma 1.1 in Ch. 5].
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Fig. 3: Example 4.1. In particular, Fig. 3e shows the improved 
quadratic lower bound. (Figures a,b,d,f share the same legend).

Fig. 3 also gives some further insights. Fig. 3b certificates 
a surprisingly fast convergence for the Legendre tau method.
This is also confirmed b y o ther e xamples ( if Q 2 ̸ = 0n×n, 
the Lyapunov equation right-hand side from Sec. VI-B below
should be used). For the Chebyshev collocation method, we 
are going to introduce a splitting approach in Sec. VI-B, which 
gives an improved rate of convergence, cf. Fig. 3b.

Fig. 3c (Legendre tau, N = 1000) shows the interplay of 
the matrices in (21), once the asymptotic stability is lost for 
delays larger than h ≈ 6.17. We are going to prove in Thm. 5.4 
that positive semidefiniteness o f P y i s i ndeed n ecessary and 
sufficient for A y being Hurwitz.

Let us consider the boundary hc,Ay between the white and 
gray delay region in Fig. 3c. It marks the smallest delay at 
which the matrix Ay is no longer Hurwitz (equivalently, where 
no longer a positive semidefinite s olution P y e xists), which 
can, e.g., be fine e stimated b y a  b isection m ethod. Already 
with a rough discretization resolution N , this boundary reflects 
the analytically known critical delay hc of (25) quite precisely, 
and its rapid convergence is shown in Fig. 3d for both the 
Legendre tau and the Chebyshev collocation method.

Most importantly, Fig. 3e reveals that the largest possible 
quadratic lower bound depends on the value of the delay. 
Thm. 3.1 clearly gives a less conservative value of k1 than 
the known formulae (green lines). For non-small delays, the 
bound is even improved by a multiple.

Fig. 3f shows the rapid convergence of the numerical result 
for V (ϕ) with an exemplary argument ϕ.

A remark on non-complete functionals is in order.



k1 [12, Prop. 1] [10, Lem. 2.10] Thm. 3.1
[12], Example 5.1 0.7500 0.8229 1.4596
[12], Example 5.2 0.6000 2.3238 3.8660
[12], Example 5.4 0.1464 0.1978 0.5229

TABLE I: Improvements of the quadratic lower bound for three
physical examples from the literature.

Remark 4.2: If Q1 = Q2 = 0n n, only a local cubic lower 
bound on V is known to exist, and

×
non-existence4 of a positive

quadratic one is proven for [10, Example 2.1]. Indeed, for this
example, k1 from (22) converges to zero as N increases. ◀

Finally, the reduced conservativity of k1, already indicated 
by Fig. 3e, is confirmed by o ther examples i n Table I.

V. INTERPRETATION IN TERMS OF PARTIAL STABILITY

Note that Vy obtained in Sec. II-B does not necessarily
qualify as a Lyapunov function for the ODE (7) since, if
Q2 = 0n×n, the matrix Qy in the Lyapunov function derivative
(11) is not positive definite. Even if Q2 ≻ 0n×n, the involved
Qy is theoretically positive definite for any finite N , but the
smallest eigenvalue of Qy converges to zero as N increases
(the denser the grid, the smaller the integration weights wk).
Moreover, the lower bound (17) on Vy does not fit with
the classical Lyapunov theory. The present section explains
why Vy is still meaningful for a stability analysis of the
approximating ODE. Within the presented approach, the lower
bound (17) is exactly what is required. First, we clarify what
we are actually looking for when we target stability in a RFDE.

A. Stability in RFDEs

Having in mind the classical Lyapunov theorem for ODEs,
one might wonder why the lower bound in (4) relies on ∥x(t)∥
and not on the norm of the RFDE state xt. The latter addresses
the norm in C([−h, 0],Rn) defined by

∥xt∥C = max
θ∈[−h,0]

∥xt(θ)∥. (26)

For Lyapunov functions in ODEs, both the positive-
definiteness bound ( κ1(∥x∥) ≤ V (x), κ1 ∈ K ) and the
monotonicity requirement ( D+

f V (x) ≤ −κ3(∥x∥), κ3 ∈ K )
refer to the norm of the ODE state. Thus, one would expect
(26) at these places when transferring Lyapunov’s results from
x(t) ∈ Rn to xt = ϕ ∈ C([−h, 0],Rn). However, this is not
the case in the following common LK theorem – neither in the
left inequality of (28) nor in (29). Instead of ∥ϕ∥C = ∥xt∥C ,
only ∥ϕ(0)∥ = ∥xt(0)∥ = ∥x(t)∥ occurs. As usual, the
theorem refers to general autonomous RFDEs

ẋ(t) = f(xt), (27)

with f(0n[−h,0]
) = 0n and f locally Lipschitz.

Theorem 5.1 (LK Theorem [37, Thm. 5-2.1]): If there is a
continuous V : C([−h, 0],Rn) → R≥0 such that, for all ϕ in
a domain G ⊆ C([−h, 0],Rn), 0n[−h,0]

∈ G, it holds

κ1(∥ϕ(0)∥) ≤ V (ϕ) ≤ κ2(∥ϕ∥C) (28)

D+
(27)V (ϕ) ≤ −κ3(∥ϕ(0)∥), (29)

with some class-K functions κ1,2,3 ∈ K, then the zero
equilibrium of (27) is asymptotically stable. ◀

The key to the above question is that there are two,
obviously equivalent, definitions of asymptotic stability in
the RFDE. Starting from the same norm ball for the initial
function x0, they differ in the condition on the implication
side: Either the state xt with the norm (26) is taken into
account (Def. 5.1a), or the pointwise solution x(t) ∈ Rn is
considered (Def. 5.1b).

Definition 5.1 (Lyapunov stability in RFDEs): The zero
equilibrium of (27) is asymptotically stable if

a)
∀ε > 0,∃δ > 0 : ∥x0∥C < δ =⇒ ∀t ≥ 0 : ∥xt∥C < ε
and ∃r > 0 : ∥x0∥C < r =⇒ ∥xt∥C → 0 as t→ ∞

or, equivalently,

b)
∀ε > 0,∃δ > 0 : ∥x0∥C < δ =⇒ ∀t ≥ 0 : ∥x(t)∥ < ε
and ∃r > 0 : ∥x0∥C < r =⇒ ∥x(t)∥ → 0 as t→ ∞.

◀
In terms of the whole state xt, the pointwise consideration

in Def. 5.1b refers only to the boundary value x(t) = xt(0)
in Fig. 1b. The classical LK theorem, Thm. 5.1, addresses
Def. 5.1b since, ∀t ≥ 0,

κ1(∥x(t)∥)
(28)

≤ V (xt)
(29)

≤ V (x0)
(28)

≤ κ2(∥x0∥C) (30)

gives a pointwise estimation ∥x(t)∥ ≤ κ−1
1 (κ2(∥x0∥C)) to

indicate stability. A theorem that addresses Def. 5.1a would
instead rely on κ1(∥ϕ∥C) in (28) and κ3(∥ϕ∥C) in (29), as has
been expected above. Such a theorem is also valid [45, Thm.
30.1], but these bounds are quite restrictive and not satisfied
by common LK functionals.

B. Partial Stability in ODEs
In the approximating ODE, cf. Fig. 1c, the state y(t) ∈

Rn(N+1) represents the RFDE state xt ∈ C([−h, 0],Rn),
and its last vector-valued component yN (t) = x̂(t) ∈ Rn
represents the pointwise solution value x(t) ∈ Rn. While
Def. 5.1a translates to the usual6 definition of asymptotic
stability in the ODE, Def. 5.1b amounts to the concept of
partial asymptotic stability with respect to (w.r.t.) x̂. Again,
we give the definition for a general class of systems. These
are ODEs where y(t) is partitioned into two parts, z(t) ∈ Rp
and x̂(t) ∈ Rn, with dim(y(t)) = p+n, and the latter part x̂(t)
is of special interest. That is, we consider autonomous ODEs

d

dt

[
z(t)
x̂(t)

]
=

[
fz(z(t), x̂(t))
fx(z(t), x̂(t))

]
(31)

with
[
fz(0p,0n)
fx(0p,0n)

]
= 0p+n and fz,x locally Lipschitz.

Definition 5.2 (Lyapunov-Rumyantsev partial stability):
The zero equilibrium of (31) is partially stable w.r.t. x̂ if

∀ε > 0,∃δ > 0 :
∥∥∥[ z(0)x̂(0)

]∥∥∥ < δ =⇒ ∀t ≥ 0 : ∥x̂(t)∥ < ε.

It is partially asymptotically stable w.r.t. x̂ if, additionally,

∃r > 0 :
∥∥∥[ z(0)x̂(0)

]∥∥∥ < r =⇒ ∥x̂(t)∥ → 0 as t→ ∞.
◀

6The choice of the norm ∥y∥∞ = maxk∈{0,...,N} ∥yk∥ is irrelevant due
to the equivalence of norms in finite-dimensional spaces.



For an in-depth discussion of this stability concept, see
[46]. As in Def. 5.1b for stability in RFDEs, the initial
value deviations consider the whole state, but the implications
address only the part x̂ that is of special interest.

The following partial stability theorem fits well with
Thm. 5.1 (note that an upper bound Vy([

z
x̂ ]) ≤ κ2(∥ [ zx̂ ] ∥)

always exists).
Theorem 5.2 (Peiffer and Rouche 1969 [47, Thm. II]): . If

there is a continuous Vy : Rp+n → R≥0, Vy(0p+n) = 0, such
that, for all [ zx̂ ] in a domain G ⊆ Rp+n, 0p+n ∈ G, it holds

κ1(∥x̂∥) ≤ Vy([
z
x̂ ]), (32)

with κ1 ∈ K, and D+
(31)Vy([

z
x̂ ]) ≤ 0, then the zero equilibrium

of (31) is partially stable w.r.t. x̂. If, additionally, ∀ [ zx̂ ] ∈ G :

D+
(31)Vy([

z
x̂ ]) ≤ −κ3(∥x̂∥) (33)

with κ3 ∈ K, and there exists r > 0 such that
∥∥∥[ z(0)x̂(0)

]∥∥∥ < r

implies that ∥fx(z(t), x̂(t))∥ is bounded for all t ≥ 0, then it 
is partially asymptotically stable w.r.t. x̂. ◀

As in the classical LK theorem for RFDEs (Thm. 5.1), 
both the (partial) positive-definiteness c ondition ( 32) a nd the 
monotonicity requirement7 (33) consider only the part of 
special interest x̂(t) = yN (t) ≈ x(t) = xt(0). We call V 
in Thm. 5.2 a partial Lyapunov function.

To sum up, the discretization of Def. 5.1b for RFDE stability 
is exactly the definition o f Lyapunov-Rumyantsev p artial sta-
bility w.r.t. x̂ (Def. 5.2). Moreover, the Lyapunov-Krasovskii 
theorem for stability in the RFDE (Thm. 5.1) becomes Peiffer 
and Rouche’s theorem for partial stability (Thm. 5.2).

C. Equivalence of Stability and Partial Stability in the 
Approximating ODE

In general ODEs, the concept of partial stability is a weaker 
concept than stability. We can still focus without doubt on 
partial stability if the equivalence between Def. 5.1a and 5.1b 
is reflected by the ODE approximation, so that proving partial 
stability w.r.t. x̂ is already sufficient for proving stability.

Condition 5.1: The zero equilibrium of the ODE approxi-
mation (7) is (asymptotically) stable if and only if it is partially 
(asymptotically) stable w.r.t. x̂. ◀

To verify this condition for the discretization schemes at 
hand, we consider a result from the realm of total stability.

Lemma 5.1: [49, Thm. 3.11.3]. If the zero equilibrium of 
the auxiliary system

ż = fz(z, 0n) (34)

is asymptotically stable, then, in (31), partial (asymptotic)
stability w.r.t. x̂ of the zero equilibrium implies (asymptotic)
stability of the zero equilibrium. ◀

Loosely speaking, for reasonable approximations the latter
seems to be a matter of course since, if x(t) for t ≥ 0
could be forced to remain zero, then, for t ≥ h, the solution
segment xt is zero, which should at least asymptotically be
reflected by z(t) → 0p as t → ∞. In terms of the linear

7Criteria that come without the boundedness condition below (33) require
a full monotonicity condition D+

(31)
Vy(y) ≤ −κ3(∥y∥), κ3 ∈ K, cf. [48].

ODE (7), Lemma 5.1 only refers to the submatrix Ay,zz :=
(Ay

jk)j,k∈{0,...,N−1}. For collocation schemes like Ay = ACy
in Appendix A.1, stability of this submatrix is clearly neither
affected by the RFDE coefficient matrices A0, A1 (occurrence
only in the last block-row), nor the delay h (scalar factor),
nor the dimension n (Kronecker product with In). For tau
methods, an analogous independence can be achieved by first
applying a change of basis w.r.t. the z-coordinates. In appropri-
ate coordinates, setting, e.g., A0 = A1 = 0n×n does not alter
the submatrix eigenvalues. The next lemma formulates the
thus motivated coordinate invariant form of Lemma 5.1 for the
linear ODE. Whether it applies is, consequently, no question
of A0, A1, h, but it is rather a question of the discretization
scheme.

Corollary 5.1: Consider the linear ODE (7). If there ex-
ists a change of coordinates w.r.t. z, where [z⊤, x̂⊤]⊤ =
T [v⊤, x̂⊤]⊤, such that the left upper nN × nN submatrix
of T−1AyT is Hurwitz, then Condition 5.1 holds. ◀

Proof: Lemma 5.1 with (31) given by d
dt [

v
x̂ ] =

T−1AyT [ vx̂ ].
For Ay = ACy from the Chebyshev collocation method (A.1),
the submatrix Ay,zz can indeed proven to be Hurwitz for
any discretization resolution N [26, Prop. 2], [50]. Thus, by
Corollary 5.1 (with v = z), Condition 5.1 holds. For other
discretization schemes we refer to [51, Sec. 4.3.2]. For the
Legendre tau method, we consider the coordinates described in
(76), where v = [(ζ0)⊤, . . . , (ζN−1)⊤]⊤ consists of the first N
of the N +1 Legendre coordinates. Then, Corollary 5.1 (with
T−1AyT = TχζAζT

−1
χζ and Tχζ from (76)) can numerically

shown to be true for relevant values of N .
Consequently, Condition 5.1 is not only a reasonable as-

sumption for an ODE that approximates an RFDE, but, re-
garding the discretization of a RFDE, it can even be confirmed
as a property of the underlying discretization schemes.

D. Proving Stability in the ODE via Vy(y)

The main result of this section, Thm. 5.3, shows that Vy
from Sec. II-B indeed always qualifies as a partial Lyapunov
function for (7) if the equilibrium is asymptotically stable. As
a side effect, Thm. 5.4 gives a necessary and sufficient stability
criterion in terms of Py . We introduce the following wording.

Definition 5.3: Let x̂-pd be the abbreviation for ’partially
positive definite w.r.t. the components x̂’. We call
(a) a function U : Rp+n → R; y = [ zx̂ ] 7→ U(y) x̂-pd on
Ω ⊆ Rp+n if it is positive semidefinite (∀y ∈ Ω : U(y) ≥ 0,
U(0p+n) = 0) and ∀y = [ zx̂ ] ∈ Ω with ∥x̂∥ ̸= 0 : U(y) > 0.
(b) a symmetric matrix M = M⊤ ∈ R(p+n)×(p+n) x̂-pd if
U(y) = y⊤My is x̂-pd on Rp+n. ◀

Analogously to local, or in terms of U(y) = y⊤My
even global, positive definiteness, cf. [1, Lemma 4.3], partial
positive definiteness can be expressed via a class-K function.

Lemma 5.2: M =M⊤ ∈ R(p+n)×(p+n) is x̂-pd if and only
if ∃κ ∈ K such that ∀[ zx̂ ] ∈ Rp+n : κ(∥x̂∥) ≤ [ zx̂ ]

⊤M [ zx̂ ]. ◀
Regarding y⊤Qyy = −D+

(31)Vy(y), Lemma 5.2 refers to the
class-K function in (33). For Qy in (11) or (37), we can choose

κ3(∥x̂∥2) := λmin(Q0) ∥x̂∥22 ≤ y⊤Qyy. (35)



Rather decisive is whether the Lyapunov equation solution Py
is also x̂-pd, as it is required in (32) with Vy(y) = y⊤Py y.

Lemma 5.3: Let Py = P⊤
y be a solution of (10) for a x̂-pd

Qy . If Py is positive semidefinite, then it is even x̂-pd. ◀
Proof: The result is shown by contradiction. Assume

there exists a yc = [
zc
x̂c
] with ∥x̂c∥ ̸= 0 such that y⊤c Pyyc = 0.

Then Pyyc = 0n(N+1) (cf. a decomposition Py = C⊤C in
y⊤c Pyyc = ∥Cyc∥22 = 0, C⊤Cyc = 0n(N+1)), which leads by
(10) to y⊤c Qyyc = 0, contradicting that Qy is x̂-pd.

Lemma 5.4: Let Py = P⊤
y be a solution of (10) for a x̂-pd

Qy . Consider Thm. 5.2 in terms of partial asymptotic stability
w.r.t. yN = x̂ for the zero equilibrium in (7). If Py is positive
semidefinite, then, under Cond. 5.1, Vy(y) = y⊤Py y satisfies
the conditions on a partial Lyapunov function in Thm. 5.2. ◀

Proof: In Thm. 5.2, (32) and (33) hold by Lemma 5.3 and
5.2. The boundedness condition on ∥fx(z(t), x̂(t))∥ in Thm.
5.2 is also ensured: due to Cond. 5.1, the already provable
partial stability implies stability, which is accompanied by
compactness of the trajectories, and the image under the
continuous mapping fx remains compact.

We are led to the desired interpretation of the function Vy
whenever the ODE equilibrium is asymptotically stable.

Theorem 5.3: If Ay is Hurwitz and Cond. 5.1 applies, then
Vy from Sec. II-B is a partial Lyapunov function for (7). ◀

Proof: If Ay is Hurwitz, Py is positive semidefinite by
Prop. 2.1. As Qy in Sec. II-B is x̂-pd, Lemma 5.4 applies.

Our focus is not preliminary on a stability criterion in terms
of Py because we can simply compute the eigenvalues of Ay
to conclude stability. Nevertheless, the following result might
still be of interest since it shows that Vy must only be tested
for positive semidefiniteness. Proving existence of κ1 in (32)
is not required due to Lemma 5.3.

Theorem 5.4: Assume Cond. 5.1 holds. Let Py = P⊤
y be a

solution of (10) for a x̂-pd matrix Qy (e.g., (11) or (37)). The
zero equilibrium of the approximating ODE (7) is asymptot-
ically stable if and only if Py is positive semidefinite. ◀

Proof: If Py ⪰ 0n(N+1)×n(N+1), then Lemma 5.4
applies. Thus, partial asymptotic stability w.r.t. x̂ can be 
proven by Thm. 5.2. The latter implies asymptotic stability 
by Cond. 5.1. Conversely, if Ay is Hurwitz, then Py ⪰
0n(N+1)×n(N+1) because of Prop. 2.1.

We conclude Sec. V as follows. The function Vy obtained in 
Sec. II-B does not necessarily qualify as a classical Lyapunov 
function. Instead, it is a partial Lyapunov function for a system 
in which proving partial stability is already sufficient for 
proving stability.

VI. CONVERGENCE

A sequence of refined r esults w ith e nlarged N  s hould al-
ways be considered. It remains to discuss convergence aspects.

A. Stability Properties of the Approximating ODEs
The discretization scheme used in the proposed ODE-based

approach should be stability preserving in the following sense.
Condition 6.1: Provided the discretization resolution N is

chosen sufficiently large, the zero equilibrium of the approx-
imating ODE is exponentially stable if and only if the zero
equilibrium of the RFDE is exponentially5 stable. ◀

Re

Im

(a) Chebyshev collocation:
eigenvalues of AC

y in (63)

Re

Im × N = 40
◦ N = 80
· RFDE

char. roots

(b) Legendre tau: eigenvalues of
AL

ζ in (66) or, equivalently, AL
y (68)

Fig. 4: Characteristic roots (A0, A1, h from Example 2.1).

Chebyshev collocation has successfully been applied in 
various fields [ 22], [ 25], [ 27], [ 28], [ 52] w here C ond. 6 .1 is
also desirable. It is known that eigenvalues of AyC converge 
to the characteristic roots of the RFDE, i.e., to the solutions 
s of det(sIn − A0 − e−shA1) = 0, or, equivalently, to the 
eigenvalues of the infinitesimal generator of the C0-semigroup 
of solution operators, see [28]. The red points in Fig. 4a 
show typical eigenvalue chains in RFDEs, and the crosses 
and circles demonstrate how this chain is approached by the
eigenvalues of AyC . There are also some additional spurious 
eigenvalues that do not match with RFDE characteristic roots. 
These, however, are easily identifiable a s t hey d o n ot persist 
when N changes [28, Prop. 3.7]. See, in Fig. 4a, the crosses 
(N = 40) that do not match with circles (N = 80). Moreover, 
from numerical observations, they are not expected to hamper 
Cond. 6.1, see also the discussions in [27, p. 361], [22, p. 853]. 
Thus, despite of not being proven, Cond. 6.1 in practice is a 
tenable assumption for the Chebyshev Collocation method.

The Legendre tau method is similarly powerful in approxi-
mating eigenvalues, see Fig. 4b. Stability preservation of this 
method (Cond. 6.1) is proven in [7, Thm. 5.3].

As a consequence, the stability-dependent characterization 
of Py from Sec. V-D is also meaningful for the RFDE.

Corollary 6.1: Assume the discretization scheme satisfies 
Cond. 6.1 and 5.1. Provided N is sufficiently l arge, t hen Py 
from Sec. II-B is positive semidefinite i f and only i f t he zero 
equilibrium of the RFDE is asymptotically stable. ◀

Proof: Thm. 5.4 combined with Cond. 6.1.

B. Scheme-Dependent Improvements
1) Chebyshev collocation: Consider the ODE-based ap-

proach with the Chebyshev collocation method. To improve
the convergence properties (indicated in Fig. 3), we transform
the problem of approximating V (ϕ) to a problem of approxi-
mating a modified V0(ϕ) with Q1 and Q2 being zero. To this
end, we choose the shift matrices Q̃1 = Q1 and Q̃2 = Q2 in
the following splitting lemma. The idea is closely related to
the derivation of complete-type functionals in [10, Thm. 2.11].



Lemma 6.1 (Splitting): For Q0, Q1, Q2 ∈ Rn×n, let
V (ϕ) = V (ϕ; Q0, Q1, Q2) denote a solution of (2). Then

V (ϕ; Q0, Q1, Q2 ) = V0(ϕ) + V1(ϕ) + V2(ϕ) with (36)

V0(ϕ) = V
(
ϕ; (Q0 + Q̃1 + hQ̃2), (Q1 − Q̃1), (Q2 − Q̃2)

)
V1(ϕ) = V (ϕ;−Q̃1, Q̃1, 0n×n) =

∫ 0

−h
ϕ⊤(η)Q̃1ϕ(η) dη

V2(ϕ) = V (ϕ;−hQ̃2, 0n×n, Q̃2)=

∫ 0

−h
ϕ⊤(η)(h+ η)Q̃2ϕ(η)dη

for arbitrarily chosen shifts Q̃1, Q̃2 ∈ Rn×n. ◀
Proof: For ϕ(η) = xt(η) = x(t+ η), the derivatives

d
dt

t

∫
t−h
x⊤(ξ)Q̃1x(ξ) dξ = x⊤(t)Q̃1x(t)− x⊤(t− h)Q̃1x(t− h),

d
dt

t

∫
t−h
x⊤(ξ)

[
(h+ ξ − t)Q̃2

]
x(ξ) dξ

= hx⊤(t)Q̃2x(t)−
∫ t

t−h
x⊤(ξ)Q̃2x(ξ) dξ

give D+
(1)V1(xt) and D+

(1)V2(xt). They compensate in (36) the
difference between D+

(1)V0(xt) and D+
(1)V (xt) from (2).

The first term V0(ϕ) in (36) can be approximated by y⊤Py,0 y 
from a Lyapunov equation with Q0 in (11) being replaced by 
Q0 +Q1 +hQ2, and Q1 and Q2 being replaced by zero. Since 
V1(ϕ) and V2(ϕ) in (36) are analytically known, these terms 
can be treated by a numerical integration. Their contributions 
are added on the (block-)diagonal of Py,0, i.e. V (ϕ) ≈ y⊤Py y,

Py = Py,0 + diag((wk)k) ⊗ Q1 + diag((wk(h + θ̃k))k) ⊗ Q2,

where wk are integration weights, cf. Appendix B.1.
2) Legendre tau: A separate numerical treatment of V1 and 

V2 in (36) is not required if the Legendre-tau-based approach 
is used. However, if Q2 is nonzero, the following modification 
of Qy in (11) should be used in (71) or (10)

Qy = blkdiag(Q1, 0n(N−1)×n(N−1), Q0) + T⊤
ζyQζ,2Tζy

with Qζ,2 := diag([ (h2
2

2k+1 )k∈{0,...,N−1}, h ])⊗Q2 (37)

(the right lower component hQ2 in Qζ,2 is motivated by
Lemma 1.2 in the appendix). Despite of not being treated
separately in the numerical approach, the arising contributions
for V1(ϕ) and V2(ϕ) within the approximation of V (ϕ) are
still of interest for the proofs in the next sections. They
can be obtained by solving Lyapunov equations with Q0,1,2

being replaced by the matrices behind the semicolon in
V1(ϕ) = V (ϕ; . . .) and V2(ϕ) = V (ϕ; . . .) from Lemma 6.1.
Appendix A.3.c shows that the resulting Legendre-tau-based
approximations of V1(ϕ) and V2(ϕ) give even the exact value
for any ϕ that is a polynomial of order N − 1 or less.

C. Convergence Towards the Functional
We are interested in the following convergence statement.
Condition 6.2: For any given ϕ ∈ C([−h, 0],Rn), the

scalar value Vy(y) converges to V (ϕ) as N increases. ◀
More formally, we use the notation y = πy(ϕ) to emphasize

that the discretization y ∈ Rn(N+1) is uniquely determined
from ϕ ∈ C (depending on the discretization scheme). Ad-
ditionally, to keep track of the discretization resolution N , a

superscript [N ] is added, e.g., in V [N ]
y (·) = Vy(·) and π[N ]

y (·) =
πy(·). Thus, Cond. 6.2 can be rewritten as

∀ϕ ∈ C : V [N ]

y (π[N ]

y (ϕ)) → V (ϕ), (N → ∞). (38)

Motivated by the numerical results in Sec. IV, we focus in 
this section on the Legendre tau method. Moreover, for this 
discretization scheme, we benefit f rom e xisting convergence 
proofs for the approximation of algebraic Riccati equations 
from the context of optimal control [7], [36], [53].

1) Operator-based description: Henceforth, we use that any 
argument ϕ ∈ C for V (ϕ) gives rise to an element[ ϕ

ϕ(0)

]
∈ C × Rn ⊂ L2 × Rn =M2 (39)

in the product space M2 = L2([−h, 0],Rn) × Rn. Note that
(M2, ⟨·, ·⟩M2) is a Hilbert space with the natural inner product〈[

ϕ1
r1

]
,
[
ϕ2
r2

]〉
M2

=

∫ 0

−h
ϕ⊤1(θ)ϕ2(θ) dθ + r⊤1 r2, (40)

ϕ1,2 ∈ L2, r1,2 ∈ Rn. Similarly to the well-known VRn(x) =
⟨x, Px⟩Rn = x⊤Px in the finite-dimensional ODE setting for
x ∈ Rn, a complete-type LK functional can be written as

V (ϕ) = VM2
(
[ ϕ
ϕ(0)

]
) =

〈[ ϕ
ϕ(0)

]
,P
[ ϕ
ϕ(0)

]〉
M2

(41)

with a self-adjoint operator P : M2 → M2. Consider the
splitting V = V0 + V12 with V12 = V1 + V2 from Lemma 6.1
(Q̃1 = Q1, Q̃2 = Q2). For the first part, which becomes

V0(ϕ) = ⟨
[ ϕ
ϕ(0)

]
,P0

[ ϕ
ϕ(0)

]
⟩M2 , (42)

the self-adjoint operator P0 : M2 → M2 is described by
suboperators on L2 and Rn according to

P0

[
ϕ
r

]
=

[
Pzzϕ+ Pzxr
Pxzϕ+ Pxxr

]
=

[
v
w

]
, with (43)[

v(θ)
w

]
=

[∫ 0

−h Pzz(θ, η)ϕ(η) dη + Pzx(θ) r∫ 0

−h Pxz(η)ϕ(η) dη + Pxx r

]
. (44)

Thus, (15a) is regained by (42), using (43) with r = ϕ(0),

V0(ϕ)
(40)
=

∫ 0

−h
ϕ⊤(θ) v(θ) dθ + ϕ⊤(0)w (45)

(44)
=

∫ 0

−h
ϕ⊤(θ)

(∫ 0

−h
Pzz(θ, η)ϕ(η) dη + Pzx(θ)ϕ(0)

)
dθ

+ ϕ⊤(0)
(∫ 0

−h
Pxz(η)ϕ(η) dη + Pxx ϕ(0)

)
(46)

(to be more precise, (15a) with Pzz,diag(θ) ≡ 0n×n). The
missing part V12 = V1 + V2 in (36) can also be written as

V12(ϕ) =

∫ 0

−h
ϕ⊤(θ)

(
Q1 + (h+ θ)Q2

)
ϕ(θ) dθ (47)

= ⟨
[ ϕ
ϕ(0)

]
,P12

[ ϕ
ϕ(0)

]
⟩M2

(48)

based on the multiplication operator

P12

[
ϕ
r

]
=

[
Pzz,diagϕ

0n

]
=

[
v
0n

]
, with (49)

v(θ) = Pzz,diag(θ)ϕ(θ) = (Q1 + (h+ θ)Q2)ϕ(θ).

Nevertheless, we are going to treat V12 separately8.

8The term ϕ⊤(−h)Q1ϕ(−h) would require an unbounded operator Q in
the Lyapunov equation (51). Moreover, P12 is not compact.



(1)

2) Convergence towards V0: The operator P0 in (42) sat-
isfies a n o perator-valued L yapunov e quation, c f. [ 54], [55]. 
Its right-hand side is based on the right-hand side of (2). 
Because of the splitting approach, the latter is D+ V0(xt) =
x⊤(t)Q̃x(t) with Q̃ = Q0 +Q1 + hQ2, or, for xt = ϕ,

D+
(1)V0(ϕ) = −ϕ⊤(0) Q̃ ϕ(0) = −⟨

[ ϕ
ϕ(0)

]
,Q
[ ϕ
ϕ(0)

]
⟩M2

, (50)

Q
[ ϕ
ϕ(0)

]
=
[ 0n[−h,0]

Q̃ ϕ(0)

]
. Therefore, the operator-valued Lya-

punov equation for the self-adjoint operator P0 = P∗
0 reads

⟨ψ,P0A ψ⟩M2
+ ⟨ψ,A ∗P0ψ⟩M2︸ ︷︷ ︸

=2⟨ψ,P0Aψ⟩M2

= −⟨ψ,Qψ⟩M2
, (51)

∀ψ ∈ D(A ) ⊂M2, cf. [54], [55], where A is the infinitesimal
generator of the C0-semigroup of solution operators on M2

(which for linear RFDEs is as well an appropriate state space),
and D(A ) is its domain. See, e.g., [54] for background on A .

From the ODE-based approach in Sec. II-B, we obtain
an approximation V0(ϕ) ≈ Vy,0(y) = y⊤Py,0 y, or, in the
notation of (38), V [N ]

y,0(π
[N ]
y (ϕ)). Similarily to the exact V0(ϕ)

in (42), this approximation can be described via

V [N ]

y,0(π
[N ]

y (ϕ)) = ⟨
[ ϕ
ϕ(0)

]
,P [N ]

0

[ ϕ
ϕ(0)

]
⟩M2

(52)

with an approximated operator P [N ]

0 . Moreover, similarily to
the exact operator P0 from (51), this approximated operator
P [N ]

0 also satisfies an operator-valued Lyapunov equation,

2⟨ψ,P [N ]

0 A [N ]ψ⟩M2
= −⟨ψ,Qψ⟩M2

, (53)

which, however, only relies on an approximation A [N ] instead
of A . See [36] for details. The matrices Aζ or, equivalently,
Ay in Sec. II are coordinate representations of that A [N ].

It has to be shown that, ∀ϕ ∈ C, the scalar value V0(ϕ)
in (42) is indeed the limit of its approximations in (52) as
N → ∞. In terms of the operators, weak9 operator conver-
gence P [N ]

0

weakly→ P0 suffices for that objective.
Lemma 6.2: Let (52) describe a Legendre-tau-based result

for V0(ϕ). Assume {∥P [N ]

0 ∥}N is bounded10, and the existence
and uniqueness conditions from Lemma 2.1 and Rem. 2.1
hold. Then P [N ]

0 converges weakly to P0 as N → ∞. ◀
Proof: See [36, Thm. 5.1 (i)] with zero input operator

and the uniqueness conditions from Sec. II-C.
In fact, this result is not at all special to the Legendre tau
method. An alternative proof from [53, Thm. 6.7] applies to
any discretization scheme that satisfies standard conditions
proving convergence of numerical solutions for (xt, x(t)) in
M2. Lemma 6.2 relies on uniform boundedness and existence

9 The operator sequence {P [N ]}N converges weakly to P if ∀φ,ψ ∈M2:

lim
N→∞

⟨φ,P [N ]ψ⟩M2
= ⟨φ,Pψ⟩M2

(i.e., ∀ψ ∈ M2 : PNψ
weakly→ Pψ).

It converges strongly if ∀ψ ∈M2 : lim
N→∞

∥P [N ]ψ − Pψ∥M2
= 0.

The implications ‘operator norm conv.’ ⇒ ‘strong conv.’ ⇒ ‘weak conv.’ hold.
10To compute the norm of the self-adjoint operator P [N ]

0 via Py,0, Pζ,0, or
Pχ,0, note that ∥P [N ]

0 ∥ = sup∥(ϕ,ϕ(0))∥M2
≤1⟨

[ ϕ
ϕ(0)

]
,P [N ]

0

[ ϕ
ϕ(0)

]
⟩M2

.

Considering, e.g., Sec. A.3.d, we obtain ∥P [N ]

0 ∥ = ∥Pχ̃,0∥2 where
Pχ̃,0 = T−⊤

χ̃χ Pχ,0T
−1
χ̃χ and where Tχ̃χ is such that infϕ ∥(ϕ, ϕ(0))∥2M2

=

χ⊤Gχχ = ∥Tχ̃χχ∥22 with the infimum being taken over all (ϕ, ϕ(0)) ∈M2

that have the discretization χ. The latter is attained by (77) with the metric
coefficients Gχ = diag([(h

2
2

2k+1
)k=0...N−1, 1])⊗In. Thus, Tχ̃χ = G

1/2
χ .

assumptions. In the following we show that these can be ig-
nored in the case of an exponentially stable RFDE equilibrium.
Nevertheless, while simplifying the considerations, stability of
the equilibrium is no necessary condition in the derivations.

Lemma 6.3: If the RFDE equilibrium is exponentially sta-
ble, then the assumptions in Lemma 6.2 hold. ◀

Proof: Let T (t) : M2 → M2;
[ x0

x0(0)

]
7→
[ xt

x(t)

]
=

T (t)
[ x0

x0(0)

]
be the solution operator, and T [N ](t) its approxi-

mation (represented by eA
[N]

y t). Due to the stability preservation
property from [7, Thm. 5.3], ∃M ≥ 1, β > 0, N̄ ∈ N, such
that ∀N ≥ N̄ : ∥T [N ](t)∥ ≤Me−βt. Therefore, the improper
integral formula P [N ]ψ =

∫∞
0

(T [N ])∗(s)Q T [N ](s)ψ ds

is applicable, see, e.g., [53]. Thus, with ∥Q∥ = ∥Q̃∥2,
the operators P [N ] are uniformly bounded by ∥P [N ]∥ ≤∫∞
0

∥Q̃∥2∥T [N ](s)∥2 ds ≤ ∥Q̃∥2M
2

2β . Moreover, the existence
and uniqueness assumptions hold by Prop. 2.1.
The convergence towards V0(ϕ) does not require more than the
thus established weak convergence P [N ]

0

weakly→ P0. However,
the following stronger result will become helpful in Sec. VI-D.

Lemma 6.4: Let (52) describe a Legendre-tau-based result
for V0(ϕ). If the RFDE equilibrium is exponentially stable,
then P [N ]

0 converges in operator norm to P0, i.e., it holds
∥P [N ]

0 − P0∥ → 0 as N → ∞. ◀
Proof: See [53, Thm. 6.9], where even convergence in

the trace norm [53, p. 111] is proven. The result requires that
not only the approximations of the solution operator T (t)
converge strongly9, but also those of its adjoint T ∗(t), which
for the Legendre tau method is proven in [7, Thm. 2.2].

3) Convergence towards V: To prove Cond. 6.2 on conver-
gence towards V = V0 + V12, it only remains to include V12.

Theorem 6.1: If the RFDE equilibrium is exponentially sta-
ble or, more generally, if the assumptions of Lemma 6.2 hold,
then Cond. 6.2 applies for the Legendre-tau-based approach
(with the Lyapunov equation right-hand side from (37)). ◀

Proof: Since Py depends linearly on Qy in the Lyapunov
equation (10), the approximation of V is the superposition
of the approximations of V0 and V12 = V1 + V2 from
Lemma 6.1. For the first one, the convergence, ∀ϕ ∈ C :
V [N ]

y,0(π
[N ]
y (ϕ)) → V0(ϕ) as N → ∞, is a consequence of the

weak9 convergence of P [N ]

0 proven in Lemma 6.2. Concerning
the second one, the lemmata in Sec. A.3.c show that V12(ϕ)
is approximated by V [N ]

y,12(π
[N ]
y (ϕ)) = V12(ϕ̃

(N−1)), where
ϕ̃(N−1) is a Legendre series truncation of ϕ. The convergence,
∀ϕ ∈ C : V12(ϕ̃

(N−1)) → V12(ϕ) as N → ∞, follows from
the L2-convergence of the involved Legendre series truncation,
∥ϕ− ϕ̃(N−1)∥L2 → 0 as N → ∞ [56, Thm. 6.2.3], combined
with the continuity11 of V12 in L2.

D. Quadratic Lower Bound on the Functional
We are going to prove that, for N → ∞, the quadratic lower

bound on the approximation gives also a valid quadratic lower
bound on the functional. This holds for any discretization
scheme satisfying Cond. 6.2. Moreover, for the Legendre

11 A quadratic form V (x) = ⟨x,Px⟩X , P = P∗, in a Hilbert space
X is continuous if ∃k > 0 : ⟨x,Px⟩X ≤ k∥x∥2X , which by inf k = ∥P∥
holds if P is bounded. Note that V12(ϕ) = ⟨ϕ,Pzz,diagϕ⟩L2

≤ (∥Q1∥2+
h∥Q2∥2)∥ϕ∥2L2

. For VM2
(ψ) = ⟨ψ,Pψ⟩M2

≤ k∥ψ∥2M2
see [10, p. 65].



tau method, the thus obtained bound will be shown to be
tight, meaning that the largest possible coefficient k1 in (4)
is obtained.

For any discretization resolution N , the largest possible
coefficient k[N ]

1 for the bound (17) on the approximation V [N ]
y is

given by (22). Note that k[N ]

1 and, similarly, the largest possible
coefficient k1 = kopt1 for the bound (4) on the functional V
are defined by

k[N ]

1 = min
z∈RnN

x̂∈Rn\{0n}

1
∥x̂∥2

2
V [N ]

y (
[
z
x̂

]
), kopt1 = inf

ϕ∈C
ϕ(0)̸=0n

1
∥ϕ(0)∥2

2
V (ϕ).

(54)

However, since both the functional and its approximation are
quadratic, with V (cϕ) = c2V (ϕ) for any c ∈ R in (15a) and
V [N ]
y (cy) = c2V [N ]

y (y) in (8), definition (54) simplifies to

k[N ]

1 = min
z∈RnN

x̂∈Rn\{0n}

V [N ]

y

(
1

∥x̂∥2

[
z
x̂

])
, kopt1 = inf

ϕ∈C
ϕ(0)̸=0n

V
(

1
∥ϕ(0)∥2

ϕ
)
.

(55)

Theorem 6.2: If Cond. 6.2 holds, then k1 = lim sup
N→∞

k[N ]

1 is

a valid quadratic lower bound coefficient in (4). ◀
Proof: Let ϕδ give a V (ϕδ) that is arbitrarily close to

the infimum in (55) according to

∀δ > 0, ∃ϕδ ∈ C, ∥ϕδ(0)∥2 = 1 : V (ϕδ) < kopt1 + δ. (56)

The assumed convergence (38), i.e., ∀ϕ ∈ C, ∀ε > 0,
∃N̄(ε, ϕ) ∈ N, ∀N ≥ N̄(ε, ϕ) : |V [N ]

y (π[N ]
y (ϕ)) − V (ϕ)| < ε,

shows that

∀N ≥ N̄( ε2 , ϕδ) : |V [N ]

y (π[N ]

y (ϕδ))− V (ϕδ)︸ ︷︷ ︸
(56)
< kopt1 +δ

| < ε
2 , (57)

and thus, ∀N ≥ N̄( ε2 , ϕδ) :

k[N ]

1

(55)
= min
z∈RnN ,

x̂∈Rn\{0n}

V [N ]

y ( 1
∥x̂∥2

[
z
x̂

]
) ≤ V [N ]

y (π[N ]

y (ϕδ)) (58)
(57)
< V (ϕδ) +

ε
2

(56)
< kopt1 + δ + ε

2 .

Choosing δ = ε
2 , (58) becomes k[N ]

1 < kopt1 + ε. Hence,
lim sup
N→∞

k[N ]

1 ≤ kopt1 . Any k1 ≤ kopt1 is admissible in (4).

For the Legendre tau method, we are going to prove that k[N ]

1

converges to the largest admissible coefficient kopt1 . The proof
involves the following assumption on the arguments of the
minimum in (55): For any N , we consider a vector

[
z[N]

x̂[N]

]
, with

∥x̂[N ]∥2 = 1, such that V [N ]
y (
[
z[N]

x̂[N]

]
) = k[N ]

1 . By (77), any
[
z[N]

x̂[N]

]
represents a function ϕ[N ] (we use (77) since the minimizing
argument is not expected to be continuous at θ = 0). The
assumption below is that ϕ[N ] remains uniformly bounded in
L2, which, however, could numerically12 be confirmed for all
tested examples that give a nonzero k1.

Theorem 6.3: Consider the Legendre tau method with (37).
As described above, for ϕ[N ] being related to k[N ]

1 , assume that
∃β > 0, ∀N : ∥ϕ[N ]∥L2 < β. Then the quadratic lower bound
coefficient k[N ]

1 from Cor. 3.1 converges to the largest possible
quadratic lower bound coefficient on the functional in (4). ◀

12The L2 norm of (77) can be computed from ∥ϕ[N ]∥2L2
=∑N−1

k=0
h
2

2
2k+1

∥ζk∥22 using the first N −1 of the N subvectors in ζ. These
are either derived via ζ = Tζy

[ z
x̂

]
, cf. Rem. 1.3, where z = −P−1

y,zzP
⊤
y,xz x̂

and x̂ = v/∥v∥2, see Lemma 3.1, or are directly available if Lemma 3.1 is
applied to the coordinates from (76).

Proof: We denote by Cd the set of functions ϕ :
[−h, 0] → Rn that are continuous on [−h, 0) and possibly
have a jump discontinuity at the end point ϕ(0−) ̸= ϕ(0).
Note that ϕ[N ] ∈ Cd. The functional V : C → R can straight-
forwardly be extended to arguments in Cd since V (ϕ) =
VM2

((ϕ, ϕ(0))) holds by (41), which, in fact, is defined for all
(ϕ, ϕ(0)) ∈ L2 ×Rn. Also on this extended set of arguments,
the value of interest from (55) is still the infimum kopt1 =
inf ϕ∈Cd

ϕ(0)̸=0n

V
(

1
∥ϕ(0)∥2

ϕ
)

(even on L2 × Rn it would be since

VM2 is continuous11 in M2 = L2×Rn and C is dense in L2).
With a slight abuse of notation we do not alter the name V
for the extension on Cd. By construction, the discretization
π[N ]
y (ϕ[N ]) =

[
z[N]

x̂[N]

]
yields an argument of the minimum in (55).

First, we have to show that ∀ε > 0,∃N̄1(ε) ∈ N, such that

∀N ≥ N̄1(ε) : |V [N ]

y (π[N ]

y (ϕ[N ]))︸ ︷︷ ︸
k[N]

1

−V (ϕ[N ])| < ε.

(59)

According to the splitting approach (Lemma 6.1 with Q̃1 =
Q1, Q̃2 = Q2), we decompose V into three parts V (ϕ[N ]) =
V0(ϕ

[N ]) + V1(ϕ
[N ]) + V2(ϕ

[N ]) and its approximation corre-
spondingly. The second and third term, V1(ϕ[N ]) and V2(ϕ[N ]),
do not contribute to the error in (59) since ϕ[N ](θ) is an
(N − 1)-th order polynomial on θ ∈ [−h, 0) for which
the approximation is exact, according to the lemmata of
Appendix A.3.c. Therefore, it suffices to show uniform conver-
gence on ∪N{ϕ[N ]} for the approximations of V0. Let ψ[N ] =
(ϕ[N ], ϕ[N ](0)) ∈ M2. By assumption, ∥ψ[N ]∥2M2

= ∥ϕ[N ]∥2L2
+

∥ϕ[N ](0)∥22 ≤ β2 + 1. Thus, using (42) and (52), the error
in (59) becomes |⟨ψ[N ],P [N ]

0 ψ[N ]⟩M2
− ⟨ψ[N ],P0ψ

[N ]⟩M2
| ≤

∥P [N ]

0 − P0∥ (β2 + 1). By Lemma 6.4, the latter converges
to zero, and thus (59) holds. Consequently, ∀N ≥ N̄1(ε):

k[N ]

1

(59)
> V (ϕ[N ])− ε ≥ inf

ϕ∈Cd

ϕ(0)̸=0n

V
(

1
∥ϕ(0)∥2

ϕ
)
− ε

(55)
= kopt1 − ε.

(60)

With N̄0(ε) := N̄( ε2 , ϕδ=ε/2) from Thm. 6.2, we obtain

∀N≥ max{N̄0(ε), N̄1(ε)} : kopt1 − ε
(60)
< k[N ]

1

(58)
< kopt1 + ε,

completing the proof of |k[N ]

1 − kopt1 | → 0 (N → ∞).

VII. CONCLUSION

The present paper shows that the counterpart of LK func-
tionals for RFDEs are not classical Lyapunov functions for 
ODEs, but rather they correspond to partial Lyapunov func-
tions, i.e., Lyapunov functions that prove partial stability. 
The latter are still simply obtained by solving a Lyapunov 
equation. Using the system matrix of an approximating ODE, 
the result gives an approximation of the LK functional V (ϕ). 
Note that Fig. 2 yields the structure of complete-type LK 
functionals without any prior knowledge. For an appropriate 
ODE approximation with a sufficiently l arge discretization 
resolution N , the involved matrix Py is positive semidefinite 
if and only if the RFDE equilibrium is asymptotically stable. 
A formula for a partial positive-definiteness bound on the 
functional approximation is derived. When it is applied to the 
Legendre-tau ODE-based result, a rapid convergence of the



resulting lower bound coefficient i s o bserved a s N  increases. 
Its limit is shown to be the best possible quadratic lower bound 
coefficient k 1 on the LK functional. Examples demonstrate that 
the latter significantly i mproves k nown r esults. I n particular, 
the obtained k1 depends on the delay, which is not the 
case in existing formulae. For the sake of validation, the 
present paper also proposes a numerical integration of the LK 
functional formula by Clenshaw-Curtis and Gauss quadrature 
rules. For these, the lower bound formula is purposeful as 
well. However, the ODE-based approach is expected to provide 
approximations of LK functionals even in more general cases 
where the LK functional is not known analytically.

APPENDIX

Table II classifies t he e mployed p olynomial m ethods. The 
following appendix also includes some implementation hints.

A. ODEs that Approximate RFDEs
We consider ODE approximations for (1) from two spectral 

methods: Chebyshev collocation and Legendre tau.
1) Chebyshev collocation method: By interpolation, the vec-

tor y(t) at time t in (5), cf. Fig. 1, determines an N -th order 
approximating polynomial for xt. More specifically,

xt(θ) ≈
N∑
k=0

yk(t) ℓk
(
ϑ(θ)

)
, (61)

where ℓk : [−1, 1] → R are interpolating Lagrange ba-
sis polynomials w.r.t. the (Gauss-Lobatto) Chebyshev nodes
{ϑ̃k}k∈{0,...,N} on [−1, 1], and where

ϑ : [−h, 0] → [−1, 1]; θ 7→ ϑ(θ) := 2
hθ + 1 (62)

maps the argument θ ∈ [−h, 0] to this interval.
The exact evolution of xt in Fig. 1b can be described by

an abstract ODE in C([−h, 0],Rn), see [3] for details. This
abstract ODE can be discretized via the collocation method.
The result describes the dynamics of the unknown coefficients
yk(t) in (61). It is the ODE (7) with Ay = ACy ,

ACy :=


2
hℓ

′
0(ϑ̃0)In ··· ··· ··· 2

hℓ
′
N (ϑ̃0)In

...
...

2
hℓ

′
0(ϑ̃N−1)In ··· ··· ··· 2

hℓ
′
N (ϑ̃N−1)In

A1 0n×n ··· 0n×n A0

, (63)

cf. [25]. The upper part of ACy that is given by
2
h (ℓ

′
k(ϑ̃j))j∈{0,...,N−1},k∈{0,...,N} ⊗ In requires the first N

rows of the (N + 1) × (N + 1) differentiation matrix
(ℓ′k(ϑ̃j))j,k∈{0,...,N}. See [38, p. 54] (with xk = −ϑ̃k).

Remark 1.1 (Implementation of ACy ): A Matlab implemen-
tation of the skew-centrosymmetric differentiation matrix is
available from diffmat in the Chebfun toolbox [39]. Based
on the latter, ACy = A is obtained from
D=diffmat(N+1,[-delay,0]); A=kron(D,eye(n));
A(end-n+1:end,:)=[A1,zeros(n,n*(N-1)),A0]

(if A0, A1, h, n,N are assigned to A0,A1,delay,n,N). ◀

13orthogonal w.r.t. the (weighted) inner product in which the chosen basis
polynomials are orthogonal. In (73), the modified ζN makes the projection
non-orthogonal, unless the discretization is interpreted in terms of (77).

2) Legendre tau method: Let pk : [−1, 1] → R denote the k-
th Legendre polynomial. See, e.g., [57] for formulae and plots.
Using {pk(ϑ(·))}Nk=0 as basis, an N -th order approximating
polynomial for xt becomes

xt(θ) ≈
N∑
k=0

ζk(t) pk(ϑ(θ)). (64)

The evolution of the coefficients ζk(t) ∈ Rn, stacked as ζ :=
[(ζ0)⊤, . . . , (ζN )⊤]⊤, shall again be described by

ζ̇(t) = Aζ ζ(t). (65)

In [29], this is achieved via Lanczos’ tau method (considering
a Hilbert space setting, cf. Sec. VI-C). A general introduction
to the tau method is given in [57]. We only state the result,
which is (65) with Aζ = ALζ having the block entries

AL,jkζ =


2
h (2j + 1)In,

if j ∈ {0, . . . , N − 1},
k>j and j+k odd

A0 + (−1)kA1 − 2
h
k(k+1)

2 In, if j = N
0n×n, else. (66)

Thus, ALζ exhibits the structure (exemplarily for N even)

ALζ =


0n×n 0n×n 0n×n ··· 0n×n

...
...

...
...

0n×n 0n×n 0n×n ··· 0n×n

A0+A1 A0−A1 A0+A1 ··· A0−A1



+ 2
h


0 1 0 1 ··· 0
0 0 3 0 ··· 3
0 0 0 5 ··· 0
...

. . . . . .
...

0 0 0 0 ··· (2N−1)

0 −1 −3 −6 ··· −N(N+1)
2

⊗ In.

Remark 1.2 (Implementation of ALζ ): Written in standard
Matlab code, we obtain ALζ = Ac from
Dc=zeros(N+1,N+1);Dc(end,:)=-(0:N).*(1:N+1)/2;
for j=0:N-1; Dc(j+1,(j+1)+1:2:end)=2*j+1; end
Ac=2/delay*kron(Dc,eye(n));
Ac(end-n+1:end,:)= Ac(end-n+1:end,:)+...

kron(ones(1,N+1),A0)+kron((-1).ˆ(0:N),A1)

(with A0,A1,delay,n,N as above). ◀
Hence, we have the dynamics (65) of the Legendre coordi-

nates ζ(t) ∈ Rn(N+1) that, in (64), describe the approximating
polynomial for xt. However, we can equivalently express the
polynomial (64) in interpolation coordinates y(t) ∈ Rn(N+1),
referring to the interpolation basis {ℓk(ϑ(·))}Nk=0 of (61). Let
Tyζ denote the transformation matrix of this change of basis

y(t) = Tyζ ζ(t). (67)

The thus computed y(t) obeys the ODE (7) with Ay = ALy ,

ALy := Tyζ A
L
ζ T

−1
yζ . (68)

Note that the first and last block row of Tyζ in (67) are simply[
y0(t)
yN (t)

]
=

[
In −In · · · (−1)NIn
In In · · · In

]
ζ(t) (69)

since pk(−1) = (−1)k, pk(1) = 1 (and T jkyζ = pk(ϑ(θ̃j))In).
Remark 1.3 (Implementation of ALy ): Efficient conversion

algorithms [59] are found in the Chebfun toolbox. Applying



polynomial approximation (of functions) spectral methods (for differential equations) numerical integration (for integral expressions)

(*) JP stands for Chebyshev, Legendre, or other Jacobi polynomials JP: Chebyshev Legendre JP: Chebyshev Legendre

interpolation / coincidence in the
chosen nodes (natural basis: Lagrange
polynomials w.r.t. the chosen nodes),

equivalently, ‘discrete expansion’
with the 0-th to N -th JP as basis,
related to an approximation of the
series truncation below via quadrature

Gauss-Lobatto nodes
(extrema of the N -th JP)

collocation /
pseudospectral method /
method of selected points /
at the nodes vanishing
residual

Chebyshev
col.

interpolatory
quadrature /
integration of an
interpolating
polynomial instead of
the original function

Clenshaw-
Curtis

Gauss nodes (roots of the
(N + 1)-th JP)

– –
(no boundary nodes for

boundary conditions)

Gauss
quad.

series truncation /
orthogonal13projection to the 0-th to N -th JP /
‘continuous expansion’ with the 0-th to N -th JP as basis /
generalized Fourier truncation / least squares best approximation

Galerkin-like methods,
e.g., Galerkin method
or tau method / Lanczos’
tau method / Galerkin
with boundary bordering

Legendre
tau

– (the projection re-
quires itself integral
evaluations)

– –

TABLE II: Classification of the used methods ( “/” marks synonymous terms). See [57], [38], [51], [56], [58] for details.

these to the identity matrix yields Tyζ and Tζy := T−1
yζ . Thus,

ALy = A can be derived by adding the lines
Tyc=kron(legcoeffs2chebvals(eye(N+1)),eye(n));
Tcy=kron(chebvals2legcoeffs(eye(N+1)),eye(n));
A=Tyc*Ac*Tcy

to the code given in Remark 1.2. ◀
3) Further notes on the Legendre tau method:

a) Lyapunov equation in Legendre coordinates: To obtain an
approximation of V (ϕ) via the Legendre tau approach, we
can resort to (10) with Ay = ALy from (68). However, from a
numerical point of view, it might be preferable to remain in
Legendre coordinates ζ and to use Aζ = ALζ , (66), in

Vζ(ζ) := ζ⊤Pζζ, Pζ = P⊤
ζ ∈ Rn(N+1)×n(N+1) (70)

D+
f Vζ(ζ) = ζ⊤(PζAζ +A⊤

ζ Pζ)ζ
!
= −ζ⊤(T⊤

yζ Qy Tyζ)ζ,

∀ζ ∈ Rn(N+1) with Tyζ from (67). That is, we solve

PζAζ +A⊤
ζ Pζ = −T⊤

yζ Qy Tyζ (71)

for Pζ and, if desired, express the result in y coordinates

Vy(y) = Vζ(ζ) = Vζ(T
−1
yζ y) = y⊤

(
(T−1
yζ )⊤Pζ T

−1
yζ︸ ︷︷ ︸

=:Py

)
y. (72)

With Qy from (37), only the first and last block rows (69) of
Tyζ are required in (71).

b) Discretization: The discretization ζ = (ζk)k∈{0,...,N}
of a given function ϕ, e.g., an initial condition x0 = ϕ or an
argument of the functional V (ϕ), is chosen as

ζk = ζ̃k, if k < N, and ζN = ϕ(0)−
N−1∑
k=0

ζk, (73)

where {ζ0, . . . , ζN−1} stem from a truncation of the Legendre
series representation ϕ(θ) =

∑∞
k=0 ζ̃

kpk(ϑ(θ)), [29]. The last
component ζN in (73) is such that the N -th order approximat-
ing polynomial

∑N
k=0 ζ

kpk(ϑ(θ)) ≈ ϕ(θ), at θ = 0, exactly
matches ϕ(0) (note that ϑ(0) = 1 and pk(1) = 1, ∀k).

c) V1 and V2: For two important cases of the right-hand
side −Qζ = −T⊤

yζ Qy Tyζ in (71), we can give the solution Pζ ,
respectively the resulting Vy(y) = Vζ(ζ) ≈ V (ϕ), analytically.

Lemma 1.1: The Legendre-tau-based approximation
of V1(ϕ) in Lemma 6.1 becomes V1(ϕ̃

(N−1)), where
ϕ̃(N−1)(θ) =

∑N−1
k=0 ζ̃

kpk(ϑ(θ)) is the (N − 1)-th order
Legendre series truncation of ϕ(θ) =

∑∞
k=0 ζ̃

kpk(ϑ(θ)). ◀

Proof: For Qy = diag([1, 01×n(N−1),−1]) ⊗ Q̃1, and,
thus, Qjkζ = (−1 + (−1)j+k)Q̃1, it can be verified that

Pζ = diag([(h2
2

2k+1 )k∈{0,...,N−1}, 0])⊗ Q̃1 (74)

is a solution of (71). Hence, Vζ(ζ) = ζ⊤Pζζ =∑N−1
k=0

h
2

2
2k+1ζ

⊤
k Q̃1ζk. Equivalence with V1(ϕ̃

(N+1)) =∫ 0

−h(
∑N−1
k=0 ζ̃

jpj(ϑ(θ)))
⊤Q̃1(

∑N−1
j=0 ζ̃kpk(ϑ(θ))) dθ follows

from (73) and
∫ 1

−1
pj(ϑ)pk(ϑ) dϑ = 2

2k+1δjk [57, B.1].
Lemma 1.2: Provided (37) is used, the Legendre-tau-based

approximation of V2(ϕ) in Lemma 6.1 becomes V2(ϕ̃(N−1))
with ϕ̃(N−1) as above (Lemma 1.1). ◀

Proof: Consider Qζ = Qζ,0 + Qζ,2 with Qζ,0 =
T⊤
yζ(diag([01×nN , 1]) ⊗ Q0)Tyζ = 1(N+1)×(N+1) ⊗ Q0 and
Qζ,2 = diag([( 1

2k+1 )k∈{0,...,N−1}, 1]) ⊗ hQ2, where Q0 =

−hQ̃2, Q2 = Q̃2. It can be verified that Pζ with

P jkζ =


(h2 )

2 2
2j+1

k
2k+1 Q̃2 if j = k − 1 < N − 1

(h2 )
2 2
2j+1 Q̃2 if j = k < N

(h2 )
2 2
2j+1

k+1
2k+1 Q̃2 if j = k + 1 < N

0n×n else

(75)

solves (71). The equality ζ⊤Pζζ = V2(
∑N−1
k=0 ζ

kpk(ϑ(θ))) is
shown by using the three-term recurrence relation [57, (4.17)]
ϑpk(ϑ) =

k
2k+1pk−1(ϑ) +

k+1
2k+1pk+1(ϑ) in V2.

d) Combined coordinates: Besides of Legendre coordi-
nates ζ, and interpolation coordinates y =

[
z
x̂

]
= Tyζζ, the

combination of the first (N−1) of the N Legendre coordinates
and the boundary value x̂ = ϕ(0),

χ =

 ζ0

...
ζN−1

x̂

 =

[
InN 0nN×n

In · · · In In

]
︸ ︷︷ ︸

Tχζ

ζ, (76)

is, in light of (73), as well an appropriate choice of coordinates.
In particular, Lemma 3.1 can directly be applied to Pχ =

T⊤
ζχPζTζχ, with Tζχ = T−1

χζ =
[

InN 0nN×n

−1⊤N ⊗In In

]
, thus obtaining

the quadratic lower bound as in Cor. 3.1, but without the need
of Py = T⊤

ζyPζTζy (which would require Tζy from Rem. 1.3).
e) Discontinuous basis: The given coordinates ζ, or equiv-

alently y = Tyζζ, or χ = Tχζζ, uniquely represent an N -th
order approximating polynomial ϕ(θ) ≈

∑N
k=0 ζ

kpk(ϑ(θ)) =∑N
k=0 y

kℓk(ϑ(θ)) =
∑N−1
k=0 χ

k(pk(ϑ(θ)) − pN (ϑ(θ))) +
χNpN (ϑ(θ)). However, if a function with a jump discontinuity



at θ = 0 is of interest, it is convenient14 to consider as ap-
proximating function instead the piecewise defined (N − 1)-th
order polynomial with a discontinuous end point

ϕ(θ) ≈
{ ∑N−1

k=0 ζ
kpk(ϑ(θ)), if θ < 0

x̂, if θ = 0
(77)

(which, in (73), has the same discretization).

B. Numerical Integration of LK Functionals
Sec. II-E proposes to apply interpolatory quadrature rules 

to the LK functional. We consider Clenshaw-Curtis and Gauss 
quadrature. See, e.g., [58] for convergence statements.

1) Clenshaw-Curtis quadrature: A numerical integration of 
(15a) by an interpolatory quadrature rule replaces integrals 
by weighted sums from values at certain grid points. If 
these grid points are the (Gauss-Lobatto) Chebyshev nodes
{θ̃k}k 0,...,N introduced in (6), this amounts to a Clenshaw-

Curtis
∈{
quadrature,

} 
cf. [56, Sec. 3.7]. The weights15 wk are, e.g.,

available16 in the Chebfun toolbox [39]. For (15a), we obtain

V (ϕ) ≈ ϕ⊤(0)Pxx ϕ(0) + 2
N∑
k=0

wkϕ
⊤(0)Pxz(θ̃k)ϕ(θ̃k)

+
N∑
j=0

wj

N∑
k=0

wkϕ
⊤(θ̃j)Pzz(θ̃j , θ̃k)ϕ(θ̃k)

+

N∑
k=0

wkϕ
⊤(θ̃k)Pzz,diag(θ̃k)ϕ(θ̃k). (78)

Let yk = ϕ(θ̃k), k ∈ {0 . . . , N}, where yN = ϕ(θ̃N ) = ϕ(0).
As in (13), the result (78) can be written as a quadratic form
(with p = dim(z) := dim([y0

⊤
, . . . , yN−1⊤]⊤) = nN )

V (ϕ) ≈ y⊤P quad
y y = y⊤

( [
0p×p 0p×n
0n×p Pxx

]

+

[
0p×(p+n)

(Pxz(θ̃k)wk)k

]
+

[
0(p+n)×p (wjP

⊤
xz(θ̃j))j

]

+
(
wjPzz(θ̃j , θ̃k)wk

)
jk
+ blkdiag

(
(wkPzz,diag(θ̃k))k

) )
y.

(79)
See (24) for a factorization taking (15b) into account. Note that
the right lower component of P quad

y approximately becomes

k

Pxx since the other contributions are weighted by wN , which 
is quite small in the non-equidistant grid.

2) Gauss quadrature: As an alternative, we apply (Leg-
endre) Gauss quadrature. Thus, the integral of a function is 
approximated by weighted sums from the function values 
at (Gauss) Legendre nodes. Being Gauss nodes, cf. Table 
II, they do not contain the boundary points of the domain 
[−h, 0]. That is why we take N (Gauss) Legendre nodes17 

θ̃L, and add the zero end point with zero weight to get the
14See, in [36], the projector QN versus LN .
15The weights wk = h

2

∫ 1
−1 ℓk(ϑ̃) dϑ̃ are integrals of the Lagrange polyno-

mials in
∫ 0
−h u(θ) dθ ≈

∫ 0
−h

∑N
k=0 u(θ̃k)ℓk(ϑ(θ)) dθ =

∑N
k=0 u(θ̃k)wk .

16implemented via [theta,w]=chebpts(N+1,[-delay,0])
17via [thetaL,wL]=legpts(N,[-delay,0]) using the toolbox [39]

N+1 nodes [(θ̃L)⊤, 0]⊤ and weights [(wL)⊤, 0]⊤. Therefore,
contrary to the Gauss-Lobatto-node-based Clenshaw-Curtis
quadrature, the contributions in (79) do not overlap, yielding
for yG = [ϕ⊤(θ̃L0 ), . . . , ϕ

⊤(θ̃LN−1), ϕ
⊤(0)]⊤

V (ϕ) ≈ y⊤G


(
wLj Pzz(θ̃

L
j , θ̃

L
k )w

L
k

)
jk
+D (wLj P

⊤
xz(θ̃

L
j ))j

(Pxz(θ̃
L
k )w

L
k )k Pxx

yG
with D = blkdiag

(
(wLk Pzz,diag(θ̃

L
k ))k

)
. (80)
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[18] C. Cuvas and S. Mondié, “Necessary stability conditions for delay
systems with multiple pointwise and distributed delays,” IEEE Trans.
Automat. Contr., vol. 61, no. 7, pp. 1987–1994, 2016.

[19] M. Bajodek, F. Gouaisbaut, and A. Seuret, “Necessary and sufficient
stability condition for time-delay systems arising from Legendre approx-
imation,” IEEE Trans. Automat. Contr., vol. 68, no. 10, pp. 6262–6269,
2023.
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