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A B S T R A C T   

Combining domain knowledge (DK) and machine learning is a recent research stream to overcome multiple 
issues like limited explainability, lack of data, and insufficient robustness. Most approaches applying informed 
machine learning (IML), however, are customized to solve one specific problem. This study analyzes the status of 
IML in medicine by conducting a scoping literature review based on an existing taxonomy. We identified 177 
papers and analyzed them regarding the used DK, the implemented machine learning model, and the motives for 
performing IML. We find an immense role of expert knowledge and image data in medical IML. We then provide 
an overview and analysis of recent approaches and supply five directions for future research. This review can 
help develop future medical IML approaches by easily referencing existing solutions and shaping future research 
directions.   

1. Introduction 

Despite the broad use of machine learning (ML) across applications, 
there are still limitations and challenges in the adoption of ML in med
ical practice [1]. Sufficient data availability and quality are essential for 
accurate predictions of ML models. In the medical domain, data gath
ering is difficult and expensive since diseases are constantly evolving 
[2], digitalization in medical institutions lags behind [3], and legal re
quirements need to be met for sensitive medical data [4]. 

Data availability, however, is not the only factor that hinders the 
adoption of ML in medicine. Whenever the decisions of ML models are in 
doubt, we refer to the decisions made by domain experts. Expert-based 
decisions can be more elaborate and take care of the specifics of each 
patient. Therefore, emerging research on explainable and interpretable 
ML provides explanations of the decisions made by ML approaches [5]. 
These improvements in explainability and specificity are often achieved 
by integrating experts’ domain knowledge (DK) into ML models. This is 
called informed ML (IML) which “describes learning from a hybrid in
formation source that consists of data and prior knowledge” [6]. Such 
hybrid learning can provide the benefits of both, expert-based and data- 
driven decisions [6]. 

Combining expert-based and data-driven decisions, however, results 
in customized solutions regarding the ML models used, the DK included 
in the models, or the step of applying the DK to achieve the benefits of 

overcoming a specific problem. Every customization solves a specific 
problem, but we currently lack a general understanding of frequent 
combinations, which could benefit practitioners to apply existing solu
tions to their related problems. 

Previous works already investigated the current status of ML in 
medicine and argued that an improved inclusion of computers in clinical 
practice “may allow radiologists to further integrate their knowledge” 
[7,8]. Based on these results, first approaches were conducted summa
rizing the inclusion of DK into medical imaging algorithms [9]. How
ever, in the study at hand, we do not limit ourselves to imaging 
applications but investigate the inclusion of DK in a broader sense. We 
refer to an existing taxonomy to assess and categorize the inclusion of 
DK by analyzing the three dimensions source of DK, structure of DK, and 
application step [6]. 

In addition to the inclusion-related dimensions, we also gather an 
overview of the motives for performing IML. All approaches conduct 
IML for a multitude of reasons, which range from improving the 
explainability of the approaches by including DK [10], over reducing the 
effort required by experts [11], to limited data availability [12]. These 
individual motives are all well on their own, but we require an overview 
of different motives to perform medical IML (MedIML). Such an over
view could highlight previously undetected similarities between ap
proaches and provide general conclusions on the motives for performing 
MedIML. We, therefore, pose the following research questions (RQs): 



RQ1: What domain knowledge is integrated into medical machine 
learning approaches? 
RQ2: How is domain knowledge integrated into medical machine learning 
approaches? 
RQ3: What are the motives and potential improvements for MedIML? 

To answer these research questions, we conduct a literature-based 
scoping study by following the method of Arksey and O’Malley [13]. 
Our search yielded 177 articles that were analyzed regarding the used 
ML models, the included DK, and the motives for performing IML. Since 
every paper also identifies potential drawbacks of their approach, we 
also analyzed the potential improvements specified by the authors. In 
the analysis, we identified clusters in the combination of the structure of 
the included DK and the ML models used in the approaches. We also 
found a broad range of motives and potential improvements in all di
rections, from which we derived five future research directions. 

Building on previous works that have investigated IML approaches 
across domains [6], we synthesize the current state of knowledge on 
how DK is included in medical ML settings and thereby contribute to the 
emerging stream of literature on artificial intelligence in medicine [14]. 
The results of our study reveal a heterogeneous landscape of different 
ML approaches incorporating medical DK. We provide five directions for 
future research that researchers may use as starting points guiding their 
inquiries on MedIML. Our study reveals several specificities of MedIML 
in comparison to other domains of IML (e.g., the dominant role of expert 
knowledge over other types of DK). This strengthens our notion that 
collaboration and exchange between different context-specific IML 
research approaches will be key to unfold the full potential of IML to 
increase explainability and predictive performance in the future [5]. 

In the following section, we present the methodology conducted in 
this article. We follow with the results of our scoping study before we 
provide potential future research directions and limitations of our study 
in the discussion. We end the article with a brief conclusion. 

2. Methods 

For this scoping review, we followed a five-step approach based on 
the framework by Arksey and O’Malley [13] shown in Fig. 1. In the first 
step, we defined the research questions described above. 

2.1. Identification of relevant studies 

In the second step, we continued with the identification of relevant 
studies. To cover a wide range of publications, we searched the data
bases ACM Digital Library, AIS eLibrary, IEEE Xplore, ProQuest, 
PubMed, and Scopus with the search string: TI-KE-AB[(“machine 
learning” OR “artificial intelligence” OR “deep learning”) AND (health* OR 
medic*) AND (“domain knowledge” OR expert-based OR theory-guided OR 
theory-driven OR physics-informed OR physics-guided)]. 

The search was performed on May 5, 2022 and yielded 2,243 hits 
(see Fig. 2). After removing pre-print articles published earlier than 
2019 and duplicates, 1,521 articles remained. We decided to include 
pre-print articles from 2019 or later, since these articles can provide 
additional insights as the research stream of IML is fast-moving and 
relatively novel. 

2.2. Study selection 

In the third step, we selected a set of relevant studies by screening 

their abstracts and, for articles deemed relevant based on the abstract, 
their full texts. We excluded 168 studies that turned out not to be peer- 
reviewed research articles (e.g., editorials or doctoral theses). In addi
tion, we excluded articles that did not focus on medicine (n 475), did 
not focus on ML (n 186), or did not use DK (n 365). For two articles, 
there were no full texts available to us, whereas three articles were not 
available in English. We also decided to exclude articles related to nat
ural language processing (NLP, n 145), since many approaches 
focused on medical reports and we want to focus on diagnostic ap
proaches in this review. The remaining 177 articles were included in our 
review. 

2.3. Charting the data 

In the fourth step, we classified the set of relevant articles. The 
coding process was conducted by researchers with a predominant 
background in information systems and computer science. Researchers 
in other fields like medicine may have different assessments about parts 
of our classification scheme. For every article, we recorded the type of 
study based on a classification by Wieringa et al. [15] (i.e., evaluation 
research, solution proposal, validation research, philosophical paper, 
opinion paper, and personal experience papers). This classification 
scheme provides insights about the novelty of the publications and 
especially whether they validated existing approaches or constructed 
novel ones. We additionally assessed the structure of the training data as 
a data modality category. Regarding the ML approach, we recorded the 
ML task and the used ML model. For the facets related to the inclusion of 
DK, we followed the taxonomy by von Rueden et al. [6]. Thus, we 
analyzed the source, structure, and step of application of DK in each 
study. Regarding the source of DK, we differentiated between scientific 
knowledge, world knowledge, and expert knowledge. 

Scientific knowledge includes knowledge that can be formalized and 

Fig. 1. Overview of the conducted study.  

Fig. 2. PRISMA-Chart with exclusion criteria of the literature search.  



validated with scientific experiments like equations to represent the 
blood pressure in vessels [16]. World knowledge, or general knowledge, 
can be more or less formal and refers to facts known to almost everyone 
[17]. Expert knowledge is only held by a particular group of experts and 
is typically more informal [6]. As medical ML tasks include varying 
levels of expert knowledge held by different groups of experts, we 
extended the taxonomy by von Rueden et al. and further differentiated 
between common medical knowledge and specialized medical knowl
edge. Common medical knowledge refers to more general knowledge 
every doctor is likely to have (e.g., ICD-11 codes [18]). In contrast, 
specialized medical knowledge refers to knowledge from a medical 
specialty (e.g., difficulty of frames in detecting elbow fractures [19]). 

Regarding the structure of DK, we also followed the categorization of 
von Rueden et al. and distinguished between the groups of algebraic 
equations, differential equations, simulation results, spatial invariances, 
logic rules, knowledge graphs, probabilistic relations, and human 
feedback. For the integration of DK into the machine learning model, we 
differentiated between training data, hypothesis set, learning algorithm, 
and final hypothesis. For a more detailed description of these categories, 
refer to [6]. 

To ensure a common understanding of the concepts, the first 20 ar
ticles were coded independently by two researchers and discussed sub
sequently. The remaining articles were split between the researchers of 
this article who then coded their split of articles, with regular discus
sions among the researchers throughout the coding process to ensure 
consistency. 

To gain an understanding of the motivation for applying MedIML, we 
analyzed the motives stated by the authors in their manuscripts for 
including DK in the ML task. In addition, to discover the further po
tential of IML approaches, we coded the reported potential improve
ments. Afterward, two researchers grouped the identified motives and 
potential improvements individually. Cases of conflicting assignments 
were discussed and resolved among the researchers. The classification 
scheme with some exemplary manifestations is presented in Table 1. A 
full list of all identified papers and their manifestations can be found in 
the supplement. 

3. Results 

3.1. Characteristics of the included studies 

The identified 177 studies were published between 1993 and 2022. 
Prior to 2006, 4 studies were published as shown in Fig. 3. For the 
following ten years, the inclusion of DK into medical ML algorithms 
remained inconspicuous, which is why until 2015, only 29 studies 
within our sample were published. Our findings reveal that MedIML is a 
nascent but quickly growing stream of research, as evidenced by the fact 
that after 2015, the number of papers published per year approximately 
doubled every year starting from 10 studies in 2018 to 58 manuscripts in 
2021. In the first third of 2022 alone, we identified 12 studies combining 
DK and ML algorithms. 

Fig. 4a shows that within the identified 177 papers, we find the 
majority of the studies developing and presenting novel approaches (n 

97). Two manuscripts conduct mixed methods meaning a combination 
of quantitative or qualitative data analysis, conceptual works, or liter
ature reviews. One example conducts extensive interviews to gather 
expert data and conceptually develop a new algorithm [46]. The 
remaining manuscripts (n 78) conduct a quantitative evaluation of 
their developed approaches, for example by comparing the developed 
extensions to baselines. 

The most frequent outlets of the manuscripts are the pre-print plat
form arXiv (n 15) and medical imaging journals and conferences, like 
IEEE Transactions on Medical Imaging (n 8) or the International 
Symposium on Biomedical Imaging (n 7) as seen in Fig. 4b. Other 
outlets, including Artificial Intelligence in Medicine, the Conference on 
Artificial Intelligence in Medicine in Europe, and the IEEE Journal of 
Biomedical and Health Informatics, each published 4 studies. 

We see from Fig. 5a that a majority of publications address classifi
cation tasks (n 114). Regression tasks (n 24) and image segmen
tation tasks (n 21) each make up about a fourth of the selected 
publications. Other ML problems include reinforcement learning (n 
2), association rule mining (n 3), or synthetic data generation (n 3). 
Regarding different data modalities, we find that about half of the 
publications work with image data (n 85) as can be seen in Fig. 5b. 
Most of the remaining papers focus on tabular data (n 50) and time 
series data (n 39). Other data modalities include multimodal ap
proaches and one approach inferring on knowledge graphs [47]. 

With publications mostly working with image data and classification 
tasks, it is no surprise that convolutional neural networks (CNNs) are the 
most frequently used ML models (n 70) as seen in Fig. 5c. With the 
prevalence of manuscripts handling image data, our findings coincide 
with existing research indicating CNNs work best on image classification 
tasks [48,49]. Deep neural networks (DNNs, n 16) and recurrent 
neural networks (RNNs, n 11) contribute to the immense use of neural 
networks in general (n 102). Bayesian networks are used (n 17) as 
well as general adversarial networks (n 10) and simple statistical 
approaches (n 9). 

Table 1 
Coding scheme facets with explanations and exemplary manifestations.  

Facet Explanation Manifestations 

Type of study The type of research 
conducted in the study 

e.g., conceptual [20], 
quantitative [21], mixed 
methods [22] 

ML model The used ML algorithm e.g., CNN [23], decision tree 
[24], SVM [25] 

Data modality The structure of the training 
data used in the ML model 

e.g., imaging [26], tabular 
[27], time series [28] 

ML task The type of problem solved 
by the ML model 

e.g., classification [29], 
regression [30], image 
segmentation [31] 

Source of DK The origin of the included 
DK 

e.g., scientific knowledge 
[32], common medical 
knowledge [33] 

Structure of DK The representation of the 
included DK 

e.g., algebraic equations 
[34], human feedback [35], 
spatial invariances [36] 

Step of application The place where DK is 
included in the ML pipeline 

e.g., hypothesis set [37], 
learning algorithm [38], 
training data [39] 

Motives for 
including DK 

Reasons to include DK in a 
medical ML task stated by 
the authors 

e.g., limited data [40], 
medical uncertainty [41], 
unexploited knowledge 
[42] 

Potential 
improvements for 
including DK 

Further ways of improving 
the inclusion of DK in 
medical ML tasks discovered 
by the authors 

e.g., improve predictive 
performance [43], reduce 
manual effort [44], validate 
with practitioners [45]  Fig. 3. Identified medical informed machine learning publications per year.  



3.2. Inclusion of domain knowledge in medical machine learning 

In the selected publications, most papers include DK in ML models in 
one way. However, we identify three papers using multiple sources or 
structures of DK [11,50,51]. With the inclusion of multiple sources of 
DK, we analyze 181 combinations of DK and ML models out of 177 
manuscripts. When investigating the relation of source, structure, and 
application step of DK, we see interesting results in Fig. 6. 

Scientific knowledge (n 17) and world knowledge (n 13) play an 
inferior role and most publications rely on expert knowledge (n 151). 
As described above, we further divide expert knowledge into common 
medical knowledge (n 68), indicating available DK to all or most 
medical experts, and specialized medical knowledge (n 83), which 
requires application-specific knowledge. This heavy use of expert 
knowledge demonstrates the relevance of medical experts, which cannot 
be replaced by factual knowledge in the medical domain where many 
decisions need to be made on single case assessment. 

Overall, all eight structures of DK are used in the publications led by 
spatial invariances (n 41) and probabilistic relations (n 37). 

Simulation results are the least frequent (n 2). Knowledge graph 
representations of DK, like ICD-11 codes, rank third in the structure of 
DK across all identified publications (n 30). The manuscripts apply DK 
in all steps of the ML pipeline, most frequently in the hypothesis set (n 
73) and learning algorithm (n 50). Since both steps are directly related 
to the ML models themselves and not the related training data or final 
hypothesis, this indicates that adapting the design of ML models pro
vides the best possibilities to include DK. The limited scientific knowl
edge present in the identified manuscripts is mostly represented as 
algebraic (n 6) or differential equations (n 8). All differential 
equations come from scientific knowledge in the medical domain, like 
[52] who use Navier-Stokes equations to predict the drop in blood 
pressure. The remaining three manuscripts use scientific knowledge in 
the form of spatial invariances and probabilistic relations. 

Spatial invariances are also frequently used to represent world 
knowledge (n 5) along with knowledge graphs (n 3). In other 
manuscripts, world knowledge is represented as algebraic equations, 
probabilistic relations, or logic rules. As an example, Molina et al. 
transformed brainstem auditory evoked potentials into symbolic 
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patterns like “valleys” or “peaks” which can be transformed and un
derstood by anyone. This transformation is then used to discover pat
terns for new predictions [53]. 

Common medical knowledge is frequently represented in the form of 
knowledge graphs (n 21), such as ICD-11 codes, or probabilistic re
lations (n 19), like following the estimated distribution of ECG do
mains [54]. Other representations of common medical knowledge 
include spatial invariances (n 11), algebraic equations (n 8), and 
logic rules (n 7). Specialized medical knowledge is often represented 
by spatial invariances (n 23) or human feedback (n 19), for 

example, by assigning different symptoms to diagnoses [55]. 
Regarding the different structures of DK, algebraic equations are 

included along the entire ML model pipeline but most frequently in the 
learning algorithm (n 11). The most frequent representations of 
knowledge, namely spatial invariances, probabilistic relations, and 
knowledge graphs are used across different steps of the ML pipeline 
except for the final output indicating broad application possibilities for 
those representations. Human feedback is included in all steps of the ML 
pipeline making it a versatile structure of DK. 

In Fig. 7 we compare the structure of the included DK to the applied 

Fig. 6. Alluvial chart on the inclusion of domain knowledge.  

Fig. 7. Bubble chart showing the structure of domain knowledge per ML model.  



ML models. We see that the most frequent ML models (i.e., CNNs) use 
almost every structure of DK. Spatial invariances are the most frequent 
structure of DK included in CNNs (n 29), for example [56] who 
transform spatial constraints of dental images into a loss function of a 
CNN. 

Following in frequency are algebraic equations (n 12) and prob
abilistic relations (n 12). The only structures of DK we have not seen 
included in CNNs are differential equations and simulation results. This 
is interesting because differential equations themselves are used by deep 
and recurrent neural networks, for example, to estimate patient-specific 
blood flows [16]. 

Probabilistic relations are most frequently used in Bayesian net
works. The relations mimic the DK in the hypothesis set so that, for 
example, the connection of patient attributes can be used to predict the 
disease pathogenesis in obstructive sleep apnea [30]. Knowledge graphs 
are used to inform statistical models and neural networks, in particular 
graph neural networks. 

3.3. Motives for medical informed machine learning 

Next, we investigate the manifold motives for including DK in 
medical ML models. Since some papers provide multiple motives, the 
total number exceeds 177 as is shown in Fig. 8. Frequent motives are 
regarding the medical domain, either using previously unexploited 
knowledge (n 48) or overcoming the limited availability of experts (n 

23). Other motives focus on data issues like poor data quality (n 17), 
complex data sets (n 20), and limited data availability (n 47) or 
practical limitations due to insufficient predictive performance (n 43), 
difficult practical integration (n 9), and a lack of trust in ML models (n 

34). 
Fig. 9 shows the relations between the motives to use DK and the 

structure of the DK used in each approach. The most frequent structure 
of DK, namely spatial invariances, is included in 13 manuscripts to use 
previously unexploited knowledge. For example, Xie et al. emphasize 
the limited use of “specific properties of [the] medical domain” [58]. In 
their paper, they improve the semi-supervised detection of breast cancer 
by including properties of segmentation masks and focusing on a region 
of interest. In other cases, spatial invariances are used to mitigate limited 
data availability (n 12) or to overcome insufficient predictive per
formance (n 10), like an improved segmentation of deformation fields 
in the brain achieved by refining segmentation masks with specialized 
medical expert knowledge [36]. 

Improving predictive performance is also solved by including alge
braic equations (n 12) and probabilistic relations (n 7). Probabilistic 
relations like population-level trends [59] are in turn used to target all 
identified motives, especially to capture medical uncertainty (n 8) and 
to account for limited expert availability (n 6). 

Besides spatial invariances and probabilistic relations, knowledge 

graphs and human feedback are the two structures of DK that target all 
identified motives. Knowledge graphs are included in ML algorithms to 
use previously unexploited knowledge (n 10), to increase trust in the 
algorithms (n 10), and to mitigate limited data availability (n 9). 
This is shown for example when a Bayesian network follows a combi
nation of expert knowledge and data, providing easier interpretation of 
predictions compared to purely expert-driven networks [60]. 

Human feedback is distributed evenly across all eight motives and is 
included to overcome limited data availability in five cases such as 
combining many domain expert-based models and validating them on 
data to achieve an ensemble of domain expert models [61]. Human 
feedback is included in four manuscripts to overcome limited expert 
availability. For example, the inclusion of previous experiences with 
dose volumes into the loss function improves the efficiency and pre
dictive performance of models predicting radiation treatment [62]. 

3.4. Potential improvements in informing medical machine learning 

During the inclusion of DK, most manuscripts identified and stated 
further potential improvements of their MedIML approaches. These 
improvements frequently revolve around future investigation, which 
can be seen from Fig. 10. The improvements range wide from the in
clusion of additional knowledge (n 34) like special constraints in in
dividual cases [52] to the use of additional data (n 41) so that the next 
step is to “apply the method to different prediction tasks” [63]. 

59 publications state they want to extend their experiments to vali
date the approach, which makes it the most frequent perceived 
improvement. This extension of experiments includes for example a 
“more comprehensive evaluation” of the approach [64] or the adapta
tion of the approach from labeled to unlabeled data sets [65]. 

The remaining publications discover challenges in the validation of 
the algorithm with practitioners (n 10), improving the explainability 
of their approaches (n 9), the deployment in practice (n 13), and a 
reduction of the manual effort (n 8) for example by automating the 
detection of brain tumors [66]. The authors of 42 publications do not 
specify the challenges they would like to target in the future. 

Comparing the structure of DK to the potential improvements iden
tified in the manuscripts, the inclusion of algebraic (n 14) and dif
ferential equations (n 9) needs to be validated in further experiments 
in the medical domain. For example, including expert-driven ordinary 
differential equations to predict the progression of COVID-19 improves 
the predictive performance but needs further validation for the predic
tion in other diseases [67]. Overall, validating the developed approaches 
with further experiments is the most frequently observed challenge in 
MedIML. 

We see from Fig. 11 that using more data is the second most 
frequently stated potential improvement, discovered across most struc
tures of DK, especially in probabilistic relations (n 14) like Hong et al. 
who want to extend their knowledge-guided attention network with 
“other health data such as electronic health records” [68]. Using more 
data is also a potential improvement for DK represented as knowledge 
graphs (n 7) and algebraic equations (n 6). 

In manuscripts using probabilistic relations, potential improvements 
include additional knowledge (n 11) and extending their experiments 
(n 9). For example, the model developed by Kong et al. could benefit 
by including not only static decision guidelines but also by including 
dynamic risk assessments [69]. Potential improvements in predictive 
performance are frequently stated by manuscripts including spatial in
variances (n 11) like using the available data to “test the performance 
of the proposed framework” [56]. 

4. Discussion 

4.1. Research directions for medical informed machine learning 

Since research on IML and in particular on MedIML is still nascent, Fig. 8. Perceived motives to include domain knowledge in medical ML models.  



there remain many open questions and knowledge gaps. Toward that 
end, we identified five directions for future research that build on our 
outlined findings. For every research direction, we first present the 
current status identified in this study before we propose exemplary 
starting points for future analysis that are meant to be adapted for in
dividual research efforts. 

4.1.1. Direction 1: Examining experts’ decision-making processes 
In our data, we observed heavy use of expert knowledge in MedIML 

approaches (85 %). To provide a more fine-grained analysis of the use of 
expert knowledge in MedIML, we further differentiated between com
mon and specialized medical expert knowledge. Following this distinc
tion, approaches utilizing specialized medical expert knowledge account 
for 47 %, whereas common medical expert knowledge is used in 38 % of 
the approaches. With this heavy use of expert knowledge, we see that 
experts provide essential information to guide ML models. However, the 
more specialized the required knowledge gets, the fewer experts are 

available for cooperation. To reduce the effort for these specialized ex
perts, research should investigate their decision-making processes. With 
that research, the decision-process can be incorporated into ML models 
and therefore reduce the required time of experts in the long term. 
Research has already started to investigate the decisions made by ex
perts and identified an essential role of intuition therein [70]. While 
these approaches provide an initial step, a better understanding of ex
perts’ decision-making processes might guide ML models without 
spending immense effort on individual adaptations. 

4.1.2. Direction 2: Improving working environments of experts for 
knowledge extraction 

In our sample, human feedback was incorporated across all appli
cation steps. The most prominent application step was the hypothesis 
set, which accounts for 45 % of the papers utilizing human feedback, 
while 14 % used human feedback in the training data step. This indicates 
that experts provide essential information and enhance ML models at 
every stage. 

This versatile use of human feedback shows the relevance of human 
decisions for ML models. By leveraging expert-based and data-driven 
insights, patient health could be improved. Future projects should 
enhance the working environments of experts to account for this co- 
existence and the benefits for both approaches. This includes experts 
assisted by ML models in their decisions and experts enhancing ML 
models by explaining and incorporating their knowledge. The first steps 
in this direction include human-in-the-loop approaches, where experts 
iteratively label imaging data [71], and the development of persuasive 
annotation tools to enhance the annotation quality made by experts 
[72]. 

4.1.3. Direction 3: Developing guidelines for domain knowledge inclusion 
When we investigated the structure of the knowledge included in 

each ML approach, several frequently used combinations emerged. We 
found, for example, spatial invariances frequently included in CNNs, like 
[58] who included regions of interest in the learning process of the CNN 
for detecting breast cancer. We also frequently saw probabilistic 

Fig. 9. Bubble chart on the structure of domain knowledge per motive.  

Fig. 10. Potential improvements of including domain knowledge.  



relations represented in the structure of Bayesian networks (e.g., [73]). 
While such clusters indicate that those combinations are frequently used 
together, they do not provide insights that some ML model types are 
better suited for certain knowledge representations than others. We, 
therefore, suggest that future research develops guidelines on the in
clusion of DK into ML approaches. Such guidelines could take the 
available DK into account and then provide the next steps on what types 
of ML models could represent the DK best. 

Additionally, guidelines should include the motives for performing 
IML. In our review, we saw the motives to be manifold and ranging from 
issues in data availability and quality to the limited availability of ex
perts. All nine identified motives are almost evenly distributed in their 
frequency. As such, we could not detect any clusters regarding the 
motives of applying IML and the structure of the DK included, which 
might be due to the novelty of the field and the previous lack of inves
tigation on why to include certain structures of DK. Newly developed 
guidelines might identify pipelines that use the motives of performing 
IML to identify the best-suiting DK, which could then provide the best- 
suited inclusion in ML models. Overall, these guidelines must be easy 
to adapt for specific use cases and should only provide first steps in the 
development of MedIML solutions. 

Based on frequent combinations within our study, we developed a 
potential guideline shown in Fig. 12. In this draft, we envision a 
requirement on the motive for performing IML for the guideline. The 
guideline in turn should provide insights on what structures of DK work 
best to achieve this motive. Our example in Fig. 12 shows unexploited 
knowledge as a motive for performing MedIML which was frequently 
solved in our sample by using spatial invariances (cf. Fig. 9). The struc
ture of DK, in turn, motivates the best-suited ML model, in our case 
(convolutional) neural networks (cf. Fig. 7). This draft is purely based on 
our sample and the findings of this study and we encourage researchers 
and practitioners to develop guidelines by interviewing domain experts. 

4.1.4. Direction 4: Exploring combinations of multiple informed machine 
learning approaches 

The results of our literature review further highlight multiple papers 
with customized MedIML approaches. Our sample indicates that despite 
manifold motives (e.g., improvements in explainability or robustness), 
potential improvements mainly revolve around experimental enhance
ments like using additional data or applying different data sets. We 
found only a few papers aiming at further improvements in the 
explainability or robustness of their approaches (e.g., [50,74]). 

One potential mitigation strategy could be a cascade of IML ap
proaches, where multiple approaches are executed after another. This, 
however, could result in very complex pipelines which require increased 
computational power while providing only minor benefits in predictive 
or explanatory performance. Combining multiple IML approaches might 
overcome multiple issues as well and could gain the benefits of all 
combined approaches. However, an aggregation of IML approaches 
might be complex to design and highly situational in their application, 
which raises the question of how approaches could be combined best. 

Fig. 11. Mapping of potential improvements on knowledge representations.  
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Fig. 12. Exemplary guideline to include domain knowledge.  



One promising research direction could be to ensure the privacy- 
preserving exchange of IML approaches via a combination of feder
ated learning and IML, where each client trains a local IML approach. 
The local models are then aggregated to a joint model by a central 
server, thus leveraging the DK present at every client [14]. 

4.1.5. Direction 5: Increasing domain-specific understanding of informed 
machine learning 

Lastly, there are several differences in our domain-specific sample 
compared to the domain-agnostic taxonomy of von Rueden et al. [6]. 
Besides the immense use of expert knowledge explained in direction 1, 
our sample also showed heavy use of image data (48 %). While models 
trained on medical image data provide important and easy-to-acquire 
support in diagnoses, other data modalities like electrocardiogram 
(ECG) signals might be insightful as well. Some approaches conducted 
on imaging data might also be applicable to other data modalities like 
the approach of Sekuboyina et al. [75] whose multi-label approach 
should be extendable to time series or tabular data as well. 

We did, however, not only identify differences but also similarities 
compared to the same taxonomy. Within our sample, DK was included 
across the inclusion steps similarly to the domain-agnostic taxonomy 
[6]. In our sample, as well as in a domain-agnostic sample, human 
feedback plays a major role indicating the relevance of experts in every 
domain. Researchers and practitioners might benefit from investigating 
IML approaches in other domains to gain an understanding of common 
transformations or representations of domain knowledge. 

We, therefore, encourage other researchers to replicate this study for 
other domains to strengthen our findings and to identify other domain- 
specific characteristics. In other domain-specific reviews, more simi
larities and differences could be identified providing even more insights 
into the future directions of IML. 

4.2. Implications 

This study provides an overview of the status of the literature on IML 
in medicine. This overview can guide researchers in developing new 
approaches or adapting existing ones to their use case. The five identi
fied research directions could enhance new research proposals that ul
timately improve IML approaches not only in medicine but potentially in 
other domains as well. 

Our survey, especially the flow diagram presented in Fig. 6, can help 
practitioners to identify suitable approaches to incorporate medical DK 
into ML models. Depending on the available DK, suitable preprocessing 
steps can be identified and executed. Additionally, if MedIML should be 
performed for a specific reason, our mappings in Fig. 9 provide insights 
into frequently used structures of DK which can serve as starting points. 

4.3. Limitations 

Our study is subject to some limitations. First, our classification 
scheme is subjective to some degree. For example, the distinction be
tween the sources of DK (scientific knowledge, world knowledge, and 
expert knowledge) is not always trivial. We addressed this concern by 
letting two researchers code the first 20 papers independently and 
aligning the understanding of each coding dimension. Throughout the 
coding process, we conducted regular discussions between the re
searchers to resolve inconsistencies and ensured a common under
standing of the concepts between all researchers. 

The identified motives and potentials for improvement are limited to 
statements made by the authors in their respective papers. There may be 
additional motives for performing MedIML and additional potentials for 
improvement, which we could not identify. Future research could 
resolve the limitations by conducting interviews with MedIML re
searchers to reveal additional implicit and explicit motives for including 
DK in medical ML. 

5. Conclusion 

IML is increasingly used to combine the benefits of conventional ML 
models and human DK. In this scoping study, we investigated the current 
state of research on IML in medicine. Based on an existing taxonomy, we 
analyzed the required DK, the applied ML models, motives for per
forming IML, and potential improvements for all approaches. Compared 
to previous domain-agnostic studies, we identified various interesting 
differences in MedIML, most notably the predominant role of expert 
knowledge over more general types of DK and the prevalence of image 
data in the medical domain. Our review describes several auspicious 
directions to advance the state of MedIML by formalizing medical expert 
knowledge and identifying suitable approaches for different motives and 
types of DK. Research in other domains may benefit from complemen
tary reviews to uncover similar domain-specific differences, so multi- 
disciplinary approaches can be developed. 
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