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ON GROWTH AND INSTABILITY FOR SEMILINEAR

EVOLUTION EQUATIONS: AN ABSTRACT APPROACH

VLADIMIR MÜLLER, ROLAND SCHNAUBELT, AND YURI TOMILOV

Abstract. We propose a new approach to the study of (nonlinear)
growth and instability for semilinear abstract evolution equations with
compact nonlinearities. We show, in particular, that compact nonlinear
perturbations of linear evolution equations can be treated as linear ones
as far as the growth of their solutions is concerned. We obtain expo-
nential lower bounds of solutions for initial values from a dense set in
resolvent or spectral terms. The abstract results are applied, in particu-
lar, to the study of energy growth for semilinear backward damped wave
equations.

1. Introduction

The paper is devoted to the study of instability of solutions to semilinear
evolution equations

(1.1) x′(t) = Ax(t) +K(t, x(t)), t ≥ 0, x(0) = x0 ∈ X,

on a Banach space X, where A generates a C0-semigroup on X and K is a
nonlinear map onX subject to appropriate conditions ensuring the existence
of global mild solutions to (1.1). While the problem of finding instability
conditions for (1.1) in terms of A and K is of fundamental importance, very
few results in this direction were obtained so far even when K is stationary,
i.e., K(t, x) = K(x) for t ≥ 0.

One of the basic and commonly used instability criteria is due to Shatah
and Strauss, [64]. It says that the zero solution of the system governed
by (1.1) is unstable if the spectral bound of A is greater than zero and K
is small enough in a metric sense (that is, K(x) = O(‖x‖1+δ) with δ > 0
as ‖x‖ → 0) and continuous. The notion of smallness can be refined by
replacing a polynomial bound for K with a bound of more general type, but
the scheme of proof remains the same all the time. For bounded A such
criteria go back to [22]. This linearized instability principle appeared to be
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very useful in a great number of applications. Other versions of such results
are investigated in [33], [34], and [35].

Recently, the problem of keeping control over asymptotic behavior of tra-
jectories of linear infinite-dimensional systems under “small” nonlinear per-
turbations was revived in [29], [30], and [57]. There the opposite problem
of stabilization by the nonlinearity was emphasized. Note that these papers
treated the situation of discrete time, where a number of difficulties (e.g.
failure of the spectral mapping theorem) is missing.

In this paper, we address the situation when K is a compact nonlinear
map, i.e., K is small in a topological sense, but otherwise it can be large
metrically. This type of perturbations allows for global instability results,
instead of just local ones. Recall that the map K : X → X is called
compact if it is continuous (this assumption varies) and maps bounded sets
to precompact sets. Assuming that K is a compact C1-map, the paper
[71] considered the case that either the (Browder) essential spectrum of A
intersects the open right half-plane C+ or that there are infinitely many
eigenvalues of A in ε+C+ for some ε > 0. Then for a residual set of initial
values x0 the mild solutions {x(t, x0) : 0 ≤ t < T} of (1.1) are unbounded
on their maximal existence interval [0, T ), where 0 < T ≤ ∞. The proof
relied on a discrete version of this result: If A is a bounded linear operator
on X with the essential spectral radius re(A) > 1 and T = A+K, then the
trajectory

⋃
n∈N T

n(B) of the unit ball B ⊂ X is unbounded in X.
We substantially improve these results and, for the continuous time ver-

sion (1.1), replace the spectral terms used in [71] by much weaker assump-
tions on resolvent bounds. While the results in [71] yield merely unbounded-
ness (and then instability), we derive an optimal exponential lower bound.
To the best of our knowledge, such results were absent in the literature. In
fact, our approach goes much further and allows one to treat K depending
on time. Moreover, the obtained results cannot be improved even for sta-
tionary linear compact perturbations, see Remark 7.12. To this aim we use
techniques for the study of orbits of linear operators from [49] that, with
certain modifications, work in the context of nonlinear maps as well. This
approach is used for the treatment of nonlinear equations for the first time,
and we hope it will be useful in a number of instances.

The following statement is an important partial case of our main results.
See Theorem 7.6 combined with Theorem 2.2. (A linear version of this result
is given in Corollary 7.10.)

Theorem 1.1. Let A generate a C0-semigroup (T (t))t≥0 on a Banach space
X, with α := lim supt→0 ‖T (t)‖, and let K : [0,∞) × X → X be jointly
continuous and map bounded sets in precompact ones. Let B ⊂ X be a
bounded set. Assume that for every x0 ∈ B there exist a global mild solution
x(t, x0), t ∈ [0,∞), of (1.1) such that the set S(t0, B) = {x(t, x0) : 0 ≤ t ≤
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t0, x0 ∈ B} is bounded for each t0 > 0. Let a : [0,∞) → [0,∞) be non-
increasing with limt→∞ a(t) = 0, and let r > 0, y ∈ B and t0 = t0(r) ≥ 0 be
such that a(t0) <

r
2α and B(y, r) ⊂ B.

(i) Assume that the resolvent (ω + ib − A)−1 is well-defined and un-
bounded for b ∈ R and some ω ∈ R. Then there exist x0 ∈ B(y, r)
and a mild solution x(t, x0) of (1.1) such that

‖x(t, x0)‖ ≥ a(t)eωt, t ≥ t0.

(ii) In any case, there exist x0 ∈ B(y, r) and a mild solution x(t, x0) of
(1.1) such that

‖x(t, x0)‖ ≥ a(t)ese(A)t, t ≥ t0,

where se(A) is the supremum of the real parts of λ from the essential spec-
trum of A.

In the above theorem one can replace the assumption on existence of
global mild solutions x(t, x0) with bounded sets S(t0, B) by the (linear)
growth assumption ‖K(t, x)‖ ≤ (1 + c(t))‖x‖ for some c ∈ L1

loc([0,∞)) and
all t ≥ 0 and x ∈ X. See Proposition 6.3 and Corollary 6.6. In the case of
backward damped wave equations considered in Section 8, the condition of
linear growth of K will be generalised by requiring that K satisfies a sign
condition and possesses some extra regularity.

To the best of our knowledge, the result is genuinely new in three respects:

(a) it is the first lower bound for global growth of solutions to a general
class of nonlinear evolution equations in the literature (and in fact,
it is new even in the setting of linear equations);

(b) the result is formulated in explicit (a priori) spectral terms;
(c) the results is sharp, even in a linear context (see Remark 7.12).

To provide a necessary insight and because of independent interest, we
first develop a similar theory for the discrete counterpart of (1.1)

(1.2) xn+1 = Axn +Kn(xn), x0 = x ∈ X, n ≥ 0,

where now A is a bounded linear operator on a Banach space X, and Kn

are compact maps on X. In particular, we obtain an analogue of Theorem
1.1 for (1.2) only assuming compactness of each map Kn, where the lower
bounds depend on the essential spectral radius of the operator coefficient.

Theorem 1.2. Let A be a bounded linear operator on a Banach space X,
(Kn)

∞
n=1 be a sequence of compact maps on X, and (xn(x0))

∞
n=1 be given by

(1.2). Take a non-increasing sequence (an)
∞
n=1 ⊂ R+ satisfying limn→∞ an =

0. Fix y ∈ X, r > 0, and n0 ∈ N with an0
< r

2 . Then there exists x0 ∈
B(y, r) such that

‖xn(x0)‖ ≥ anre(A)
n, n ≥ n0,

where re(A) is the essential spectral radius of A.
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This result is proved in Theorem 4.6. If re(A) > 1, then the orbits
xn(x0) grow exponentially for a dense set of initial values x0. Thus, if the
nonlinear part K is small in a topological sense rather than in the sense of
norm, Theorem 1.2 provides a global generalization of the classical (discrete)
principle of linearized instability, as discussed e.g. in [38, Theorem 5.1.5] or
[29, Sections 1.2 and 4]. Note that the proofs of a number of statements
on instability for continuous time are reduced to similar considerations in
the discrete setting (as e.g. in [38]). Also our discrete results are essentially
optimal, cf. [48, Sections V.37 and V.39] for the case K = 0.

Using measures of non-compactness, we further obtain similar results pro-
ducing residual sets of solutions to (1.1) and (1.2) with exponentially growing
orbits. See Theorems 7.4 and 4.4, respectively.

To explain the general effects, we note that as remarked already in [71],
roughly speaking, the linear semigroup (T (t))t≥0 is expanding along infin-
itely many independent directions and the non-linear perturbation K (being
relatively compact) is not able to compensate this expansion, except per-
haps in a finite number of directions. Our results say that up to a small
multiplicative correction the expansion takes place as if the nonlinear part
in (1.1) is absent.

The next toy example illustrates the specifics of the infinite-dimensional
setting very well. Let X be a separable Hilbert space. In the Banach space
B(X) of bounded linear operators on X, consider the difference equation

Yn+1 = AYn +KY 2
n , Y0 ∈ B(X), n ∈ N.

IfX is finite-dimensional, then even if dimX = 1 the asymptotic behavior of
{Yn} could be extremely complicated (see e.g. [13]), and any bounds for ‖Yn‖
can hardly put under control for individual Y0. However, if dimX = ∞, and
K ∈ B(X) is compact, then the quadratic part Y 7→ KY 2, being compact
in B(X), becomes “small” with respect to the linear part Y 7→ AY . Hence,
by our Theorem 4.6 below, the (exponential) growth of trajectories {Yn} for
a residual set of initial values is determined by the essential spectral radius
of the linear part LA : Y 7→ AY (i.e., by the essential spectral radius of A if
one notes that σe(LA) = σ(A) by e.g. [27, Theorem 3.1]).

Aiming at generalizations of local instability results as in e.g. [22], [38],
[64] and [29], it is natural to consider also nonlinear perturbations K + G
with a compact operator K and a metrically small map G : B(0, r) → X
satisfying G(x) = O(‖x‖1+δ) as ‖x‖ → 0. However, at least in the time
discrete case given by (1.2) we show in Section 5 that a local instability
result analogous to Theorem 1.2 cannot hold for such perturbations K +G.

As an illustration of our abstract results, we apply them to certain “ex-
cited” and backward damped wave equations in Examples 8.4, 8.5, 8.6, and
8.7. Here we allow for nonlinear forcing terms f(t, x, u) in which the scalar
function f may grow superlinearly (if it has the right sign) and is only contin-
uous in the last argument. In general, the study of damped wave equations
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is an extremely vast and challenging area of research with many open prob-
lems stemming from mathematical physics and control theory. One may
consult, e.g., the books [45, Chapter 6] and [46, Chapters 10, 11] the survey
[19], and the papers [1], [5], [15], [20], [25], [40], [41], [42], [54], [56], [60], [61],
[65] for some of its developments in the linear setting, relevant for the non-
linear studies in the present paper. However, we are not aware of any results
similar to Theorem 1.1 in the context of nonlinear damped wave equations.

We believe there are many other frameworks, where our instability criteria
could be useful, e.g., in the context of reaction-diffusion systems as in [71].
However, they would require a separate treatment.

In Sections 2, 3, and 9 we provide tools for our analysis and discuss the
background. The main results are proved in Section 4 and 7 for discrete
and continuous time, respectively. Section 5 contains counterexamples to
local results in discrete time. The necessary information on nonlinear evo-
lution equations is collected in Section 6 and then used in Section 8 for our
examples.

Finally, we fix some notation used throughout the paper. All of the Ba-
nach (and Hilbert) spaces considered in this paper will be complex. To avoid
trivialities, we will always assume that these spaces are infinite-dimensional.
For a densely defined closed operator A on a Banach space we denote by
ρ(A) its resolvent set, by σ(A) its spectrum, and by σp(A) its point spec-
trum. We let D(A) stand for the domain of A, Ker (A) for the kernel of A,
Im(A) for its range, and R(λ,A) = (λ − A)−1 for the resolvent of A. The
space of bounded linear operators on a Banach space X will be denoted by
B(X) and that of compact linear operators by K(X). For a subspace M of
a Banach space, dimM is the dimension of M, and codimM its codimen-
sion. For a subset S of a topological space, ∂S designates its boundary, and
cardS the cardinality of an arbitrary set S.

2. Preliminaries: a toolkit for getting (nonlinear) instability

In this section, we review several tools and techniques used for deriv-
ing instability. Some of them appear in the context of nonlinear evolution
equations for the first time.

2.1. Fine spectral theory. We start with a short reminder of fine spectral
theory. Recall that for a closed, densely defined linear operator A on a
Banach space X its essential spectrum σe(A) is defined as

σe(A) = {λ ∈ C : λ−A is not Fredholm}.

Clearly, σe(A) ⊂ σ(A).Moreover, by [59, Theorem 7.25], σe(A) is closed (but
can be empty). There are many other “essential spectra” in the literature,
e.g. Browder’s essential spectrum used in [71]. A crucial property of σe(A)
is that it is invariant is invariant under relatively compact perturbations if
ρ(A) 6= ∅, see e.g. [23, Theorem 11.2.6]. Moreover, by [23, Theorem 11.2.2],
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if there exists µ ∈ ρ(A), then

(2.1) σe(R(µ,A)) \ {0} = {(µ − λ)−1 : λ ∈ σe(A)}.

The property is a consequence of a more general spectral mapping theorem
for essential spectrum ([31]), and it allows one to reduce many statements
on essential spectrum for unbounded operators to their counterparts for
bounded ones.

If A is bounded, then σe(A) is a non-empty compact subset of C. In
this case, if re(A) denotes the essential spectral radius of A, then one has
re(A

n) = re(A)
n for all n ∈ N, as a consequence of the spectral mapping

theorem for the essential spectrum. Note that σ(A) \ {λ : |λ| ≤ re(A)} con-
sists of at most countably many isolated eigenvalues (of finite multiplicity),
see e.g. [48, Theorem III.19.4].

Some generalizations of Fredholm operators will also play a role. Recall
that a closed, densely defined operator A on X is called upper-Fredholm if
dimKer (A) <∞ and Im (A) is closed. If σe(A) is large and ρ(A) 6= ∅, then
the set of λ ∈ C such that λ−A is not upper Fredholm is large as well, since
it contains the topological boundary ∂σe(A). More precisely, if λ ∈ ∂σe(A),
then for every ε > 0 and every closed subspaceM ⊂ X of finite codimension
there exists a unit vector u ∈ M ∩ D(A) such that ‖(A − λ)u‖ < ε. See
Lemma 9.2.

The following useful proposition can be found in e.g. [59, Theorem 9.43].
As several arguments below hold “up to compact perturbations”, the propo-
sition allows one to deal with point spectrum rather than generic essential
spectrum, and that is technically more convenient.

Proposition 2.1. Let A ∈ B(X). The operator A has closed range
and finite-dimensional kernel (i.e., A is upper Fredholm) if and only if
dimKer (A+K) <∞ for all compact operators K on X.

While there is a version of Proposition 2.1 for unbounded A, the version
above will be sufficient for our purposes.

2.2. Measures of non-compactness. As far the essential spectrum is in-
volved, measures of non-compactness naturally come into play, although
their role in our studies will rather be supplementary in contrast to [71].
For A ∈ B(X) let

‖A‖µ = inf
{
‖A ↾M ‖ :M ⊂ X is a closed subspace, codimM <∞

}
.

The mapping A 7→ ‖A‖µ is called µ-measure of non-compactness on B(X).
It defines a semi-norm on B(X), where ‖A‖µ = 0 if and only if A is compact.
Moreover, we have ‖AB‖µ ≤ ‖A‖µ · ‖B‖µ for all A,B ∈ B(X).

For A ∈ B(X), we introduce the essential norm of A by

‖A‖e := inf{‖A−K‖ : K ∈ K(X)};
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i.e., ‖A‖e is the norm of the image of A in the Calkin algebra B(X)/K(X)
under the corresponding quotient map. If X is a Hilbert space, then accord-
ing to [78] (see also [75]) we have

‖A‖µ = ‖A‖e.

In general, ‖A‖µ and ‖A‖e are equivalent norms on B(X)/K(X) if and
only if X has a so-called compact approximation property, see [6]. While
substantial classes of Banach spaces possess this property, there are reflexive
Banach spaces failing to satisfy it. However, by the well-known Nussbaum
formula

re(A) = lim
n→∞

‖An‖1/nµ = lim
n→∞

‖An‖1/ne ,

valid for all definitions of the essential spectrum, the quantities ‖ · ‖µ and
‖·‖e are asymptotically equivalent in a sense. Moreover, the limits above can
be replaced with the infimums. Hence, ‖A‖nµ ≥ re(A)

n and ‖A‖ne ≥ re(A)
n

for all n ∈ N.

2.3. Spectral theory for operator semigroups and resolvent bounds.

The spectral theory for C0-semigroups is rather involved due to the unbound-
edness of their generators, and one has to invoke the size of resolvents to
partially remedy the situation.

First recall that if (T (t))t≥0 a C0-semigroup on a Banach space X, with
generator A, then

(2.2) etσe(A) ⊂ σe(T (t)) for all t ≥ 0,

see e.g. [50] for even finer versions of the above inclusion. This inclusion
is strict in general. One can replace in (2.2) the essential spectrum by the
spectrum, where again the inclusion can be strict.

The failure of the spectral mapping theorems for semigroups leads to a
number of major difficulties in the semigroup theory. To discuss some of
them define the exponential growth bound of (T (t))t≥0 by

ω0(T ) := lim
t→∞

ln ‖T (t)‖

t
,

the spectral bound of its generator A by

s(A) := sup{Reλ : λ ∈ σ(A)},

and the pseudo-spectral bound of A (or abscissa of uniform boundedness of
the resolvent of A) by

s0(A) := inf{ω > s(A) : R(λ,A) is uniformly bounded for Reλ ≥ ω}.

The first two bounds possess “essential analogues” given by

ωe(T ) := lim
t→∞

ln ‖T (t)‖e
t

and se(A) := sup{Reλ : λ ∈ σe(A)}.

Note that the first limit exists, and re(T (t)) = eωe(T )t for t ≥ 0, see e.g. [74].
It is also crucial to observe that from [26, Corollary IV.2.11] it follows that
ω0(T ) = max{s(A), ωe(T )}, and moreover {λ ∈ σ(A) : Reλ > se(A)} is
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an at most countable set consisting of isolated eigenvalues of A (with finite
multiplicity). Clearly,

se(A) ≤ s(A) ≤ s0(A) ≤ ω0(T ) and se(A) ≤ ωe(T ) ≤ ω(T ).

There are various examples of C0-semigroups making all or some of the above
inequalities strict, see e.g. [4, Chapter 5.1]. So that, in general, neither the
spectrum nor the resolvent of A determine the exponential norm bounds for
(T (t))t≥0. Semigroups with s(A) < ω0(T ) also arise from concrete partial
differential equations, such as damped wave equations, cf. Section 8.

On the other hand, if X is a Hilbert space, then the well-known Gearhart-
Herbst-Prüss theorem guarantees that

(2.3) ω0(T ) = s0(A),

and the exponential decay of (T (t))t≥0 is equivalent to s0(A) < 0. For an ex-
haustive discussion of relations between these two and other related bounds
see e.g. [4, Chapters 5.1-5.3] or [53, Chapters 1-4].

To be able to obtain sharp lower bounds for the trajectories of (1.1) we
need to introduce the new resolvent bound sR(A) as the infimum of the set
SR of a > se(A) satisfying

card (σp(A) ∩ (a+ iR)) <∞ and lim sup
|b|→∞

‖R(a+ ib, A)‖ <∞.(2.4)

This bound will play a crucial role in the sequel. Note that every vertical line
a+ iR with a > se(A) contains at most countablly many eigenvalues. Using
the discreteness of the set {λ ∈ σ(A) : Reλ > se(A)} and the Neumann
series expansion for the resolvent, one shows that the set SR is open. Thus
the infimum is not attained, and we have

sR(A) = se(A) or card (σp(A) ∩ (sR(A) + iR)) = ∞

or card (σp(A) ∩ (sR(A) + iR)) <∞ and lim sup
|b|→∞

‖R(sR(A) + ib, A)‖ = ∞.

Moreover, as the set {λ ∈ σ(A) : Reλ > se(A)} is discrete, one may also
define sR(A) as the infimum of the set of a > se(A) such that

∃ β = β(a) > 0 : a+ i(R \ (−β, β)) ⊂ ρ(A) and sup
|b|≥β

‖R(a+ iβ,A)‖ <∞.

To explain the relevance of sR(A) and to relate it to the spectral properties
of (T (t))t≥0, we introduce the notion of admissibility. We say that ω ∈ R

is admissible if for every t0 > 0, every ε > 0 and every subspace M ⊂ X of
the form M =

⋂
1≤j≤nKer y∗j with y∗j ∈ D(A∗) for j ∈ {1, . . . n}, there exist

x ∈M with ‖x‖ = 1 and µ ∈ C with Reµ = ω such that

(2.5) ‖T (t)x− eµtx‖ < ε, 0 ≤ t ≤ t0.

Note that codimM <∞. Observe also that x and µ depend on t0, ǫ and M,
and so x is not an approximate eigenvalue of T (t), 0 ≤ t ≤ t0, in general.
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However, the notion of admissibility will help us to“emulate” the approxi-
mate eigenvalues of T (t) to an extent that sufficices for the construction of
growing solutions to nonlinear evolution equations.

Using Lemma 9.2 it is easy to show that se(A) is admissible. In this
case, there exists µ with Reµ = se(A) such that for any ǫ, t0 > 0 and any
closed subspace of finite codimension M , one can find a unit vector x ∈ M
satisfying (2.5). However, Theorem 2.2 provides a more general statement
showing that in fact sR(A) is admissible. Thus the next result is one of the
basic tools in this paper.

Theorem 2.2. Let (T (t))t≥0 be a C0-semigroup on a Banach space X with
generator A, and let sR(A) be defined by (2.4). Then sR(A) is admissible.

The proof of the theorem is given in the appendix. It is similar to the
proof [49, Proposition 4.4], though it is technically more demanding.

3. Warm-up: initial observations and comments

3.1. Spectrum does not suffice. It is well-known that the spectral radius
is not continuous on B(X). This leads to the fact that, in general, the
instability of (1.1) is not preserved under small Lipschitz perturbations.

For a fixed a > 0 let X = L2(0, 2a) and consider the selfadjoint operator
(Af)(s) = sf(s) on X. Clearly, σ(A− a) = [−a, a] and thus there are initial
values x0 ∈ X for which the solutions of

(3.1) x′(t) = (A− a)x(t), t ≥ 0, x(0) = x0,

grow exponentially in the sense that ‖e(A−a)tx0‖ ≥ Cx0
eat/2 for t ≥ 0 with

a constant Cx0
> 0.

By a classical result due to Herrero [39] (see [37] for a simple proof), if
the spectrum of a bounded normal operator on X is connected and contains
zero, then the operator is a limit of a sequence (or net) of bounded nilpotent
operators onX in the uniform operator topology. Hence there exists a family
of nilpotent operators (Aε)ε>0 on X such that Aε → A in L(X) as ε → 0.
Consider the perturbed sysem

(3.2) x′(t) = (A− a)x(t) + (Aε −A)x(t) = (Aε − a)x(t), t ≥ 0.

Note that for any δ > 0 there exists ε0 > 0 such that

σ(Aε − a) = {−a} and ‖Aε −A‖ < δ, ε ∈ (0, ε0).

So, all solutions of (3.2) tend exponentially to 0 though (3.2) only differs by
an arbitrarily small Lipschitz perturbation from the problem (3.1) possessing
exponentially growing orbits. This general phenomena was observed in [67]
and rediscovered recently in [57]. However, [57] went much further, see
Subsection 3.3 below. We add that in [68] a Lipschitz perturbation K is
constructed which destroys instability of a linear system x′(t) = Ax(t) and
satisfies the strictly sublinear growth assumption ‖K(x)‖/‖x‖ → 0 as ‖x‖ →
0. Our examples in Section 5 differ from these treatments.
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3.2. Unstable orbits may co-exist with very stable ones. On the
Hilbert space X = L2((0,∞), e−2tdt) let the operator Af = f ′ be defined
on its maximal domain in X. Then A generates the C0-semigroup (T (t))t≥0

of left shifts on X, and σ(A) = {λ ∈ C : Reλ ≤ 2}. While (T (t))t≥0

is hypercyclic, i.e., its trajectories are dense in X for a dense set of initial
values (see e.g. [24]), the trajectories vanish eventually for every initial value
with compact support. Thus, we have a dense set of initial values x0 for the
abstract Cauchy problem

x′(t) = Ax(t), x0 = x0,

yielding “superstable” mild solutions and, at the same time, a dense set of
initial values x0 whose trajectories have a totally unstable behavior. For
more information on hypercyclic semigroups, we refer to e.g. [24].

3.3. Sublinear perturbations. Rodriguez and Solá-Morales proved in [57]
that in an infinite-dimensional separable real Hilbert space X there exists a
C1 map T : X 7→ X of the form T = A +K, where A is a bounded linear
operator on X with the spectral radius larger than one and the nonlinearity
K satisfies ‖K(x)‖/‖x‖ → 0 as x→ 0 and K(0) = 0. Nevertheless the fixed
point x = 0 of T is (exponentially) stable. Moreover, given c2 > c1 > 0
there exists T as above such that(

1

− log ‖x‖

)c2

<
‖Kx‖

‖x‖
< 4

(
1

− log(‖x‖)

)c1

for x with ‖x‖ small enough.

3.4. Rank-one perturbations. The instability properties for (1.2) be-
come rather arbitrary if the essential spectrum of A is merely contained
in the closed unit disc. A good illustration for that phenomena is provided
by the fact that there exist a unitary operator A on a Hilbert space X and
rank-one operator K on X such that the operator A + K is hypercyclic,
see e.g. [32], [9]. Clearly, re(A +K) = re(A) = 1. On the other hand, it is
well-known that there exist a unitary operator A1 and a rank-one operator
K1 such that A1+K1 is strongly stable, that is, (A1+K1)

nx→ 0 as n→ ∞
for every x ∈ X. Indeed, if S is a unilateral shift on the Hardy space H2(D),
where D is the open unit disc, then [17] shows that certain unitary operators
on H2(D) arise as rank-one perturbations of compressions of S to the closed
invariant subspaces of S∗. Moreover, clearly S∗n → 0 as n → ∞, strongly.
A more general set-up for such a construction can be found in [51].

Apparently, a similar example can be constructed in a continuous frame-
work. Recall that for any selfadjoint operator A on a Hilbert space X
the semigroup (eiAt)t≥0 is unitary. It is plausible that there exist bounded
selfadjoint operators A and A1 on X and rank-one perturbation K and
K1 such that semigroup (ei(A+K)t)t≥0 is hypercyclic, while the semigroup

(ei(A1+K1)t)t≥0 is strongly stable. Although, no results have been published
in this context.
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4. Growth and instability for discrete time

In this section, we assume that X is a Banach space, A ∈ B(X), and
we let (Kn)

∞
n=1 be a sequence of compact maps Kn : X → X (in general,

non-linear). For x ∈ X and n ∈ N let

(4.1) fn(x) = (A+Kn) · · · (A+K1)x,

and set f0(x) = x. In other words, (fn(x))
∞
n=0 is a solution of the difference

equation

(4.2) xn+1 = (A+Kn)xn, x0 = x.

The next simple lemma replaces the difference equation (4.2) by a “dif-
ference inclusion”. In this way, arguing up to compact sets, we will able to
reduce the study of asymptotic properties of (fn)

∞
n=1 to the study of such

properties for linear iterations (An)∞n=1.

Lemma 4.1. Let (fn)
∞
n=1 be given by (4.1), n ∈ N be fixed, and X0 ⊂ X be

a bounded set. Then there exists a compact set C ⊂ X such that

fj(x) ∈ Ajx+ C

for all x ∈ X0 and j ∈ {1, . . . , n}.

Proof. It is easy to see by induction on j that

fj(x) = Ajx+

j−1∑

s=0

Aj−s−1Ks+1fs(x)

for each x ∈ X and each j ∈ {1, . . . , n}. Using induction again, we infer that
for every s ∈ {1, . . . , n} the set fs(X0) is bounded, and thus Ks+1fs(X0) is
precompact. Therefore, the set

n⋃

j=1

j−1∑

s=0

Aj−s−1Ks+1fs(X0)

is precompact, and we let C be its closure. Then fj(x) ∈ Ajx + C for all
x ∈ X0 and j ∈ {1, . . . , n}. �

Now we are able to give a lower bound for a finite piece of the trajectory in
terms of the deviation of its linear part from a finite-dimensional subspace.
The next simple lemma provides an intuition behind the crucial Lemma 4.3.

Lemma 4.2. Let (fn)
∞
n=1 be given by (4.1). Let n ∈ N be fixed and let

X0 ⊂ X be a bounded set. Then for every ε > 0 there exists a finite-
dimensional subspace F ⊂ X such that

‖fn(x)‖ ≥ dist {Anx, F} − ε

for all x ∈ X0.
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Proof. Let C be the compact set constructed in Lemma 4.1. Since C
is compact, there exists a finite-dimensional subspace F ⊂ X such that
dist {c, F} < ε for every c ∈ C. For each x ∈ X0 we have fn(x) ∈ Anx+ C
implying

‖fn(x)‖ ≥ dist {Anx,C} ≥ dist {Anx, F} − ε. �

Having obtained the estimate for a finite piece of trajectory, we can spread
it out to a finite-dimensional subspace of X, as the next lemma shows.

Lemma 4.3. Let A ∈ B(X), n ∈ N, ε > 0, and let F ⊂ X be a finite-
dimensional subspace. Then the following assertions hold.

(i) There exists a unit vector u ∈ X such that dist {Anu, F} ≥
1−ε
2 ‖An‖µ.

(ii) There exists a unit vector u ∈ X such that dist {Aju, F} ≥ 1−ε
2 re(A)

j

for all j = 1, . . . , n.

Proof. To prove (i), note that by Lemma 9.1 in the appendix there exists a
closed subspace M ⊂ X of a finite codimension such that

‖f +m‖ ≥ (1− ε/2)max{‖f‖, ‖m‖/2}

for all f ∈ F andm ∈M . Since L := A−n(M) is a closed subspace of a finite
codimension, there exists a unit vector u ∈ L with ‖Anu‖ ≥ (1−ε/2)‖An‖µ.
Then

dist {Anu, F} = inf{‖Anu+ f‖ : f ∈ F} ≥
1− ε/2

2
‖Anu‖ ≥

1− ε

2
‖An‖µ,

which gives (i).
Let µ ∈ σe(A) with |µ| = re(A). Then µ ∈ ∂σe(A), and by Lemma 9.2

there exists a unit vector u ∈ L with ‖(A− µ)u‖ < δ. For each j = 1, . . . , n
we have

‖(Aj − µj)u‖ =
∥∥∥
j−1∑

k=0

Aj−k−1µk(A− µ)u
∥∥∥ ≤ j‖A‖jδ.

We now chooseM as in the proof of (i) and set L =
⋂n

j=1A
−jM . Then there

is a unit vector u ∈ L such that ‖(A− µ)u‖ is so small that ‖(Aj −µj)u‖ ≤
re(A

j)ε/2 for all j = 1, . . . , n. Thus ‖Aju‖ ≥ (1− ε/2)re(A
j), and as above

we deduce that dist {Aju, F} ≥ 1−ε
2 re(A

j) for all j = 1, . . . , n. �

The above lemmas allow us to obtain exponential lower bounds for the
norms of trajectories ‖fn(x)‖ for residual set of initial values x along some
subsequences {nk}. Apart from a usual Baire’s category theorem, the geo-
metrical Lemma 4.3 is indispensable here.

Theorem 4.4. Let A ∈ B(X) and Kn : X → X be compact for n ∈ N.
Take a sequence (an)

∞
n=1 in R+ such that limn→∞ an = 0, and let L ⊂ N be

infinite. For x ∈ X define fn(x) by (4.1). Then the set
{
x ∈ X : there are infinitely many n ∈ L with ‖fn(x)‖ ≥ an‖A

n‖µ
}
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is residual in X.

Proof. The statement is clear if ‖An‖µ = 0 for an infinite number of n ∈ L.
Thus, without loss of generality, we may assume that ‖An‖µ > 0 for all
n ∈ L. For k ∈ N let

Mk = {x ∈ X : there exists n ∈ L with n ≥ k and ‖fn(x)‖ > an‖A
n‖µ}.

Clearly Mk is an open set. We show that it is dense in X. Let y ∈ X and
fix ε > 0. Choose n ∈ L with n ≥ k and an < ε/4. By Lemma 4.1, there
exists a compact set C ⊂ X such that

fn(y + v) ∈ An(y + v) + C

for all v ∈ X with ‖v‖ ≤ ε. Since C is compact, there exists a finite-

dimensional subspace F ⊂ X such that dist {c, F} < ε‖An‖µ
12 for all c ∈ C.

Lemma 4.3 (i) then yields a unit vector u ∈ X with dist {Anu, F} > ‖An‖µ
3 .

Note that

dist {An(y + εu), F} + dist {An(y − εu), F} ≥ 2εdist {Anu, F} ≥
2ε

3
‖An‖µ.

Indeed, passing to the quotient space X/F , the former inequality follows
from

‖π(Any) + επ(Anu)‖X/F + ‖π(Any)− επ(Anu)‖X/F ≥
2ε

3
‖π(Anu)‖X/F

via the triangle inequality, where π denotes the corresponding quotient map-
ping. So x := y + εu or x := y − εu satisfy

‖x− y‖ ≤ ε and dist {Anx, F} ≥
ε

3
‖An‖µ.

We conclude

‖fn(x)‖ ≥ dist {Anx, F} −
ε‖An‖µ

12
≥
ε‖An‖µ

4
≥ an‖A

n‖µ.

Hence x ∈Mk, andMk is dense since the choice of y and ε was arbitrary. By
the Baire category theorem,

⋂∞
k=1Mk is a denseGδ set and thus residual. �

Corollary 4.5. Let A ∈ B(X) satisfy sup{‖An‖µ : n ∈ N} = ∞. If (fn)
∞
n=1

is as in Theorem 4.4, then the set
{
x ∈ X : supn∈N ‖fn(x)‖ = ∞

}

is residual. In particular, this is true if re(A) > 1.

If we concentrate on merely dense sets of initial values rather than residual
ones, then we can construct orbits (fn(x))

∞
n=1 with exponential growing

norm lower bounds for all large n.

Theorem 4.6. Let A ∈ B(X), (Kn)
∞
n=1 be a sequence of compact maps on

X, and (fn)
∞
n=1 be given by (4.1). Take a non-increasing sequence (an)

∞
n=1 ⊂

R+ satisfying limn→∞ an = 0. Fix y ∈ X, r > 0, and n0 ∈ N with an0
< r

2 .

Then there exists x ∈ B(y, r) such that

‖fn(x)‖ ≥ anre(A)
n, n ≥ n0.
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Proof. Denote re := re(A) for shorthand. The statement is clear if re = 0.
Let re > 0. We start with several convenient reductions. Without loss of
generality we may assume that re = 1. If not, then consider the operator
r−1
e A and the compact mappings r−n

e Kn(r
n−1
e ·) for n ≥ 1. Replacing A

with λA for some |λ| = 1 and Kn with λnKn(λ
−n+1·) if necessary, we may

assume that 1 ∈ σe(A). The operator A − I is not upper Fredholm since
1 ∈ ∂σe(A), see Lemma 9.2.

Proposition 2.1 thus gives a compact linear operator K̃ on X with

dimKer (A− I− K̃) = ∞. Thus, passing to A− K̃ and Kn+ K̃ if necessary,
we may assume that dimKer (A− I) = ∞.

Take some c1 ∈ (2an0
, r). Fix integers n0 < n1 < n2 < · · · such that

ank
< 2−(k+2)(r − c1). Set

ck = 2−(k−1)(r − c1), k ≥ 2.

Choose positive numbers εk such that εk+1 < εk and

(1− εk)
2

2
ck − εk ≥ ank−1

for all k ∈ N.
Set x0 = y, F0 = {0} and M0 = X. Inductively, we construct finite-

dimensional subspaces F1 ⊂ F2 ⊂ · · · , finite-codimensional closed subspaces
M1 ⊃M2 ⊃ · · · , and unit vectors xk ∈Mk ∩Ker (A− I) for k ≥ 1 such that
(4.3) below is true.

Let k ≥ 1 and suppose that the vectors x0, . . . , xk−1 and spaces
F0, . . . , Fk−1 and M0, . . . ,Mk−1 have already been constructed. Lemma 4.1
provides a compact set Ck ⊂ X such that

fn(u) ∈ Anu+ Ck

for all n ≤ nk and u ∈ X with ‖u‖ ≤ ‖y‖+ r. Using the compactness of Ck,
we find a finite-dimensional subspace Fk ⊃ Fk−1 such that

(4.3) {y,Ay, . . . , Anky, x1, . . . , xk−1} ⊂ Fk and dist {d, Fk} ≤ εk

for all d ∈ Ck. Lemma 9.1 yields a closed subspace Mk ⊂ Mk−1 of finite
codimension such that

‖f +m‖ ≥ (1− εk)max
{
‖f‖,

‖m‖

2

}

for all f ∈ Fk and m ∈ Mk. Since Ker (A− I) has infinite dimension, there
exists a unit vector xk ∈Mk ∩Ker (A− I).

For the elements xk, k ∈ N, constructed above, set

x = y +

∞∑

j=1

cjxj .
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We show that x satisfies the assertions. First note that

‖x− y‖ ≤
∞∑

j=1

cj = c1 +

∞∑

j=2

r − c1
2j−1

= r,

so that x ∈ B(y, r). Let k ≥ 1 and nk−1 ≤ n ≤ nk. We estimate

‖fn(x)‖ ≥ dist {Anx,Ck} ≥ dist {Anx, Fk} − εk

= dist
{ ∞∑

j=k

cjxj, Fk

}
− εk,

employing that

Anx = Any +
∞∑

j=1

cjxj and Any, x1, . . . , xk−1 ∈ Fk.

For j ≥ k, the vector xj belongs to Mj ⊂Mk, and so

‖fn(x)‖ ≥
1− εk

2
·
∥∥∥

∞∑

j=k

cjxj

∥∥∥− εk.

Since xk ∈ Fk+1 and xj ∈Mj ⊂Mk+1 for j ≥ k + 1, we obtain

‖fn(x)‖ ≥
(1− εk)(1 − εk+1)

2
‖ckxk‖ − εk

≥
(1− εk)

2

2
· ck − εk ≥ ank−1

≥ an.

Hence
‖fn(x)‖ ≥ an

for all n ≥ n0, and the statement follows. �

Remark 4.7. If X is a Hilbert space, then in the proof of Theorem 4.6 one
can take Mk = F⊥

k in each step. It is then possible to obtain a slightly
better estimate: Let y ∈ X, n0 ≥ 0, and an0

< r. Then there exists x ∈ X
with ‖x− y‖ ≤ r and ‖fn(x)‖ ≥ anre(A)

n for all n ≥ n0.

Corollary 4.8. Under the assumptions of Theorem 4.6, let (an)
∞
n=1 ⊂ R+

be a non-increasing sequence satisfying limn→∞ an = 0. Then

(i) there exists x ∈ X such that ‖fn(x)‖ ≥ anre(A)
n for all n ∈ N;

(ii) there exists a dense subset of vectors x ∈ X such that ‖fn(x)‖ ≥
anre(A)

n for all n sufficiently large.

Proof. To prove (i), it suffices to set y = 0 and to choose a big enough radius
r in Theorem 4.6.

Let now y ∈ X and ε > 0 be fixed. Let n0 be such that an0
< ε

2 . By
Theorem 4.6, there exists x ∈ X such that ‖x − y‖ ≤ ε and ‖fn(x)‖ ≥
anre(A)

n for all n ≥ n0, and assertion (ii) follows. �

Remark 4.9. If one is interested in merely local instability properties of (4.2)
assuming re(A) > 1, then results close in spirit can be found in [69].
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5. Local instability for discrete time: counterexample

As we mentioned in the introduction, it is natural to try to combine “met-
ric” instability results, such as e.g. in [22], [38], [64], [29], and “topological”
instability conditions as above, in order to obtain a local result showing
instability for the zero solution to the difference equation

(5.1) xn+1 = (A+K +G)xn, n ∈ N, x0 = x,

in a Banach space X. Here A is a linear operator on X with re(A) > 1, K is
a compact operator on X with K(0) = 0, and G is a continuous map defined
on a ball B(0, r) ⊂ X such that ‖G(x)‖ = O(‖x‖1+δ) as ‖x‖ → 0 for some
δ > 0. Unfortunately, this is not possible, in general, even if X is a Hilbert
space, as Example 5.3 shows. Recall that the zero solution of (5.1) is called
stable if for every ε > 0 there is δ > 0 such for all x0 with ‖x0‖ < δ one has
supn ‖xn‖ < ε.

We first note a simple lemma.

Lemma 5.1. Let ε ∈ (0, 2−7). Then there exist continuous functions f :
[0,∞) → [0, ε/2] and g : [0,∞)× [0,∞) → [0, 2] such that

(i) f(s) = 0, 0 ≤ s ≤ ε3 or s ≥ ε;
(ii) f(s) = ε/2, 4ε3 ≤ s ≤ ε

2 ;

and

(iii) g(s, t) = 0, 0 ≤ s ≤ ε3 or s ≥ ε, t ≥ 0,;
(iv) g(s, ε2) = 2, 4ε3 ≤ s ≤ 16ε3;

(v) g(s, t) ≤ s+ t2

s , s > 0, t ≥ 0.

Proof. The existence of f is obvious.
Let g̃ : [0,∞) × [0,∞) → [0, 2] be any continuous function satisfying (iii)

and (iv). Set g(s, t) = min{g̃(s, t), s+ t2

s } for s > 0 and t ≥ 0, and g(0, t) = 0

for t ≥ 0. Clearly, g fulfills (iii) and (v). If 4ε3 ≤ s ≤ 16ε3 and t = ε
2 , then

s+
t2

s
≥
t2

s
≥

ε2

4 · 16ε3
=

1

64ε
> 2 = g̃(s, t).

So g satisfies (iv). �

Next we provide a counterexample for local instability of (5.1), where the
nonlinear part is given by the sum of two nonlinear parts, each guaranteeing
local instability when considered separately. To this aim, we will need an
auxiliary example showing that there are a Hilbert space H and operators
A, K and G on H as above such that the zero solution to (5.1) is stable for
fixed ǫ > 0.

Example 5.2. Let H0 be an infinite-dimensional Hilbert space, and set H =
H0 ⊕ C with the Hilbert space norm. Let ε, f and g be given as above.
Consider the mappings A ∈ B(H), K : H → H, and G : H → H defined by

A(y, a) := (2y, 0), (y, a) ∈ H;
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K(y, a) := (0, f(‖y‖)), (y, a) ∈ H;

G(y, a) :=
(
−g(‖y‖, |a|)y, 0

)
, (y, a) ∈ H.

It is clear that A ∈ B(H), re(A) = 2, K is compact, and G satisfies

‖G(y, a)‖ = g
(
‖y‖, |a|

)
· ‖y‖ ≤

(
‖y‖+

|a|2

‖y‖

)
‖y‖

= ‖y‖2 + |a|2 = ‖(y, a)‖2.

Moreover,

(A+K +G)(y, a) =
(
(2− g

(
‖y‖, |a|)

)
y, f(‖y‖)

)
.

Let x0 = (y0, a0) ∈ H be such that ‖y0‖ ≤ ε3 and |a0| ≤ ε3, and let
(xn)

∞
n=1 be given by (5.1). For n ≥ 1 denote xn := (yn, an). First observe

that |an| ≤
ε
2 for all n ≥ 1, by the definition of f . We prove that

(5.2) ‖yn‖ ≤ ǫ/2, n ∈ N.

Observe that ‖yn‖ ≤ 2‖yn−1‖, n ∈ N. We distinguish two cases.
A) There exists n such that ‖yn‖ > 4ε3 and ‖yn+1‖ > 4ε3. Let n0 be the

smallest integer with this property. We then obain

‖yn0
‖ ≤ 2‖yn0−1‖ ≤ 8ε3,

and so

an0+1 = f(‖yn0
‖) =

ε

2
and 4ε3 ≤ ‖yn0+1‖ ≤ 2‖yn0

‖ ≤ 16ε3.

Hence, g
(
‖yn0+1‖, |an0+1|

)
= 2 and yn0+2 = 0. Thus yk = 0 for all k ≥ n0+2.

Moreover, min{‖ym‖, ‖ym+1‖} ≤ 4ε3 for all m ≤ n0 − 1. It follows

either ‖ym+1‖ ≤ 4ε3 or ‖ym+1‖ ≤ 2‖ym‖ ≤ 8ε3.

We have shown supk ‖yk‖ ≤ 16ε3 in this case.
B) Let min{‖yn‖, ‖yn+1} ≤ 4ε3 for all n. We again have

either ‖yn+1‖ ≤ 4ε3 or ‖yn+1‖ ≤ 2‖yn‖ ≤ 8ε3,

which yields supn ‖yn‖ ≤ 8ε3.
In both cases we have shown supn ‖yn‖ ≤ 16ε3 ≤ ε

2 , and so supn ‖xn‖ ≤ ε.

Now we refine the construction in Example 5.2 and make it work for all
ǫ > 0 thus obtaining the desired counterexample.

Example 5.3. Let (εj)
∞
j=1 be a fast decreasing sequence of positive numbers

such that ε1 < 2−7 and εj+1 <
ε3j
4 for all j ≥ 1. As above, let H = H0 ⊕ ℓ2

where dimH0 = ∞. Take functions fj and gj as defined in Lemma 5.1 for
ε = εj . Define mappings A, K, and G : H → H by

A
(
y, (aj)

∞
j=1

)
=

(
2y, (0)

)
,(5.3)

K
(
y, (aj)

∞
j=1

)
=

(
0, (fj(‖y‖))

∞
j=1

)
,(5.4)
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G
(
y, (aj)

∞
j=1

)
=

(
−y

∞∑

j=1

gj
(
‖y‖, |aj |

)
, 0
)

(5.5)

for all
(
y, (aj)

∞
j=1

)
∈ H. Note that for every (y, (aj)

∞
j=1) ∈ H there is at most

one j such that gj
(
y, |aj |

)
6= 0. So G is well-defined. Similarly, there is at

most one j with fj(‖y‖) 6= 0.
Clearly, A ∈ B(H), re(A) = 2 and K is compact since

K(H) ⊂
{
(0, (aj)

∞
j=1) : |aj | ≤

εj
2

}
.

Furthermore,

‖G(y, (aj)
∞
j=1)‖ ≤‖y‖ ·

∞∑

j=1

gj
(
‖y‖, |aj |

)
= ‖y‖ ·max

j
gj
(
‖y‖, |aj |

)

≤max
j

(
‖y‖2 + |aj |

2
)
≤ ‖(y, (aj)

∞
j=1)‖

2.

We have

(A+K +G)
(
y, (aj)

∞
j=1

)
=

(
(2−

∞∑

j=1

gj
(
‖y‖, |aj |)

)
y,
(
fj(‖y‖)

)∞
j=1

)
.

Now with A, G and K defined by (5.3)-(5.5), we consider equation (5.1),
and prove that its zero solution is stable. Let x0 ∈ H and k ∈ N be such

that ‖x0‖ ≤
ε3
k

4 . and let (xn)
∞
n=1 be given by (5.1).

Write xn =
(
yn, (an,j)

∞
j=1

)
for all n ≥ 0. We show first that ‖yn‖ ≤ εk

2 for

all n. Suppose the contrary. Let n0 be the smallest integer with ‖yn0
‖ > εk

2 .

Let n1 be the largest integer with 0 ≤ n1 < n0 and ‖yn1
‖ <

ε3
k

2 . Note that

0 ≤
∞∑

j=1

gj
(
‖y‖, |aj |

)
≤ 2

for all
(
y, (aj)

∞
j=1

)
∈ H, and hence

‖yn+1‖ ≤ 2‖yn‖

for all n. We infer that

‖yn1
‖ ≥

ε3k
4
, and so

ε3k
4

≤ ‖ym‖ ≤
εk
2

for all m = n1, . . . , n0 − 1, implying

fj(‖ym‖) = 0 = gj(‖ym‖, |aj |)

for all j 6= k and m = n1, . . . , n0 − 1. We further obtain

‖yn1+1‖ ≤ 2‖yn1
‖ < ε3k and an1+1,k = fk(‖yn1

‖) = 0.

Consider the orthogonal projection P : H → H onto H0 ⊕ C defined by

P
(
y, (aj)

∞
j=1

)
= (y, ak).
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By the above observations, Pxn1+1 = (yn1+1, 0) satisfies

‖Pxn1+1‖ ≤ ε3k

and Pxn1+1, Pxn1+2, . . . , Pxn0
are the iterations described in the previous

example for ε = εk. Using the estimate (5.2), we infer that ‖yn0
‖ ≤ εk

2 , a
contradiction. We have shown that

sup
n

‖yn‖ ≤
εk
2

and sup
j,n

fj(‖yn‖) ≤
εk
2
,

so that supn ‖xn‖ ≤ εk. Now to prove the stability of the zero solution to
(5.1), given ǫ > 0, it suffices to consider ǫk ∈ (0, ǫ), and to choose δ = ǫ3k/4.

We are short of a similar construction for continuous time. However, we
suspect that an example similar to the above for (1.1) may not exist.

6. Well-posedness for continuous time and global existence

We are primarily interested in nonlinear evolution equations of the form

(6.1) x′(t) = Ax(t) +K(t, x(t)), x(0) = x0, t ∈ [0, T ),

where T ∈ (0,∞], A generates a C0-semigroup (T (t))t≥0 on a Banach space
X, and K : [0,∞)×X → X is a function such that x 7→ K(t, x) is compact
for fixed t and that satisfies some additional regularity assumptions. One
can study classical solutions of (6.1), that is, maps x ∈ C1([0, T ),X) ∩
C([0, T ),D(A)) solving (6.1). However, it is often convenient to deal with
the integrated version of (6.1), namely

(6.2) x(t) = T (t)x0 +

∫ t

0
T (t− s)K(s, x(s)) ds, t ≥ 0.

Recall that a continuous function x : [0, T ) → X is called a mild solution of
(6.1) if it satisfies (6.2). Each classical solution of (6.1) is a mild solution,
but not conversely. A mild solution is a classical one if x0 ∈ D(A) and, for
instance, K ∈ C1([0, T )×X,X). In the sequel we only treat mild solutions,
which we will call solutions from now on, for simplicity.

If X has nice geometric properties, e.g., if it is reflexive, then mild so-
lutions can be identified with so-called weak solutions of (6.1), that is,
x ∈ L1([0, T ),X) satisfying (6.1) in a weak sense. This notion will not
be used in this paper, however.

Let the solution x(t) = x(t, x0) of (6.2) exist for all t ≥ 0, i.e., one has
T = ∞. It is called (nonlinearly) stable if for every ε > 0 there is radius
δ > 0 such for all y0 ∈ B(x0, δ) all solutions y with y(0) = y0 are defined on
[0,∞) and satisfy ‖y(t)− x(t)‖ < ε for all t ≥ 0. Without loss of generality,
one may assume here that x0 = 0. If the solution x is not stable, then it is
said to be unstable.

Instability is a local and rather weak property. It is often of interest to
show global properties of x which are stronger than mere instability. Such
properties are the main topic of this paper. To not overshadow the study of
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asymptotics of the solutions to (6.2) with assumptions on its well-posedness,
we will just postulate the existence and minimal regularity properties of
solutions that we need in the sequel. They can be satisfied in many situations
of interest as we will make clear below. Aiming at the long-term behavior,
it is natural to consider a set-up when the solutions of (6.2) exist globally,
i.e., on the whole of [0,∞). However, we do not need uniqueness of solutions
in our main Theorem 7.6. Below we will mention several statements which
could be used as additional assumptions to our asymptotic results, so that
the results could be formulated in a priori terms.

The next local existence result is well-known, see [62, p. 343-345, p. 350]
or e.g. [16, Section 4], [55, Section 6].

Theorem 6.1. Let A generate the C0-semigroup (T (t))t≥0 on a Banach
space X and let K : [0,∞) ×X → X be continuous and Lipschitz in x on
bounded sets: for every T > 0 and every r > 0 there is CT,r > 0 such that

‖K(t, x)−K(t, y)‖ ≤ CT,r‖x− y‖

for t ∈ [0, T ] and x, y ∈ B(0, r). Then for every x0 ∈ X there exists a
maximal existence time T = T (x0) ∈ (0,∞] such that the following holds.

(i) There is a unique solution x = x(·, x0) of (6.1).
(ii) If T <∞, then limt→T ‖x(t, x0)‖ = ∞.
(iii) For any T ∗ ∈ (0, T ) there exists a radius δ > 0 such that T =

T (y0) > T ∗ for all y0 ∈ B(x0, δ). Moreover, the map B(x0, δ) →
C([0, T ∗],X), y0 → x(·, y0), is continuous.

Gronwall’s inequality and the above blow-up condition (ii) imply the fol-
lowing global existence result.

Corollary 6.2. Besides the conditions of Theorem 6.1, assume that there
exists c ∈ L1

loc([0,∞)) such that

(6.3) ‖K(t, x)‖ ≤ c(t)(1 + ‖x‖) for all x ∈ X, t ≥ 0.

Then for every x0 ∈ X there is a unique solution x(·, x0) of (6.1) on [0,∞).

See e.g. [55, Corollary 6.2.3], where the compactness of (T (t))t≥0 is irrel-
evant under our assumptions.

In a similar way, the linear growth condition of the above corollary leads
to bounds on the solution without assuming Lipschitz continuity of K(t, ·).

Proposition 6.3. Let A generate the C0-semigroup (T (t))t≥0 on a Banach
space X with ‖T (t)‖ ≤ Meωt for t ≥ 0 and some ω ≥ 0, and let K :
[0,∞)×X → X be continuous separately in both variables.

a) Assume that K satisfies (6.3). Let x : [0, T ) → X be a solution of (6.1)
and t0 ∈ (0, T ). Then ‖x(t)‖ ≤ C(1 + ‖x0‖) for t ∈ [0, t0] and a constant C
depending only on t0, M , ω and c(·).

Let now (6.1) have a global solution x = x(t, x0) for all x0 ∈ X0 and some
subset X0 ⊆ X.
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b) If (6.3) holds, then for every bounded set B ⊂ X0 the set {x(t, x0) :
0 ≤ t ≤ t0, x0 ∈ B} is bounded for each t0 > 0.

c) Assume that K is bounded on bounded sets and that there exist
r0 > 1 and a non-increasing function c : [r0,∞) → [0,∞) such that
‖K(t, x)‖ ≤ c(‖x‖)‖x‖ for all t ≥ 0 and x ∈ X with ‖x‖ ≥ r0. If
γ > ω and limr→∞ c(r) = 0, then there exists a constant Mγ,x0

such that
‖x(t, x0)‖ ≤Mγ,x0

eγt for t ≥ 0 and x0 ∈ X0 .

Assertion a) is a direct consequence of Gronwall’s inequality (as in Corol-
lary 6.2), and part b) follows immediately from a). For the refinement in
part c), we refer to [75]. So, if K is sublinear as ‖x‖ → ∞, under the above
assumptions the solutions of (6.2) have the same growth bound as those for
its linear part.

If the mapping x 7→ K(t, x) is compact on X, then one may drop (local)
Lipschitz type assumptions onK at the price of losing the uniqueness of mild
solutions to (6.2). (Roughly, one replaces Banach’s fixed point theorem,
guaranteeing the uniquneess of a fixed point, with Schauder’s fixed point
theorem, where the uniquenesss is hardly available.) However, as we have
already remarked above, for our purposes mere existence suffices. The next
result from [58] is an example of existence theorems based on compactness
properties of the nonlinearity. We note that in this and related papers (such
as [14] mentioned below) typically the concept of an integral solution is
used. However, in our setting integral and mild solutions coincide, see the
Corollary to Proposition 3 in [58].

Theorem 6.4. Let A be the generator of a C0-semigroup on a Banach space
X, and K : [0,∞) ×X → X be jointly continuous and map bounded sets in
[0,∞) × X to relatively compact sets in X. Then for every x0 ∈ X there
exists a maximal existence time T = T (x0) such that (6.1) admits a solution
x on [0, T ). If T <∞, then x is unbounded and {K(t, x(t, x0)) : 0 < t < T}
is not relatively compact. Thus, in particular, if the range of K is relatively
compact, then T must be infinite.

Remark 6.5. The statement is formulated in [58, Theorem 2] for a semigroup
of contractions. However, one can rescale the operators T (t) andK(t, ·) as in
the proof of Theorem 7.6, thus reducing to a bounded semigroup (T (t))t≥0.
Passing to the equivalent norm ‖x‖c := supt≥0 ‖T (t)x‖, the semigroup then
becomes contractive, and we can apply [58, Theorem 2].

Combined with Proposition 6.3, the above theorem yields the following
result which we already used after Theorem 1.1. For real Banach spaces, it
was proved in [14] in a more general framework of differential inclusions and
with weaker compactness and regularity assumptions on K.

Corollary 6.6. Assume the conditions of Theorem 6.4 and (6.3) hold. Then
all solutions of (6.1) exist on the whole of [0,∞).

Finally, we will need a result yielding the existence of a unique propagator
to (6.1) in the linear setting, see e.g. [26, Corollary VI.9.20].
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Proposition 6.7. Let A be the generator of a C0-semigroup (T (t))t≥0 on
Banach space X, and let K : [0,∞) → B(X) be strongly continuous. Then
there exists a unique evolution family (U(t, τ))t≥τ≥0 ⊂ B(X) such that

(6.4) U(t, τ)x = T (t− τ)x+

∫ t

τ
T (t− s)K(s)U(s, τ)x ds, t ≥ τ.

7. Growth and instability for continuous time

Following a similar strategy as in Section 4, we now obtain lower bounds
for solutions of semilinear abstract differential equations with a linear part
being a generator of a C0-semigroup. In view of the failure of the spectral
mapping theorem for C0-semigroups, this task is more demanding than the
one treated in Section 4. However, the ideas remain the same as for the
systems with discrete time.

We start with proving auxiliary (and probably known) results on com-
pactness. Below we will assume that the mapping K : [0,∞) ×X → X is
separately continuous and collectively compact, i.e., the set K

(
[0, t0]×B

)
is

precompact in X for each bounded set B ⊂ X and each t0 ≥ 0. For this
notion in the linear case one may consult e.g. [3].

A simple condition for collective compactness is provided by assuming
continuity in t uniformly for x in bounded subsets.

Lemma 7.1. Let K : [0,∞) × X → X be separately continuous such that
K(s, ·) : X → X is compact for all s ≥ 0. Suppose that for each t0, ε > 0
and each bounded set B ⊂ X there exists a δε > 0 such that

‖K(s, x)−K(t, x)‖ ≤ ε

for all s, t ∈ [0, t0] with |s − t| ≤ δε and x ∈ B. Then K is collectively
compact.

Proof. Let t0 > 0 and B ⊂ X be a bounded set. Take ε > 0. Let {t1, . . . , tn}
be a finite δε/2-net in the interval [0, t0]. For each j = 1, . . . , n the setK(tj)B
is precompact and so is the set C = {K(tj, b) : j ∈ {1, . . . , n}, b ∈ B}. Let
x1, . . . , xm be a finite ε

2 -net for C.
Let 0 ≤ s ≤ t0 and u ∈ B. There exist j ∈ {1, . . . , n} with |s − tj| ≤ δε/2

and i ∈ {1, . . . ,m} with ‖K(tj , u) − xi‖ < ε/2. Using also the assumption,
we obtain

‖K(s, u)− xi‖ ≤ ‖K(s, u)−K(tj, u)‖ + ‖K(tj , u)− xi‖ ≤
ε

2
+
ε

2
= ε.

So {x1, . . . , xm} is a finite ε-net for the set K
(
[0, t0]×B

)
. Since ε > 0 was

arbitrary, the set K
(
[0, t0]×B

)
is precompact. �

Before stating a second compactness criterion, we collect our standing
assumptions for semilinear evolution equations.

(A0) Assume thatK : [0,∞]×X → X is collectively compact and continu-
ous separately in both variables, and let (T (t))t≥0 be a C0-semigroup
on a Banach space X with generator A.
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(A1) Let (A0) hold, X0 ⊂ X and assume that for every x0 ∈ X0 there
exists a unique global solution x(·, x0) ∈ C([0,∞),X) of

(7.1) x(t, x0) = T (t)x0 +

∫ t

0
T (t− s)K(s, x(s, x0)) ds, t ≥ 0.

So the map x : [0,∞)×X0 → X is well-defined, and we assume that
it is continuous separately in both variables.

(A2) Let (A0) hold, and B ⊂ X0 be a bounded set. Assume that for every
x0 ∈ B there exist a solution x = x(·, x0) of (7.1) such that the set
{x(t, x0) : 0 ≤ t ≤ t0, x0 ∈ B} is bounded for each t0 > 0.

If (A0) holds and the solutions of (7.1) are unique, then (A1) is satisfied
for all B ⊂ X0 provided that the map x : [0,∞) ×X0 → X maps bounded
into bounded sets.

In condition (A2), the map (t, x0) 7→ x(t, x0) can be defined for each
bounded subset of X0, though it depends on this subset and the choice of
corresponding solutions. Note that Corollary 6.6 provides an example of
K satisfying (A2) for X = X0 and all bounded sets B ⊂ X0. One can
treat the non-unique case in a more systematic manner, for instance using
“generalized semi-flows”. See e.g. [8], where also nonlinear damped wave
equations are treated. In this paper, we preferred however to avoid such
concepts.

Proposition 7.2. Let assumption (A2) hold, and let t0 > 0 be fixed. Let C
be the set whose elements are of the form

∫ t

0
T (t− s)K(s, x(s, x0)) ds

for all x0 ∈ B and t ∈ [0, t0], where x(·, x0) and B are given by (A2). Then
C is precompact in X.

Proof. Set k = sup{‖T (t)‖ : t ∈ [0, t0]} < ∞ and k′ = sup{‖x(t)‖ : t ∈
[0, t0], x0 ∈ B} <∞. Fix ε > 0.

By assumption, the set C0 =
⋃

0≤s≤t0
{K(s, y) : y ∈ X, ‖y‖ ≤ k′} is

precompact. Let E be a finite ε
3kt0

-net in C0. Since the set
⋃

s≤t0
T (s)(E)

is precompact, Mazur’s theorem yields the compactness of

M := [0, t0] · conv
( ⋃

s≤t0

T (s)(E)
)
,

where conv stands for the closed convex hull. Choose a finite ε
3 -net E

′ in
M . Let 0 ≤ t ≤ t0, x0 ∈ B, and ε > 0. Then there exist N ∈ N, a partition
0 = t0 < t1 < ...tN = t of [0, t], and sj ∈ [tj , tj+1] for 0 ≤ j ≤ N − 1 such
that

∥∥∥
∫ t

0
T (t− s)K(s, x(s, x0)) ds − S

∥∥∥ <
ε

3
.
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where

S =

N∑

j=1

T (t− sj)K(sj , x(sj, x0))(tj − tj−1).

By the choice of E, for j = 1, . . . , N there are ej ∈ E such that

‖K(sj , x(sj , x0))− ej

∥∥∥ <
ε

3kt0
.

Hence,
∥∥∥S −

N∑

j=1

T (t− sj)(tj − tj−1)ej

∥∥∥ <
ε

3
,

Since
∑N

j=1 T (t− sj)(tj − tj−1)ej belongs to M , we find e′ ∈ E′ with

∥∥∥
N∑

j=1

T (t− sj)(tj − tj−1)ej − e′
∥∥∥ <

ε

3
.

It follows that
∥∥∥
∫ t

0
T (t− s)K(s, x(s, x0)) ds − e′

∥∥∥ < ε,

i.e., E′ is a finite ε-net for the set C. Since ε > 0 was arbitrary, C is
precompact. �

The next immediate corollary of (7.1) and Proposition 7.2 will play the
role of Lemma 4.1 in the continuous setting.

Corollary 7.3. Under the assumptions of Proposition 7.2, there exists a
compact set C0 = C0(t0, B) ⊂ X such that

x(t, x0) ∈ T (t)x0 + C0

for all x0 ∈ B and t ∈ [0, t0].

The next statement is a counterpart of Theorem 4.4 providing an exponen-
tial growth bound on a residual set at the expense of stronger assumptions
on K and a much smaller set where the bound holds.

Theorem 7.4. Assume that (A1) holds with X0 = X, and (A2) is satisfied
for any bounded subset of X. Let a : [0,∞) → R+ be a non-increasing
function with limt→∞ a(t) = 0 and L ⊂ R+ be unbounded. Then the set
{
y ∈ X : there are infinitely many tn ∈ L with ‖x(tn, y)‖ ≥ a(tn)‖T (tn)‖µ

}

is residual.

Proof. The proof follows that of Theorem 4.4, though we do not reduce it to
this result. Without loss of generality we assume that ‖T (t0)‖µ 6= 0 for all
t0 ≥ 0 (since otherwise ‖T (t)‖µ ≤ ‖T (t0)‖µ · ‖T (t− t0)‖µ = 0 for all t ≥ t0.)
For k ∈ N set

Mk = {y ∈ X : there exists t ∈ L with t ≥ k, ‖x(t, y)‖ > a(t)‖T (t)‖µ}.
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Note that Mk is open since x is continuous in y. We show that Mk is dense.
Let y ∈ X and fix ε > 0. Choose t ∈ L with t ≥ k and a(t) < ε/4. By

Corollary 7.3 there is a compact set C ⊂ X such that

x(t, y′) ∈ T (t)y′ + C

for all y′ ∈ X with ‖y′ − y‖ ≤ ε. Since C is compact, there exists a finite-

dimensional subspace F ⊂ X such that dist {c, F} < ε‖T (t)‖µ
12 for all c ∈ C.

Lemma 4.3 provides a unit vector u ∈ X with dist {T (t)u, F} > ‖T (t)‖µ
3 . We

compute

dist{T (t)(y+εu), F}+dist{T (t)(y−εu), F} ≥ 2εdist{T (t)u, F} ≥ 2ε
3 ‖T (t)‖µ.

So x0 := y + εu or x0 := y − εu satisfy

‖x0 − y‖ ≤ ε and dist {T (t)x0, F} ≥
ε

3
‖T (t)‖µ.

It follows

‖x(t, x0)‖ ≥ dist {T (t)x0, F} −
ε‖T (t)‖µ

12
≥
ε‖T (t)‖µ

4
≥ a(t)‖T (t)‖µ.

Hence x0 ∈ Mk, and Mk is dense since y ∈ X and ε > 0 were arbitrary.
The Baire category theorem shows that

⋂∞
k=1Mk is a dense Gδ set, and thus

residual. �

Corollary 7.5. Assume that all of the conditions of Theorem 7.4 hold. Let
a : [0,∞) → R+ be a non-increasing function satisfying limt→∞ a(t) = 0.
Then there is a residual set M ⊂ X such that for every x0 ∈ M there exist
an unbounded sequence (tn)

∞
n=1 with

‖x(tn, x0)‖ ≥ a(tn)e
ωe(T )tn , n ∈ N.

We next prove a continuous analogue of Theorem 4.6 which is one of the
main results of this paper. It provides global and sharp exponential lower
bounds for solutions of semilinear differential equations with unbounded
linear part. Recall here the notion of admissibility introduced in Section 2.

Theorem 7.6. Let (A2) hold for B = B(y, r) ⊂ X0. Setting α =
lim supt→0 ‖T (t)‖, let a : [0,∞) → R+ be a non-increasing function sat-
isfying limt→∞ a(t) = 0, t0 ≥ 0 with a(t0) <

r
2α . Assume that ω ∈ R is

admissible. Then there exists z ∈ B(y, r) and a solution x(·, z) to (7.1) with
x0 = z such that

‖x(t, z)‖ ≥ a(t)eωt, t ≥ t0.

Proof. Without loss of generality we may assume that ω = 0. If not,
then consider the semigroup (e−ωtT (t))t≥0 and compact perturbations
e−ωsK(eωs·). Define a new norm ‖ · ‖1 on X by

‖x‖1 = sup{|〈x, x∗〉| : x∗ ∈ D(A∗), ‖x∗‖ = 1}.

By (9.2), the norm ‖ · ‖1 is equivalent to ‖ · ‖ with

‖x‖1 ≤ ‖x‖ ≤ α‖x‖1
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for all x ∈ X. Let a Banach space X1 be X equipped with ‖ · ‖1.
Fix c1 such that 2a(t0) < c1 < r and r − c1 <

1
2 . Pick an increasing

sequence (tk)
∞
k=0 with a(tk) <

r−c1
α2k+2 for all k ∈ N ∪ {0}. Set

ck =
r − c1
2k−1

, k ≥ 1.

For each k ∈ N choose εk > 0 such that εk+1 < εk and

(1− εk)
2

2α
ck − 2εk ≥ a(tk−1)

for all k ≥ 1.
The required element z will be constructed as the sum of a series of

appropriate approximate eigenvectors xk for (T (t))t≥0 and eµkt. We set
F0 = {0}, M0 = X, and x0 = y. Inductively we construct unit vectors
(xk)

∞
k=1 ⊂ X1, finite-dimensional subspaces F1 ⊂ F2 ⊂ · · · , and closed

finite-codimensional subspaces M1 ⊃ M2 ⊃ · · · with xk ∈ Mk ∩ Fk+1 of X1

which satisfy (7.2)–(7.5) below.
Let k ≥ 1 and suppose that the vectors x0, . . . , xk−1 and subspaces

F0, . . . , Fk−1 and M0, . . . ,Mk−1 have already been constructed. Consider
the family of solutions {x(t, u) : u ∈ B, t ≥ 0} to (7.1) given by (A2), and
fix the notation x(t, ·) for this family. If B1 is the image of B under the
identity embedding of X into X1, then Corollary 7.3 yields a compact set
Ck ⊂ X such that x(t, u) ∈ T (t)u+Ck for all t ≤ tk and u ∈ B1. There thus
exists a finite-dimensional subspace Fk ⊃ Fk−1 such that xk−1 ∈ Fk if k > 1
and

(7.2) dist
{
T (t)

(
y +

k−1∑

j=1

α−1cjxj

)
, Fk

}
≤
εk
2

for all t ≤ tk and

(7.3) dist {d, Fk} ≤ εk/2

for all d ∈ Ck, where dist stands for the distance in the new norm ‖ · ‖1.
Lemma 9.1 yields a closed subspace Mk ⊂Mk−1 of finite codimension such
that

(7.4) ‖f +m‖1 ≥ (1− εk)max
{
‖f‖1,

‖m‖1
2

}

for all f ∈ Fk and m ∈Mk, where

Mk =
⋂

1≤j≤k

Ker y∗j

for some y∗j ∈ D(A∗) for 1 ≤ j ≤ k. Since 0 is admissible, we can choose

xk ∈Mk with ‖xk‖1 = 1 and µk ∈ C with Reµk = 0 such that

(7.5) ‖T (t)xk − eµktxk‖1 ≤ εk

for all t ≤ tk.
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Suppose that the vectors xk, k ∈ N, have been constructed as above. Set

z = y +
∞∑

j=1

α−1cjxj.

We show that z meets the requirements in the initial Banach space (X, ‖·‖).
First, z belongs to B(y, r) since

‖z − y‖ ≤ α‖z − y‖1 ≤
∞∑

j=1

cj = c1 +

∞∑

j=2

r − c1
2j−1

= r.

Let x(·, z) be a solution of (7.1) given by (A2). Fix k ≥ 1 and consider
t ∈ [tk−1, tk]. Properties (7.3) and (7.2) yield

‖x(t, z)‖1 ≥ dist {T (t)z, Ck} ≥ dist {T (t)z, Fk} − εk/2

≥ dist
{ ∞∑

j=k

α−1cjT (t)xj , Fk

}
− εk.

By means of (7.5) we estimate

‖x(t, z)‖1 ≥ dist
{ ∞∑

j=k

α−1cje
µj txj , Fk

}
−

∞∑

j=k

α−1cjεj − εk

≥ dist
{ ∞∑

j=k

α−1cje
µj txj , Fk

}
− 2εk.

Taking into account (7.4) and that xj ∈Mj ⊂Mk for all j ≥ k, we infer

‖x(t, z)‖1 ≥
1− εk

2

∥∥∥
∞∑

j=k

α−1cje
µj txj

∥∥∥
1
− 2εk.

Since xk ∈ Fk+1 and xj ∈Mj ⊂Mk+1 for j ≥ k + 1, (7.4) also implies

‖x(t, z)‖1 ≥
(1− εk)(1− εk+1)

2
‖α−1cke

µktxk‖1 − 2εk

≥
(1− εk)

2

2
· α−1ck − 2εk ≥ a(tk−1) ≥ a(t).

Hence

‖x(t, z)‖ ≥ ‖x(t, z)‖1 ≥ a(t)

for all t ≥ t0, as required. �

Corollary 7.7. (i) Let the assumptions of Theorem 7.6 hold with r >
2a(0)α. Then there exists y ∈ X0 with ‖x(t, y)‖ ≥ a(t)eωt for all t ≥ 0.

(ii) Assume that assumption (A2) is satisfied for all bounded subsets B of
X0. Then there exists a set S ⊂ IntX0 dense in IntX0 such that ‖x(t, y)‖ ≥
a(t)eωt for all y ∈ S and t sufficiently large.
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Proof. To deduce (i) from Theorem 7.6, it suffices to set t0 = 0, and to let
y be the center of the ball in X0 of radius greater than 2a(0)α.

To prove (ii), we may assume that IntX0 6= ∅. Let y ∈ IntX0, ε =
dist {y, ∂X0}, and ε0 ∈ (0, ε). Find t0 ≥ 0 such that a(t0) <

ε0
2α . By Theorem

7.6, there exists x0 ∈ X such that ‖x0− y‖ ≤ ε0 and ‖x(t, x0)‖ ≥ a(t)eωt for
all t ≥ t0. It remains to note that the choice of ε0 ∈ (0, ε) is arbitrary. �

Remark 7.8. If X is a Hilbert space, as in Section 4 one can obtain a better
estimate. Let y ∈ X, {u : ‖u − y‖ ≤ r} ⊂ X0, t0 ≥ 0 and a(t0) < r. Then
there exists x0 ∈ X with ‖x0 − y‖ ≤ r and ‖x(t, x0)‖ ≥ a(t)eωt for t ≥ t0.

The next corollary is one of the main results of the paper. It is a direct
consequence of Theorem 2.2 and Theorem 7.6.

Corollary 7.9. Under the conditions of Theorem 7.6, there exists x0 ∈
B(y, r) and t0 ≥ 0 such that

(7.6) ‖x(t, x0)‖ ≥ a(t)esR(A)t, t ≥ t0.

If X0 = X and the assumption (A2) is true for all bounded subsets B of X,
then the set of x0 satisfying (7.6) is dense in X.

If in (7.6) the operator A is bounded and se(A) > 0, then under appro-
priate local assumptions on K (involving compactness) the local instability
of zero solution to (7.6) was shown in [70].

Our results on lower bounds are also new in the framework of linear
equations (6.1), where K : [0,∞) → B(X) is strongly continuous and each
operator K(t) is compact. In this case, K does not have to be collectively
compact and so (A0) may be violated. The result is new even for norm-
continuous K, where (A0) holds by Lemma 7.1.) However, in the proof of
Theorem 7.6 we need collective compactness only to apply Corollary 7.3,
and this result is a direct consequence of Proposition 6.7 and [26, Theorem
C.7] in the linear case. Hence, Theorem 2.2 and Corollary 7.7 yield the next
estimate.

Corollary 7.10. Let A be the generator of a C0-semigroup on Banach space
X and K : [0,∞) → B(X) be a strongly continuous function such that K(t)
is a compact operator for each t ≥ 0. Let (U(t, τ))t≥τ≥0 be the evolution
family given by Proposition 6.7. Assume that a : [0,∞) → [0,∞) is a
decreasing function satisfying limt→∞ a(t) = 0. Then there exists a dense
set of vectors x such that

‖U(t, 0)x‖ ≥ a(t)esR(A)t, t ≥ t0 = t0(x).

We finish this section with a discussion of our results. First, note that
one may treat sR(A) “up to compact perturbations”: In the above result
one may consider sR(A + S) for a compact perturbation S ∈ B(X) of A
and substract S from the nonlinearity K in (7.1), without changing the
assumptions on K.
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Remark 7.11. Theorem 7.6 and Corollaries 7.7 and 7.9 in general do not
hold for K being merely relatively compact with respect to A, i.e., such that
K : D(A) → X is compact, where D(A) is equipped with the graph norm.
For instance, consider the setting of linear damped wave equations with the
operator A− given by (8.6) below. Here we have

A− = D +K, D :=

(
0 I
∆ 0

)
, K :=

(
0 0
0 −b

)
,

where D generates a unitary C0-group on an appropriate Hilbert space X,
sR(D) = 0, K is relatively compact with respect to D. However, in view
of [10], the operator A− generates an exponentially stable C0-semigroup on
X if b ∈ C∞(M) and b satisfies the so-called geometric control condition.
(See also e.g. [1], [41], and [47] for a relevant discussion and some examples.)
Thus, in this case, we have ω0(A−) < 0, which excludes any results of the
form of Theorem 7.6 and its corollaries with A = D and K as above. If K
is compact, then the situation changes as we show in the next section.

Finally, we address the optimality of results stated in Theorem 7.6 and
Corollary 7.9.

Remark 7.12. Let (T (t))t≥0 be the left shift C0-semigroup on L2(R+) de-
fined by (T (t)f)(s) = f(s+ t), t ≥ 0, for f ∈ L2(R+). If A is the generator of
(T (t))t≥0, then σ(A) = {λ ∈ C : Reλ ≤ 0}, and se(A) = s0(A) = sR(A) = 0.
On the other hand, clearly T (t) → 0 as t→ ∞ strongly. Thus Theorem 7.6
and Corollary 7.9 cannot be improved by removing the function a from their
formulations, even for linear equations (6.1) with K = 0. For other concrete
examples of such semigroups one may consider the the multiplication semi-
groups (T (t)f)(z) = e−tzf(z), t ≥ 0, on appropriate spaces L2(Ω) with Ω
from the closed left half-plane.

8. Backward damped wave equations and other applications

In this section, we illustrate our abstract results by applying them to the
study of backward damped wave equations or, equivalently, “excited” wave
equations, subject to nonlinear forcing terms of the form −f(t, ·, u). (The
minus is chosen to simplify the sign condition in (8.16).) In this basic PDE
setting a positive abscissa sR(A) > 0 and compact nonlinear perturbations
K(t, ·) occur naturally, including situations where positivity of sR stems
from the resolvent growth. In contrast to earlier work, as in e.g. in [71], we
allow for time-dependent and merely continuous f so that we cannot expect
uniqueness in general. As we focus on asymptotic properties of solutions,
our assumptions on nonlinearities are, of course, not best possible, and serve
first of all to create the right framework to the study of lower bounds for
solutions in spectral terms.

We first look at the excited wave equation

∂ttu(t, x) −∆u(t, x)− b(x)∂tu(t, x) = −f(t, x, u(t, x)), x ∈ M, t ∈ R,
(8.1)
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u(0, x) = u0(x), ∂tu(t, 0) = u1(x), x ∈ M,(8.2)

on a d-dimensional, compact, smooth and connected Riemannian manifold
M without or with boundary ∂M. Here ∆ is the Laplace–Beltrami operator
on M, depending in general on a metric on M. We do not indicate this
dependence since it will not be relevant. If ∂M 6= ∅, we additionally impose
Dirichlet boundary conditions in (8.1).

In order to apply the results from the previous section, we have to consider
complex-valued u in (8.1) and related equations. Since we do not want to
restrict ourselves to holomorphic maps ζ 7→ f(t, x, ζ), we identify C with R

2

equipped with the Euclidean scalar product ζ1 · ζ2 = ξ1ξ2+ η1η2 = Re (ζ1ζ2)
where ζj = ξj + iηj = (ξj , ηj). Differentiability is then understood in the
real sense and derivatives are only R-linear. Fortunately, this does not affect
the basic rules from calculus that we use here. Throughout we assume that

b ∈ L∞(M), b ≥ 0, b > 0 on an open subset of M,

f : R×M× C → C is continuous in the 3d variable and measurable,

|f(t, x, ζ)| ≤ κ(t)(1 + |ζ|α), |f(t, x, ζ)− f(s, x, ζ)| ≤ ω(|t− s|)(1 + |ζ|α),

(8.3)

for some 0 ≤ α < d/(d − 2)+ and all t, s ∈ R, ζ ∈ C, x ∈ M, where
κ : R → [0,∞) is locally bounded and ω : [0,∞) → [0,∞) satisfies ω(τ) → 0
as τ → 0. (Here y+ = max{y, 0} for y ∈ R and d

0 := ∞.) The assumption
b ≥ 0 fits to the interpretation of (8.1) as excited wave equation. It is crucial
to observe that (8.3) implies the continuity of f in (t, ζ).

To formulate (8.1),(8.2) as an evolution equation of the form (1.1), we
set V = H1(M) if M has no boundary and V = H1

0 (M) otherwise. Recall
that V is compactly embedded into L2α(M), see Theorem 2.34 of [7]. On
the state space X = V × L2(M) we introduce the operator matrix

(8.4) A+ =

(
0 I
∆ b

)
, D(A+) = (H2(M) ∩ V )× V.

It is well known that A+ generates a C0-group (T+(t))t∈R on X, i.e., ±A+

are generators of C0-semigroups. We write elements of X as w = (u, v). The
forcing term is expressed by K(t, w) = (0,−f(t, ·, u)). As we will prove in
Proposition 8.1 below, K : R×X → X is jointly continuous and collectively
compact.

We study (8.1) in forward time. Using standard properties of the wave
equation with the (continuous) right-hand side t 7→ h(t) := −f(t, ·, u(t)), it
can be checked that a mild solution w to

w′(t) = A+w(t) +K(t, w(t)), t ≥ 0, w(0) = w0 := (u0, u1) ∈ X,(8.5)

on a time interval J = [0, T ) is of the form w = (u, ∂tu) for a function u
in C2(J,H−1(M)) ∩ C1(J,L2(M)) ∩ C(J, V ) which solves (8.1). (Cf. [16,
Lemma 6.2.1]).
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For the damped case, we replace +b by −b obtaining the operator

(8.6) A− =

(
0 I
∆ −b

)
, D(A−) = D(A+).

It generates a C0-group (T−(t))t∈R, which is contractive in forward time
since b ≥ 0, and it corresponds to the damped wave equation

∂ttu(t, x) −∆u(t, x) + b(x)∂tu(t, x) = −f(t, x, u(t, x)), x ∈ M, t ∈ R,
(8.7)

u(0, x) = u0(x), ∂tu(t, 0) = u1(x), x ∈ M.(8.8)

The above remarks on the solution also apply here. We study (8.7) backwards
in time, i.e., for t ≤ 0. To bring it to standard forward form, one looks at
ũ(t) = u(−t) for t ≥ 0 satisfying

∂ttũ(t, x)−∆ũ(t, x)− b(x)∂tũ(t, x) = −f(−t, x, ũ(t, x)), x ∈ M, t ≥ 0,
(8.9)

ũ(0, x) = u0(x), ∂tũ(t, 0) = −u1(x), x ∈ M.(8.10)

This system coincides with (8.1),(8.2) except for the additional minus in f
and before u1. We drop the tilde. To rewrite this problem as (1.1), we
use the operators B = −A− and w 7→ −K(−t, w) = (0, f(−t, ·, u)). Then
(8.9),(8.10) can be reformulated as the first-order problem

w′(t) = Bw(t)−K(−t, w(t)), t ≥ 0, w(0) = (u0,−u1).(8.11)

Moreover, if J : X → X is defined by J(u, v) = (u,−v), then A+ =
J(−A−)J

−1 (as unbounded operators, see [26, p. 59]), so that σ(A+) =
σ(−A−) and R(λ,A+) = JR(λ,−A−)J

−1 for all λ ∈ ρ(A+). Thus,

(8.12) sR(−A−) = sR(A+).

To clarify the relations between A+ and −A−, note that by e.g. [77, Lemma
1, p.75] we have (A+)

∗ = −A−, and thus one obtains (8.12) once again.
It is well-known that σ(A−) ⊂ {λ : −‖b‖∞ ≤ Reλ ≤ 0} since b ≥ 0, that

σ(A−) is invariant under conjugation, and that it consists of a discrete set of
eigenvalues since A− has compact resolvent. Moreover if b ≥ 0 is non-zero,
we have σ(A−) ∩ iR = ∅ if ∂M 6= ∅ and σ(A−) ∩ iR = {0} (with constants
as eigenfunctions) if M has no boundary. (See e.g. [47, p.74], where the
smoothness of b assumed there does not play a role in these statements, or
[1, Section 4].)

In the latter case, let P0 be the Riesz projection corresponding to 0 and
equip X0 = (I − P0)X with the inner product norm

‖(u0, u1)‖X0
= ‖(−∆)1/2u0‖L2 + ‖u1‖L2 , (u0, u1) ∈ X0.

Then Ṫ−(t) := T−(t) ↾X0
, t ∈ R, is a C0-group on the Hilbert space X0

generated by Ȧ− := A− ↾X0
, which is contractive for t ≥ 0. Moreover, by
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e.g. [1, Section 4], we have σ(Ȧ−) = σ(A) \ {0} ⊂ {λ : Reλ ≤ 0} and there
are c1, c2 > 0 with

c1‖R(λ,A−)‖B(X) ≤ ‖R(λ, Ȧ−)‖B(X0) ≤ c2‖R(λ,A−)‖B(X)

for λ ∈ ρ(A−) with |λ| ≥ ǫ0 for an appropriate ǫ0 > 0. This construction
allows one, in particular, to study the energy asymptotics for (8.7) in a
unified manner, see e.g. [1] (assumption [1, (2-6)] holds due to [47, p.74]),

and also [19] and [11]. We will also use Ȧ− in the sequel to setudy the
resolvent of A−, see Example 8.7.

Before we consider spectrum and resolvent of A± in specific cases, we first
establish the required properties of K,

Proposition 8.1. Let f and b satisfy (8.3). Then the map K : R×X → X
defined above is jointly continuous and collectively compact. If also

(8.13) |f(t, x, ζ)| ≤ κ(t)(1 + |ζ|)

for κ from (8.3) and all (t, x, ζ) ∈ R ×M× C, then ‖K(t, w)‖ ≤ cκ(t)(1 +
‖w‖) for all w ∈ X and some c > 0.

Proof. The last claim is clear. For the first, let (tn)
∞
n=1 ⊂ R and (wn)

∞
n=1 ⊂

X be such that tn → t in R and wn = (un, vn) → w = (u, v) in X as n→ ∞.
Since V is compactly embedded in L2α(M), there is a subsequence (nk)
and a map g ∈ L2α(M) such that unk

→ u in L2α(M) and pointwise a.e. as
k → ∞ and |unk

| ≤ g a.e. for all k. As noted above, f is jointly continuous in
(t, ζ), and since κ is locally bounded we have m := supn κ(tn) <∞. Hence,
f(tnk

, ·, unk
) tends pointwise a.e. to f(t, ·, u) as k → ∞ and |f(tnk

, ·, unk
)| ≤

m(1 + |g|α) ∈ L2(M) by (8.3). It follows f(tnk
, ·, unk

) → f(t, ·, u)in L2(M)
as k → ∞, and so K is continuous.

To prove compactness, take t ∈ R and a bounded sequence (wn)
∞
n=1 in X.

Again, there is a subsequence (nk) and maps g ∈ L2α(M) and u ∈ V such
that unk

→ u in L2α(M) and pointwise a.e. as k → ∞ and |unk
| ≤ g a.e.

for all k. As above, we infer that f(t, ·, unk
) tends to f(t, ·, u) in L2(M),

and thus K(t, ·) : X → X is compact. To use Lemma 7.1, let t0, r > 0,
t, s ∈ [−t0, t0] and ‖w‖ ≤ r. Due to Sobolev’s embedding, we then obtain
‖u‖L2α ≤ Cr for a constant C > 0 independent of r, and (8.3) yields

‖f(t, ·, u)− f(s, ·, u)‖L2(M) ≤ω(|t− s|)‖1 + |u|α‖L2(M)

≤ω(|t− s|)(vol(M)
1

2 + Cαrα).

As ω(τ) → 0 as τ → 0, the mapK is collectively compact by Lemma 7.1. �

Due to this result, Corollary 6.6 and Proposition 6.3, if α ≤ 1 in (8.3)
then the operators ±K(±t, ·) fit to Theorem 7.6 and its corollaries.

If 1 < α < d/(d − 2)+, we need a sign condition and some extra time
regularity of f to show global existence by means of a standard energy
estimate, cf. e.g. [16, Chapter 6]. We define the potential of ζ 7→ f(t, x, ζ)
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by the (real) line integral

(8.14) ϕ(t, x, ζ) =

∫ 1

0
f(t, x, τζ) · ζdτ

for (t, x, ζ) ∈ R×M× C. Notice that

(8.15) |ϕ(t, x, ζ)| ≤ cκ(t)(1 + |ζ|α+1), (t, x, ζ) ∈ R×M× C,

for a constant c > 0, by (8.3). In the next result it is assumed that ϕ is
differentiable in ζ with ∇ζϕ = f . We first discuss this assumption.

Remark 8.2. If f is C1 in ζ = (ξ, η), then the same is true for ϕ. We
then have ∇ζϕ = f if and only if ∂ηf1 = ∂ξf2. However, ∇ζϕ also exists
and is equal to f for the standard example f(t, x, ζ) = ψ(t, x, |ζ|2)ζ, where
ψ : R × M × R → R is continuous in the third variable. Here we do not
need differentibility of f in ζ and obtain

ϕ(t, x, ζ) =
1

2

∫ |ζ|2

0
ψ(t, x, r)dr.

We note that in the next proposition we do no use the results discussed in
Section 6, besides a variant of the basic Theorem 6.1. Instead we construct
the solutions as weak* limits of (subsequences of) solutions to regularized
problems. This standard method is based on uniform bounds for the energy
and the compactness of K. (See e.g. [72, Section 4.4] for a similar approach
using a Galerkin approximation.)

Proposition 8.3. Let b and f satisfy (8.3) with 1 ≤ α < d/(d− 2)+ and ϕ
be given by (8.14). Assume that ϕ is differentiable in the third variable,

(8.16) ϕ ≥ 0, ∇ζϕ = f, |f(t, x, ζ)−f(s, x, ζ)| ≤ ℓ(t0)|t−s|(1+ |ζ|)

for t0 > 0, t, s ∈ [−t0, t0], ζ ∈ C, x ∈ M, and a locally bounded map
ℓ : [0,∞) → [0,∞). Then (8.5) and (8.11) have global solutions w such that
‖w(t)‖ ≤ c(t0, r) for 0 ≤ t ≤ t0 and ‖(u0, u1)‖ ≤ r and every r, t0 > 0.

Proof. We only treat (8.5) since (8.11) is completely analogous. For the
energy estimate we need classical solutions of (8.1) so that we approximate
f and w0 = (u0, u1) ∈ X by more regular functions. Let t ∈ R, x ∈ M,
ζ ∈ C, t0 > 0, and n ∈ N. Take standard mollifiers ρn : R2 → [0,∞) with
support in B(0, 1n) and functions χn ∈ C1(R2,R2) with range in B(0, n+1),
χn(ζ) = ζ for |ζ| ≤ n, |χ′

n(ζ)| ≤ c, and |χn(ζ)| ≤ c|ζ| for a constant c ≥ 1.
We set

ϕ̃n(t, x, ζ) = ϕ(t, x, χn(ζ)), ϕn(t, x, ·) = ρn ∗ ϕ̃n(t, x, ·),

f̃n(t, x, ζ) = χ′
n(ζ)

⊤f(t, x, χn(ζ)), fn(t, x, ·) = ρn ∗ f̃n(t, x, ·).

It is straightforward to check that ∇ζϕn = fn and ϕn ≥ 0 for all n.

Moreover, for each n ∈ N, the maps f̃n, fn, ∂ζfn, ∂tfn are bounded
on [−t0, t0] × M × C (in general not uniformly in n) and there exist
cn,k = cn,k(t0) ≥ 0 such that |∂kζϕn(t, x, ζ)| ≤ cn,k(1 + |ζ|1+α) for (t, x, ζ) ∈
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[−t0, t0] ×M× C and k ∈ N0. Finally, fn and ϕn satisfy (8.3) respectively
(8.15) with constants uniform in n, as well as

|∂tfn(t, x, ζ)| ≤ cℓ(t0)(1 + |ζ|) and |∂tϕn(t, x, ζ)| ≤ cℓ(t0)(1 + |ζ|2)

for n ∈ N and a.e. t ∈ [−t0, t0]. Here and below in this proof we denote
by c and C constants which may vary from line to line and depend only on
t0 > 0 and quantities given by (8.3) and (8.16). In particular, they do not
depend on n, t ∈ [0, t0], or w0. Set Kn(t, w) := (0,−fn(t, ·, u)). Observe
that Kn : [−t0, t0] × X → X is (globally) Lipschitz for each n ∈ N by the
properties of fn.

Let w0 = (u0, u1) ∈ X and consider a sequence (w0,n)
∞
n=1 in D(A+)

with w0,n = (u0,n, u1,n) such that wn → w0 in X as n → ∞. Due to
[55, Theorem 6.1.6], problem (8.5) for Kn and w0,n has a (unique) solution
wn ∈ C1([0,∞),X) ∩ C([0,∞),D(A+)), where D(A+) is endowed with the
graph norm. It is now easy to see that wn = (un, ∂tun), where

un ∈ C2([0,∞), L2(M)) ∩ C1([0,∞), V ) ∩ C([0,∞),H2(M))

solves (8.1) for fn and w0,n.
We show that the solutions wn are bounded in X uniformly in n ∈ N and

then pass to the limit as n→ ∞. To this aim, we look at the energies

E0(w) =
1

2

∫

M
(|∇u|2 + |∂tu|

2)dx, En(t, w) = E0(w) +

∫

M
ϕn(t, x, u)dx

for w = (u, v) ∈ X. The above observations imply that for all w ∈ X and
t > 0 one has E0(w) ≤ En(t, w) ≤ c(1+‖w‖1+α

X ), En(t, ·), E
0(·) ∈ C1(X,R),

and En(·, w) ∈ W 1,∞
loc (R), where we also use that H1(M) →֒ Lα+1(M) in

view of α+ 1 < 2d/(d − 2)+. For a.e. t ∈ [0, t0], we compute

d
dtEn(t, wn(t)) =

∫

M

[
∂tun(t) · [∂ttun(t)−∆un(t) + fn(t,·, un(t))]

+ (∂tϕn)(t, ·, un(t))
]
dx

=

∫

M

[
b|∂tun(t)|

2 + (∂tϕn)(t, ·, un(t))
]
dx

≤ c(‖(un(t), ∂tun(t))‖
2
L2 + 1),

En(t, wn(t)) ≤ En(0, w0,n) + c+ c

∫ t

0

(
‖un(s)‖

2
L2(M) + En(s,wn(s))

)
ds.

We can bound the L2-norm of un(t) by means of un(s) = u0,n+
∫ s
0 ∂tun(τ) dτ ,

so that

En(t, wn(t)) ≤ cEn(0, w0,n) + c+ c

∫ t

0
En(s,wn(s)

)
ds.

Gronwall’s inequality then yields

E0(t, wn(t)) ≤ En(t, wn(t)) ≤ c(‖w0,n‖
1+α
X + 1)ect ≤ C(t0)(‖w0‖

1+α
X + 1),
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and hence

(8.17) ‖wn(t)‖
2
X = ‖un(t)‖

2
L2 + 2E0(t, wn(t)) ≤ C(t0)(‖w0‖

1+α
X + 1)

for 0 ≤ t ≤ t0 and constants not depending on n and w0.
Using (8.17), we can find a subsequence of (wn)

∞
n=1, denoted by the same

symbol, such that un and ∂tun tend to functions u and v weakly* in each
L∞([0, t0], V ) respectively L∞([0, t0], L

2(M)), and w = (u, v) satisfies (8.17)
for a.e. t ∈ [0, t0]. It is straightforward to check that v = ∂tu, and so wn

converges to w = (u, ∂tu) weakly* in L∞([0, t0],X) as n→ ∞. Moreover, by
the uniform bound (8.17) and the compact embedding from [63, Corollary 4]
the sequence (un) is precompact in C([0, t], L2α(M)), hence in L2α([0, t0]×
M). There thus exists a subsequence, also denoted by (un), such that un →
u in L2α([0, t0]×M) and pointwise a.e., as well as |un| ≤ g a.e. for a function
g ∈ L2α([0, t0]×M).

To show convergence of (fn(t, ·, un(t))) and thus of Kn(t, wn), let ε > 0
and take t ∈ [0, t0] such that (un(t, ·)) tends to u(t, ·) a.e. and is bounded a.e.
by g(t, ·) ∈ L2α(M). Choose x ∈ M outside this null set. For sufficiently
large n we have |u(t, x)| ≤ n − 1. There is a number δ ∈ (0, 1) such that
|f(t, x, ζ)− f(t, x, u(t, x))| ≤ ε if |ζ − u(t, x)| ≤ δ since f is continuous in ζ.
So there exists an index nε such that for all n ≥ nε and |η| ≤ 1/n we have
|un(t, x)− η| < n and

|f̃n(t, x, un(t, x)−η)− f(t, x, u(t, x))|

= |f(t, x, un(t, x)− η)− f(t, x, u(t, x))| ≤ ε.

It follows that |fn(t, x, un(t, x))−f(t, x, u(t, x))| ≤ ε, and hence fn(t, ·, un(t))
tends pointwise a.e. to f(t, ·, u(t)) as n→ ∞, for a.e. t ∈ [0, t0].

Since fn satisfies (8.3) uniformly in n, we have |fn(t, ·, un(t))| ≤ cκ(t)(1+
g(t, ·)α) and thus fn(t, ·, un(t)) → f(t, ·, u(t)) in L2(M) for a.e. t ∈ [0, t0].
Moreover, by (8.3) and (8.17) the map t 7→ ‖fn(t, ·, un(t))‖L2(M) is locally
bounded independent of n. Therefore the right-hand side in the formula for
mild solutions

wn(t) = T+(t)w0,n +

∫ t

0
T+(t− s)Kn(s,wn(s))ds

converges in C([0, t0],X) as n→ ∞. As seen above, the left-hand side tends
to w = (u, ∂tu) weakly* in L∞([0, t0],X) so that

w(t) = T+(t)w0 +

∫ t

0
T+(t− s)K(s,w(s))ds

holds for a.e. t ∈ [0, t0]. Since the right-hand side is continuous and t0 > 0
is arbitrary, w solves (8.5) and satisfies (8.17) for all 0 ≤ t ≤ t0. �

Combined with the above analysis and known spectral properties, Theo-
rem 7.6 now shows growth of orbits and thus global instability in concrete
examples. One could also use Theorem 7.4, adding more assumptions on f
to satisfy (A1). We avoid doing so since the modifications are easy. Note
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that in view of (8.12), we can switch freely between the two equations (8.5)
and (8.11). So we concentrate just on (8.11).

As the first (toy) example, we improve Theorem III in [71] in various
respects: We can treat time-depending f , reduce the regularity requirements
in ζ from C2 to continuity, and obtain exponential growth instead of mere
unboundedness. In all examples we assume that f satisfies (8.3) and either
(8.13) or (8.16).

Example 8.4. Let b > 0 be constant and M be a d-dimensional, compact,
smooth and connected Riemannian manifold without or with boundary. It
is straightforward to check that the (point) spectrum of A− is given by
an unbounded sequence of eigenvalues on − b

2 + iR and at most finitely

many points in (−b, 0]. It follows sR(−A−) ≥ b
2 . By Corollary 7.9 and

Propositions 8.1 and 8.3, given a function a : [0,∞) → [0,∞) decreasing to
0, there are a dense set of initial values w0 ∈ X and t0 ≥ 0 such that the
corresponding solutions w(t, w0) of backward damped wave equation (8.11)

admit the lower bound ‖w(t, w0)‖ ≥ a(t)ebt/2 for t ≥ t0. In other words,
the energy of solutions to (8.9) grows exponentially in backward time for a
dense of initial values.

The next example generalizes the preceding one by allowing the damping
b to be non-stationary and far from being smooth. At the same time, it
concerns only the case d = 1.

Example 8.5. Let now M = [0, 1] and b ∈ BV([0, 1]) with b > 0. (Recall
that we then impose Dirichlet boundary conditions.) It was proved in [21,
Theorem 5.3] that there is a sequence of eigenvalues (λn)

∞
n=1 ⊂ σ(A−) with

Reλn → −β
2 as n→ ∞ where β :=

∫ 1
0 b(s)ds. So either −β

2 + iR contains an
infinite number of the eigenvalues of A−, or the resolvent of A− is unbounded

on −β
2 + iR, and therefore, sR(−A−) ≥ β

2 . As above, using Corollary 7.9
along with Propositions 8.1 and 8.3, for a given function a : [0,∞) → [0,∞)
decreasing to 0 we find a dense set of initial values w0 such the solutions of
(8.11) satisfy ‖w(t, w0)‖ ≥ a(t)eβt/2 for t ≥ t0 and some t0 ≥ 0. Moreover,
by [28, Theorem 3.4], the same result holds without assuming b > 0 if ‖b‖∞
is sufficiently small.

We proceed with more involved frameworks, relying on quite subtle results
from the spectral theory of damped wave equations.

Example 8.6. Let M be a manifold as in Example 8.4, having no boundary.
(One may also consider manifolds with boundary and the corresponding
generalised geodesic flows, but this setting leads to technical complications,
and is thus omitted for simplicity.) To explain our next example, we need to
introduce several auxiliary notions pertaining to dynamics of the (Hamilton-
ian) geodesic flow (gt)t∈R on a Riemannian cosphere bundle S∗M over M.
A relevant discussion of geodesic flows can be found e.g. in [44, Appendix
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B], see also [12, Section 2.1]. Write

ρt = (xt, ξt) = gt(ρ0), ρ0 = (x0, ξ0) ∈ S∗M, t ∈ R,

and let π : S∗M → M be a canonical projection. Given a damping b ∈
C∞(M) with b ≥ 0, define its Birkhoff ergodic average over the geodesic

curve in M as 〈b〉t(ρ0) :=
1
2t

∫ t
−t(b ◦ π ◦ gs)(ρ0) ds, t > 0, and let

b− := sup
t>0

inf
ρ0∈S∗M

〈b〉t(ρ0) = lim
t→∞

inf
ρ0∈S∗M

〈b〉t(ρ0),

b+ := inf
t>0

sup
ρ0∈S∗M

〈b〉t(ρ0) = lim
t→∞

sup
ρ0∈S∗M

〈b〉t(ρ0).

Note that by the Birkhoff ergodic theorem, 〈b〉∞(ρ0) := limt→∞〈b〉t(ρ0)
exists almost everywhere with respect to the flow invariant (normalised)
Liouville measure on S∗M, and setting

b−∞ := ess infρ0∈S∗M 〈b〉∞, b+∞ := ess supρ0∈S∗M 〈b〉∞,

we have
b− ≤ b−∞ ≤ b+∞ ≤ b+,

where all of the inequalities can in general be strict. If the geodesic flow is
ergodic, then one has

b−∞ = b+∞ =
1

vol (M)

∫

M
b(x) dx := b∗∞.

It was proved in [47] that for every ǫ > 0 there are at most finite number

of the eigenvalues of A− outside the strip [− b+
2 − ǫ,− b−

2 + ǫ] + iR (where,
in particular M may have a boundary). So that there is a sequence of the

eigenvalues clustering at β + iR for some β ∈ [− b+
2 ,−

b−
2 ] + iR, and then

arguing as in Example 8.5 one concludes that sR(−A−) ≥
b−
2 . We also refer

to [65] for comments on the generality of this result and an alternative proof.
The result was improved in [65] by showing that for every ǫ > 0 an infinite

number of the eigenvalues of A− belong to the strip [− b+∞
2 − ǫ,− b−∞

2 + ǫ]+ iR.

Moreover, as proved in [65], if (gt)t∈R is ergodic, then the eigenvalues of A−

cluster at − b∗
∞

2 + iR. (See also [5] for an illuminating discussion of these

results.) Thus, observing that sR(−A−) ≥ b−∞
2 , or, if (gt)t∈R is ergodic,

sR(−A−) ≥
b∗
∞

2 , we get an exponential lower norm bound for w(t, w0) given
by (8.11). Clearly, the two estimates for sR(−A−) considered in this example
may produce sR(−A−) > 0, and thus yield a dense set of initial values for
exponentially growing solutions to (8.11).

So far, our examples depended on the properties of the spectrum of A−.
However, there are interesting situations when one has to invoke the resol-
vent of A− and thus to use a full strength of our Corollary 7.9.

Example 8.7. There are many examples in the literature where (Ṫ−(t))t≥0

satisfies ‖Ṫ−(t)R(µ0, Ȧ)
s‖ ≤ Mse

−ωst for t ≥ 0 and some s, ωs,Ms > 0 as

well as, at the same time, ω0(Ṫ−) ≥ 0. In other words, (Ṫ−(t))t≥0 decays
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exponentially in the operator norm as a map fromD((−Ȧ−)
s) for some s > 0

to X, but not in B(X). By interpolation, it then follows that (Ṫ−(t))t≥0

enjoys such a decay for all s > 0, and for us it suffices to fix s = 1.
In view of e.g. [76, Theorem 1.4], for some a, c > 0 the resolvent R(λ, Ȧ−)

then extends analytically to {λ : Reλ ≥ −a} and is norm bounded there

by c(1 + |λ|). Note that R(λ, Ȧ−) is unbounded on iR. Indeed, if this was

wrong, using the Neumann’s series expansion for R(is, Ȧ−), s ∈ R, and the

resolvent estimate ‖R(λ, Ȧ−)‖ ≤ (Reλ)−1 for Reλ > 0, we would infer that

s0(Ȧ−) < 0, and then ω0(Ṫ−) < 0 by (2.3). By a standard application

of Phragmen–Lindelöf’s theorem, R(λ, Ȧ−) also has to be unbounded on
a vertical line −β + iR for some β ∈ (0, a]. As a result, the resolvent of
−A− is unbounded on β + iR, so that sR(−A−) ≥ β > 0. Hence, as above
for a dense set of initial values we infer that the norms of solutions to the
backward damped wave equation (8.11) grow exponentially and thus show
a global instability result.

To describe concrete situations when such an effect can happen recall
that if M is as in Example 8.6 and is negatively curved, then by a classical
result due to Anosov (see e.g. [2]) a geodesic flow on S∗M admits countably
many periodic orbits. It was revealed in [61, Theorem 1] that each such an

orbit gives rise to a smooth damping b such that (Ṫ−(t))t≥0 does not decay

exponentially, while its orbits Ṫ−(t)x decay exponentially for sufficiently
smooth initial data x. More precisely, it was shown in [61] that, for any
periodic geodesic γ in M and b0 ∈ C∞(M), there exists ǫ > 0 such that if
b0 vanishes in an ǫ-neighborhood of γ and is positive everywhere else, then
such a decay takes place for b = cb0 for all sufficiently large c > 0.

If M is a hyperbolic surface with constant negative curvature, then as
proved in [40, Theorem 1.1], the decay takes place for all smooth dampings
b. This property can in fact be generalized to all surfaces M whose geo-
desic flow has the so-called Anosov property, see [25, Theorem 6], though
such a generalisation is very deep and demanding. Other instances of the
exponential decay for only smooth enough orbits of (Ṫ−(t))t≥0, sometimes
with explicit rates, can also be found in [15, Section 4], [54] and [60, Theo-
rem 3 and the subsequent Remark]. We avoid their discussion to keep our
exposition within reasonable limits.

Note that the assumption b ≥ 0 was chosen just to fit in the framework of
the existing work, and it can be avoided in many cases (e.g. in Examples 8.5,
8.4, and 8.6). In this case, sR provides just a lower bound, not necessarily
growing exponentially.

Finally, we show non-stabilizability of certain nonlinear infinite-dimen-
sional control systems. In this way, we generalize the corresponding results
in [36] or [73], for instance, where the operators B, F, and C used below
are linear and bounded. The literature on stabilization of control systems
is enormous (and, thus, we skipped a discussion of asymptotics for damped
wave equations as a stabilization problem, see e.g. [45] and [46] concerning
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that). We just refer to [43] and [66] as sample works on nonlinear stabi-
lization and to [18] for general concepts of nonlinear control. For basics of
linear theory one may consult [26, Section VI.8].

Example 8.8. Let (T (t))t≥0 be a C0-semigroup on a Banach space X with
generator A, and let the control map B : U → X, the feedback F : Y →
U and the observation map C : X → Y be all (possibly) nonlinear and
continuous with linear growth (i.e., satisfy (6.3) with a constant c), where U
and Y are Banach spaces. Combined with Corollary 6.6 and Proposition 6.3,
Theorems 4.6 and 7.6 imply the following results:

If sR(A) = 0, then the system x′ = Ax + BFCx is not exponentially
stabilizable by a compact nonlinear feedback F, i.e., it will always have so-
lutions not decaying exponentially. If sR(A) > 0, the system is not strongly
stabilizable by a compact nonlinear feedback F, i.e., some of its solutions
will not converge to zero. (In fact, they will grow exponentially.)

The analogous statement holds for time-discrete feedback systems xn+1 =
Axn+BFCxn, n ≥ 0, for bounded A and continuous B, F , and C mapping
bounded sets into bounded sets, if one replaces sR(A) with re(A).

9. Appendix

In this section we prove several results on geometric properties of Banach
spaces and fine spectral theory of semigroups and their generators which
are crucial for our lower estimates. Some of them, e.g. Theorem 2.2, are of
independent interest. The exposition here follows [49, Section 4] with appro-
priate changes and improvements, which warrant an independent treatment.
The section makes the paper essentially self-contained.

First, we note a geometric statement from Banach space theory. Its ver-
sions are often used in iterative constructions arising in the study of orbits
of linear operators, and it are important in our studies too. To make our
presentation self-contained and to provide a better understanding of our
constructions, we give its proof below. Let X be a Banach space. Recall
that a subset Λ ⊂ X∗ is norming if

‖x‖ = sup
{ |〈x, y〉|

‖y‖
: y ∈ Λ, y 6= 0

}

for all x ∈ X. Part (a) of the next result is [48, Lemma V.37.6]. We add
two related statements whose proof is a variation of the arguments in [48].

Lemma 9.1. Let F be a finite-dimensional subspace of a Banach space X
and ε > 0.

(a) There exists a closed subspace M ⊂ X of finite codimension such
that

(9.1) ‖f +m‖ ≥ (1− ε)max
{
‖f‖, ‖m‖/2

}

for all f ∈ F and m ∈M .
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(b) Let M be given by (a) and E be a finite-dimensional subspace with
F ⊂ E. Then there exists L ⊂ M of finite codimension such that
(9.1) holds for f ∈ E and m ∈ L.

(c) If Λ ⊂ X∗ is a norming set, then there exists a subspace M ⊂ X

satisfying (9.1) such that M =
⋂k

j=1Ker y∗j for some y∗1, . . . , y
∗
k ∈ Λ.

Proof. We can assume that ε < 1. The unit sphere in F is compact, therefore
there exists a finite subset D ⊂ {f ∈ F : ‖f‖ = 1} satisfying dist {e,D} ≤
ε/2 for all f ∈ F with ‖f‖ = 1. Let Λ ⊂ X∗ be norming. For each
d ∈ D there is a functional y∗d ∈ Λ such that

∣∣〈d, y∗d/‖y∗d‖
〉∣∣ > 1 − ε/2. Set

M =
⋂

d∈D Ker y∗d. Clearly, M is closed with finite codimension.
To prove the required inequality, let f ∈ F and m ∈ M . We can assume

that ‖f‖ 6= 0 since the assertion is clear for f = 0. Choose d ∈ D with∥∥d− f/‖f‖
∥∥ ≤ ε

2 . As in [48, Lemma V.37.6], we then estimate

‖f +m‖ ≥
∣∣∣
〈
f +m,

y∗d
‖y∗d‖

〉∣∣∣ =
∣∣∣
〈
f − ‖f‖d,

y∗d
‖y∗d‖

〉
+

〈
‖f‖d,

y∗d
‖y∗d‖

〉∣∣∣

≥ ‖f‖(1− ε/2) −
∥∥f − ‖f‖d

∥∥ ≥ ‖f‖(1− ε).

One can now conlcude as in [48, Lemma V.37.6] to show (a) and (c). Part
(b) is is direct consequence of the construction above. �

If X is a Hilbert space, we can take M = F⊥ in the lemma. Thus
the subspace M ⊂ X constructed above plays a role of the orthogonal
complement of a finite-dimensional subspace for general Banach spaces.

Next we turn to the spectral theory of semigroups related to constru-
tion of approximate eigenvectors with some additional geometric properties.
First we prove a property of the boundary essential spectrum of unbounded
operators, well-known in the bounded case.

Lemma 9.2. Let A be a closed, densely defined operator on a Banach space
X, such that ρ(A) 6= ∅, and λ ∈ ∂σe(A). Let M ⊂ X be a closed subspace of
finite codimension and ǫ > 0. Then there exists a unit vector x ∈M ∩D(A)
such that ‖(A− λ)x‖ < ǫ.

Proof. We will rely on the fact, that the statement is true if A is bounded,
see e.g. [48, Proposition III.19.1 and Theorem III.16.8]. Without loss of
generality we may assume that λ = 0.

Let µ ∈ ρ(A) and let T := A(A − µ)−1 = I + µ(A − µ)−1. Then T is
bounded. Moreover, σe(T ) \ {1} = {1 + µ

z−µ : z ∈ σe(A)} by (2.1). So

0 ∈ ∂σe(T ). Let M ′ = Im ((A − µ) ↾M ). Then codimM ′ < ∞, and as
T ∈ B(X) there exists a sequence (xn)

∞
n=1 ⊂ M ′ such that ‖xn‖ = 1 for

all n and Txn → 0 as n → ∞. Set yn = (A − µ)−1xn for n ∈ N. Then
yn ∈M ∩D(A) for all n and Ayn → 0 as n→ ∞. Moreover, since

Txn = xn + µ(A− µ)−1xn = xn + µyn,

we have lim infn→∞ ‖yn‖ = 1/|µ| > 0. It remains to choose ayn for appro-
priate a > 0 and n. �
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The proof of Theorem 2.2 is based on the next lemma.

Lemma 9.3. Let A generate the C0-semigroup (T (t))t≥0 on a Banach space
X. Let either ω > se(A) or ω = se(A) and (ω + iR) ∩ σe(A) = ∅. Assume
that either

σp(A) ∩ (ω + iR) is infinite

or

σp(A) ∩ (ω + iR) is at most finite and lim sup
|b|→∞

‖R(ω + ib, A)‖ = ∞.

Then there exist (µn)
∞
n=1 ⊂ ω+ iR and (un)

∞
n=1 ⊂ D(A) such that ‖un‖ = 1

for all n ∈ N, ‖(µn − A)un‖ → 0 as n → ∞, and for every y∗ ∈ D(A∗) we
have

〈un, y
∗〉 → 0, n→ ∞.

In particular, if X is reflexive, then (un)
∞
n=1 tends weakly to 0 (since then

D(A∗) is dense in X∗).

Proof. By our assumptions, there exist a sequence (bn)
∞
n=1 with |bn| → ∞

and unit vectors un ∈ D(A) for n ≥ 1 such that ‖(ω + ibn − A)un‖ → 0 as
n→ ∞. Set µn = ω + ibn. We show that

〈un, y
∗〉 → 0, n→ ∞,

for each y∗ ∈ D(A∗). Let y∗ ∈ D(A∗) ⊂ X∗ have norm 1. Pick a vector
y ∈ D(A) with 〈y, y∗〉 > 1

2 . Let M = Ker y∗. Write un = mn + αny for
some mn ∈ M and αn ∈ C. Then the sequences (mn)

∞
n=1 and (αn)

∞
n=1 are

bounded. Furthermore,

〈(µn −A)un, y
∗〉 → 0, n→ ∞,

and

〈(µn −A)un, y
∗〉 = 〈(µn −A)mn, y

∗〉+ αn〈(µn −A)y, y∗〉

= αnµn〈y, y
∗〉 − 〈mn, A

∗y∗〉 − αn〈Ay, y
∗〉.

Since the last two terms are uniformly bounded and |µn| → ∞, we have
αn → 0 as n→ ∞. It follows 〈un, y

∗〉 = αn〈y, y
∗〉 → 0. �

Let (T (t))t≥0 be a C0-semigroup on a Banach space X, and set

‖x‖1 := sup{|〈x, x∗〉| : x∗ ∈ D(A∗), ‖x∗‖ ≤ 1}

for x ∈ X. Then ‖ · ‖1 is an equivalent norm satisfying

(9.2) ‖x‖1 ≤ ‖x‖ ≤ α‖x‖1, where α := lim sup
t→0

‖T (t)‖,

for all x ∈ X. See e.g. [52, Theorems 1.3.1 and 1.3.5]. Hence, renorming X
with ‖·‖1, we can make D(A∗) a norming set for the Banach space (X, ‖·‖1).

Recall the definitions of the resolvent bound sR and of the notion of
admissibility given in Section 2. Now we are ready to prove Theorem 2.2
stated there and describing one of admissible ω in resolvent terms. More
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precisely, we show that if A generates a C0-semigroup (T (t))t≥0 on a Banach
space X, then the number sR(A) given by (2.4) is admissible.

Proof of Theorem 2.2. LetM be a closed subspace of finite codimension

inX given byM =
⋂k

j=1Ker y∗j for some functionals y∗1 , . . . , y
∗
k ∈ D(A∗). Let

ε > 0 and t0 > 0 be fixed, and set K := sup{‖T (t)‖ : 0 ≤ t ≤ t0}. Since the
admissibility does not depend on equivalent renormings of the underlying
space, in view of (9.2), we can assume that D(A∗) is a norming set for X.

Let sR(A) = se(A) and µ ∈ σe(A)∩ (sR(A)+ iR). Lemma 9.2 then yields
x ∈ D(A) ∩M with ‖x‖ = 1 and ‖(A − µ)x‖ ≤ ε. Hence

‖T (t)x− eµtx‖ =
∥∥∥
∫ t

0
eµ(t−s)T (s)(µ −A)xds

∥∥∥ ≤ εt0e
sR(A)t0K

for all t ∈ [0, t0].
Let sR(A) ≥ se(A) and σe(A) ∩ (sR(A) + iR) = ∅. Employing Lemma

9.3, we find sequences (µn)
∞
n=1 ⊂ C with µn = sR(A) + ibn for n ∈ N and

(un)
∞
n=1 ⊂ D(A) with ‖un‖ = 1 such that

〈un, y
∗〉 → 0 for every y∗ ∈ D(A∗) and ‖(µn−A)un‖ → 0, n→ ∞.

By [59, Lemma 7.4], there exists a finite-dimensional subspace F ⊂ D(A)
such that X = M ⊕ F . Let P be the projection onto F with KerP = M .
By the choice of un we have ‖Pun‖ → 0 so that ‖(I −P )un‖ → 1 as n→ ∞
and ∥∥∥un −

un − Pun
‖un − Pun‖

∥∥∥ → 0, n→ ∞.

Choose n0 ∈ N such that
∥∥∥un0

−
un0

− Pun0

‖un0
− Pun0

‖

∥∥∥ ≤ min
{ ε

4K
,

ε

4esR(A)t0

}
,

‖(µn0
−A)un0

‖ ≤
ε

4t0Kmax{1, et0sR(A)}
.

Set

µ = µn0
and x =

un0
− Pun0

‖un0
− Pun0

‖
.

For every 0 ≤ t ≤ t0, we have

‖T (t)un0
− eµtun0

‖ =
∥∥∥
∫ t

0
eµ(t−s)T (s)(µn0

−A)un0
ds
∥∥∥ ≤ ε/4

and

‖T (t)x− eµtx‖ ≤ ‖T (t)x−T (t)un0
‖+ ‖T (t)un0

− eµtun0
‖+ ‖eµtun0

− eµtx‖

≤ K‖x− un0
‖+ ε/4 + etsR(A)‖x− un0

‖

< ε.

This finishes the proof. �
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Remark 9.4. If X is a reflexive Banach space, then the proof of the previous
theorem is simpler. In this case it is not necessary to do the renormalization
since ‖ · ‖1 = ‖ · ‖ by the density of D(A∗), and the subspace M in the
statement of Theorem 2.2 can be any close subspace of finite codimension.
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