KIT | KIT-Bibliothek | Impressum | Datenschutz

Explainable artificial intelligence for omics data: a systematic mapping study

Toussaint, Philipp A. ORCID iD icon 1,2; Leiser, Florian ORCID iD icon 1,2; Thiebes, Scott ORCID iD icon 1,2; Schlesner, Matthias; Brors, Benedikt; Sunyaev, Ali 1,2
1 Fakultät für Wirtschaftswissenschaften (WIWI), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Researchers increasingly turn to explainable artificial intelligence (XAI) to analyze omics data and gain insights into the underlying biological processes. Yet, given the interdisciplinary nature of the field, many findings have only been shared in their respective research community. An overview of XAI for omics data is needed to highlight promising approaches and help detect common issues. Toward this end, we conducted a systematic mapping study. To identify relevant literature, we queried Scopus, PubMed, Web of Science, BioRxiv, MedRxiv and arXiv. Based on keywording, we developed a coding scheme with 10 facets regarding the studies’ AI methods, explainability methods and omics data. Our mapping study resulted in 405 included papers published between 2010 and 2023. The inspected papers analyze DNA-based (mostly genomic), transcriptomic, proteomic or metabolomic data by means of neural networks, tree-based methods, statistical methods and further AI methods. The preferred post-hoc explainability methods are feature relevance (n = 166) and visual explanation (n = 52), while papers using interpretable approaches often resort to the use of transparent models (n = 83) or architecture modifications (n = 72). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000166074
Veröffentlicht am 29.12.2023
Originalveröffentlichung
DOI: 10.1093/bib/bbad453
Scopus
Zitationen: 5
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2024
Sprache Englisch
Identifikator ISSN: 1467-5463, 1477-4054
KITopen-ID: 1000166074
Erschienen in Briefings in Bioinformatics
Verlag Oxford University Press (OUP)
Band 25
Heft 1
Seiten 1-16
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 18.12.2023
Schlagwörter explainable artificial intelligence, omics, biomedical data, machine learning, interpretable artificial intelligence, systematic mapping study
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page