Frauke Hinrichs^a, Georg Winkens^a, Lena Katharina Kramer^a, Daniel Schliephake^a, Gabriely Falcão^a, Mathias Christian Galetz^b, Haruyuki Inui^{c,d}, Alexander Kauffmann^{a,e,*} and Martin Heilmaier^a

^a Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Str. 4, 76131 Karlsruhe, Germany

^b DECHEMA-Forschungsinstitut, High Temperature Materials, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany

^c Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

^d Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyoku, Kyoto 606-8501, Japan

^e Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

* corresponding author mail: alexander.kauffmann@kit.edu (A. Kauffmann) phone: +49 721 608 42346

Abstract

- 1 The replacement of state-of-the-art Ni-based superalloys in high temperature applications to improve
- 2 efficiency of energy conversion systems by novel metallic-intermetallic materials is currently obstructed
- 3 by two major limitations of many candidate materials: a lack of oxidation resistance and/or a lack of
- 4 ductility at low temperatures. No accurate predictive simulation capabilities for either of the two
- 5 properties exist at the moment and, thus, the community still relies on disruptive observations.
- 6 The monolithic single-phase solid solution Cr-36.1Mo-3Si (at.%) presented in this article is prepared by
- 7 a standard arc melting process. The crystal structure is disordered body centered cubic and the
- 8 microstructure forms dendritic in the as cast condition. The alloy meets for the first time both
- 9 fundamental requirements: (i) It exhibits resistance against pesting, nitridation and scale spallation as
- 10 common problems of the oxidation of Cr and Mo based alloys at elevated temperatures up to 1100°C.
- 11 (ii) At the same time, it shows sufficient ductility at low temperatures. The relevant mechanisms leading
- 12 to that outstanding and yet unmet property combination are stressed based on a comparison to a Si free
- 13 solid solution with the same Cr/Mo ratio and detailed microstructural investigations.

Keywords

14 solid solution, oxidation resistance, ductility, single phase, deformation twinning

1. Introduction

15 Even with the rapid development of renewable energy sources, improving the efficiency of energy conversion from fossil or synthetic fuels remains a relevant problem. One striking example is that 16 17 combustion engines in long-range aircrafts will not be replaced by all-electric technology within the upcoming decades [1,2]. Increasing operating temperatures is the most promising option to improve 18 19 efficiency in this case, which requires replacing single crystalline Ni-based superalloys employed in the 20 hottest sections of turbines by refractory element based metallic-intermetallic materials. The latter 21 possess higher solidus temperatures beyond 2000°C, thus, they can withstand higher temperatures and 22 stresses, potentially even without the need of additional cooling [3]. Promising examples for this are 23 Mo-based alloys [4], Nb-based alloys [5], or refractory element-based complex concentrated alloys [6]. 24 While strength and creep resistance in these alloys are already superior to Ni-based superalloys, 25 oxidation/corrosion resistance, mandatory to withstand the combustion atmosphere, and 26 ductility/toughness, needed for failure tolerance and device setting, still display barriers for the 27 development or application of candidate materials. Mo and most of its alloys suffer from catastrophic 28 oxidation ("pesting") above 500°C by the oxidation to MoO_3 along grain boundaries, which then 29 evaporates due to its high vapor pressure [7]. The progress of oxidation leads to a quick disintegration 30 of parts. In contrast, Cr is usually considered a passivating element that forms dense Cr_2O_3 scales. 31 However, Cr and Cr-based alloys suffer from scale spallation and nitridation when being exposed to air 32 at high temperatures [8,9]. Any previous successful attempt to address oxidation resistance in these alloy 33 systems came along with a significant deterioration in ductility as usually brittle intermetallic phases 34 that provide passivating elements were needed in high amounts [10,11]. It is relevant to note here, that in general (i) Mo-based alloys are free of nitridation problems, (ii) Cr-based alloys do not exhibit pesting 35 36 and (iii) disordered, body-centered cubic (bcc) solid solutions can possess ductility even at room 37 temperature [12].

The protective effect of a Cr_2O_3 layer formed on a Cr-Mo-Si alloy can depend decisively on the formation of a thin Si oxide sublayer at the interface between the outer Cr_2O_3 scale and the metallic

40 substrate as previously identified in Refs. [11,13]. These alloys were two-phase alloy with silicides and

resistant against pesting and nitridation but brittle and eventually difficult to manufacture. Interestingly,
the potentially ductile, disordered solid solution of the alloy in Ref. [11] also exhibited a continuous

42 the potentially ductic, disordered solid solution of the anoly in Ref. [11] also exhibited a continuous 43 Cr_2O_3 scale. In the present investigation, this (Cr,Mo,Si) solid solution was manufactured in monolithic

- 44 condition to investigate whether a silicide phase is really needed to obtain oxidation resistance and if
- 45 the solid solution is ductile.

To the best of our knowledge, the Si containing Cr-Mo solid solution derived from Ref. [11] and presented in this article meets for the first time both fundamental requirements regarding resistance against pesting, nitridation and scale spallation at elevated temperatures up to 1100°C as well as regarding sufficient ductility at low temperatures. The relevant mechanisms leading to that outstanding and yet unmet property combination are stressed based on a comparison to a Si free solid solution with

51 the same Cr/Mo ratio and detailed microstructural investigations.

2. Constitution and Microstructure

The two alloys, Cr-37.2Mo (at.% are used throughout the article unless stated otherwise) and Cr-36.1Mo-3Si, were investigated in the as cast condition after arc melting (see Materials and Methods section for detailed description). The desired composition of the Si containing solid solution corresponds to the experimentally assessed one from Ref. [11] and both solid solutions possess the same Cr/Mo ratio

56 for comparison purpose.

- 57 In Figure 1, scanning electron microscopy backscattered electron contrast (SEM-BSE) images of the
- coarse-grained, dendritic as cast microstructure are depicted for a) Cr-37.2Mo and b) Cr-36.1Mo-3Si.
- 59 For both alloys, the SEM-BSE micrographs show a continuous transition in atomic number Z contrast
- between the dendrite core and the interdendritic regions. Chemical compositions were confirmed by
 SEM based energy dispersive X-ray spectroscopy (SEM-EDS) analysis and deviations from the average
- 61 SEM based energy dispersive X-ray spectroscopy (SEM-EDS) analysis and deviations from the average 62 due to the dendritic microstructures are listed in Table 1. The minimum Cr/Mo ratio obtained is 1.30 to
- 63 1.51 in the dendrite centers. The maximum Cr/Mo ratio in the interdendritic regions amounts to 2.05 to
- 64 2.13. Si exhibits significant enrichment in the interdendritic regions of the Si containing solid solution.
- 65 No secondary phases are present. The dendrite spacings were directly measured from secondary dendrite
- arms in SEM-BSE micrographs and averaged which yields $(30 \pm 10) \mu m$ for Cr-37.2Mo and $(52 \pm 10) \mu m$
- 67 14) μm for Cr-36.1Mo-3Si. Interstitial contamination was determined using hot carrier gas extraction
- 68 (HCGE). For both alloys, N and O are about 450 and 750 at.-ppm (95 and 170 wt.ppm), respectively.
- 69 The contamination levels are low and representative for the arc melting method.
- For the desired compositions, the liquidus $T_{\rm L}$ and solidus temperatures $T_{\rm S}$ were calculated using 70 CALPHAD line simulations for equilibrium conditions. The determined temperatures are listed in 71 72 Table 1. The solidification of Cr-37.2Mo initiates at 2061°C with a composition of Cr-54Mo for the first 73 solid. This is higher than the experimentally detected composition of the dendrite cores due to off-centric 74 analysis in the 2D sections and the extended probe size of SEM-EDS. Under equilibrium conditions 75 solidification is completed at 1941°C. Due to non-equilibrium solidification in the arc melter, 76 completion of solidification is retarded down to about 1910°C according to the experimentally determined composition of the interdendritic regions. In Cr-36.1Mo-3Si, $T_{\rm L}$ is reduced by 62 K and the 77 78 composition of the first solid is Cr-52.6Mo-0.6Si according to the simulations. The experimentally 79 obtained Mo enrichment of the dendrite cores is lower than the simulation results again. A similar trend 80 is found for the Si depletion in the dendrite core. However, a qualitative agreement is obtained. The equilibrium solidification interval of the Si containing solid solution is calculated as $\Delta T = 217$ K and is 81 82 therefore larger than $\Delta T = 120$ K of the binary alloy. The retardation of solidification by the fast cooling 83 rate after arc melting might even reach 1670°C (solidus temperature of the experimentally determined 84 composition of the interdendritic regions).
- 85 The crystal structures are identified by X-ray diffraction (XRD) as single-phase, body centered cubic
- 86 (bcc) W prototype, Strukturbericht designation A2 (see the Supplementary Material S1). No secondary
- 87 phases are found in agreement with the microstructural investigations. The cubic lattice parameters and
- crystallographic densities are determined as a = 3.003 Å and $\rho = 8.42$ g/cm³ for Cr-37.2Mo and
- 89 a = 2.998 Å and $\rho = 8.27$ g/cm³ for Cr-36.1Mo-3Si, respectively.
- 90 Compared to previously reported lattice parameters for similar solid solutions [14], no relevant 91 deviations are detected. Si was previously noted to have no noticeable influence on the lattice parameter 92 of these solid solutions [15,16].
- 93 In summary, the Si content marks the main difference between the two alloys discussed in this article.
- 94 No distinct difference regarding the constituting phase, microstructure, Cr/Mo-ratio, density and lattice
- 95 parameter are identified.

Figure 1: Dendritic, single-phase microstructure of the two alloys by SEM-BSE: (a) Cr-37.2Mo and (b) Cr-36.1-3Si.

Table 1: Confirmation of the desired alloy compositions, contamination levels and relevant physical properties, e.g. lattice parameters, densities, liquidus and solidus temperatures from SEM-EDS, HCGE and XRD analyses and thermodynamic calculations. "Rel. Cr/Mo" indicates the ratio of detected Cr and Mo contents.

		Cr 27 2Ma			Cr 26 1Ma 2S;		
		Cr-37.2110			UT-30.1110-381		
		Total	Dendrite	Inter-	Total	Dendrite	Inter-
		Totai	core	dendritic	Total	core	dendritic
SEM-EDS	Cr / at.%	62.1	56.5	67.7	60.7	59.1	64.8
	Mo / at.%	37.9	43.5	32.3	36.6	39.0	31.6
	Si / at.%	_	_	_	2.7	1.9	3.6
	rel. Cr/Mo	1.63	1.30	2.13	1.63	1.51	2.05
HCGE	O / at.ppm	670 ± 340	_	_	770 ± 170	_	_
	N / at.ppm	460 ± 20	_	_	440 ± 10	_	_
XRD	a / Å	3.003	_	_	2.998	_	_
	ho / g/cm ³	8.42	_	_	8.27	_	_
Simulation	$T_{\rm L}$ / °C	2061	_	_	1999	_	_
	$\overline{T_{S}}$ / °C	1941	_	_	1782	_	_
	$\Delta T / K$	120	_	_	217	_	_

3. Macroscopic Properties

3.1 Oxidation

96 Since oxidation and pesting resistance are key requirements for novel high temperature refractory metal 97 alloys, Cr-37.2Mo and Cr-36.1Mo-3Si were tested in cyclic oxidation experiments. Cyclic oxidation 98 displays harsher conditions over isothermal oxidation due to superimposed thermal cycling, which will 99 reveal potential adherence problems of the formed oxide scales. Furthermore, it allows for acquiring statistically relevant results as multiple samples are tested in parallel; this is of specific interest when 100 101 stochastic processes like spallation, buckling and evaporation occur during oxidation. In order to assess potential pesting behavior, testing was performed at 800°C for up to 100 h. Oxidation experiments at 102 103 1100°C were conducted to investigate the possible application limits for those (chromia forming) alloys. 104 In Figure 2a, the area specific mass change is plotted against time for Cr-37.2Mo and Cr-36.1Mo-3Si 105 for oxidation at 800°C and 1100°C. The mean values and uncertainties (unless stated otherwise) from 106 at least three samples are depicted. Throughout the article "specific mass loss/change" always indicates 107 the area specific mass change.

108 For the Si free Cr-37.2Mo, continuous specific mass loss is recorded right from the first hour of oxidation 109 at 800° C (continuous blue line in Figure 2a). After 100 h, the specific mass loss of the samples is

- between -5.5 and -6 mg/cm². The specific mass loss of no more than -6 mg/cm² is significantly smaller
- than for Mo-based alloys suffering from pesting. For the used sample geometry, pesting would result in
- specific mass loss of more than -100 mg/cm^2 within the first hours of oxidation and complete
- disintegration of the material, like in high Si, multi-phase Mo-Si-Ti alloys in Ref. [17]. Similarly, the
- 114 well-researched reference Mo-Si-B alloys with much higher amounts of Si of 9 to 12 at.% as compared
- to Cr-36.1Mo-3Si exhibit up to -50 mg/cm^2 within the first hours of oxidation at 800°C [18]. Instead,
- 116 the Cr-36.1Mo-3Si samples stay intact and a dark oxide scale is found after just one hour and loose,
- 117 greenish, dust-like oxide(s) after prolonged oxidation up to 100 h. Further microstructural analysis of
- 118 the oxide scales is provided in the latter parts of this article. The macroscopic sample geometry changes
- 119 only marginally during the tests. However, the specific mass change indicates that the Si free alloy does
- 120 not form a protective scale at 800°C and evaporation of volatile oxide still occurs.
- 121 At 1100°C, Cr-37.2Mo exhibits significant specific mass loss. In Figure 2a, the specific mass change of
- 122 a single sample is depicted (as dashed blue line) instead of an average value of several samples as the
- 123 onsets of rapid mass loss occurred erratically across all seven samples tested. Oxidation at 1100°C is,
- 124 thus, considered beyond the capability limit of Cr-37.2Mo. Consequently, the oxide growth is not
- 125 examined in detail any further.
- 126 For Cr-36.1Mo-3Si, reproducible specific mass changes are recorded at both, 800 and 1100°C. At
- 127 800°C, the specific mass change (red continuous line in Figure 2a) is less than ± 0.05 mg/cm² after 100 h
- 128 of oxidation and the uncertainty is smaller than the size of the symbols. Due to the small extent of mass
- 129 change, no attempt was made to quantify the mass change kinetics. The oxidation mechanism is further
- 130 assessed based on the scale growth kinetics in the latter stage of this article. The small mass change
- 131 already indicates the absence of spallation and evaporation events and hints at a very good oxidation
- resistance at 800°C, unless specific mass loss through evaporation would exactly be counterbalanced by
- 133 mass gain through scale formation. The samples exhibit a thin, translucent green oxide after the 1 h at
- 134 800°C. After 100 h, a dark oxide scale has formed on the surface. Macroscopically, no spallation or
- 135 disintegration of the material is observed. The sample geometry remains unchanged for 100 h of
- 136 oxidation. The formation of a protective scale is confirmed by the scale analysis later in this article.
- 137 The Si containing Cr-36.1Mo-3Si shows a slightly discontinuous specific mass change at 1100°C with
- 138 sequences of faster and slower oxidation (dashed red line in Figure 2a). This is indicative of a complex
- 139 interplay between mass loss due to evaporation and mass gain due to scale growth by O ingress. After
- 140 100 h, the specific mass change is -3 to -4 mg/cm². While the sample geometry stays intact and no
- 141 significant disintegration is observed, a dark gray oxide layer and several spots of green oxide(s) are
- 142 found on the sample surface. There are regions on the surface, from which thin plate-like layers have
- 143 detached.
- 144 Si addition is thus proven to exhibit an outstanding positive effect on the specific mass change at 800°C,
- 145 which becomes barely detectable. Furthermore, it considerably improves the oxidation behavior at
- 146 1100°C, as has been shown for Cr solid solutions with Si [8]. High volume fractions of silicide phases
- 147 as commonly established in other Mo and Cr based alloys [4,8,19,20] are not necessary for a sufficient
- 148 oxidation behavior. Instead, marginal amounts of silicide phases might be deliberately distributed to
- 149 further improve mechanical strength and oxidation resistance without deterioration of ductility.
- 150 (Parabolic) oxidation rate constants based on the specific mass changes were not evaluated for the two
- 151 alloys because the mass changes are either negative (superposition of evaporation and scale growth) or

too small for reasonable quantification of the rate law. Instead, the progression of scale growth isevaluated in Section 4.1 to study the oxidation mechanisms in more detail.

3.2 Mechanical Properties

154 Representative engineering stress-strain ($\sigma_e - \varepsilon_e$) data are shown in Figure 2b for both compositions at 155 room temperature and at 900°C. Deformation in the compression tests occurs serrated immediately from or shortly beyond the onset of plastic deformation for all test temperatures. The two alloys show 156 157 extended plastic deformation of at least 6% and none of the samples fail before deliberately stopping 158 the compression tests. The plastic strain detected in the setup was confirmed by measuring the heights 159 of the specimens after testing. The number of identified stress drops during serrated flow remains approximately constant for both compositions across all temperatures with between 20 and 30 drops per 160 sample tested up to the maximum plastic strains of > 6%. For all test temperatures up to 800°C, the 161 162 stress drop magnitude is between 20 to 50 MPa while being significantly lower with only 10 MPa at 163 900°C.

- 164 Whether plastic deformation is initiated by stress drops remains an open issue. Due to the discontinuities,
- 165 the commonly used 0.2% offset yield strength was not used for strength assessment as the values are
- 166 determined by the statistical appearance of individual stress drops. Instead, the stress at 1% plastic strain,
- 167 $\sigma_{1\%}$, was used for a more robust evaluation [21] and is presented in Figure 2c as a function of test
- 168 temperature for both alloys. A large offset yield strength at room temperature of approximately
- 169 1100 MPa is observed. Furthermore, strength decreases until a plateau of approximately 900 MPa is 170 reached at 400°C (corresponding to $0.30 \dots 0.33 T_s$), and is maintained for both alloys up to 700°C
- 171 (corresponding to $0.44 \dots 0.47 T_s$). Strength decreases beyond 700°C, where creep-controlled
- 172 deformation occurs at the initial strain rate of $1 \cdot 10^{-4} \text{ s}^{-1}$. However, at 900°C (corresponding to
- 173 $0.53 \dots 0.57 T_s$) still 760 MPa, equivalent to 70% of the room temperature strength, is observed. The
- detected strength values are mostly identical within the uncertainty ranges for both alloys, indicating no
- 175 significant impact of Si on the strength of the alloys in the as cast condition.
- 176 To evaluate potential tensile ductility of the alloys, the engineering stress-strain data from Figure 2b are 177 converted to true stress-true strain data $\sigma_t - \varepsilon_t$ assuming volume conservation and prismatic sample 178 shape. After smoothing the data, the true work hardening $d\sigma_t/d\varepsilon_t$ is determined and compared to the Considère criterion $\frac{d\sigma_t}{d\varepsilon_t} = \sigma_t$ [22], see Figure 2**d**. For all measurements, the true work hardening is larger 179 than the true stress, $\frac{d\sigma_t}{d\varepsilon_t} > \sigma_t$. In case of extended plastic deformation, ductility in tensile tests can be 180 181 limited by the localization of plastic deformation as a result of the geometrical-mechanical instability of 182 the test. In order to achieve high ductility under tension, intrinsic work hardening must be larger than geometrical softening by the reduction of the cross-sectional area. This is constituted for the samples 183 tested even at room temperature by $\frac{d\sigma_t}{d\varepsilon_t} > \sigma_t$ for plastic strains below minimum 6%. 184
- 185 Unlike most silicide containing alloys, both solid solutions exhibit exceptional compressive ductility at
- 186 room temperature in combination with a high strength level all the way up to 900°C. Even with the
- 187 compression tests conducted in this study, a high work hardening beyond the Considère criterion is
- 188 revealed as one of the fundamental prerequisites of tensile ductility.

Figure 2: Macroscopic assessment of material properties of Cr-37.2Mo (blue) and Cr-36.1Mo-3Si (red): (a) Area-specific mass change during cyclic oxidation at 800°C, proving the superior oxidation behavior of Cr-36.1Mo-3Si. (b) Engineering stress-strain curves obtain from compression tests conducted at room temperature and 900°C, proving extended plastic deformation at all test temperatures. The tests were deliberately stopped before failure. (c) 1% offset yield strength as a function of temperature, proving high yield strength level even at 900°C. (d) True work hardening as a function of true stress extracted from the compression tests in (b), proving the capability against necking up to the plastic strains tested.

4. Microscopic Origins of the Materials Properties

4.1 Oxidation Mechanisms

189 The observed mass losses of Cr-37.2Mo already prove that no protective scales are formed at either 190 temperature tested on this alloy. At 800°C, the only crystal structure identified at the sample surface 191 after oxidation via XRD is a Corundum prototype (Strukturbericht designation D5₁, see Supplementary Material S2). In conjunction with SEM-EDS, the scale is identified as monolithic Cr₂O₃ (see 192 193 Supplementary Material S3). The oxide scale is composed up of a porous, layered structure of Cr_2O_3 with a total thickness of $(88 \pm 14) \,\mu\text{m}$ after 100 h. The scale growth occurs almost linear at 194 approximately $(2.4 \pm 0.1) \cdot 10^{-8}$ cm/s ($R^2 \approx 0.99$, see Supplementary Material S4) further proving that 195 no protective scale has formed. SEM-EDS analysis reveals that the interface between Cr₂O₃ and the 196 197 substrate material is enriched in Mo due to Cr consumption by the oxidation to Cr₂O₃. Coarse Mo rich 198 regions at the interface are formed up to 15 µm in thickness. The continuous mass loss of Cr-37.2Mo at 800°C (see Figure 2a) is attributed to MoO₃ evaporation. Significant evaporation of CrO₃ is not expected 199 200 below 900°C [23]. Failure of the non-protective Cr₂O₃ leads to the rapid oxidation of the underlying Mo 201 enriched regions to MoO₃ and mass loss due to its evaporation. Another layer of Cr₂O₃ is formed and 202 the accompanying O ingress compensates some of the mass loss by evaporation. The repeating sequence 203 of scale formation and evaporation leads to the porous, layered structure of the scale. As previously 204 mentioned, 1100°C scales on Cr-37.2Mo were not further investigated as this oxidation temperature is 205 beyond the capability limit of that alloy.

206 For Cr-36.1Mo-3Si, SEM-EDS elemental maps of the scales after 100 h of cyclic oxidation at 800°C 207 are displayed in Figure 3a. Figure 3b depicts a respective schematic scale mockup. The SEM-EDS maps 208 show the formation of a continuous, well-adhered, crack-free Cr oxide layer of uniform thickness. XRD 209 analysis confirms that the scale consists of Corundum prototype Cr_2O_3 (D5₁, see Supplementary 210 Material S2). Continuous white lines in Figure 3a indicate this Cr_2O_3 scale. Below the scale, a thin, Cr 211 depleted and Mo enriched region is observed. Since the oxide scale is very thin, the Mo rich W prototype 212 crystal structure below the Cr₂O₃ scale is still detected via XRD. The lattice parameter of 3.125 Å 213 corresponds to a Mo content of about (90 ± 2) at.% [14]. Neither in SEM-EDS nor XRD, nitride phases 214 are identified. Hence, the Mo enrichment below the oxide scale acts as a barrier against nitridation as 215 was found already for other Cr-Mo-Si alloys [11,24]. The addition of even small amounts of 3 at.% Si 216 in the present alloy leads to a remarkable reduction of the scale thickness from about 90 µm to only 217 (1.6 ± 0.5) µm after 100 h of cyclic oxidation. The scale growth follows a slow, cubic growth law at $(1.1 \pm 0.1) \cdot 10^{-17} \text{ cm}^{3/\text{s}}$ ($R^{2} \approx 0.97$, see Supplementary Material S4) consistent with the previously 218 discussed observations on the small mass change after 100 h. Even though SEM-EDS does not resolve 219 220 a Si enrichment at the scale substrate interface, it can be assumed that a very thin and potentially 221 discontinuous Si oxide layer forms as it has been identified by scanning transmission electron 222 microscopy analysis in Ref. [11]. The relevant features in the schematic representation in Figure 3b are 223 (i) the thin, continuous Cr_2O_3 , (ii) the Mo enriched subsurface layer and (iii) the formation of Si oxide.

224 A beneficial influence of Mo on the oxidation resistance of Cr alloys has been observed before in entirely 225 intermetallic Cr-30Mo-30Si consisting of a two-phase Cr₃Si-Cr₅Si₃ microstructure [24] and in the Mo 226 lean, two-phase Cr-7Si-2Mo which consists of a (Cr,Mo,Si) solid solution matrix and (Cr,Mo)₃Si 227 precipitates [13]. For the intermetallic Cr-30Mo-30Si, excellent oxidation resistance up to 200 h in the 228 entire temperature range from 500°C to 1100°C is found. Above 1100°C, however, increased specific 229 mass loss is recorded. Up to 700°C, only Cr_2O_3 is detected. Between 700°C and 1300°C, both Cr_2O_3 230 and SiO₂ are identified. Above 1300°C, only SiO₂ is verified. From the results in Ref. [24], it was 231 concluded that Mo addition to Cr-Si alloys promotes the formation of SiO₂ consistent with results from 232 the present study. For Cr-7Si-2Mo, specific mass gains after 100 h at 1200°C are slightly reduced to 233 +5.5 compared to +8 mg/cm² for a Mo free reference alloy with the composition Cr-9Si [13]. However, 234 the scale thickness after 100 h being 15 to 22 µm is not significantly influenced by the Mo addition. A 235 solid solution layer with an increased Mo content is observed underneath the Cr₂O₃ top layer. The Mo enriched region is free of nitriding, whereas Cr₂N is detected below the Mo enriched zones [13]. This is 236 237 strictly not the case for Cr-36.1Mo-3Si in the present investigation and assigned to the higher Mo 238 content.

239 The SEM-EDS maps and a schematic mockup of the scales on Cr-36.1Mo-3Si after oxidation at 1100°C 240 for 100 h are shown in Figure 3c and d. The continuous white lines in the elemental maps in Figure 3c 241 mark the outer Corundum prototype Cr_2O_3 (D5₁, see Supplementary Material S2). Below the outer scale, 242 a Cr depleted region is marked in the elemental maps of Cr and Mo. In the surface close region below 243 the oxide layer, intra- and intergranular particles are identified with an increased Si and O concentration. 244 It is assumed that SiO_2 is formed at these locations. An accurate determination of the stoichiometry of 245 the oxide is, however, not reasonable considering the limited lateral resolution of SEM-EDS and the small size of the particles. The observation of SiO₂ formation agrees with results from Refs. [8,25,26] 246 247 for the oxidation of Cr-Si alloys at 1200 and 1300°C, with the difference that the SiO₂ was limited to 248 the grain boundaries. This can be either due to the lower oxidation temperature, where O diffusion is

- 249 limited to the grain boundaries. The Si enrichment at grain boundaries deeper in the substrate is due to
- 250 the formation of (Cr,Mo)₃Si particles. 3 at.% Si are beyond the solubility limits at low temperatures,
- specifically for the Mo enriched interdendritic regions [26]. The thermal cycling from room temperature

to 1100°C displays a sufficient heat treatment to form (Cr,Mo)₃Si under the presence of a nucleation site

- 253 like the grain boundaries of the solid solution. Essential features of the schematic scale mockup in Figure
- 3d are thus: (i) the layered Cr₂O₃ scale, (ii) The Mo enriched layer just below the scale, (iii) the Si oxide
- 255 layer at the interface as well as inter- and intragranular particles in the subsurface regions, and (vi) 256 (G, M) Si for a lattice in the subsurface regions, and (vi)
- 256 (Cr,Mo)₃Si formed at the grain boundaries of the bulk material.
- 257 The scale exhibits a layered structure with a total scale thickness of 25 µm after 100 h and Corundum prototype Cr₂O₃ (D5₁, see Supplementary Material S2) was identified as sole compound at the sample 258 259 surface after 100 h via XRD. The scale growth occurs almost parabolic at $(1.7 \pm 0.2) \cdot 10^{-11}$ cm²/s ($R^2 \approx$ 0.92, see Supplementary Material S4) indicating diffusion control of the Cr₂O₃ growth. This is similar 260 to the reported rate constant for the silicide containing two-phase alloy Cr-32.2Mo-13.5Si at 1100 °C of 261 $(1.1 \pm 0.3) \cdot 10^{-12} \text{ cm}^2/\text{s}$ ($R^2 \approx 0.85$). In SEM-BSE micrographs, the scale adhesion at the interface 262 between the substrate and the oxide scale appears intact and without buckling or cracks. However, the 263 oxidation does not lead to a compact scale as illustrated in the mockup in Figure 3d but rather a complex 264 265 layered outer Cr_2O_3 scale in conjunction with some internal oxidation. The internal corrosion with Si 266 oxide at the grain boundaries is observed in surface near regions. The progression of the depth of the internal oxidation follows a parabolic rate law at $(8 \pm 1) \cdot 10^{-11}$ cm²/s ($R^2 \approx 0.96$, see Supplementary 267 Material S4). Assuming that the internal oxidation is only caused by Si oxidizing to SiO₂ and no 268 oxidation of Cr or Mo occurs at the grain boundaries, the partial pressure of O can be estimated as the 269 equilibrium of Si and SiO₂ is met for a partial pressure of $p_{O_2} \approx 10^{-19}$ Pa, not taking the alloy activities 270 into account [27]. The protective effect of Si enrichment at the interface and below in the substrate is 271 272 due to the stability of SiO₂ at lower oxygen partial pressures than Cr and especially Mo. Si dispersed at 273 the interface forms SiO₂ and acts as an O getter. The local O partial pressure decreases at the interface 274 so that the underlying substrate does not oxidize. The positive effect of Si at the oxide/substrate interface 275 on the oxidation of Cr₂O₃ layers was also observed for the binary solid solution Cr-3Si compared to pure 276 Cr in isothermal experiments at 1200°C [8]. Finally, the Mo enrichment seen in Figure 3d below the 277 outer oxide scale successfully prevents nitridation [26].
- 278 In contrast to the scale on the Si free Cr-37.2Mo at 800°C, it is evident from the good scale adhesion,
- that MoO_3 evaporation is successfully prevented in Cr-36.1Mo-3Si, which can be attributed to the
- formation of the discontinuous SiO_2 layer within the scale and at the scale/substrate interface. The mass
- loss detected at 1100° C for Cr-36.1Mo-3Si is attributed to the evaporation of CrO₃ from the surface of the oxide, but since the scale growth barely deviates from parabolic kinetics, MoO₃ must also ocontribute
- 283 here to some extent, e.g. when the scale develops flaws.

Figure 3: Oxide scale and microstructural changes close to the surface of Cr-36.1Mo-3Si after 100 h of oxidation at (a,b) 800°C and (c,d) 1100°C by (a,c) SEM-EDS and (b,d) as a schematic.

4.2 Deformation Mechanisms

Figure 4a and b show orientation imaging microscopy maps obtained on longitudinal sections of 284 285 compression test samples deformed at room temperature and 900°C up to plastic strains of approximately 6%. The color coded maps indicate the crystallographic orientation with respect to the 286 287 compression direction (vertical in the maps) and grayscale maps the diffraction pattern quality. Apart from the qualitatively dominating blue and red grains in the color-coded maps, the quantitative 288 289 assessments of the crystallographic orientations in Figure 4c and d reveal (100)/(111) fiber texture 290 components along the compression axis. The maxima of the orientation distribution function are 1.6 to 291 1.9 multiples of the uniform distribution. In compression tests, the slip plane normal tends to rotate 292 toward the compression direction due to the confined strain release by dislocation slip. In bcc metals 293 and alloys with (111) pencil glide of dislocations on $\{1\overline{2}1\}$ to $\{1\overline{3}2\}$ planes, this leads to mixed 294 (100)/(111) fiber textures in compression [28]. Even when considering the low number of grains probed 295 in the present samples, the experimental observation is consistent with this expected trend.

Besides above confirmation of dislocation-mediated plasticity, deformation twinning is observed as another deformation mechanism. In most grains, multiple twin systems are activated. All identified twin systems without exception are of $\{112\}(11\overline{1})$ type (as confirmed by pole figure and trace analysis, see

- 299 Supplementary Material S5) and correspond to rotations of $(60^{+0.0}_{-2.9})^{\circ}$ about (111) (misorientation
- analysis) as the common twin system of bcc metals and alloys [29]. The number density of twin bands
- 301 is significantly lower at 900°C compared to room temperature as confirmed by the orientation maps

(only properly indexed twin bands were evaluated) as well as from the pattern quality maps (even
 showing unindexed twin bands as line features of low pattern quality terminating at grain boundaries).
 Furthermore, the twin lath thickness is larger at 900°C. The observation of twins coincides with the
 servations observed in compression testing. In contrast to continuous deformation via dislocation slip,

306 entire laths are discontinuously displaced during each twinning event, leading to stress drops. However,

- 307 some short microcracks, located predominantly parallel to the compression direction, are also observed
- 308 after deformation up to > 6% plastic strain. These cracks might originate from limited compatibility of
- 309 large grains to transversal thickening. As cracking might also cause stress drops during testing,
- 310 quantitative correlations, e.g. of twin number density and number or magnitude of stress drops cannot
- 311 be made here.
- 312 Fundamentally, deformation twinning competes with dislocation slip as process for plastic deformation.
- 313 Stresses required for twinning are usually larger as the ones for dislocation slip. Thus, the latter is the
- 314 more commonly observed elementary process of initiation and continuation of plastic deformation in
- bcc metals and alloys (see e.g. [30] for a recent review of available literature). However, there are
- frequent reports also for deformation twinning in bcc refractory metals and alloys thereof, e.g. Mo
- 317 [31,32], Cr [33], V [34], W [35], Nb [36,37], Ta [30], Cr-35Fe [33], Cr-Re solid solutions [33,38], Mo318 35Re [39], and Nb-V solid solutions [21,40], both in polycrystalline [30,32–34,37–39,41] or single-
- 319 crystalline condition [31,35,36,39]. Recently, twinning was also reported in a ternary, polycrystalline 320 refractory metal alloy MoWRe even at deformation temperatures significantly exceeding those
- previously confirmed with deformation twinning [12]. As the two fundamental deformation mechanisms
 compete with each other depending on the internal stress level, a complex interdependency of intrinsic
- 323 (solid solution, dislocation and grain boundary strengthening) and extrinsic parameters (temperature,
 - 324 strain rate) exists as is outlined in the following.
 - 325 Available data for polycrystalline Mo [32], Cr [33], V [34] and Cr-15Re solid solutions [38] indicate a 326 smaller twinning stress with increasing grain size. Consistently, the occurrence of twinning for the 327 samples investigated here with a large grain size of $> 100 \,\mu\text{m}$ is more likely than for fine-grained 328 samples. According to Ref. [42], the twinning stress in Cr is more sensitive to grain size as compared to 329 dislocation slip, so that the onset stress of slip might surpass the twinning stress at large grain sizes. 330 Thus, in these cases initiation of plastic deformation might be achieved by deformation twinning as 331 opposed to dislocation slip. If the first stress drop is associated with the twinning stress [35–37], it is 332 approximately equal for both alloys and varies between 350 and 500 MPa for all temperatures. It must be noted, however, that literature also reports counter examples, where deformation twinning occurred 333 334 preferably at an intermediate grain size (Nb [37]), or where twinning stress increases with increasing 335 grain size (Cr-35Re [38]).
 - 336 Deformation twinning is often reported in bcc solid solutions, potentially due to increasing onset stress 337 for dislocation mediated plasticity by solid solution strengthening (SSS) or by a reduced twinning stress due to alloying, the fundamental reasons of which remain unclear to date. Reid et al. [33] reported no 338 339 twinning for Cr-4.9Re and Cr-15.2Re with similar grain sizes, but for Cr-35Re. Similarly, the same 340 group of authors [39] reported deformation twinning in Mo-35Re, but not in Mo of similar grain size. 341 This can be rationalized in the context of SSS as it increases the critical stress required for dislocation 342 slip. For systems with large SSS, the dislocation slip might then again surpass the twinning stress. Owing 343 to the large difference in lattice parameter and the large shear moduli for Mo and Cr, a beneficial 344 influence of SSS on the activation of deformation twinning seems plausible [43]. Usually, deformation by twinning is assumed to be a low temperature and/or high strain rate process as in these cases the 345 346 number of kink pairs formed (and thus, dislocation slip) are insufficient to accommodate plastic strain.

- Weaver [41] suspected deformation twinning in Cr and Cr-1V at temperatures of 200-600°C, but did
 not report microstructural or crystallographic proof. The aforementioned investigations on Nb-V and
- 349 MoWRe alloys also reported deformation twinning at elevated temperatures, up to 600°C in Nb-55V
- 350 [21] and 1000°C in MoWRe [44]. The alloys investigated here thus surpass the binary Nb-V solid
- 351 solutions and show twinning at absolute temperatures similarly high as compared to the ternary alloy
- 352 but at higher homologous temperature.
- 353 As deformation twins are high angle grain boundaries (and often incoherent due to elementary 354 dislocation processes during their formation), they impede dislocation motion. Deformation twinning 355 thus might contribute to a hierarchical grain boundary strengthening with increasing strengthening
- 356 contribution during plastic deformation similar to the observation in twinning induced plasticity (TWIP)
- 357 [45] or transformation induced plasticity (TRIP) steels. This might contribute to the high work hardening
- 358 obtained in this work, and displayed in Figure 2d.

Figure 4: Microstructural changes induced by mechanical testing of Cr-36.1Mo-3Si in compression up to a plastic strain of approximately 6 % at (a) room temperature and (b) 900°C. The color-code in the orientation maps (a,b) corresponds to the inverse pole figure of the compression direction (CD) in the in-set and grayscale image parts highlight diffraction pattern quality. Black arrows indicate deformation twins and white arrows longitudinal cracks along grain boundaries. (c,d) Orientation distribution function after the compression tests represented in the inverse pole figure of the CD as multiples of the uniform distribution.

5. Mechanisms to overcome fundamental barriers for the application of refractory metal-based alloys

The present materials development relies on the utilization of refractory metal elements that exhibit 359 characteristic, intrinsic problems in oxidation limiting their application. Instead of tackling this by the 360 formation of high amounts of brittle intermetallic phases that provide a reservoir of passivating elements, 361 the choice of Cr and Mo individually addresses the intrinsic problems during oxidation: Cr leads to the 362 formation of a protective Cr_2O_3 scale while the Mo enrichment in the subsurface zone due to outward 363 364 diffusion of Cr converts these regions to be resistant against nitridation. Si as a minor third element addition to the alloy guarantees the slow growth of the Cr_2O_3 scale potentially by the additional 365 366 formation of a SiO₂ subscale.

The low amount of Si needed in conjunction with the high temperature miscibility of Cr and Mo allows 367 for the synthesis of single-phase, disordered solid solutions (the miscibility gap obtained for 368 369 thermodynamic equilibrium does not lead to decomposition under relevant practical cooling 370 conditions or only after cycling beyond the 100 h tested in this study [46]). Apart from this fundamental prerequisite to obtain ductility, the appearance of both dislocation slip and deformation twinning is 371 372 confirmed, the latter of which might be facilitated by a high SSS contribution. The hierarchical 373 refinement of the microstructure by deformation twinning during plastic deformation contributes to a 374 very good work hardening behavior.

375 The materials presented here display the simplest manufacturing conditions possible with the relevant

376 property profile being met. All further optimization treatments known from classical metallurgy might

377 additionally be applied to the Cr-Mo-Si system to achieve improved and application relevant properties,

378 such as microstructural stability, corrosion resistance as well as further strengthening, fatigue and creep

379 resistance, e.g. by second phase particles.

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) within the framework of GRK 2561 MatCom-ComMat. We furthermore acknowledge the support from the Alexander von Humboldt Foundation for their cooperative research conducted under the Humboldt Fellowship of HI. This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMFi, www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). We acknowledge the chemical analysis by HCGE at the Institute for Applied Materials (IAM-AWP) by Dr. Bergfeldt, Karlsruhe Institute of Technology (KIT). We thank Bonita

387 Beichert and Charlotte Wehnes for experimental support.

Conflict of Interest

388 The authors declare no conflict of interest.

Data Availability Statement

- 389 The data presented in this study are available in KITopen at <u>https://doi.org/10.35097/1866</u> under CC
- 390 BY-SA 4.0 license. Further information is available upon request with alexander.kauffmann@kit.edu.

Materials and Methods

- 391 Alloys with the desired compositions of Cr-37.2Mo (at.%, throughout the document unless stated
- 392 otherwise) and Cr-36.1Mo-3Si were manufactured from elemental Mo 99.95% (Plansee SE, Reutte,
- Austria), Cr 99+% (EVOChem, Offenbach am Rhein, Germany) and Si 99.99% (ChemPUR, Karlsruhe,
- 394 Germany) in a standard arc melting process using an AM/0.5 arc melter (Edmund Bühler GmbH,
- Bodelshausen, Germany). Melting was performed in Ar (> 99.998 %) atmosphere in a water-cooled Cu
 crucible. The pressure during arc melting was 600 mbar. Before each remelting step, the melting of a
- piece of Zr was performed to bind residual O. The ingots were flipped and remelted five times to ensure
- 398 homogeneity. The ingots were subsequently cut by electrical discharge machining into cuboidal samples
- 399 of $(5 \times 5 \times 4)$ mm³ for oxidation experiments and $(5 \times 3 \times 3)$ mm³ for compression testing.
- 400 All surfaces of oxidation samples were ground with SiC paper of P2500 grit size. The surface area of
- 401 the samples was obtained by optical macroscopy (Wild-Heerbrugg M420, Heerbrugg, Switzerland, and
- 402 Olympus Stream Enterprise 1.7, Tokyo, Japan). Cyclic oxidation was performed at 800 and 1100°C in
- 403 laboratory air using muffle furnaces (Carbolite Gero GmbH & Co. KG, Neuhausen, Germany). At least
- 404 three samples were tested at each temperature. Average specific mass changes were determined from
- 405 these samples and uncertainty was estimated using the standard deviation.
- 406 The duration of the oxidation cycles started with 1 h cycles for the first 20 h of oxidation. Afterwards, 407 the cycle duration was increased to 5 h until total oxidation time was 50 h, followed by 10 h cycles until 408 the samples have been exposed for 100 h in total. The oxidation samples were placed in Al₂O₃ crucibles 409 and weighed with the crucibles between oxidation intervals. Initial mass and mass changes of the 410 oxidation samples were tracked after each oxidation cycle using a precision balance with an accuracy 411 of 1 µg (Sartorius, Göttingen, Germany). Oxide scale thicknesses were determined manually by 412 processing SEM-BSE micrographs of cross sections using the open source image processing software 413 ImageJ (version 1.53c) after 1, 10 and 100 h of cyclic oxidation [47]. The oxide layer was examined 414 with regard to its morphology on the substrate, the types of oxide grown and the element distribution
- 415 within the oxide layer.
- 416 The (3×3) mm² surfaces of the compression test samples were prepared by grinding with SiC paper of 417 P2500 grit size using a self-constructed sample holder to ensure parallel contact faces. Dimensions of 418 each specimen were measured using a digital indicator with 1 µm resolution (Sylvac SA, Yverdon-les-419 Bains, Switzerland). Compression tests were performed using a UPM-Zwick 1478 universal testing 420 device (ZwickRoell, Ulm, Germany) with an induction coil to heat the samples to testing temperatures 421 of up to 900°C. To minimize friction between the sample surfaces and punches, BN was applied to the 422 sample surfaces. All tests, except from the ones at RT, were started after sufficient holding time of 423 15 min at each test temperature to ensure the temperature being evenly distributed. The initial engineering strain rate was set to $1 \cdot 10^{-4}$ s⁻¹. Displacement was measured by a capacitive strain gauge 424 attached to the Al₂O₃ punches as well as an inductive strain gauge tracking the displacement of the cross-425 426 head. The signals from the two strain gauges were compared so that malfunctions or device specific 427 measurement artefacts could be interpreted as such. Stress-strain data were corrected for the non-linear 428 initial loading range using the maximum slope detected for the elastic deformation. As plastic 429 deformation is serrated/discontinuous in the present case, stress at 1% plastic offset strain was evaluated 430 for all samples. At each temperature, two samples of each composition were tested.
- 431 Samples for microstructural analysis in the as-cast and oxidized condition were cold mounted in
- 432 VariKem 200 resin, ground to grit P2500 with SiC paper followed by 3 and 1 μm diamond polishing
 433 steps. Surface finish was achieved using a colloidal OP-S suspension (Buehler ITW, Leinfelden-

Echterdingen, Germany). SEM-BSE micrographs of the as-cast and the oxide scales were taken at 20 kV
acceleration voltage on a LEO Gemini 1530 (Carl Zeiss AG, Oberkochen, Deutschland) scanning

436 electron microscope (SEM).

437 Energy-dispersive X-ray spectroscopy (SEM-EDS) and electron backscatter diffraction (SEM-EBSD) 438 were performed on an Auriga 60 (Carl Zeiss AG, Oberkochen, Deutschland) SEM equipped with an 439 Octane Super EDS detector and an EDAX DigiView EBSD camera (Ametek, Berwyn, Pennsylvania, 440 USA). For SEM-EDS analysis, the SEM was operated at 16 kV acceleration voltage. Standard-free, 441 ZAF corrected SEM-EDS maps were created to visualize the element distributions in the oxide layers 442 and close-to-surface substrate region. The K lines for Cr, Si and O and the L line for Mo were used to 443 quantify the element distribution. For SEM-EBSD, the SEM was set to 20 kV acceleration voltage and 444 a 120 µm apertures was used. EDAX Team was used to acquire the EBSD maps using a W prototype phase for indexing. Overview maps are $(840 \times 840) \ \mu\text{m}^2$ in size with a hexagonal grid of 2 μm step size. 445 446 Detailed maps of twinned regions were acquired with a size of $(150 \times 150) \,\mu\text{m}^2$ at a step size of 500 nm. The indexing rate was about 125 s⁻¹ with a successful indexing rate above 98%. The twin elements were 447 448 identified using pole figures of the $\{112\}$ habit plane with $\langle 11\overline{1} \rangle$ shear direction and $\{1\overline{1}0\}$ shear plane

449 normal. The surface traces of the twin boundaries were considered in the analysis as well.

450 Crystal structures and lattice parameters were determined through X-ray diffraction (XRD). The 451 diffraction patterns were recorded in Bragg-Brentano geometry with Θ/Θ focusing using a D2 phaser (Bruker Corp., Billerica, MA, USA) equipped with a LynxEye line detector. The X-ray tube with Cu-452 453 Ka radiation was operated at 30 kV and 10 mA. Scans were performed between $2\Theta = 10^{\circ} - 145^{\circ}$. The 454 step size was 0.01° in 2 Θ with an accumulated acquisition time of 384 s per step. The sample was rotated 455 to improve statistics. For phase identification, diffraction patterns were analyzed using the open source 456 software PowderCell, version 2.4 [48]. The cubic lattice parameter of the W prototype crystal structures 457 of the solid solutions were determined by extrapolating the measured lattice parameters towards $\theta = 90^{\circ}$

458 by using the weight function $\frac{1}{2}(\cot^2 \theta + \cot \theta \cdot \cos \theta)$, similar to the approach suggested by Nelson 459 and Riley [49].

460 The Calphad software package Pandat (version 2023) with the proprietary database PanHEA

461 (version 2023) was used to determine the solidus temperature for each alloy investigated here. For this,

462 the calculations were performed for thermodynamic equilibrium by means of the PanEngine.

Author Contributions

Frauke Hinrichs: Investigation, Formal analysis, Data Curation, Visualization, Project administration, Writing - Original Draft, Writing - Review & Editing

Georg Winkens: Formal analysis, Software, Writing - Original Draft, Writing - Review & Editing

Lena Kramer: Investigation, Formal analysis, Data Curation, Writing - Review & Editing

Daniel Schliephake: Formal analysis, Data Curation, Visualization, Writing - Original Draft, Writing - Review & Editing

Gabriely Falcão: Formal analysis, Writing - Review & Editing

Matthias Galetz: Supervision, Funding acquisition, Writing - Review & Editing

Haruyuki Inui: Funding acquisition, Writing - Review & Editing

Alexander Kauffmann: Investigation, Methodology, Formal analysis, Data Curation, Visualization, Supervision, Writing - Original Draft, Writing - Review & Editing

Martin Heilmaier: Supervision, Resources, Funding acquisition, Writing - Review & Editing

References

- A. Schwab, A. Thomas, J. Bennett, E. Robertson, S. Cary, Electrification of Aircraft: Challenges, Barriers, and Potential Impacts, (2021). https://www.nrel.gov/docs/fy22osti/80220.pdf. (accessed December 12, 2023).
- J. Mukhopadhaya, B. Graver, Performance analysis of regional electric aircraft, (2022). https://theicct.org/publication/global-aviation-performance-analysis-regional-electric-aircraftjul22/ (accessed December 12, 2023).
- [3] J.H. Perepezko, The Hotter the Engine, the Better, Science. 326 (2009) 1068–1069. https://doi.org/10.1126/science.1179327.
- [4] J.H. Perepezko, M. Krüger, M. Heilmaier, Mo-Silicide Alloys for High-Temperature Structural Applications, Matls. Perf. Charact. 10 (2021) 20200183. https://doi.org/10.1520/MPC20200183.
- [5] P. Tsakiropoulos, Alloys for application at ultra-high temperatures: Nb-silicide in situ composites, Progress in Materials Science. 123 (2022) 100714. https://doi.org/10.1016/j.pmatsci.2020.100714.
- [6] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res. 33 (2018) 3092–3128. https://doi.org/10.1557/jmr.2018.153.
- [7] E.S. Jones, Capt.J.F. Mosher, R. Speiser, J.W. Spretnak, The Oxidation of Molybdenum★, Corrosion. 14 (1958) 20–26. https://doi.org/10.5006/0010-9312-14.1.20.
- [8] A. Soleimani-Dorcheh, M.C. Galetz, Oxidation and Nitridation Behavior of Cr–Si Alloys in Air at 1473 K, Oxid Met. 84 (2015) 73–90. https://doi.org/10.1007/s11085-015-9544-5.
- [9] E.A. Gulbransen, K.F. Andrew, A Preliminary Study of the Oxidation and Vapor Pressure of Chromium, J. Electrochem. Soc. 99 (1952) 402. https://doi.org/10.1149/1.2779609.
- [10] D. Schliephake, A. Kauffmann, X. Cong, C. Gombola, M. Azim, B. Gorr, H.-J. Christ, M. Heilmaier, Constitution, oxidation and creep of eutectic and eutectoid Mo-Si-Ti alloys, Intermetallics. 104 (2019) 133–142. https://doi.org/10.1016/j.intermet.2018.10.028.
- [11] F. Hinrichs, A. Kauffmann, A.S. Tirunilai, D. Schliephake, B. Beichert, G. Winkens, K. Beck, A.S. Ulrich, M.C. Galetz, Z. Long, H. Thota, Y. Eggeler, A. Pundt, M. Heilmaier, A novel nitridation- and pesting-resistant Cr-Si-Mo alloy, Corrosion Science. 207 (2022) 110566. https://doi.org/10.1016/j.corsci.2022.110566.
- [12] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds. 509 (2011) 6043–6048. https://doi.org/10.1016/j.jallcom.2011.02.171.
- [13] A.S. Ulrich, P. Pfizenmaier, A. Solimani, U. Glatzel, M.C. Galetz, Improving the oxidation resistance of Cr-Si-based alloys by ternary alloying, Corrosion Science. 165 (2020) 108376. https://doi.org/10.1016/j.corsci.2019.108376.
- [14] E. Rudy, H. Nowotny, Eine sigma-Phase im System Chrom-Molybdän-Silicium, Monatsh. Chem. 105 (1974) 156–168.
- [15] D. Sturm, M. Heilmaier, J.H. Schneibel, P. Jéhanno, B. Skrotzki, H. Saage, The influence of silicon on the strength and fracture toughness of molybdenum, Materials Science and Engineering: A. 463 (2007) 107–114. https://doi.org/10.1016/j.msea.2006.07.153.
- [16] H.J. Goldschmidt, J.A. Brand, The constitution of the chromium-niobium-silicon system, Journal of the Less Common Metals. 3 (1961) 34–43. https://doi.org/10.1016/0022-5088(61)90041-8.
- [17] S. Obert, A. Kauffmann, S. Seils, S. Schellert, M. Weber, B. Gorr, H.-J. Christ, M. Heilmaier, On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys, Journal of Materials Research and Technology. 9 (2020) 8556–8567. https://doi.org/10.1016/j.jmrt.2020.06.002.
- [18] V. Supatarawanich, D.R. Johnson, C.T. Liu, Oxidation behavior of multiphase Mo–Si–B alloys, Intermetallics. 12 (2004) 721–725. https://doi.org/10.1016/j.intermet.2004.02.011.
- [19] R. Mitra, Mechanical behaviour and oxidation resistance of structural silicides, International Materials Reviews. 51 (2006) 13–64. https://doi.org/10.1179/174328006X79454.
- [20] A.S. Dorcheh, M.C. Galetz, Challenges in Developing Oxidation-Resistant Chromium-Based Alloys for Applications Above 900°C, JOM. 68 (2016) 2793–2802. https://doi.org/10.1007/s11837-016-2079-7.

- [21] T. Shimomura, T. Kainuma, R. Watanabe, Mechanical properties of vanadium-niobium alloys, Journal of the Less Common Metals. 57 (1978) 147–159. https://doi.org/10.1016/0022-5088(78)90235-7.
- [22] I.S. Yasnikov, A. Vinogradov, Y. Estrin, Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals, Scripta Materialia. 76 (2014) 37–40. https://doi.org/10.1016/j.scriptamat.2013.12.009.
- [23] E.A. Gulbransen, K.F. Andrew, Kinetics of the Oxidation of Chromium, J. Electrochem. Soc. 104 (1957) 334. https://doi.org/10.1149/1.2428576.
- [24] S.V. Raj, An evaluation of the properties of Cr3Si alloyed with Mo, Materials Science and Engineering: A. 201 (1995) 229–241. https://doi.org/10.1016/0921-5093(95)09767-8.
- [25] L. Royer, X. Ledoux, S. Mathieu, P. Steinmetz, On the Oxidation and Nitridation of Chromium at 1300 °C, Oxid Met. 74 (2010) 79–92. https://doi.org/10.1007/s11085-010-9198-2.
- [26] L. Koliotassis, E.M.H. White, M.C. Galetz, The influence of Mo-content and annealing on the oxidation behavior of arc-melted Cr-xMo-8Si-alloys (Mo = 10-40at.%), Advanced Engineering Materials. (2023).
- [27] H.J.T. Ellingham, Reducibility of oxides and sulphdes in metallurgical processes, J. Soc. Chem. Ind. (1944) 125–133.
- [28] U.F. Kocks, C.N. Tomé, H.-R. Wenk, Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties, Cambridge University Press, Cambridge, 2005.
- [29] F.R.N. Nabarro, M.S. Duesbery, eds., Dislocations in solids, North-Holland Pub. Co, Amsterdam; New York, 1979.
- [30] C.Q. Chen, J.N. Florando, M. Kumar, K.T. Ramesh, K.J. Hemker, Incipient deformation twinning in dynamically sheared bcc tantalum, Acta Materialia. 69 (2014) 114–125. https://doi.org/10.1016/j.actamat.2014.01.046.
- [31] F. Guiu, P.L. Pratt, The Effect of Orientation on the Yielding and Flow of Molybdenum Single Crystals, Physica Status Solidi (b). 15 (1966) 539–552. https://doi.org/10.1002/pssb.19660150214.
- [32] B.J. Shaw, Twinning and the low temperature mechanical properties of polycrystalline niobium and molybdenum, Journal of the Less Common Metals. 13 (1967) 294–306. https://doi.org/10.1016/0022-5088(67)90138-5.
- [33] C.N. Reid, A. Gilbert, Dislocation structure in chromium, chromium-rhenium, and chromium-iron alloys, Journal of the Less Common Metals. 10 (1966) 77–90. https://doi.org/10.1016/0022-5088(66)90116-0.
- [34] T.G. Lindley, R.E. Smallman, The plastic deformation of polycrystalline vanadium at low temperatures, Acta Metallurgica. 11 (1963) 361–371. https://doi.org/10.1016/0001-6160(63)90161-5.
- [35] R.C. Koo, Effect of purity on the tensile properties of tungsten single crystals from -196°C to 29°C, Acta Metallurgica. 11 (1963) 1083-1095. https://doi.org/10.1016/0001-6160(63)90197-4.
- [36] N.A. Boucher, J.W. Christian, The influence of pre-strain on deformation twinning in niobium single crystals, Acta Metallurgica. 20 (1972) 581–591. https://doi.org/10.1016/0001-6160(72)90013-2.
- [37] K. Farrell, P.R.V. Evans, Some observations on mechanical twinning in polycrystalline niobium, Journal of the Less Common Metals. 8 (1965) 222–234. https://doi.org/10.1016/0022-5088(65)90107-4.
- [38] A.R. Rosenfield, Deformation twinning of polycrystalline chromium-rhenium alloys, Journal of the Less Common Metals. 7 (1964) 235–238. https://doi.org/10.1016/0022-5088(64)90072-4.
- [39] C.N. Reid, A. Gilbert, G.T. Hahn, Investigation of the Relationship of Twinning to Brittle Fracture of Refractory Metals, Directorate of Materials and Processes, Aeronautical Systems Division, Air Force Systems, 1963.
- [40] D.O. Hobsen, Deformation Twinning in the Columbium-vanadium Alloy System, Oak Ridge National Laboratory, 1964.
- [41] C.W. Weaver, 'Twinning' and Fracture in Chromium, Nature. 193 (1962) 265–266. https://doi.org/10.1038/193265a0.
- [42] M.J. Marcinkowski, H.A. Lipsitt, The plastic deformation of chromium at low temperatures, Acta Metallurgica. 10 (1962) 95–111. https://doi.org/10.1016/0001-6160(62)90055-X.

- [43] F. Maresca, W.A. Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Materialia. 182 (2020) 235–249. https://doi.org/10.1016/j.actamat.2019.10.015.
- [44] O.N. Senkov, S.I. Rao, G.H. Balbus, R. Wheeler, E.J. Payton, Microstructure and deformation behavior of MoReW in the temperature range from 25°C to 1500°C, Materialia. 27 (2023) 101688. https://doi.org/10.1016/j.mtla.2023.101688.
- [45] I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22wt.% Mn–0.6wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Materialia. 59 (2011) 6449–6462. https://doi.org/10.1016/j.actamat.2011.07.009.
- [46] O. Kubaschewski, I. Barin, Phase equilibria in condensed systems, Pure and Applied Chemistry. 38 (1974) 469–494. https://doi.org/10.1351/pac197438040469.
- [47] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat Methods. 9 (2012) 671–675. https://doi.org/10.1038/nmeth.2089.
- [48] W. Kraus, G. Nolze, Powder Cell a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J Appl Crystallogr. 29 (1996) 301–303. https://doi.org/10.1107/S0021889895014920.
- [49] J.B. Nelson, D.P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals, Proc. Phys. Soc. 57 (1945) 160–177. https://doi.org/10.1088/0959-5309/57/3/302.

Supplementary Material to "Overcoming barriers for high temperature alloys: oxidation and ductility"

Frauke Hinrichs^a, Georg Winkens^a, Lena Katharina Kramer^a, Daniel Schliephake^a, Gabriely Falcão^a, Mathias Christian Galetz^b, Haruyuki Inui^{c,d}, Alexander Kauffmann^{a,e,*} and Martin Heilmaier^a

^a Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Str. 4, 76131 Karlsruhe, Germany

^b DECHEMA-Forschungsinstitut, High Temperature Materials, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany

[°] Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

^d Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyoku, Kyoto 606-8501, Japan

^e Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

* corresponding author mail: alexander.kauffmann@kit.edu (A. Kauffmann) phone: +49 721 608 42346

1. Crystal Structure

Figure S1: Confirmation of the A2 crystal structure in the testing condition by XRD (powder) of as cast: (a) Cr-37.2Mo and (b) Cr-36.1-3Si. A2 is the Strukturbericht designation of disordered body centered cubic W prototype.

2. Oxide Scales

*Figure S2: Confirmation of the D5*¹ *crystal structure (Corundum prototype) of the oxide scales formed during 100 h of cyclic oxidation: a) Cr-37.2Mo at 800 °C, b) Cr-36.1Mo-3Si at 800 °C and c) Cr-36.1Mo-3Si at 1100 °C.*

Figure S3: Mockup of the oxide scale and near-surface region of Cr-37.2Mo after 100 h of oxidation at 800°C: a) SEM-EDS and schematic.

Figure S4: Oxide scale thicknesses as a function of oxidation time as determined from SEM-BSE micrograph image analyses: a) Cr-37.2Mo and b) Cr-36.1Mo-3Si. The fit lines represent fits of $d^n = k_{n,d} \cdot t$ with n = 1, 2 or 3 to the data. n is estimated from free fits and rounded.

3. Deformation Twinning

Figure S5: Analysis of the active twin systems after compression testing at 900°C up to a plastic strain of approximately 6% using SEM-EBSD: a) overview orientation map and (b,i) detail orientation map with indicated grains and twin lamellae. The color code corresponds to the inverse pole figure of the compression direction (CD) in a). The traces of the twin lamellae in the cross section are depicted as dotted lines and labelled with T1 to T5 whereas matrix grain regions are labelled with M. (c-h,j-l) Pole figures of characteristic elements for the matrix of the grains (M) and of the twins detected (T1 to T5) proving the exclusive activation of $\{112\}(11\overline{1})$ twin systems with $\{1\overline{1}0\}$ shear planes. In the pole figures the lamella traces are again indicated as dotted lines and the potential pole directions of the twin plane normal as dashed lines. In all cases, the common $\{112\}$ pole of the identified $\langle 11\overline{1} \rangle$ and $\{1\overline{1}0\}$, also common to both matrix and twin, are always perpendicular to the identified $\{112\}$ pole. The common poles are highlighted by color coded circles. Deviations from ideal sites are due to crystal reorientation by dislocation slip and, thus, depend on the strain of activation for a given twin system.