KIT | KIT-Bibliothek | Impressum | Datenschutz

Unveiling oxygen vacancy impact on lizardite thermo and mechanical properties

Pecinatto, H.; Rêgo, Celso R. C. 1; Wenzel, W. 1; Frota, C. A.; Perrone, B. M. S.; Piotrowski, Maurício J.; Guedes-Sobrinho, Diego; Dias, Alexandre C.; Mota, Cicero; Gusmão, M. S. S.; Frota, H. O.
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Here, we performed a systematic DFT study assisted by the workflow framework SimStack for the mechanical and thermodynamic properties of the clay mineral lizardite in pristine and six different types of O vacancies configurations. In most cases, the defect caused a structural phase transition in the lizardite from the trigonal (pristine) to the triclinic phase. The results show that oxygen vacancies in lizardite significantly reduce the lattice thermal conductivity, accompanied by an elastic moduli reduction and an anisotropy index increase. Through the P–V relation, an increase in compressibility was evidenced for vacancy configurations. Except for the vacancy with the same crystalline structure as pristine lizardite, the sound velocities of the other vacancy configurations produce a decrease in these velocities, and it is essential to highlight high values for the Grüneisen parameter. We emphasize the great relevance of the punctual-defects introduction, such as O vacancies, in lizardite, since this microstructural design is responsible for the decrease of the lattice thermal conductivity in comparison with the pristine system by decreasing the heat transfer ability, turning lizardite into a promising candidate for thermoelectric materials.


Verlagsausgabe §
DOI: 10.5445/IR/1000166104
Veröffentlicht am 02.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000166104
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Scientific Reports
Verlag Nature Research
Band 13
Heft 1
Seiten Art.-Nr.: 17157
Vorab online veröffentlicht am 11.10.2023
Schlagwörter Energy science and technology, Engineering, Materials science, Physics
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page