KIT | KIT-Bibliothek | Impressum | Datenschutz

Extracting Translation Pairs from Social Network Content

Eck, Matthias; Zhang, Joy; Waibel, Alexander; Zemlyanskiy, Yury

Abstract:

We introduce two methods to collect additional training data for statistical machine translation systems from public social network content. The first method identifies multilingual content where the author self-translated their own post to reach additional friends, fans or customers. Once identified, we can split the post in the language segments and extract translation pairs from this content. The second methods considers web links (URLs) that users add as part of their post to point the reader to a video, article or website. If the same URL is shared from different language users, there is a chance they might give the same comment in their respective language. We use a support vector machine (SVM) as a classifier to identify true translations from all candidate pairs. We collected additional translation pairs using both methods for the language pairs Spanish-English and Portuguese-English. Testing the collected data as additional training data for statistical machine translations on in-domain test sets resulted in very significant improvements of up to 5 BLEU.


Verlagsausgabe §
DOI: 10.5445/IR/1000166179
Veröffentlicht am 06.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2014
Sprache Englisch
Identifikator KITopen-ID: 1000166179
Erschienen in Proceedings of the 11th International Workshop on Spoken Language Translation: Papers. Ed.: M. Federico, S. Stüker, F. Yvon
Veranstaltung 11th International Workshop on Spoken Language Translation (IWSLT 2014), Lake Tahoe, NV, USA, 04.12.2014 – 05.12.2014
Verlag Association for Computational Linguistics (ACL)
Seiten 200–205
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page