KIT | KIT-Bibliothek | Impressum | Datenschutz

KIT’s Multilingual Neural Machine Translation systems for IWSLT 2017

Pham, Ngoc-Quan; Salesky, Elizabeth; Ha, Thanh-Le; Niehues, Jan ORCID iD icon; Waibel, Alexander; Sperber, Matthias

Abstract:

In this paper, we present KIT’s multilingual neural machine translation (NMT) systems for the IWSLT 2017 evaluation campaign machine translation (MT) and spoken language translation (SLT) tasks. For our MT task submissions, we used our multi-task system, modified from a standard attentional neural machine translation framework, instead of building 20 individual NMT systems. We investigated different architectures as well as different data corpora in training such a multilingual system. We also suggested an effective adaptation scheme for multilingual systems which brings great improvements compared to monolingual systems. For the SLT track, in addition to a monolingual neural translation system used to generate correct punctuations and true cases of the data prior to training our multilingual system, we introduced a noise model in order to make our system more robust. Results show that our novel modifications improved our systems considerably on all tasks.


Verlagsausgabe §
DOI: 10.5445/IR/1000166203
Veröffentlicht am 17.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2017
Sprache Englisch
Identifikator KITopen-ID: 1000166203
Erschienen in Proceedings of the 14th International Conference on Spoken Language Translation. Ed.: S. Sakti, M. Utiyama
Veranstaltung 14th International Conference on Spoken Language Translation (IWSLT 2017), Tokio, Japan, 14.12.2017 – 15.12.2017
Verlag Association for Computational Linguistics (ACL)
Seiten 42-47
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page